4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_ns.h>
25 #include <linux/magic.h>
26 #include <linux/memblock.h>
27 #include <linux/task_work.h>
28 #include <linux/sched/task.h>
29 #include <uapi/linux/mount.h>
34 /* Maximum number of mounts in a mount namespace */
35 unsigned int sysctl_mount_max __read_mostly
= 100000;
37 static unsigned int m_hash_mask __read_mostly
;
38 static unsigned int m_hash_shift __read_mostly
;
39 static unsigned int mp_hash_mask __read_mostly
;
40 static unsigned int mp_hash_shift __read_mostly
;
42 static __initdata
unsigned long mhash_entries
;
43 static int __init
set_mhash_entries(char *str
)
47 mhash_entries
= simple_strtoul(str
, &str
, 0);
50 __setup("mhash_entries=", set_mhash_entries
);
52 static __initdata
unsigned long mphash_entries
;
53 static int __init
set_mphash_entries(char *str
)
57 mphash_entries
= simple_strtoul(str
, &str
, 0);
60 __setup("mphash_entries=", set_mphash_entries
);
63 static DEFINE_IDA(mnt_id_ida
);
64 static DEFINE_IDA(mnt_group_ida
);
66 static struct hlist_head
*mount_hashtable __read_mostly
;
67 static struct hlist_head
*mountpoint_hashtable __read_mostly
;
68 static struct kmem_cache
*mnt_cache __read_mostly
;
69 static DECLARE_RWSEM(namespace_sem
);
72 struct kobject
*fs_kobj
;
73 EXPORT_SYMBOL_GPL(fs_kobj
);
76 * vfsmount lock may be taken for read to prevent changes to the
77 * vfsmount hash, ie. during mountpoint lookups or walking back
80 * It should be taken for write in all cases where the vfsmount
81 * tree or hash is modified or when a vfsmount structure is modified.
83 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(mount_lock
);
85 static inline struct hlist_head
*m_hash(struct vfsmount
*mnt
, struct dentry
*dentry
)
87 unsigned long tmp
= ((unsigned long)mnt
/ L1_CACHE_BYTES
);
88 tmp
+= ((unsigned long)dentry
/ L1_CACHE_BYTES
);
89 tmp
= tmp
+ (tmp
>> m_hash_shift
);
90 return &mount_hashtable
[tmp
& m_hash_mask
];
93 static inline struct hlist_head
*mp_hash(struct dentry
*dentry
)
95 unsigned long tmp
= ((unsigned long)dentry
/ L1_CACHE_BYTES
);
96 tmp
= tmp
+ (tmp
>> mp_hash_shift
);
97 return &mountpoint_hashtable
[tmp
& mp_hash_mask
];
100 static int mnt_alloc_id(struct mount
*mnt
)
102 int res
= ida_alloc(&mnt_id_ida
, GFP_KERNEL
);
110 static void mnt_free_id(struct mount
*mnt
)
112 ida_free(&mnt_id_ida
, mnt
->mnt_id
);
116 * Allocate a new peer group ID
118 static int mnt_alloc_group_id(struct mount
*mnt
)
120 int res
= ida_alloc_min(&mnt_group_ida
, 1, GFP_KERNEL
);
124 mnt
->mnt_group_id
= res
;
129 * Release a peer group ID
131 void mnt_release_group_id(struct mount
*mnt
)
133 ida_free(&mnt_group_ida
, mnt
->mnt_group_id
);
134 mnt
->mnt_group_id
= 0;
138 * vfsmount lock must be held for read
140 static inline void mnt_add_count(struct mount
*mnt
, int n
)
143 this_cpu_add(mnt
->mnt_pcp
->mnt_count
, n
);
152 * vfsmount lock must be held for write
154 unsigned int mnt_get_count(struct mount
*mnt
)
157 unsigned int count
= 0;
160 for_each_possible_cpu(cpu
) {
161 count
+= per_cpu_ptr(mnt
->mnt_pcp
, cpu
)->mnt_count
;
166 return mnt
->mnt_count
;
170 static void drop_mountpoint(struct fs_pin
*p
)
172 struct mount
*m
= container_of(p
, struct mount
, mnt_umount
);
173 dput(m
->mnt_ex_mountpoint
);
178 static struct mount
*alloc_vfsmnt(const char *name
)
180 struct mount
*mnt
= kmem_cache_zalloc(mnt_cache
, GFP_KERNEL
);
184 err
= mnt_alloc_id(mnt
);
189 mnt
->mnt_devname
= kstrdup_const(name
, GFP_KERNEL
);
190 if (!mnt
->mnt_devname
)
195 mnt
->mnt_pcp
= alloc_percpu(struct mnt_pcp
);
197 goto out_free_devname
;
199 this_cpu_add(mnt
->mnt_pcp
->mnt_count
, 1);
202 mnt
->mnt_writers
= 0;
205 INIT_HLIST_NODE(&mnt
->mnt_hash
);
206 INIT_LIST_HEAD(&mnt
->mnt_child
);
207 INIT_LIST_HEAD(&mnt
->mnt_mounts
);
208 INIT_LIST_HEAD(&mnt
->mnt_list
);
209 INIT_LIST_HEAD(&mnt
->mnt_expire
);
210 INIT_LIST_HEAD(&mnt
->mnt_share
);
211 INIT_LIST_HEAD(&mnt
->mnt_slave_list
);
212 INIT_LIST_HEAD(&mnt
->mnt_slave
);
213 INIT_HLIST_NODE(&mnt
->mnt_mp_list
);
214 INIT_LIST_HEAD(&mnt
->mnt_umounting
);
215 init_fs_pin(&mnt
->mnt_umount
, drop_mountpoint
);
221 kfree_const(mnt
->mnt_devname
);
226 kmem_cache_free(mnt_cache
, mnt
);
231 * Most r/o checks on a fs are for operations that take
232 * discrete amounts of time, like a write() or unlink().
233 * We must keep track of when those operations start
234 * (for permission checks) and when they end, so that
235 * we can determine when writes are able to occur to
239 * __mnt_is_readonly: check whether a mount is read-only
240 * @mnt: the mount to check for its write status
242 * This shouldn't be used directly ouside of the VFS.
243 * It does not guarantee that the filesystem will stay
244 * r/w, just that it is right *now*. This can not and
245 * should not be used in place of IS_RDONLY(inode).
246 * mnt_want/drop_write() will _keep_ the filesystem
249 bool __mnt_is_readonly(struct vfsmount
*mnt
)
251 return (mnt
->mnt_flags
& MNT_READONLY
) || sb_rdonly(mnt
->mnt_sb
);
253 EXPORT_SYMBOL_GPL(__mnt_is_readonly
);
255 static inline void mnt_inc_writers(struct mount
*mnt
)
258 this_cpu_inc(mnt
->mnt_pcp
->mnt_writers
);
264 static inline void mnt_dec_writers(struct mount
*mnt
)
267 this_cpu_dec(mnt
->mnt_pcp
->mnt_writers
);
273 static unsigned int mnt_get_writers(struct mount
*mnt
)
276 unsigned int count
= 0;
279 for_each_possible_cpu(cpu
) {
280 count
+= per_cpu_ptr(mnt
->mnt_pcp
, cpu
)->mnt_writers
;
285 return mnt
->mnt_writers
;
289 static int mnt_is_readonly(struct vfsmount
*mnt
)
291 if (mnt
->mnt_sb
->s_readonly_remount
)
293 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
295 return __mnt_is_readonly(mnt
);
299 * Most r/o & frozen checks on a fs are for operations that take discrete
300 * amounts of time, like a write() or unlink(). We must keep track of when
301 * those operations start (for permission checks) and when they end, so that we
302 * can determine when writes are able to occur to a filesystem.
305 * __mnt_want_write - get write access to a mount without freeze protection
306 * @m: the mount on which to take a write
308 * This tells the low-level filesystem that a write is about to be performed to
309 * it, and makes sure that writes are allowed (mnt it read-write) before
310 * returning success. This operation does not protect against filesystem being
311 * frozen. When the write operation is finished, __mnt_drop_write() must be
312 * called. This is effectively a refcount.
314 int __mnt_want_write(struct vfsmount
*m
)
316 struct mount
*mnt
= real_mount(m
);
320 mnt_inc_writers(mnt
);
322 * The store to mnt_inc_writers must be visible before we pass
323 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
324 * incremented count after it has set MNT_WRITE_HOLD.
327 while (READ_ONCE(mnt
->mnt
.mnt_flags
) & MNT_WRITE_HOLD
)
330 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
331 * be set to match its requirements. So we must not load that until
332 * MNT_WRITE_HOLD is cleared.
335 if (mnt_is_readonly(m
)) {
336 mnt_dec_writers(mnt
);
345 * mnt_want_write - get write access to a mount
346 * @m: the mount on which to take a write
348 * This tells the low-level filesystem that a write is about to be performed to
349 * it, and makes sure that writes are allowed (mount is read-write, filesystem
350 * is not frozen) before returning success. When the write operation is
351 * finished, mnt_drop_write() must be called. This is effectively a refcount.
353 int mnt_want_write(struct vfsmount
*m
)
357 sb_start_write(m
->mnt_sb
);
358 ret
= __mnt_want_write(m
);
360 sb_end_write(m
->mnt_sb
);
363 EXPORT_SYMBOL_GPL(mnt_want_write
);
366 * mnt_clone_write - get write access to a mount
367 * @mnt: the mount on which to take a write
369 * This is effectively like mnt_want_write, except
370 * it must only be used to take an extra write reference
371 * on a mountpoint that we already know has a write reference
372 * on it. This allows some optimisation.
374 * After finished, mnt_drop_write must be called as usual to
375 * drop the reference.
377 int mnt_clone_write(struct vfsmount
*mnt
)
379 /* superblock may be r/o */
380 if (__mnt_is_readonly(mnt
))
383 mnt_inc_writers(real_mount(mnt
));
387 EXPORT_SYMBOL_GPL(mnt_clone_write
);
390 * __mnt_want_write_file - get write access to a file's mount
391 * @file: the file who's mount on which to take a write
393 * This is like __mnt_want_write, but it takes a file and can
394 * do some optimisations if the file is open for write already
396 int __mnt_want_write_file(struct file
*file
)
398 if (!(file
->f_mode
& FMODE_WRITER
))
399 return __mnt_want_write(file
->f_path
.mnt
);
401 return mnt_clone_write(file
->f_path
.mnt
);
405 * mnt_want_write_file - get write access to a file's mount
406 * @file: the file who's mount on which to take a write
408 * This is like mnt_want_write, but it takes a file and can
409 * do some optimisations if the file is open for write already
411 int mnt_want_write_file(struct file
*file
)
415 sb_start_write(file_inode(file
)->i_sb
);
416 ret
= __mnt_want_write_file(file
);
418 sb_end_write(file_inode(file
)->i_sb
);
421 EXPORT_SYMBOL_GPL(mnt_want_write_file
);
424 * __mnt_drop_write - give up write access to a mount
425 * @mnt: the mount on which to give up write access
427 * Tells the low-level filesystem that we are done
428 * performing writes to it. Must be matched with
429 * __mnt_want_write() call above.
431 void __mnt_drop_write(struct vfsmount
*mnt
)
434 mnt_dec_writers(real_mount(mnt
));
439 * mnt_drop_write - give up write access to a mount
440 * @mnt: the mount on which to give up write access
442 * Tells the low-level filesystem that we are done performing writes to it and
443 * also allows filesystem to be frozen again. Must be matched with
444 * mnt_want_write() call above.
446 void mnt_drop_write(struct vfsmount
*mnt
)
448 __mnt_drop_write(mnt
);
449 sb_end_write(mnt
->mnt_sb
);
451 EXPORT_SYMBOL_GPL(mnt_drop_write
);
453 void __mnt_drop_write_file(struct file
*file
)
455 __mnt_drop_write(file
->f_path
.mnt
);
458 void mnt_drop_write_file(struct file
*file
)
460 __mnt_drop_write_file(file
);
461 sb_end_write(file_inode(file
)->i_sb
);
463 EXPORT_SYMBOL(mnt_drop_write_file
);
465 static int mnt_make_readonly(struct mount
*mnt
)
470 mnt
->mnt
.mnt_flags
|= MNT_WRITE_HOLD
;
472 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
473 * should be visible before we do.
478 * With writers on hold, if this value is zero, then there are
479 * definitely no active writers (although held writers may subsequently
480 * increment the count, they'll have to wait, and decrement it after
481 * seeing MNT_READONLY).
483 * It is OK to have counter incremented on one CPU and decremented on
484 * another: the sum will add up correctly. The danger would be when we
485 * sum up each counter, if we read a counter before it is incremented,
486 * but then read another CPU's count which it has been subsequently
487 * decremented from -- we would see more decrements than we should.
488 * MNT_WRITE_HOLD protects against this scenario, because
489 * mnt_want_write first increments count, then smp_mb, then spins on
490 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
491 * we're counting up here.
493 if (mnt_get_writers(mnt
) > 0)
496 mnt
->mnt
.mnt_flags
|= MNT_READONLY
;
498 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
499 * that become unheld will see MNT_READONLY.
502 mnt
->mnt
.mnt_flags
&= ~MNT_WRITE_HOLD
;
507 static int __mnt_unmake_readonly(struct mount
*mnt
)
510 mnt
->mnt
.mnt_flags
&= ~MNT_READONLY
;
515 int sb_prepare_remount_readonly(struct super_block
*sb
)
520 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
521 if (atomic_long_read(&sb
->s_remove_count
))
525 list_for_each_entry(mnt
, &sb
->s_mounts
, mnt_instance
) {
526 if (!(mnt
->mnt
.mnt_flags
& MNT_READONLY
)) {
527 mnt
->mnt
.mnt_flags
|= MNT_WRITE_HOLD
;
529 if (mnt_get_writers(mnt
) > 0) {
535 if (!err
&& atomic_long_read(&sb
->s_remove_count
))
539 sb
->s_readonly_remount
= 1;
542 list_for_each_entry(mnt
, &sb
->s_mounts
, mnt_instance
) {
543 if (mnt
->mnt
.mnt_flags
& MNT_WRITE_HOLD
)
544 mnt
->mnt
.mnt_flags
&= ~MNT_WRITE_HOLD
;
551 static void free_vfsmnt(struct mount
*mnt
)
553 kfree_const(mnt
->mnt_devname
);
555 free_percpu(mnt
->mnt_pcp
);
557 kmem_cache_free(mnt_cache
, mnt
);
560 static void delayed_free_vfsmnt(struct rcu_head
*head
)
562 free_vfsmnt(container_of(head
, struct mount
, mnt_rcu
));
565 /* call under rcu_read_lock */
566 int __legitimize_mnt(struct vfsmount
*bastard
, unsigned seq
)
569 if (read_seqretry(&mount_lock
, seq
))
573 mnt
= real_mount(bastard
);
574 mnt_add_count(mnt
, 1);
575 smp_mb(); // see mntput_no_expire()
576 if (likely(!read_seqretry(&mount_lock
, seq
)))
578 if (bastard
->mnt_flags
& MNT_SYNC_UMOUNT
) {
579 mnt_add_count(mnt
, -1);
583 if (unlikely(bastard
->mnt_flags
& MNT_DOOMED
)) {
584 mnt_add_count(mnt
, -1);
589 /* caller will mntput() */
593 /* call under rcu_read_lock */
594 bool legitimize_mnt(struct vfsmount
*bastard
, unsigned seq
)
596 int res
= __legitimize_mnt(bastard
, seq
);
599 if (unlikely(res
< 0)) {
608 * find the first mount at @dentry on vfsmount @mnt.
609 * call under rcu_read_lock()
611 struct mount
*__lookup_mnt(struct vfsmount
*mnt
, struct dentry
*dentry
)
613 struct hlist_head
*head
= m_hash(mnt
, dentry
);
616 hlist_for_each_entry_rcu(p
, head
, mnt_hash
)
617 if (&p
->mnt_parent
->mnt
== mnt
&& p
->mnt_mountpoint
== dentry
)
623 * lookup_mnt - Return the first child mount mounted at path
625 * "First" means first mounted chronologically. If you create the
628 * mount /dev/sda1 /mnt
629 * mount /dev/sda2 /mnt
630 * mount /dev/sda3 /mnt
632 * Then lookup_mnt() on the base /mnt dentry in the root mount will
633 * return successively the root dentry and vfsmount of /dev/sda1, then
634 * /dev/sda2, then /dev/sda3, then NULL.
636 * lookup_mnt takes a reference to the found vfsmount.
638 struct vfsmount
*lookup_mnt(const struct path
*path
)
640 struct mount
*child_mnt
;
646 seq
= read_seqbegin(&mount_lock
);
647 child_mnt
= __lookup_mnt(path
->mnt
, path
->dentry
);
648 m
= child_mnt
? &child_mnt
->mnt
: NULL
;
649 } while (!legitimize_mnt(m
, seq
));
655 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
656 * current mount namespace.
658 * The common case is dentries are not mountpoints at all and that
659 * test is handled inline. For the slow case when we are actually
660 * dealing with a mountpoint of some kind, walk through all of the
661 * mounts in the current mount namespace and test to see if the dentry
664 * The mount_hashtable is not usable in the context because we
665 * need to identify all mounts that may be in the current mount
666 * namespace not just a mount that happens to have some specified
669 bool __is_local_mountpoint(struct dentry
*dentry
)
671 struct mnt_namespace
*ns
= current
->nsproxy
->mnt_ns
;
673 bool is_covered
= false;
675 if (!d_mountpoint(dentry
))
678 down_read(&namespace_sem
);
679 list_for_each_entry(mnt
, &ns
->list
, mnt_list
) {
680 is_covered
= (mnt
->mnt_mountpoint
== dentry
);
684 up_read(&namespace_sem
);
689 static struct mountpoint
*lookup_mountpoint(struct dentry
*dentry
)
691 struct hlist_head
*chain
= mp_hash(dentry
);
692 struct mountpoint
*mp
;
694 hlist_for_each_entry(mp
, chain
, m_hash
) {
695 if (mp
->m_dentry
== dentry
) {
703 static struct mountpoint
*get_mountpoint(struct dentry
*dentry
)
705 struct mountpoint
*mp
, *new = NULL
;
708 if (d_mountpoint(dentry
)) {
709 /* might be worth a WARN_ON() */
710 if (d_unlinked(dentry
))
711 return ERR_PTR(-ENOENT
);
713 read_seqlock_excl(&mount_lock
);
714 mp
= lookup_mountpoint(dentry
);
715 read_sequnlock_excl(&mount_lock
);
721 new = kmalloc(sizeof(struct mountpoint
), GFP_KERNEL
);
723 return ERR_PTR(-ENOMEM
);
726 /* Exactly one processes may set d_mounted */
727 ret
= d_set_mounted(dentry
);
729 /* Someone else set d_mounted? */
733 /* The dentry is not available as a mountpoint? */
738 /* Add the new mountpoint to the hash table */
739 read_seqlock_excl(&mount_lock
);
740 new->m_dentry
= dentry
;
742 hlist_add_head(&new->m_hash
, mp_hash(dentry
));
743 INIT_HLIST_HEAD(&new->m_list
);
744 read_sequnlock_excl(&mount_lock
);
753 static void put_mountpoint(struct mountpoint
*mp
)
755 if (!--mp
->m_count
) {
756 struct dentry
*dentry
= mp
->m_dentry
;
757 BUG_ON(!hlist_empty(&mp
->m_list
));
758 spin_lock(&dentry
->d_lock
);
759 dentry
->d_flags
&= ~DCACHE_MOUNTED
;
760 spin_unlock(&dentry
->d_lock
);
761 hlist_del(&mp
->m_hash
);
766 static inline int check_mnt(struct mount
*mnt
)
768 return mnt
->mnt_ns
== current
->nsproxy
->mnt_ns
;
772 * vfsmount lock must be held for write
774 static void touch_mnt_namespace(struct mnt_namespace
*ns
)
778 wake_up_interruptible(&ns
->poll
);
783 * vfsmount lock must be held for write
785 static void __touch_mnt_namespace(struct mnt_namespace
*ns
)
787 if (ns
&& ns
->event
!= event
) {
789 wake_up_interruptible(&ns
->poll
);
794 * vfsmount lock must be held for write
796 static void unhash_mnt(struct mount
*mnt
)
798 mnt
->mnt_parent
= mnt
;
799 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
800 list_del_init(&mnt
->mnt_child
);
801 hlist_del_init_rcu(&mnt
->mnt_hash
);
802 hlist_del_init(&mnt
->mnt_mp_list
);
803 put_mountpoint(mnt
->mnt_mp
);
808 * vfsmount lock must be held for write
810 static void detach_mnt(struct mount
*mnt
, struct path
*old_path
)
812 old_path
->dentry
= mnt
->mnt_mountpoint
;
813 old_path
->mnt
= &mnt
->mnt_parent
->mnt
;
818 * vfsmount lock must be held for write
820 static void umount_mnt(struct mount
*mnt
)
822 /* old mountpoint will be dropped when we can do that */
823 mnt
->mnt_ex_mountpoint
= mnt
->mnt_mountpoint
;
828 * vfsmount lock must be held for write
830 void mnt_set_mountpoint(struct mount
*mnt
,
831 struct mountpoint
*mp
,
832 struct mount
*child_mnt
)
835 mnt_add_count(mnt
, 1); /* essentially, that's mntget */
836 child_mnt
->mnt_mountpoint
= dget(mp
->m_dentry
);
837 child_mnt
->mnt_parent
= mnt
;
838 child_mnt
->mnt_mp
= mp
;
839 hlist_add_head(&child_mnt
->mnt_mp_list
, &mp
->m_list
);
842 static void __attach_mnt(struct mount
*mnt
, struct mount
*parent
)
844 hlist_add_head_rcu(&mnt
->mnt_hash
,
845 m_hash(&parent
->mnt
, mnt
->mnt_mountpoint
));
846 list_add_tail(&mnt
->mnt_child
, &parent
->mnt_mounts
);
850 * vfsmount lock must be held for write
852 static void attach_mnt(struct mount
*mnt
,
853 struct mount
*parent
,
854 struct mountpoint
*mp
)
856 mnt_set_mountpoint(parent
, mp
, mnt
);
857 __attach_mnt(mnt
, parent
);
860 void mnt_change_mountpoint(struct mount
*parent
, struct mountpoint
*mp
, struct mount
*mnt
)
862 struct mountpoint
*old_mp
= mnt
->mnt_mp
;
863 struct dentry
*old_mountpoint
= mnt
->mnt_mountpoint
;
864 struct mount
*old_parent
= mnt
->mnt_parent
;
866 list_del_init(&mnt
->mnt_child
);
867 hlist_del_init(&mnt
->mnt_mp_list
);
868 hlist_del_init_rcu(&mnt
->mnt_hash
);
870 attach_mnt(mnt
, parent
, mp
);
872 put_mountpoint(old_mp
);
875 * Safely avoid even the suggestion this code might sleep or
876 * lock the mount hash by taking advantage of the knowledge that
877 * mnt_change_mountpoint will not release the final reference
880 * During mounting, the mount passed in as the parent mount will
881 * continue to use the old mountpoint and during unmounting, the
882 * old mountpoint will continue to exist until namespace_unlock,
883 * which happens well after mnt_change_mountpoint.
885 spin_lock(&old_mountpoint
->d_lock
);
886 old_mountpoint
->d_lockref
.count
--;
887 spin_unlock(&old_mountpoint
->d_lock
);
889 mnt_add_count(old_parent
, -1);
893 * vfsmount lock must be held for write
895 static void commit_tree(struct mount
*mnt
)
897 struct mount
*parent
= mnt
->mnt_parent
;
900 struct mnt_namespace
*n
= parent
->mnt_ns
;
902 BUG_ON(parent
== mnt
);
904 list_add_tail(&head
, &mnt
->mnt_list
);
905 list_for_each_entry(m
, &head
, mnt_list
)
908 list_splice(&head
, n
->list
.prev
);
910 n
->mounts
+= n
->pending_mounts
;
911 n
->pending_mounts
= 0;
913 __attach_mnt(mnt
, parent
);
914 touch_mnt_namespace(n
);
917 static struct mount
*next_mnt(struct mount
*p
, struct mount
*root
)
919 struct list_head
*next
= p
->mnt_mounts
.next
;
920 if (next
== &p
->mnt_mounts
) {
924 next
= p
->mnt_child
.next
;
925 if (next
!= &p
->mnt_parent
->mnt_mounts
)
930 return list_entry(next
, struct mount
, mnt_child
);
933 static struct mount
*skip_mnt_tree(struct mount
*p
)
935 struct list_head
*prev
= p
->mnt_mounts
.prev
;
936 while (prev
!= &p
->mnt_mounts
) {
937 p
= list_entry(prev
, struct mount
, mnt_child
);
938 prev
= p
->mnt_mounts
.prev
;
944 vfs_kern_mount(struct file_system_type
*type
, int flags
, const char *name
, void *data
)
950 return ERR_PTR(-ENODEV
);
952 mnt
= alloc_vfsmnt(name
);
954 return ERR_PTR(-ENOMEM
);
956 if (flags
& SB_KERNMOUNT
)
957 mnt
->mnt
.mnt_flags
= MNT_INTERNAL
;
959 root
= mount_fs(type
, flags
, name
, data
);
963 return ERR_CAST(root
);
966 mnt
->mnt
.mnt_root
= root
;
967 mnt
->mnt
.mnt_sb
= root
->d_sb
;
968 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
969 mnt
->mnt_parent
= mnt
;
971 list_add_tail(&mnt
->mnt_instance
, &root
->d_sb
->s_mounts
);
975 EXPORT_SYMBOL_GPL(vfs_kern_mount
);
978 vfs_submount(const struct dentry
*mountpoint
, struct file_system_type
*type
,
979 const char *name
, void *data
)
981 /* Until it is worked out how to pass the user namespace
982 * through from the parent mount to the submount don't support
983 * unprivileged mounts with submounts.
985 if (mountpoint
->d_sb
->s_user_ns
!= &init_user_ns
)
986 return ERR_PTR(-EPERM
);
988 return vfs_kern_mount(type
, SB_SUBMOUNT
, name
, data
);
990 EXPORT_SYMBOL_GPL(vfs_submount
);
992 static struct mount
*clone_mnt(struct mount
*old
, struct dentry
*root
,
995 struct super_block
*sb
= old
->mnt
.mnt_sb
;
999 mnt
= alloc_vfsmnt(old
->mnt_devname
);
1001 return ERR_PTR(-ENOMEM
);
1003 if (flag
& (CL_SLAVE
| CL_PRIVATE
| CL_SHARED_TO_SLAVE
))
1004 mnt
->mnt_group_id
= 0; /* not a peer of original */
1006 mnt
->mnt_group_id
= old
->mnt_group_id
;
1008 if ((flag
& CL_MAKE_SHARED
) && !mnt
->mnt_group_id
) {
1009 err
= mnt_alloc_group_id(mnt
);
1014 mnt
->mnt
.mnt_flags
= old
->mnt
.mnt_flags
;
1015 mnt
->mnt
.mnt_flags
&= ~(MNT_WRITE_HOLD
|MNT_MARKED
|MNT_INTERNAL
);
1016 /* Don't allow unprivileged users to change mount flags */
1017 if (flag
& CL_UNPRIVILEGED
) {
1018 mnt
->mnt
.mnt_flags
|= MNT_LOCK_ATIME
;
1020 if (mnt
->mnt
.mnt_flags
& MNT_READONLY
)
1021 mnt
->mnt
.mnt_flags
|= MNT_LOCK_READONLY
;
1023 if (mnt
->mnt
.mnt_flags
& MNT_NODEV
)
1024 mnt
->mnt
.mnt_flags
|= MNT_LOCK_NODEV
;
1026 if (mnt
->mnt
.mnt_flags
& MNT_NOSUID
)
1027 mnt
->mnt
.mnt_flags
|= MNT_LOCK_NOSUID
;
1029 if (mnt
->mnt
.mnt_flags
& MNT_NOEXEC
)
1030 mnt
->mnt
.mnt_flags
|= MNT_LOCK_NOEXEC
;
1033 /* Don't allow unprivileged users to reveal what is under a mount */
1034 if ((flag
& CL_UNPRIVILEGED
) &&
1035 (!(flag
& CL_EXPIRE
) || list_empty(&old
->mnt_expire
)))
1036 mnt
->mnt
.mnt_flags
|= MNT_LOCKED
;
1038 atomic_inc(&sb
->s_active
);
1039 mnt
->mnt
.mnt_sb
= sb
;
1040 mnt
->mnt
.mnt_root
= dget(root
);
1041 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
1042 mnt
->mnt_parent
= mnt
;
1044 list_add_tail(&mnt
->mnt_instance
, &sb
->s_mounts
);
1045 unlock_mount_hash();
1047 if ((flag
& CL_SLAVE
) ||
1048 ((flag
& CL_SHARED_TO_SLAVE
) && IS_MNT_SHARED(old
))) {
1049 list_add(&mnt
->mnt_slave
, &old
->mnt_slave_list
);
1050 mnt
->mnt_master
= old
;
1051 CLEAR_MNT_SHARED(mnt
);
1052 } else if (!(flag
& CL_PRIVATE
)) {
1053 if ((flag
& CL_MAKE_SHARED
) || IS_MNT_SHARED(old
))
1054 list_add(&mnt
->mnt_share
, &old
->mnt_share
);
1055 if (IS_MNT_SLAVE(old
))
1056 list_add(&mnt
->mnt_slave
, &old
->mnt_slave
);
1057 mnt
->mnt_master
= old
->mnt_master
;
1059 CLEAR_MNT_SHARED(mnt
);
1061 if (flag
& CL_MAKE_SHARED
)
1062 set_mnt_shared(mnt
);
1064 /* stick the duplicate mount on the same expiry list
1065 * as the original if that was on one */
1066 if (flag
& CL_EXPIRE
) {
1067 if (!list_empty(&old
->mnt_expire
))
1068 list_add(&mnt
->mnt_expire
, &old
->mnt_expire
);
1076 return ERR_PTR(err
);
1079 static void cleanup_mnt(struct mount
*mnt
)
1082 * This probably indicates that somebody messed
1083 * up a mnt_want/drop_write() pair. If this
1084 * happens, the filesystem was probably unable
1085 * to make r/w->r/o transitions.
1088 * The locking used to deal with mnt_count decrement provides barriers,
1089 * so mnt_get_writers() below is safe.
1091 WARN_ON(mnt_get_writers(mnt
));
1092 if (unlikely(mnt
->mnt_pins
.first
))
1094 fsnotify_vfsmount_delete(&mnt
->mnt
);
1095 dput(mnt
->mnt
.mnt_root
);
1096 deactivate_super(mnt
->mnt
.mnt_sb
);
1098 call_rcu(&mnt
->mnt_rcu
, delayed_free_vfsmnt
);
1101 static void __cleanup_mnt(struct rcu_head
*head
)
1103 cleanup_mnt(container_of(head
, struct mount
, mnt_rcu
));
1106 static LLIST_HEAD(delayed_mntput_list
);
1107 static void delayed_mntput(struct work_struct
*unused
)
1109 struct llist_node
*node
= llist_del_all(&delayed_mntput_list
);
1110 struct mount
*m
, *t
;
1112 llist_for_each_entry_safe(m
, t
, node
, mnt_llist
)
1115 static DECLARE_DELAYED_WORK(delayed_mntput_work
, delayed_mntput
);
1117 static void mntput_no_expire(struct mount
*mnt
)
1120 if (likely(READ_ONCE(mnt
->mnt_ns
))) {
1122 * Since we don't do lock_mount_hash() here,
1123 * ->mnt_ns can change under us. However, if it's
1124 * non-NULL, then there's a reference that won't
1125 * be dropped until after an RCU delay done after
1126 * turning ->mnt_ns NULL. So if we observe it
1127 * non-NULL under rcu_read_lock(), the reference
1128 * we are dropping is not the final one.
1130 mnt_add_count(mnt
, -1);
1136 * make sure that if __legitimize_mnt() has not seen us grab
1137 * mount_lock, we'll see their refcount increment here.
1140 mnt_add_count(mnt
, -1);
1141 if (mnt_get_count(mnt
)) {
1143 unlock_mount_hash();
1146 if (unlikely(mnt
->mnt
.mnt_flags
& MNT_DOOMED
)) {
1148 unlock_mount_hash();
1151 mnt
->mnt
.mnt_flags
|= MNT_DOOMED
;
1154 list_del(&mnt
->mnt_instance
);
1156 if (unlikely(!list_empty(&mnt
->mnt_mounts
))) {
1157 struct mount
*p
, *tmp
;
1158 list_for_each_entry_safe(p
, tmp
, &mnt
->mnt_mounts
, mnt_child
) {
1162 unlock_mount_hash();
1164 if (likely(!(mnt
->mnt
.mnt_flags
& MNT_INTERNAL
))) {
1165 struct task_struct
*task
= current
;
1166 if (likely(!(task
->flags
& PF_KTHREAD
))) {
1167 init_task_work(&mnt
->mnt_rcu
, __cleanup_mnt
);
1168 if (!task_work_add(task
, &mnt
->mnt_rcu
, true))
1171 if (llist_add(&mnt
->mnt_llist
, &delayed_mntput_list
))
1172 schedule_delayed_work(&delayed_mntput_work
, 1);
1178 void mntput(struct vfsmount
*mnt
)
1181 struct mount
*m
= real_mount(mnt
);
1182 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1183 if (unlikely(m
->mnt_expiry_mark
))
1184 m
->mnt_expiry_mark
= 0;
1185 mntput_no_expire(m
);
1188 EXPORT_SYMBOL(mntput
);
1190 struct vfsmount
*mntget(struct vfsmount
*mnt
)
1193 mnt_add_count(real_mount(mnt
), 1);
1196 EXPORT_SYMBOL(mntget
);
1198 /* path_is_mountpoint() - Check if path is a mount in the current
1201 * d_mountpoint() can only be used reliably to establish if a dentry is
1202 * not mounted in any namespace and that common case is handled inline.
1203 * d_mountpoint() isn't aware of the possibility there may be multiple
1204 * mounts using a given dentry in a different namespace. This function
1205 * checks if the passed in path is a mountpoint rather than the dentry
1208 bool path_is_mountpoint(const struct path
*path
)
1213 if (!d_mountpoint(path
->dentry
))
1218 seq
= read_seqbegin(&mount_lock
);
1219 res
= __path_is_mountpoint(path
);
1220 } while (read_seqretry(&mount_lock
, seq
));
1225 EXPORT_SYMBOL(path_is_mountpoint
);
1227 struct vfsmount
*mnt_clone_internal(const struct path
*path
)
1230 p
= clone_mnt(real_mount(path
->mnt
), path
->dentry
, CL_PRIVATE
);
1233 p
->mnt
.mnt_flags
|= MNT_INTERNAL
;
1237 #ifdef CONFIG_PROC_FS
1238 /* iterator; we want it to have access to namespace_sem, thus here... */
1239 static void *m_start(struct seq_file
*m
, loff_t
*pos
)
1241 struct proc_mounts
*p
= m
->private;
1243 down_read(&namespace_sem
);
1244 if (p
->cached_event
== p
->ns
->event
) {
1245 void *v
= p
->cached_mount
;
1246 if (*pos
== p
->cached_index
)
1248 if (*pos
== p
->cached_index
+ 1) {
1249 v
= seq_list_next(v
, &p
->ns
->list
, &p
->cached_index
);
1250 return p
->cached_mount
= v
;
1254 p
->cached_event
= p
->ns
->event
;
1255 p
->cached_mount
= seq_list_start(&p
->ns
->list
, *pos
);
1256 p
->cached_index
= *pos
;
1257 return p
->cached_mount
;
1260 static void *m_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
1262 struct proc_mounts
*p
= m
->private;
1264 p
->cached_mount
= seq_list_next(v
, &p
->ns
->list
, pos
);
1265 p
->cached_index
= *pos
;
1266 return p
->cached_mount
;
1269 static void m_stop(struct seq_file
*m
, void *v
)
1271 up_read(&namespace_sem
);
1274 static int m_show(struct seq_file
*m
, void *v
)
1276 struct proc_mounts
*p
= m
->private;
1277 struct mount
*r
= list_entry(v
, struct mount
, mnt_list
);
1278 return p
->show(m
, &r
->mnt
);
1281 const struct seq_operations mounts_op
= {
1287 #endif /* CONFIG_PROC_FS */
1290 * may_umount_tree - check if a mount tree is busy
1291 * @mnt: root of mount tree
1293 * This is called to check if a tree of mounts has any
1294 * open files, pwds, chroots or sub mounts that are
1297 int may_umount_tree(struct vfsmount
*m
)
1299 struct mount
*mnt
= real_mount(m
);
1300 int actual_refs
= 0;
1301 int minimum_refs
= 0;
1305 /* write lock needed for mnt_get_count */
1307 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1308 actual_refs
+= mnt_get_count(p
);
1311 unlock_mount_hash();
1313 if (actual_refs
> minimum_refs
)
1319 EXPORT_SYMBOL(may_umount_tree
);
1322 * may_umount - check if a mount point is busy
1323 * @mnt: root of mount
1325 * This is called to check if a mount point has any
1326 * open files, pwds, chroots or sub mounts. If the
1327 * mount has sub mounts this will return busy
1328 * regardless of whether the sub mounts are busy.
1330 * Doesn't take quota and stuff into account. IOW, in some cases it will
1331 * give false negatives. The main reason why it's here is that we need
1332 * a non-destructive way to look for easily umountable filesystems.
1334 int may_umount(struct vfsmount
*mnt
)
1337 down_read(&namespace_sem
);
1339 if (propagate_mount_busy(real_mount(mnt
), 2))
1341 unlock_mount_hash();
1342 up_read(&namespace_sem
);
1346 EXPORT_SYMBOL(may_umount
);
1348 static HLIST_HEAD(unmounted
); /* protected by namespace_sem */
1350 static void namespace_unlock(void)
1352 struct hlist_head head
;
1354 hlist_move_list(&unmounted
, &head
);
1356 up_write(&namespace_sem
);
1358 if (likely(hlist_empty(&head
)))
1361 synchronize_rcu_expedited();
1363 group_pin_kill(&head
);
1366 static inline void namespace_lock(void)
1368 down_write(&namespace_sem
);
1371 enum umount_tree_flags
{
1373 UMOUNT_PROPAGATE
= 2,
1374 UMOUNT_CONNECTED
= 4,
1377 static bool disconnect_mount(struct mount
*mnt
, enum umount_tree_flags how
)
1379 /* Leaving mounts connected is only valid for lazy umounts */
1380 if (how
& UMOUNT_SYNC
)
1383 /* A mount without a parent has nothing to be connected to */
1384 if (!mnt_has_parent(mnt
))
1387 /* Because the reference counting rules change when mounts are
1388 * unmounted and connected, umounted mounts may not be
1389 * connected to mounted mounts.
1391 if (!(mnt
->mnt_parent
->mnt
.mnt_flags
& MNT_UMOUNT
))
1394 /* Has it been requested that the mount remain connected? */
1395 if (how
& UMOUNT_CONNECTED
)
1398 /* Is the mount locked such that it needs to remain connected? */
1399 if (IS_MNT_LOCKED(mnt
))
1402 /* By default disconnect the mount */
1407 * mount_lock must be held
1408 * namespace_sem must be held for write
1410 static void umount_tree(struct mount
*mnt
, enum umount_tree_flags how
)
1412 LIST_HEAD(tmp_list
);
1415 if (how
& UMOUNT_PROPAGATE
)
1416 propagate_mount_unlock(mnt
);
1418 /* Gather the mounts to umount */
1419 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1420 p
->mnt
.mnt_flags
|= MNT_UMOUNT
;
1421 list_move(&p
->mnt_list
, &tmp_list
);
1424 /* Hide the mounts from mnt_mounts */
1425 list_for_each_entry(p
, &tmp_list
, mnt_list
) {
1426 list_del_init(&p
->mnt_child
);
1429 /* Add propogated mounts to the tmp_list */
1430 if (how
& UMOUNT_PROPAGATE
)
1431 propagate_umount(&tmp_list
);
1433 while (!list_empty(&tmp_list
)) {
1434 struct mnt_namespace
*ns
;
1436 p
= list_first_entry(&tmp_list
, struct mount
, mnt_list
);
1437 list_del_init(&p
->mnt_expire
);
1438 list_del_init(&p
->mnt_list
);
1442 __touch_mnt_namespace(ns
);
1445 if (how
& UMOUNT_SYNC
)
1446 p
->mnt
.mnt_flags
|= MNT_SYNC_UMOUNT
;
1448 disconnect
= disconnect_mount(p
, how
);
1450 pin_insert_group(&p
->mnt_umount
, &p
->mnt_parent
->mnt
,
1451 disconnect
? &unmounted
: NULL
);
1452 if (mnt_has_parent(p
)) {
1453 mnt_add_count(p
->mnt_parent
, -1);
1455 /* Don't forget about p */
1456 list_add_tail(&p
->mnt_child
, &p
->mnt_parent
->mnt_mounts
);
1461 change_mnt_propagation(p
, MS_PRIVATE
);
1465 static void shrink_submounts(struct mount
*mnt
);
1467 static int do_umount(struct mount
*mnt
, int flags
)
1469 struct super_block
*sb
= mnt
->mnt
.mnt_sb
;
1472 retval
= security_sb_umount(&mnt
->mnt
, flags
);
1477 * Allow userspace to request a mountpoint be expired rather than
1478 * unmounting unconditionally. Unmount only happens if:
1479 * (1) the mark is already set (the mark is cleared by mntput())
1480 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1482 if (flags
& MNT_EXPIRE
) {
1483 if (&mnt
->mnt
== current
->fs
->root
.mnt
||
1484 flags
& (MNT_FORCE
| MNT_DETACH
))
1488 * probably don't strictly need the lock here if we examined
1489 * all race cases, but it's a slowpath.
1492 if (mnt_get_count(mnt
) != 2) {
1493 unlock_mount_hash();
1496 unlock_mount_hash();
1498 if (!xchg(&mnt
->mnt_expiry_mark
, 1))
1503 * If we may have to abort operations to get out of this
1504 * mount, and they will themselves hold resources we must
1505 * allow the fs to do things. In the Unix tradition of
1506 * 'Gee thats tricky lets do it in userspace' the umount_begin
1507 * might fail to complete on the first run through as other tasks
1508 * must return, and the like. Thats for the mount program to worry
1509 * about for the moment.
1512 if (flags
& MNT_FORCE
&& sb
->s_op
->umount_begin
) {
1513 sb
->s_op
->umount_begin(sb
);
1517 * No sense to grab the lock for this test, but test itself looks
1518 * somewhat bogus. Suggestions for better replacement?
1519 * Ho-hum... In principle, we might treat that as umount + switch
1520 * to rootfs. GC would eventually take care of the old vfsmount.
1521 * Actually it makes sense, especially if rootfs would contain a
1522 * /reboot - static binary that would close all descriptors and
1523 * call reboot(9). Then init(8) could umount root and exec /reboot.
1525 if (&mnt
->mnt
== current
->fs
->root
.mnt
&& !(flags
& MNT_DETACH
)) {
1527 * Special case for "unmounting" root ...
1528 * we just try to remount it readonly.
1530 if (!ns_capable(sb
->s_user_ns
, CAP_SYS_ADMIN
))
1532 down_write(&sb
->s_umount
);
1534 retval
= do_remount_sb(sb
, SB_RDONLY
, NULL
, 0);
1535 up_write(&sb
->s_umount
);
1542 /* Recheck MNT_LOCKED with the locks held */
1544 if (mnt
->mnt
.mnt_flags
& MNT_LOCKED
)
1548 if (flags
& MNT_DETACH
) {
1549 if (!list_empty(&mnt
->mnt_list
))
1550 umount_tree(mnt
, UMOUNT_PROPAGATE
);
1553 shrink_submounts(mnt
);
1555 if (!propagate_mount_busy(mnt
, 2)) {
1556 if (!list_empty(&mnt
->mnt_list
))
1557 umount_tree(mnt
, UMOUNT_PROPAGATE
|UMOUNT_SYNC
);
1562 unlock_mount_hash();
1568 * __detach_mounts - lazily unmount all mounts on the specified dentry
1570 * During unlink, rmdir, and d_drop it is possible to loose the path
1571 * to an existing mountpoint, and wind up leaking the mount.
1572 * detach_mounts allows lazily unmounting those mounts instead of
1575 * The caller may hold dentry->d_inode->i_mutex.
1577 void __detach_mounts(struct dentry
*dentry
)
1579 struct mountpoint
*mp
;
1584 mp
= lookup_mountpoint(dentry
);
1585 if (IS_ERR_OR_NULL(mp
))
1589 while (!hlist_empty(&mp
->m_list
)) {
1590 mnt
= hlist_entry(mp
->m_list
.first
, struct mount
, mnt_mp_list
);
1591 if (mnt
->mnt
.mnt_flags
& MNT_UMOUNT
) {
1592 hlist_add_head(&mnt
->mnt_umount
.s_list
, &unmounted
);
1595 else umount_tree(mnt
, UMOUNT_CONNECTED
);
1599 unlock_mount_hash();
1604 * Is the caller allowed to modify his namespace?
1606 static inline bool may_mount(void)
1608 return ns_capable(current
->nsproxy
->mnt_ns
->user_ns
, CAP_SYS_ADMIN
);
1611 static inline bool may_mandlock(void)
1613 #ifndef CONFIG_MANDATORY_FILE_LOCKING
1616 return capable(CAP_SYS_ADMIN
);
1620 * Now umount can handle mount points as well as block devices.
1621 * This is important for filesystems which use unnamed block devices.
1623 * We now support a flag for forced unmount like the other 'big iron'
1624 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1627 int ksys_umount(char __user
*name
, int flags
)
1632 int lookup_flags
= 0;
1634 if (flags
& ~(MNT_FORCE
| MNT_DETACH
| MNT_EXPIRE
| UMOUNT_NOFOLLOW
))
1640 if (!(flags
& UMOUNT_NOFOLLOW
))
1641 lookup_flags
|= LOOKUP_FOLLOW
;
1643 retval
= user_path_mountpoint_at(AT_FDCWD
, name
, lookup_flags
, &path
);
1646 mnt
= real_mount(path
.mnt
);
1648 if (path
.dentry
!= path
.mnt
->mnt_root
)
1650 if (!check_mnt(mnt
))
1652 if (mnt
->mnt
.mnt_flags
& MNT_LOCKED
) /* Check optimistically */
1655 if (flags
& MNT_FORCE
&& !capable(CAP_SYS_ADMIN
))
1658 retval
= do_umount(mnt
, flags
);
1660 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1662 mntput_no_expire(mnt
);
1667 SYSCALL_DEFINE2(umount
, char __user
*, name
, int, flags
)
1669 return ksys_umount(name
, flags
);
1672 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1675 * The 2.0 compatible umount. No flags.
1677 SYSCALL_DEFINE1(oldumount
, char __user
*, name
)
1679 return ksys_umount(name
, 0);
1684 static bool is_mnt_ns_file(struct dentry
*dentry
)
1686 /* Is this a proxy for a mount namespace? */
1687 return dentry
->d_op
== &ns_dentry_operations
&&
1688 dentry
->d_fsdata
== &mntns_operations
;
1691 struct mnt_namespace
*to_mnt_ns(struct ns_common
*ns
)
1693 return container_of(ns
, struct mnt_namespace
, ns
);
1696 static bool mnt_ns_loop(struct dentry
*dentry
)
1698 /* Could bind mounting the mount namespace inode cause a
1699 * mount namespace loop?
1701 struct mnt_namespace
*mnt_ns
;
1702 if (!is_mnt_ns_file(dentry
))
1705 mnt_ns
= to_mnt_ns(get_proc_ns(dentry
->d_inode
));
1706 return current
->nsproxy
->mnt_ns
->seq
>= mnt_ns
->seq
;
1709 struct mount
*copy_tree(struct mount
*mnt
, struct dentry
*dentry
,
1712 struct mount
*res
, *p
, *q
, *r
, *parent
;
1714 if (!(flag
& CL_COPY_UNBINDABLE
) && IS_MNT_UNBINDABLE(mnt
))
1715 return ERR_PTR(-EINVAL
);
1717 if (!(flag
& CL_COPY_MNT_NS_FILE
) && is_mnt_ns_file(dentry
))
1718 return ERR_PTR(-EINVAL
);
1720 res
= q
= clone_mnt(mnt
, dentry
, flag
);
1724 q
->mnt_mountpoint
= mnt
->mnt_mountpoint
;
1727 list_for_each_entry(r
, &mnt
->mnt_mounts
, mnt_child
) {
1729 if (!is_subdir(r
->mnt_mountpoint
, dentry
))
1732 for (s
= r
; s
; s
= next_mnt(s
, r
)) {
1733 if (!(flag
& CL_COPY_UNBINDABLE
) &&
1734 IS_MNT_UNBINDABLE(s
)) {
1735 if (s
->mnt
.mnt_flags
& MNT_LOCKED
) {
1736 /* Both unbindable and locked. */
1737 q
= ERR_PTR(-EPERM
);
1740 s
= skip_mnt_tree(s
);
1744 if (!(flag
& CL_COPY_MNT_NS_FILE
) &&
1745 is_mnt_ns_file(s
->mnt
.mnt_root
)) {
1746 s
= skip_mnt_tree(s
);
1749 while (p
!= s
->mnt_parent
) {
1755 q
= clone_mnt(p
, p
->mnt
.mnt_root
, flag
);
1759 list_add_tail(&q
->mnt_list
, &res
->mnt_list
);
1760 attach_mnt(q
, parent
, p
->mnt_mp
);
1761 unlock_mount_hash();
1768 umount_tree(res
, UMOUNT_SYNC
);
1769 unlock_mount_hash();
1774 /* Caller should check returned pointer for errors */
1776 struct vfsmount
*collect_mounts(const struct path
*path
)
1780 if (!check_mnt(real_mount(path
->mnt
)))
1781 tree
= ERR_PTR(-EINVAL
);
1783 tree
= copy_tree(real_mount(path
->mnt
), path
->dentry
,
1784 CL_COPY_ALL
| CL_PRIVATE
);
1787 return ERR_CAST(tree
);
1791 void drop_collected_mounts(struct vfsmount
*mnt
)
1795 umount_tree(real_mount(mnt
), 0);
1796 unlock_mount_hash();
1801 * clone_private_mount - create a private clone of a path
1803 * This creates a new vfsmount, which will be the clone of @path. The new will
1804 * not be attached anywhere in the namespace and will be private (i.e. changes
1805 * to the originating mount won't be propagated into this).
1807 * Release with mntput().
1809 struct vfsmount
*clone_private_mount(const struct path
*path
)
1811 struct mount
*old_mnt
= real_mount(path
->mnt
);
1812 struct mount
*new_mnt
;
1814 if (IS_MNT_UNBINDABLE(old_mnt
))
1815 return ERR_PTR(-EINVAL
);
1817 new_mnt
= clone_mnt(old_mnt
, path
->dentry
, CL_PRIVATE
);
1818 if (IS_ERR(new_mnt
))
1819 return ERR_CAST(new_mnt
);
1821 return &new_mnt
->mnt
;
1823 EXPORT_SYMBOL_GPL(clone_private_mount
);
1825 int iterate_mounts(int (*f
)(struct vfsmount
*, void *), void *arg
,
1826 struct vfsmount
*root
)
1829 int res
= f(root
, arg
);
1832 list_for_each_entry(mnt
, &real_mount(root
)->mnt_list
, mnt_list
) {
1833 res
= f(&mnt
->mnt
, arg
);
1840 static void cleanup_group_ids(struct mount
*mnt
, struct mount
*end
)
1844 for (p
= mnt
; p
!= end
; p
= next_mnt(p
, mnt
)) {
1845 if (p
->mnt_group_id
&& !IS_MNT_SHARED(p
))
1846 mnt_release_group_id(p
);
1850 static int invent_group_ids(struct mount
*mnt
, bool recurse
)
1854 for (p
= mnt
; p
; p
= recurse
? next_mnt(p
, mnt
) : NULL
) {
1855 if (!p
->mnt_group_id
&& !IS_MNT_SHARED(p
)) {
1856 int err
= mnt_alloc_group_id(p
);
1858 cleanup_group_ids(mnt
, p
);
1867 int count_mounts(struct mnt_namespace
*ns
, struct mount
*mnt
)
1869 unsigned int max
= READ_ONCE(sysctl_mount_max
);
1870 unsigned int mounts
= 0, old
, pending
, sum
;
1873 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
))
1877 pending
= ns
->pending_mounts
;
1878 sum
= old
+ pending
;
1882 (mounts
> (max
- sum
)))
1885 ns
->pending_mounts
= pending
+ mounts
;
1890 * @source_mnt : mount tree to be attached
1891 * @nd : place the mount tree @source_mnt is attached
1892 * @parent_nd : if non-null, detach the source_mnt from its parent and
1893 * store the parent mount and mountpoint dentry.
1894 * (done when source_mnt is moved)
1896 * NOTE: in the table below explains the semantics when a source mount
1897 * of a given type is attached to a destination mount of a given type.
1898 * ---------------------------------------------------------------------------
1899 * | BIND MOUNT OPERATION |
1900 * |**************************************************************************
1901 * | source-->| shared | private | slave | unbindable |
1905 * |**************************************************************************
1906 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1908 * |non-shared| shared (+) | private | slave (*) | invalid |
1909 * ***************************************************************************
1910 * A bind operation clones the source mount and mounts the clone on the
1911 * destination mount.
1913 * (++) the cloned mount is propagated to all the mounts in the propagation
1914 * tree of the destination mount and the cloned mount is added to
1915 * the peer group of the source mount.
1916 * (+) the cloned mount is created under the destination mount and is marked
1917 * as shared. The cloned mount is added to the peer group of the source
1919 * (+++) the mount is propagated to all the mounts in the propagation tree
1920 * of the destination mount and the cloned mount is made slave
1921 * of the same master as that of the source mount. The cloned mount
1922 * is marked as 'shared and slave'.
1923 * (*) the cloned mount is made a slave of the same master as that of the
1926 * ---------------------------------------------------------------------------
1927 * | MOVE MOUNT OPERATION |
1928 * |**************************************************************************
1929 * | source-->| shared | private | slave | unbindable |
1933 * |**************************************************************************
1934 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1936 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1937 * ***************************************************************************
1939 * (+) the mount is moved to the destination. And is then propagated to
1940 * all the mounts in the propagation tree of the destination mount.
1941 * (+*) the mount is moved to the destination.
1942 * (+++) the mount is moved to the destination and is then propagated to
1943 * all the mounts belonging to the destination mount's propagation tree.
1944 * the mount is marked as 'shared and slave'.
1945 * (*) the mount continues to be a slave at the new location.
1947 * if the source mount is a tree, the operations explained above is
1948 * applied to each mount in the tree.
1949 * Must be called without spinlocks held, since this function can sleep
1952 static int attach_recursive_mnt(struct mount
*source_mnt
,
1953 struct mount
*dest_mnt
,
1954 struct mountpoint
*dest_mp
,
1955 struct path
*parent_path
)
1957 HLIST_HEAD(tree_list
);
1958 struct mnt_namespace
*ns
= dest_mnt
->mnt_ns
;
1959 struct mountpoint
*smp
;
1960 struct mount
*child
, *p
;
1961 struct hlist_node
*n
;
1964 /* Preallocate a mountpoint in case the new mounts need
1965 * to be tucked under other mounts.
1967 smp
= get_mountpoint(source_mnt
->mnt
.mnt_root
);
1969 return PTR_ERR(smp
);
1971 /* Is there space to add these mounts to the mount namespace? */
1973 err
= count_mounts(ns
, source_mnt
);
1978 if (IS_MNT_SHARED(dest_mnt
)) {
1979 err
= invent_group_ids(source_mnt
, true);
1982 err
= propagate_mnt(dest_mnt
, dest_mp
, source_mnt
, &tree_list
);
1985 goto out_cleanup_ids
;
1986 for (p
= source_mnt
; p
; p
= next_mnt(p
, source_mnt
))
1992 detach_mnt(source_mnt
, parent_path
);
1993 attach_mnt(source_mnt
, dest_mnt
, dest_mp
);
1994 touch_mnt_namespace(source_mnt
->mnt_ns
);
1996 mnt_set_mountpoint(dest_mnt
, dest_mp
, source_mnt
);
1997 commit_tree(source_mnt
);
2000 hlist_for_each_entry_safe(child
, n
, &tree_list
, mnt_hash
) {
2002 hlist_del_init(&child
->mnt_hash
);
2003 q
= __lookup_mnt(&child
->mnt_parent
->mnt
,
2004 child
->mnt_mountpoint
);
2006 mnt_change_mountpoint(child
, smp
, q
);
2009 put_mountpoint(smp
);
2010 unlock_mount_hash();
2015 while (!hlist_empty(&tree_list
)) {
2016 child
= hlist_entry(tree_list
.first
, struct mount
, mnt_hash
);
2017 child
->mnt_parent
->mnt_ns
->pending_mounts
= 0;
2018 umount_tree(child
, UMOUNT_SYNC
);
2020 unlock_mount_hash();
2021 cleanup_group_ids(source_mnt
, NULL
);
2023 ns
->pending_mounts
= 0;
2025 read_seqlock_excl(&mount_lock
);
2026 put_mountpoint(smp
);
2027 read_sequnlock_excl(&mount_lock
);
2032 static struct mountpoint
*lock_mount(struct path
*path
)
2034 struct vfsmount
*mnt
;
2035 struct dentry
*dentry
= path
->dentry
;
2037 inode_lock(dentry
->d_inode
);
2038 if (unlikely(cant_mount(dentry
))) {
2039 inode_unlock(dentry
->d_inode
);
2040 return ERR_PTR(-ENOENT
);
2043 mnt
= lookup_mnt(path
);
2045 struct mountpoint
*mp
= get_mountpoint(dentry
);
2048 inode_unlock(dentry
->d_inode
);
2054 inode_unlock(path
->dentry
->d_inode
);
2057 dentry
= path
->dentry
= dget(mnt
->mnt_root
);
2061 static void unlock_mount(struct mountpoint
*where
)
2063 struct dentry
*dentry
= where
->m_dentry
;
2065 read_seqlock_excl(&mount_lock
);
2066 put_mountpoint(where
);
2067 read_sequnlock_excl(&mount_lock
);
2070 inode_unlock(dentry
->d_inode
);
2073 static int graft_tree(struct mount
*mnt
, struct mount
*p
, struct mountpoint
*mp
)
2075 if (mnt
->mnt
.mnt_sb
->s_flags
& SB_NOUSER
)
2078 if (d_is_dir(mp
->m_dentry
) !=
2079 d_is_dir(mnt
->mnt
.mnt_root
))
2082 return attach_recursive_mnt(mnt
, p
, mp
, NULL
);
2086 * Sanity check the flags to change_mnt_propagation.
2089 static int flags_to_propagation_type(int ms_flags
)
2091 int type
= ms_flags
& ~(MS_REC
| MS_SILENT
);
2093 /* Fail if any non-propagation flags are set */
2094 if (type
& ~(MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
2096 /* Only one propagation flag should be set */
2097 if (!is_power_of_2(type
))
2103 * recursively change the type of the mountpoint.
2105 static int do_change_type(struct path
*path
, int ms_flags
)
2108 struct mount
*mnt
= real_mount(path
->mnt
);
2109 int recurse
= ms_flags
& MS_REC
;
2113 if (path
->dentry
!= path
->mnt
->mnt_root
)
2116 type
= flags_to_propagation_type(ms_flags
);
2121 if (type
== MS_SHARED
) {
2122 err
= invent_group_ids(mnt
, recurse
);
2128 for (m
= mnt
; m
; m
= (recurse
? next_mnt(m
, mnt
) : NULL
))
2129 change_mnt_propagation(m
, type
);
2130 unlock_mount_hash();
2137 static bool has_locked_children(struct mount
*mnt
, struct dentry
*dentry
)
2139 struct mount
*child
;
2140 list_for_each_entry(child
, &mnt
->mnt_mounts
, mnt_child
) {
2141 if (!is_subdir(child
->mnt_mountpoint
, dentry
))
2144 if (child
->mnt
.mnt_flags
& MNT_LOCKED
)
2151 * do loopback mount.
2153 static int do_loopback(struct path
*path
, const char *old_name
,
2156 struct path old_path
;
2157 struct mount
*mnt
= NULL
, *old
, *parent
;
2158 struct mountpoint
*mp
;
2160 if (!old_name
|| !*old_name
)
2162 err
= kern_path(old_name
, LOOKUP_FOLLOW
|LOOKUP_AUTOMOUNT
, &old_path
);
2167 if (mnt_ns_loop(old_path
.dentry
))
2170 mp
= lock_mount(path
);
2175 old
= real_mount(old_path
.mnt
);
2176 parent
= real_mount(path
->mnt
);
2179 if (IS_MNT_UNBINDABLE(old
))
2182 if (!check_mnt(parent
))
2185 if (!check_mnt(old
) && old_path
.dentry
->d_op
!= &ns_dentry_operations
)
2188 if (!recurse
&& has_locked_children(old
, old_path
.dentry
))
2192 mnt
= copy_tree(old
, old_path
.dentry
, CL_COPY_MNT_NS_FILE
);
2194 mnt
= clone_mnt(old
, old_path
.dentry
, 0);
2201 mnt
->mnt
.mnt_flags
&= ~MNT_LOCKED
;
2203 err
= graft_tree(mnt
, parent
, mp
);
2206 umount_tree(mnt
, UMOUNT_SYNC
);
2207 unlock_mount_hash();
2212 path_put(&old_path
);
2217 * Don't allow locked mount flags to be cleared.
2219 * No locks need to be held here while testing the various MNT_LOCK
2220 * flags because those flags can never be cleared once they are set.
2222 static bool can_change_locked_flags(struct mount
*mnt
, unsigned int mnt_flags
)
2224 unsigned int fl
= mnt
->mnt
.mnt_flags
;
2226 if ((fl
& MNT_LOCK_READONLY
) &&
2227 !(mnt_flags
& MNT_READONLY
))
2230 if ((fl
& MNT_LOCK_NODEV
) &&
2231 !(mnt_flags
& MNT_NODEV
))
2234 if ((fl
& MNT_LOCK_NOSUID
) &&
2235 !(mnt_flags
& MNT_NOSUID
))
2238 if ((fl
& MNT_LOCK_NOEXEC
) &&
2239 !(mnt_flags
& MNT_NOEXEC
))
2242 if ((fl
& MNT_LOCK_ATIME
) &&
2243 ((fl
& MNT_ATIME_MASK
) != (mnt_flags
& MNT_ATIME_MASK
)))
2249 static int change_mount_ro_state(struct mount
*mnt
, unsigned int mnt_flags
)
2251 bool readonly_request
= (mnt_flags
& MNT_READONLY
);
2253 if (readonly_request
== __mnt_is_readonly(&mnt
->mnt
))
2256 if (readonly_request
)
2257 return mnt_make_readonly(mnt
);
2259 return __mnt_unmake_readonly(mnt
);
2263 * Update the user-settable attributes on a mount. The caller must hold
2264 * sb->s_umount for writing.
2266 static void set_mount_attributes(struct mount
*mnt
, unsigned int mnt_flags
)
2269 mnt_flags
|= mnt
->mnt
.mnt_flags
& ~MNT_USER_SETTABLE_MASK
;
2270 mnt
->mnt
.mnt_flags
= mnt_flags
;
2271 touch_mnt_namespace(mnt
->mnt_ns
);
2272 unlock_mount_hash();
2276 * Handle reconfiguration of the mountpoint only without alteration of the
2277 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
2280 static int do_reconfigure_mnt(struct path
*path
, unsigned int mnt_flags
)
2282 struct super_block
*sb
= path
->mnt
->mnt_sb
;
2283 struct mount
*mnt
= real_mount(path
->mnt
);
2286 if (!check_mnt(mnt
))
2289 if (path
->dentry
!= mnt
->mnt
.mnt_root
)
2292 if (!can_change_locked_flags(mnt
, mnt_flags
))
2295 down_write(&sb
->s_umount
);
2296 ret
= change_mount_ro_state(mnt
, mnt_flags
);
2298 set_mount_attributes(mnt
, mnt_flags
);
2299 up_write(&sb
->s_umount
);
2304 * change filesystem flags. dir should be a physical root of filesystem.
2305 * If you've mounted a non-root directory somewhere and want to do remount
2306 * on it - tough luck.
2308 static int do_remount(struct path
*path
, int ms_flags
, int sb_flags
,
2309 int mnt_flags
, void *data
)
2312 struct super_block
*sb
= path
->mnt
->mnt_sb
;
2313 struct mount
*mnt
= real_mount(path
->mnt
);
2314 void *sec_opts
= NULL
;
2316 if (!check_mnt(mnt
))
2319 if (path
->dentry
!= path
->mnt
->mnt_root
)
2322 if (!can_change_locked_flags(mnt
, mnt_flags
))
2325 if (data
&& !(sb
->s_type
->fs_flags
& FS_BINARY_MOUNTDATA
)) {
2326 err
= security_sb_eat_lsm_opts(data
, &sec_opts
);
2330 err
= security_sb_remount(sb
, sec_opts
);
2331 security_free_mnt_opts(&sec_opts
);
2335 down_write(&sb
->s_umount
);
2337 if (ns_capable(sb
->s_user_ns
, CAP_SYS_ADMIN
)) {
2338 err
= do_remount_sb(sb
, sb_flags
, data
, 0);
2340 set_mount_attributes(mnt
, mnt_flags
);
2342 up_write(&sb
->s_umount
);
2346 static inline int tree_contains_unbindable(struct mount
*mnt
)
2349 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
2350 if (IS_MNT_UNBINDABLE(p
))
2356 static int do_move_mount(struct path
*path
, const char *old_name
)
2358 struct path old_path
, parent_path
;
2361 struct mountpoint
*mp
;
2363 if (!old_name
|| !*old_name
)
2365 err
= kern_path(old_name
, LOOKUP_FOLLOW
, &old_path
);
2369 mp
= lock_mount(path
);
2374 old
= real_mount(old_path
.mnt
);
2375 p
= real_mount(path
->mnt
);
2378 if (!check_mnt(p
) || !check_mnt(old
))
2381 if (old
->mnt
.mnt_flags
& MNT_LOCKED
)
2385 if (old_path
.dentry
!= old_path
.mnt
->mnt_root
)
2388 if (!mnt_has_parent(old
))
2391 if (d_is_dir(path
->dentry
) !=
2392 d_is_dir(old_path
.dentry
))
2395 * Don't move a mount residing in a shared parent.
2397 if (IS_MNT_SHARED(old
->mnt_parent
))
2400 * Don't move a mount tree containing unbindable mounts to a destination
2401 * mount which is shared.
2403 if (IS_MNT_SHARED(p
) && tree_contains_unbindable(old
))
2406 for (; mnt_has_parent(p
); p
= p
->mnt_parent
)
2410 err
= attach_recursive_mnt(old
, real_mount(path
->mnt
), mp
, &parent_path
);
2414 /* if the mount is moved, it should no longer be expire
2416 list_del_init(&old
->mnt_expire
);
2421 path_put(&parent_path
);
2422 path_put(&old_path
);
2426 static struct vfsmount
*fs_set_subtype(struct vfsmount
*mnt
, const char *fstype
)
2429 const char *subtype
= strchr(fstype
, '.');
2438 mnt
->mnt_sb
->s_subtype
= kstrdup(subtype
, GFP_KERNEL
);
2440 if (!mnt
->mnt_sb
->s_subtype
)
2446 return ERR_PTR(err
);
2450 * add a mount into a namespace's mount tree
2452 static int do_add_mount(struct mount
*newmnt
, struct path
*path
, int mnt_flags
)
2454 struct mountpoint
*mp
;
2455 struct mount
*parent
;
2458 mnt_flags
&= ~MNT_INTERNAL_FLAGS
;
2460 mp
= lock_mount(path
);
2464 parent
= real_mount(path
->mnt
);
2466 if (unlikely(!check_mnt(parent
))) {
2467 /* that's acceptable only for automounts done in private ns */
2468 if (!(mnt_flags
& MNT_SHRINKABLE
))
2470 /* ... and for those we'd better have mountpoint still alive */
2471 if (!parent
->mnt_ns
)
2475 /* Refuse the same filesystem on the same mount point */
2477 if (path
->mnt
->mnt_sb
== newmnt
->mnt
.mnt_sb
&&
2478 path
->mnt
->mnt_root
== path
->dentry
)
2482 if (d_is_symlink(newmnt
->mnt
.mnt_root
))
2485 newmnt
->mnt
.mnt_flags
= mnt_flags
;
2486 err
= graft_tree(newmnt
, parent
, mp
);
2493 static bool mount_too_revealing(struct vfsmount
*mnt
, int *new_mnt_flags
);
2496 * create a new mount for userspace and request it to be added into the
2499 static int do_new_mount(struct path
*path
, const char *fstype
, int sb_flags
,
2500 int mnt_flags
, const char *name
, void *data
)
2502 struct file_system_type
*type
;
2503 struct vfsmount
*mnt
;
2509 type
= get_fs_type(fstype
);
2513 mnt
= vfs_kern_mount(type
, sb_flags
, name
, data
);
2514 if (!IS_ERR(mnt
) && (type
->fs_flags
& FS_HAS_SUBTYPE
) &&
2515 !mnt
->mnt_sb
->s_subtype
)
2516 mnt
= fs_set_subtype(mnt
, fstype
);
2518 put_filesystem(type
);
2520 return PTR_ERR(mnt
);
2522 if (mount_too_revealing(mnt
, &mnt_flags
)) {
2527 err
= do_add_mount(real_mount(mnt
), path
, mnt_flags
);
2533 int finish_automount(struct vfsmount
*m
, struct path
*path
)
2535 struct mount
*mnt
= real_mount(m
);
2537 /* The new mount record should have at least 2 refs to prevent it being
2538 * expired before we get a chance to add it
2540 BUG_ON(mnt_get_count(mnt
) < 2);
2542 if (m
->mnt_sb
== path
->mnt
->mnt_sb
&&
2543 m
->mnt_root
== path
->dentry
) {
2548 err
= do_add_mount(mnt
, path
, path
->mnt
->mnt_flags
| MNT_SHRINKABLE
);
2552 /* remove m from any expiration list it may be on */
2553 if (!list_empty(&mnt
->mnt_expire
)) {
2555 list_del_init(&mnt
->mnt_expire
);
2564 * mnt_set_expiry - Put a mount on an expiration list
2565 * @mnt: The mount to list.
2566 * @expiry_list: The list to add the mount to.
2568 void mnt_set_expiry(struct vfsmount
*mnt
, struct list_head
*expiry_list
)
2572 list_add_tail(&real_mount(mnt
)->mnt_expire
, expiry_list
);
2576 EXPORT_SYMBOL(mnt_set_expiry
);
2579 * process a list of expirable mountpoints with the intent of discarding any
2580 * mountpoints that aren't in use and haven't been touched since last we came
2583 void mark_mounts_for_expiry(struct list_head
*mounts
)
2585 struct mount
*mnt
, *next
;
2586 LIST_HEAD(graveyard
);
2588 if (list_empty(mounts
))
2594 /* extract from the expiration list every vfsmount that matches the
2595 * following criteria:
2596 * - only referenced by its parent vfsmount
2597 * - still marked for expiry (marked on the last call here; marks are
2598 * cleared by mntput())
2600 list_for_each_entry_safe(mnt
, next
, mounts
, mnt_expire
) {
2601 if (!xchg(&mnt
->mnt_expiry_mark
, 1) ||
2602 propagate_mount_busy(mnt
, 1))
2604 list_move(&mnt
->mnt_expire
, &graveyard
);
2606 while (!list_empty(&graveyard
)) {
2607 mnt
= list_first_entry(&graveyard
, struct mount
, mnt_expire
);
2608 touch_mnt_namespace(mnt
->mnt_ns
);
2609 umount_tree(mnt
, UMOUNT_PROPAGATE
|UMOUNT_SYNC
);
2611 unlock_mount_hash();
2615 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry
);
2618 * Ripoff of 'select_parent()'
2620 * search the list of submounts for a given mountpoint, and move any
2621 * shrinkable submounts to the 'graveyard' list.
2623 static int select_submounts(struct mount
*parent
, struct list_head
*graveyard
)
2625 struct mount
*this_parent
= parent
;
2626 struct list_head
*next
;
2630 next
= this_parent
->mnt_mounts
.next
;
2632 while (next
!= &this_parent
->mnt_mounts
) {
2633 struct list_head
*tmp
= next
;
2634 struct mount
*mnt
= list_entry(tmp
, struct mount
, mnt_child
);
2637 if (!(mnt
->mnt
.mnt_flags
& MNT_SHRINKABLE
))
2640 * Descend a level if the d_mounts list is non-empty.
2642 if (!list_empty(&mnt
->mnt_mounts
)) {
2647 if (!propagate_mount_busy(mnt
, 1)) {
2648 list_move_tail(&mnt
->mnt_expire
, graveyard
);
2653 * All done at this level ... ascend and resume the search
2655 if (this_parent
!= parent
) {
2656 next
= this_parent
->mnt_child
.next
;
2657 this_parent
= this_parent
->mnt_parent
;
2664 * process a list of expirable mountpoints with the intent of discarding any
2665 * submounts of a specific parent mountpoint
2667 * mount_lock must be held for write
2669 static void shrink_submounts(struct mount
*mnt
)
2671 LIST_HEAD(graveyard
);
2674 /* extract submounts of 'mountpoint' from the expiration list */
2675 while (select_submounts(mnt
, &graveyard
)) {
2676 while (!list_empty(&graveyard
)) {
2677 m
= list_first_entry(&graveyard
, struct mount
,
2679 touch_mnt_namespace(m
->mnt_ns
);
2680 umount_tree(m
, UMOUNT_PROPAGATE
|UMOUNT_SYNC
);
2686 * Some copy_from_user() implementations do not return the exact number of
2687 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2688 * Note that this function differs from copy_from_user() in that it will oops
2689 * on bad values of `to', rather than returning a short copy.
2691 static long exact_copy_from_user(void *to
, const void __user
* from
,
2695 const char __user
*f
= from
;
2698 if (!access_ok(from
, n
))
2702 if (__get_user(c
, f
)) {
2713 void *copy_mount_options(const void __user
* data
)
2722 copy
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
2724 return ERR_PTR(-ENOMEM
);
2726 /* We only care that *some* data at the address the user
2727 * gave us is valid. Just in case, we'll zero
2728 * the remainder of the page.
2730 /* copy_from_user cannot cross TASK_SIZE ! */
2731 size
= TASK_SIZE
- (unsigned long)data
;
2732 if (size
> PAGE_SIZE
)
2735 i
= size
- exact_copy_from_user(copy
, data
, size
);
2738 return ERR_PTR(-EFAULT
);
2741 memset(copy
+ i
, 0, PAGE_SIZE
- i
);
2745 char *copy_mount_string(const void __user
*data
)
2747 return data
? strndup_user(data
, PAGE_SIZE
) : NULL
;
2751 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2752 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2754 * data is a (void *) that can point to any structure up to
2755 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2756 * information (or be NULL).
2758 * Pre-0.97 versions of mount() didn't have a flags word.
2759 * When the flags word was introduced its top half was required
2760 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2761 * Therefore, if this magic number is present, it carries no information
2762 * and must be discarded.
2764 long do_mount(const char *dev_name
, const char __user
*dir_name
,
2765 const char *type_page
, unsigned long flags
, void *data_page
)
2768 unsigned int mnt_flags
= 0, sb_flags
;
2772 if ((flags
& MS_MGC_MSK
) == MS_MGC_VAL
)
2773 flags
&= ~MS_MGC_MSK
;
2775 /* Basic sanity checks */
2777 ((char *)data_page
)[PAGE_SIZE
- 1] = 0;
2779 if (flags
& MS_NOUSER
)
2782 /* ... and get the mountpoint */
2783 retval
= user_path(dir_name
, &path
);
2787 retval
= security_sb_mount(dev_name
, &path
,
2788 type_page
, flags
, data_page
);
2789 if (!retval
&& !may_mount())
2791 if (!retval
&& (flags
& SB_MANDLOCK
) && !may_mandlock())
2796 /* Default to relatime unless overriden */
2797 if (!(flags
& MS_NOATIME
))
2798 mnt_flags
|= MNT_RELATIME
;
2800 /* Separate the per-mountpoint flags */
2801 if (flags
& MS_NOSUID
)
2802 mnt_flags
|= MNT_NOSUID
;
2803 if (flags
& MS_NODEV
)
2804 mnt_flags
|= MNT_NODEV
;
2805 if (flags
& MS_NOEXEC
)
2806 mnt_flags
|= MNT_NOEXEC
;
2807 if (flags
& MS_NOATIME
)
2808 mnt_flags
|= MNT_NOATIME
;
2809 if (flags
& MS_NODIRATIME
)
2810 mnt_flags
|= MNT_NODIRATIME
;
2811 if (flags
& MS_STRICTATIME
)
2812 mnt_flags
&= ~(MNT_RELATIME
| MNT_NOATIME
);
2813 if (flags
& MS_RDONLY
)
2814 mnt_flags
|= MNT_READONLY
;
2816 /* The default atime for remount is preservation */
2817 if ((flags
& MS_REMOUNT
) &&
2818 ((flags
& (MS_NOATIME
| MS_NODIRATIME
| MS_RELATIME
|
2819 MS_STRICTATIME
)) == 0)) {
2820 mnt_flags
&= ~MNT_ATIME_MASK
;
2821 mnt_flags
|= path
.mnt
->mnt_flags
& MNT_ATIME_MASK
;
2824 sb_flags
= flags
& (SB_RDONLY
|
2833 if ((flags
& (MS_REMOUNT
| MS_BIND
)) == (MS_REMOUNT
| MS_BIND
))
2834 retval
= do_reconfigure_mnt(&path
, mnt_flags
);
2835 else if (flags
& MS_REMOUNT
)
2836 retval
= do_remount(&path
, flags
, sb_flags
, mnt_flags
,
2838 else if (flags
& MS_BIND
)
2839 retval
= do_loopback(&path
, dev_name
, flags
& MS_REC
);
2840 else if (flags
& (MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
2841 retval
= do_change_type(&path
, flags
);
2842 else if (flags
& MS_MOVE
)
2843 retval
= do_move_mount(&path
, dev_name
);
2845 retval
= do_new_mount(&path
, type_page
, sb_flags
, mnt_flags
,
2846 dev_name
, data_page
);
2852 static struct ucounts
*inc_mnt_namespaces(struct user_namespace
*ns
)
2854 return inc_ucount(ns
, current_euid(), UCOUNT_MNT_NAMESPACES
);
2857 static void dec_mnt_namespaces(struct ucounts
*ucounts
)
2859 dec_ucount(ucounts
, UCOUNT_MNT_NAMESPACES
);
2862 static void free_mnt_ns(struct mnt_namespace
*ns
)
2864 ns_free_inum(&ns
->ns
);
2865 dec_mnt_namespaces(ns
->ucounts
);
2866 put_user_ns(ns
->user_ns
);
2871 * Assign a sequence number so we can detect when we attempt to bind
2872 * mount a reference to an older mount namespace into the current
2873 * mount namespace, preventing reference counting loops. A 64bit
2874 * number incrementing at 10Ghz will take 12,427 years to wrap which
2875 * is effectively never, so we can ignore the possibility.
2877 static atomic64_t mnt_ns_seq
= ATOMIC64_INIT(1);
2879 static struct mnt_namespace
*alloc_mnt_ns(struct user_namespace
*user_ns
)
2881 struct mnt_namespace
*new_ns
;
2882 struct ucounts
*ucounts
;
2885 ucounts
= inc_mnt_namespaces(user_ns
);
2887 return ERR_PTR(-ENOSPC
);
2889 new_ns
= kmalloc(sizeof(struct mnt_namespace
), GFP_KERNEL
);
2891 dec_mnt_namespaces(ucounts
);
2892 return ERR_PTR(-ENOMEM
);
2894 ret
= ns_alloc_inum(&new_ns
->ns
);
2897 dec_mnt_namespaces(ucounts
);
2898 return ERR_PTR(ret
);
2900 new_ns
->ns
.ops
= &mntns_operations
;
2901 new_ns
->seq
= atomic64_add_return(1, &mnt_ns_seq
);
2902 atomic_set(&new_ns
->count
, 1);
2903 new_ns
->root
= NULL
;
2904 INIT_LIST_HEAD(&new_ns
->list
);
2905 init_waitqueue_head(&new_ns
->poll
);
2907 new_ns
->user_ns
= get_user_ns(user_ns
);
2908 new_ns
->ucounts
= ucounts
;
2910 new_ns
->pending_mounts
= 0;
2915 struct mnt_namespace
*copy_mnt_ns(unsigned long flags
, struct mnt_namespace
*ns
,
2916 struct user_namespace
*user_ns
, struct fs_struct
*new_fs
)
2918 struct mnt_namespace
*new_ns
;
2919 struct vfsmount
*rootmnt
= NULL
, *pwdmnt
= NULL
;
2920 struct mount
*p
, *q
;
2927 if (likely(!(flags
& CLONE_NEWNS
))) {
2934 new_ns
= alloc_mnt_ns(user_ns
);
2939 /* First pass: copy the tree topology */
2940 copy_flags
= CL_COPY_UNBINDABLE
| CL_EXPIRE
;
2941 if (user_ns
!= ns
->user_ns
)
2942 copy_flags
|= CL_SHARED_TO_SLAVE
| CL_UNPRIVILEGED
;
2943 new = copy_tree(old
, old
->mnt
.mnt_root
, copy_flags
);
2946 free_mnt_ns(new_ns
);
2947 return ERR_CAST(new);
2950 list_add_tail(&new_ns
->list
, &new->mnt_list
);
2953 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2954 * as belonging to new namespace. We have already acquired a private
2955 * fs_struct, so tsk->fs->lock is not needed.
2963 if (&p
->mnt
== new_fs
->root
.mnt
) {
2964 new_fs
->root
.mnt
= mntget(&q
->mnt
);
2967 if (&p
->mnt
== new_fs
->pwd
.mnt
) {
2968 new_fs
->pwd
.mnt
= mntget(&q
->mnt
);
2972 p
= next_mnt(p
, old
);
2973 q
= next_mnt(q
, new);
2976 while (p
->mnt
.mnt_root
!= q
->mnt
.mnt_root
)
2977 p
= next_mnt(p
, old
);
2990 * create_mnt_ns - creates a private namespace and adds a root filesystem
2991 * @mnt: pointer to the new root filesystem mountpoint
2993 static struct mnt_namespace
*create_mnt_ns(struct vfsmount
*m
)
2995 struct mnt_namespace
*new_ns
= alloc_mnt_ns(&init_user_ns
);
2996 if (!IS_ERR(new_ns
)) {
2997 struct mount
*mnt
= real_mount(m
);
2998 mnt
->mnt_ns
= new_ns
;
3001 list_add(&mnt
->mnt_list
, &new_ns
->list
);
3008 struct dentry
*mount_subtree(struct vfsmount
*mnt
, const char *name
)
3010 struct mnt_namespace
*ns
;
3011 struct super_block
*s
;
3015 ns
= create_mnt_ns(mnt
);
3017 return ERR_CAST(ns
);
3019 err
= vfs_path_lookup(mnt
->mnt_root
, mnt
,
3020 name
, LOOKUP_FOLLOW
|LOOKUP_AUTOMOUNT
, &path
);
3025 return ERR_PTR(err
);
3027 /* trade a vfsmount reference for active sb one */
3028 s
= path
.mnt
->mnt_sb
;
3029 atomic_inc(&s
->s_active
);
3031 /* lock the sucker */
3032 down_write(&s
->s_umount
);
3033 /* ... and return the root of (sub)tree on it */
3036 EXPORT_SYMBOL(mount_subtree
);
3038 int ksys_mount(char __user
*dev_name
, char __user
*dir_name
, char __user
*type
,
3039 unsigned long flags
, void __user
*data
)
3046 kernel_type
= copy_mount_string(type
);
3047 ret
= PTR_ERR(kernel_type
);
3048 if (IS_ERR(kernel_type
))
3051 kernel_dev
= copy_mount_string(dev_name
);
3052 ret
= PTR_ERR(kernel_dev
);
3053 if (IS_ERR(kernel_dev
))
3056 options
= copy_mount_options(data
);
3057 ret
= PTR_ERR(options
);
3058 if (IS_ERR(options
))
3061 ret
= do_mount(kernel_dev
, dir_name
, kernel_type
, flags
, options
);
3072 SYSCALL_DEFINE5(mount
, char __user
*, dev_name
, char __user
*, dir_name
,
3073 char __user
*, type
, unsigned long, flags
, void __user
*, data
)
3075 return ksys_mount(dev_name
, dir_name
, type
, flags
, data
);
3079 * Return true if path is reachable from root
3081 * namespace_sem or mount_lock is held
3083 bool is_path_reachable(struct mount
*mnt
, struct dentry
*dentry
,
3084 const struct path
*root
)
3086 while (&mnt
->mnt
!= root
->mnt
&& mnt_has_parent(mnt
)) {
3087 dentry
= mnt
->mnt_mountpoint
;
3088 mnt
= mnt
->mnt_parent
;
3090 return &mnt
->mnt
== root
->mnt
&& is_subdir(dentry
, root
->dentry
);
3093 bool path_is_under(const struct path
*path1
, const struct path
*path2
)
3096 read_seqlock_excl(&mount_lock
);
3097 res
= is_path_reachable(real_mount(path1
->mnt
), path1
->dentry
, path2
);
3098 read_sequnlock_excl(&mount_lock
);
3101 EXPORT_SYMBOL(path_is_under
);
3104 * pivot_root Semantics:
3105 * Moves the root file system of the current process to the directory put_old,
3106 * makes new_root as the new root file system of the current process, and sets
3107 * root/cwd of all processes which had them on the current root to new_root.
3110 * The new_root and put_old must be directories, and must not be on the
3111 * same file system as the current process root. The put_old must be
3112 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3113 * pointed to by put_old must yield the same directory as new_root. No other
3114 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3116 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3117 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3118 * in this situation.
3121 * - we don't move root/cwd if they are not at the root (reason: if something
3122 * cared enough to change them, it's probably wrong to force them elsewhere)
3123 * - it's okay to pick a root that isn't the root of a file system, e.g.
3124 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3125 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3128 SYSCALL_DEFINE2(pivot_root
, const char __user
*, new_root
,
3129 const char __user
*, put_old
)
3131 struct path
new, old
, parent_path
, root_parent
, root
;
3132 struct mount
*new_mnt
, *root_mnt
, *old_mnt
;
3133 struct mountpoint
*old_mp
, *root_mp
;
3139 error
= user_path_dir(new_root
, &new);
3143 error
= user_path_dir(put_old
, &old
);
3147 error
= security_sb_pivotroot(&old
, &new);
3151 get_fs_root(current
->fs
, &root
);
3152 old_mp
= lock_mount(&old
);
3153 error
= PTR_ERR(old_mp
);
3158 new_mnt
= real_mount(new.mnt
);
3159 root_mnt
= real_mount(root
.mnt
);
3160 old_mnt
= real_mount(old
.mnt
);
3161 if (IS_MNT_SHARED(old_mnt
) ||
3162 IS_MNT_SHARED(new_mnt
->mnt_parent
) ||
3163 IS_MNT_SHARED(root_mnt
->mnt_parent
))
3165 if (!check_mnt(root_mnt
) || !check_mnt(new_mnt
))
3167 if (new_mnt
->mnt
.mnt_flags
& MNT_LOCKED
)
3170 if (d_unlinked(new.dentry
))
3173 if (new_mnt
== root_mnt
|| old_mnt
== root_mnt
)
3174 goto out4
; /* loop, on the same file system */
3176 if (root
.mnt
->mnt_root
!= root
.dentry
)
3177 goto out4
; /* not a mountpoint */
3178 if (!mnt_has_parent(root_mnt
))
3179 goto out4
; /* not attached */
3180 root_mp
= root_mnt
->mnt_mp
;
3181 if (new.mnt
->mnt_root
!= new.dentry
)
3182 goto out4
; /* not a mountpoint */
3183 if (!mnt_has_parent(new_mnt
))
3184 goto out4
; /* not attached */
3185 /* make sure we can reach put_old from new_root */
3186 if (!is_path_reachable(old_mnt
, old
.dentry
, &new))
3188 /* make certain new is below the root */
3189 if (!is_path_reachable(new_mnt
, new.dentry
, &root
))
3191 root_mp
->m_count
++; /* pin it so it won't go away */
3193 detach_mnt(new_mnt
, &parent_path
);
3194 detach_mnt(root_mnt
, &root_parent
);
3195 if (root_mnt
->mnt
.mnt_flags
& MNT_LOCKED
) {
3196 new_mnt
->mnt
.mnt_flags
|= MNT_LOCKED
;
3197 root_mnt
->mnt
.mnt_flags
&= ~MNT_LOCKED
;
3199 /* mount old root on put_old */
3200 attach_mnt(root_mnt
, old_mnt
, old_mp
);
3201 /* mount new_root on / */
3202 attach_mnt(new_mnt
, real_mount(root_parent
.mnt
), root_mp
);
3203 touch_mnt_namespace(current
->nsproxy
->mnt_ns
);
3204 /* A moved mount should not expire automatically */
3205 list_del_init(&new_mnt
->mnt_expire
);
3206 put_mountpoint(root_mp
);
3207 unlock_mount_hash();
3208 chroot_fs_refs(&root
, &new);
3211 unlock_mount(old_mp
);
3213 path_put(&root_parent
);
3214 path_put(&parent_path
);
3226 static void __init
init_mount_tree(void)
3228 struct vfsmount
*mnt
;
3229 struct mnt_namespace
*ns
;
3231 struct file_system_type
*type
;
3233 type
= get_fs_type("rootfs");
3235 panic("Can't find rootfs type");
3236 mnt
= vfs_kern_mount(type
, 0, "rootfs", NULL
);
3237 put_filesystem(type
);
3239 panic("Can't create rootfs");
3241 ns
= create_mnt_ns(mnt
);
3243 panic("Can't allocate initial namespace");
3245 init_task
.nsproxy
->mnt_ns
= ns
;
3249 root
.dentry
= mnt
->mnt_root
;
3250 mnt
->mnt_flags
|= MNT_LOCKED
;
3252 set_fs_pwd(current
->fs
, &root
);
3253 set_fs_root(current
->fs
, &root
);
3256 void __init
mnt_init(void)
3260 mnt_cache
= kmem_cache_create("mnt_cache", sizeof(struct mount
),
3261 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
3263 mount_hashtable
= alloc_large_system_hash("Mount-cache",
3264 sizeof(struct hlist_head
),
3267 &m_hash_shift
, &m_hash_mask
, 0, 0);
3268 mountpoint_hashtable
= alloc_large_system_hash("Mountpoint-cache",
3269 sizeof(struct hlist_head
),
3272 &mp_hash_shift
, &mp_hash_mask
, 0, 0);
3274 if (!mount_hashtable
|| !mountpoint_hashtable
)
3275 panic("Failed to allocate mount hash table\n");
3281 printk(KERN_WARNING
"%s: sysfs_init error: %d\n",
3283 fs_kobj
= kobject_create_and_add("fs", NULL
);
3285 printk(KERN_WARNING
"%s: kobj create error\n", __func__
);
3290 void put_mnt_ns(struct mnt_namespace
*ns
)
3292 if (!atomic_dec_and_test(&ns
->count
))
3294 drop_collected_mounts(&ns
->root
->mnt
);
3298 struct vfsmount
*kern_mount_data(struct file_system_type
*type
, void *data
)
3300 struct vfsmount
*mnt
;
3301 mnt
= vfs_kern_mount(type
, SB_KERNMOUNT
, type
->name
, data
);
3304 * it is a longterm mount, don't release mnt until
3305 * we unmount before file sys is unregistered
3307 real_mount(mnt
)->mnt_ns
= MNT_NS_INTERNAL
;
3311 EXPORT_SYMBOL_GPL(kern_mount_data
);
3313 void kern_unmount(struct vfsmount
*mnt
)
3315 /* release long term mount so mount point can be released */
3316 if (!IS_ERR_OR_NULL(mnt
)) {
3317 real_mount(mnt
)->mnt_ns
= NULL
;
3318 synchronize_rcu(); /* yecchhh... */
3322 EXPORT_SYMBOL(kern_unmount
);
3324 bool our_mnt(struct vfsmount
*mnt
)
3326 return check_mnt(real_mount(mnt
));
3329 bool current_chrooted(void)
3331 /* Does the current process have a non-standard root */
3332 struct path ns_root
;
3333 struct path fs_root
;
3336 /* Find the namespace root */
3337 ns_root
.mnt
= ¤t
->nsproxy
->mnt_ns
->root
->mnt
;
3338 ns_root
.dentry
= ns_root
.mnt
->mnt_root
;
3340 while (d_mountpoint(ns_root
.dentry
) && follow_down_one(&ns_root
))
3343 get_fs_root(current
->fs
, &fs_root
);
3345 chrooted
= !path_equal(&fs_root
, &ns_root
);
3353 static bool mnt_already_visible(struct mnt_namespace
*ns
, struct vfsmount
*new,
3356 int new_flags
= *new_mnt_flags
;
3358 bool visible
= false;
3360 down_read(&namespace_sem
);
3361 list_for_each_entry(mnt
, &ns
->list
, mnt_list
) {
3362 struct mount
*child
;
3365 if (mnt
->mnt
.mnt_sb
->s_type
!= new->mnt_sb
->s_type
)
3368 /* This mount is not fully visible if it's root directory
3369 * is not the root directory of the filesystem.
3371 if (mnt
->mnt
.mnt_root
!= mnt
->mnt
.mnt_sb
->s_root
)
3374 /* A local view of the mount flags */
3375 mnt_flags
= mnt
->mnt
.mnt_flags
;
3377 /* Don't miss readonly hidden in the superblock flags */
3378 if (sb_rdonly(mnt
->mnt
.mnt_sb
))
3379 mnt_flags
|= MNT_LOCK_READONLY
;
3381 /* Verify the mount flags are equal to or more permissive
3382 * than the proposed new mount.
3384 if ((mnt_flags
& MNT_LOCK_READONLY
) &&
3385 !(new_flags
& MNT_READONLY
))
3387 if ((mnt_flags
& MNT_LOCK_ATIME
) &&
3388 ((mnt_flags
& MNT_ATIME_MASK
) != (new_flags
& MNT_ATIME_MASK
)))
3391 /* This mount is not fully visible if there are any
3392 * locked child mounts that cover anything except for
3393 * empty directories.
3395 list_for_each_entry(child
, &mnt
->mnt_mounts
, mnt_child
) {
3396 struct inode
*inode
= child
->mnt_mountpoint
->d_inode
;
3397 /* Only worry about locked mounts */
3398 if (!(child
->mnt
.mnt_flags
& MNT_LOCKED
))
3400 /* Is the directory permanetly empty? */
3401 if (!is_empty_dir_inode(inode
))
3404 /* Preserve the locked attributes */
3405 *new_mnt_flags
|= mnt_flags
& (MNT_LOCK_READONLY
| \
3412 up_read(&namespace_sem
);
3416 static bool mount_too_revealing(struct vfsmount
*mnt
, int *new_mnt_flags
)
3418 const unsigned long required_iflags
= SB_I_NOEXEC
| SB_I_NODEV
;
3419 struct mnt_namespace
*ns
= current
->nsproxy
->mnt_ns
;
3420 unsigned long s_iflags
;
3422 if (ns
->user_ns
== &init_user_ns
)
3425 /* Can this filesystem be too revealing? */
3426 s_iflags
= mnt
->mnt_sb
->s_iflags
;
3427 if (!(s_iflags
& SB_I_USERNS_VISIBLE
))
3430 if ((s_iflags
& required_iflags
) != required_iflags
) {
3431 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3436 return !mnt_already_visible(ns
, mnt
, new_mnt_flags
);
3439 bool mnt_may_suid(struct vfsmount
*mnt
)
3442 * Foreign mounts (accessed via fchdir or through /proc
3443 * symlinks) are always treated as if they are nosuid. This
3444 * prevents namespaces from trusting potentially unsafe
3445 * suid/sgid bits, file caps, or security labels that originate
3446 * in other namespaces.
3448 return !(mnt
->mnt_flags
& MNT_NOSUID
) && check_mnt(real_mount(mnt
)) &&
3449 current_in_userns(mnt
->mnt_sb
->s_user_ns
);
3452 static struct ns_common
*mntns_get(struct task_struct
*task
)
3454 struct ns_common
*ns
= NULL
;
3455 struct nsproxy
*nsproxy
;
3458 nsproxy
= task
->nsproxy
;
3460 ns
= &nsproxy
->mnt_ns
->ns
;
3461 get_mnt_ns(to_mnt_ns(ns
));
3468 static void mntns_put(struct ns_common
*ns
)
3470 put_mnt_ns(to_mnt_ns(ns
));
3473 static int mntns_install(struct nsproxy
*nsproxy
, struct ns_common
*ns
)
3475 struct fs_struct
*fs
= current
->fs
;
3476 struct mnt_namespace
*mnt_ns
= to_mnt_ns(ns
), *old_mnt_ns
;
3480 if (!ns_capable(mnt_ns
->user_ns
, CAP_SYS_ADMIN
) ||
3481 !ns_capable(current_user_ns(), CAP_SYS_CHROOT
) ||
3482 !ns_capable(current_user_ns(), CAP_SYS_ADMIN
))
3489 old_mnt_ns
= nsproxy
->mnt_ns
;
3490 nsproxy
->mnt_ns
= mnt_ns
;
3493 err
= vfs_path_lookup(mnt_ns
->root
->mnt
.mnt_root
, &mnt_ns
->root
->mnt
,
3494 "/", LOOKUP_DOWN
, &root
);
3496 /* revert to old namespace */
3497 nsproxy
->mnt_ns
= old_mnt_ns
;
3502 put_mnt_ns(old_mnt_ns
);
3504 /* Update the pwd and root */
3505 set_fs_pwd(fs
, &root
);
3506 set_fs_root(fs
, &root
);
3512 static struct user_namespace
*mntns_owner(struct ns_common
*ns
)
3514 return to_mnt_ns(ns
)->user_ns
;
3517 const struct proc_ns_operations mntns_operations
= {
3519 .type
= CLONE_NEWNS
,
3522 .install
= mntns_install
,
3523 .owner
= mntns_owner
,