2 * Architecture-specific unaligned trap handling.
4 * Copyright (C) 1999-2002, 2004 Hewlett-Packard Co
5 * Stephane Eranian <eranian@hpl.hp.com>
6 * David Mosberger-Tang <davidm@hpl.hp.com>
8 * 2002/12/09 Fix rotating register handling (off-by-1 error, missing fr-rotation). Fix
9 * get_rse_reg() to not leak kernel bits to user-level (reading an out-of-frame
10 * stacked register returns an undefined value; it does NOT trigger a
11 * "rsvd register fault").
12 * 2001/10/11 Fix unaligned access to rotating registers in s/w pipelined loops.
13 * 2001/08/13 Correct size of extended floats (float_fsz) from 16 to 10 bytes.
14 * 2001/01/17 Add support emulation of unaligned kernel accesses.
16 #include <linux/jiffies.h>
17 #include <linux/kernel.h>
18 #include <linux/sched.h>
19 #include <linux/tty.h>
20 #include <linux/ratelimit.h>
22 #include <asm/intrinsics.h>
23 #include <asm/processor.h>
25 #include <asm/uaccess.h>
26 #include <asm/unaligned.h>
28 extern int die_if_kernel(char *str
, struct pt_regs
*regs
, long err
);
30 #undef DEBUG_UNALIGNED_TRAP
32 #ifdef DEBUG_UNALIGNED_TRAP
33 # define DPRINT(a...) do { printk("%s %u: ", __func__, __LINE__); printk (a); } while (0)
34 # define DDUMP(str,vp,len) dump(str, vp, len)
37 dump (const char *str
, void *vp
, size_t len
)
39 unsigned char *cp
= vp
;
43 for (i
= 0; i
< len
; ++i
)
44 printk (" %02x", *cp
++);
49 # define DDUMP(str,vp,len)
52 #define IA64_FIRST_STACKED_GR 32
53 #define IA64_FIRST_ROTATING_FR 32
54 #define SIGN_EXT9 0xffffffffffffff00ul
57 * sysctl settable hook which tells the kernel whether to honor the
58 * IA64_THREAD_UAC_NOPRINT prctl. Because this is user settable, we want
59 * to allow the super user to enable/disable this for security reasons
60 * (i.e. don't allow attacker to fill up logs with unaligned accesses).
62 int no_unaligned_warning
;
63 int unaligned_dump_stack
;
69 * --------|------|---------|
70 * [40-37] | [36] | [35:30] |
71 * --------|------|---------|
72 * 4 | 1 | 6 | = 11 bits
73 * --------------------------
74 * However bits [31:30] are not directly useful to distinguish between
75 * load/store so we can use [35:32] instead, which gives the following
76 * mask ([40:32]) using 9 bits. The 'e' comes from the fact that we defer
77 * checking the m-bit until later in the load/store emulation.
79 #define IA64_OPCODE_MASK 0x1ef
80 #define IA64_OPCODE_SHIFT 32
83 * Table C-28 Integer Load/Store
85 * We ignore [35:32]= 0x6, 0x7, 0xE, 0xF
87 * ld8.fill, st8.fill MUST be aligned because the RNATs are based on
88 * the address (bits [8:3]), so we must failed.
94 #define LDBIAS_OP 0x084
95 #define LDACQ_OP 0x085
96 /* 0x086, 0x087 are not relevant */
97 #define LDCCLR_OP 0x088
98 #define LDCNC_OP 0x089
99 #define LDCCLRACQ_OP 0x08a
101 #define STREL_OP 0x08d
102 /* 0x08e,0x8f are not relevant */
105 * Table C-29 Integer Load +Reg
107 * we use the ld->m (bit [36:36]) field to determine whether or not we have
108 * a load/store of this form.
112 * Table C-30 Integer Load/Store +Imm
114 * We ignore [35:32]= 0x6, 0x7, 0xE, 0xF
116 * ld8.fill, st8.fill must be aligned because the Nat register are based on
117 * the address, so we must fail and the program must be fixed.
119 #define LD_IMM_OP 0x0a0
120 #define LDS_IMM_OP 0x0a1
121 #define LDA_IMM_OP 0x0a2
122 #define LDSA_IMM_OP 0x0a3
123 #define LDBIAS_IMM_OP 0x0a4
124 #define LDACQ_IMM_OP 0x0a5
125 /* 0x0a6, 0xa7 are not relevant */
126 #define LDCCLR_IMM_OP 0x0a8
127 #define LDCNC_IMM_OP 0x0a9
128 #define LDCCLRACQ_IMM_OP 0x0aa
129 #define ST_IMM_OP 0x0ac
130 #define STREL_IMM_OP 0x0ad
131 /* 0x0ae,0xaf are not relevant */
134 * Table C-32 Floating-point Load/Store
137 #define LDFS_OP 0x0c1
138 #define LDFA_OP 0x0c2
139 #define LDFSA_OP 0x0c3
140 /* 0x0c6 is irrelevant */
141 #define LDFCCLR_OP 0x0c8
142 #define LDFCNC_OP 0x0c9
143 /* 0x0cb is irrelevant */
147 * Table C-33 Floating-point Load +Reg
149 * we use the ld->m (bit [36:36]) field to determine whether or not we have
150 * a load/store of this form.
154 * Table C-34 Floating-point Load/Store +Imm
156 #define LDF_IMM_OP 0x0e0
157 #define LDFS_IMM_OP 0x0e1
158 #define LDFA_IMM_OP 0x0e2
159 #define LDFSA_IMM_OP 0x0e3
160 /* 0x0e6 is irrelevant */
161 #define LDFCCLR_IMM_OP 0x0e8
162 #define LDFCNC_IMM_OP 0x0e9
163 #define STF_IMM_OP 0x0ec
166 unsigned long qp
:6; /* [0:5] */
167 unsigned long r1
:7; /* [6:12] */
168 unsigned long imm
:7; /* [13:19] */
169 unsigned long r3
:7; /* [20:26] */
170 unsigned long x
:1; /* [27:27] */
171 unsigned long hint
:2; /* [28:29] */
172 unsigned long x6_sz
:2; /* [30:31] */
173 unsigned long x6_op
:4; /* [32:35], x6 = x6_sz|x6_op */
174 unsigned long m
:1; /* [36:36] */
175 unsigned long op
:4; /* [37:40] */
176 unsigned long pad
:23; /* [41:63] */
181 UPD_IMMEDIATE
, /* ldXZ r1=[r3],imm(9) */
182 UPD_REG
/* ldXZ r1=[r3],r2 */
186 * We use tables to keep track of the offsets of registers in the saved state.
187 * This way we save having big switch/case statements.
189 * We use bit 0 to indicate switch_stack or pt_regs.
190 * The offset is simply shifted by 1 bit.
191 * A 2-byte value should be enough to hold any kind of offset
193 * In case the calling convention changes (and thus pt_regs/switch_stack)
194 * simply use RSW instead of RPT or vice-versa.
197 #define RPO(x) ((size_t) &((struct pt_regs *)0)->x)
198 #define RSO(x) ((size_t) &((struct switch_stack *)0)->x)
200 #define RPT(x) (RPO(x) << 1)
201 #define RSW(x) (1| RSO(x)<<1)
203 #define GR_OFFS(x) (gr_info[x]>>1)
204 #define GR_IN_SW(x) (gr_info[x] & 0x1)
206 #define FR_OFFS(x) (fr_info[x]>>1)
207 #define FR_IN_SW(x) (fr_info[x] & 0x1)
209 static u16 gr_info
[32]={
210 0, /* r0 is read-only : WE SHOULD NEVER GET THIS */
212 RPT(r1
), RPT(r2
), RPT(r3
),
214 RSW(r4
), RSW(r5
), RSW(r6
), RSW(r7
),
216 RPT(r8
), RPT(r9
), RPT(r10
), RPT(r11
),
217 RPT(r12
), RPT(r13
), RPT(r14
), RPT(r15
),
219 RPT(r16
), RPT(r17
), RPT(r18
), RPT(r19
),
220 RPT(r20
), RPT(r21
), RPT(r22
), RPT(r23
),
221 RPT(r24
), RPT(r25
), RPT(r26
), RPT(r27
),
222 RPT(r28
), RPT(r29
), RPT(r30
), RPT(r31
)
225 static u16 fr_info
[32]={
226 0, /* constant : WE SHOULD NEVER GET THIS */
227 0, /* constant : WE SHOULD NEVER GET THIS */
229 RSW(f2
), RSW(f3
), RSW(f4
), RSW(f5
),
231 RPT(f6
), RPT(f7
), RPT(f8
), RPT(f9
),
234 RSW(f12
), RSW(f13
), RSW(f14
),
235 RSW(f15
), RSW(f16
), RSW(f17
), RSW(f18
), RSW(f19
),
236 RSW(f20
), RSW(f21
), RSW(f22
), RSW(f23
), RSW(f24
),
237 RSW(f25
), RSW(f26
), RSW(f27
), RSW(f28
), RSW(f29
),
241 /* Invalidate ALAT entry for integer register REGNO. */
243 invala_gr (int regno
)
245 # define F(reg) case reg: ia64_invala_gr(reg); break
248 F( 0); F( 1); F( 2); F( 3); F( 4); F( 5); F( 6); F( 7);
249 F( 8); F( 9); F( 10); F( 11); F( 12); F( 13); F( 14); F( 15);
250 F( 16); F( 17); F( 18); F( 19); F( 20); F( 21); F( 22); F( 23);
251 F( 24); F( 25); F( 26); F( 27); F( 28); F( 29); F( 30); F( 31);
252 F( 32); F( 33); F( 34); F( 35); F( 36); F( 37); F( 38); F( 39);
253 F( 40); F( 41); F( 42); F( 43); F( 44); F( 45); F( 46); F( 47);
254 F( 48); F( 49); F( 50); F( 51); F( 52); F( 53); F( 54); F( 55);
255 F( 56); F( 57); F( 58); F( 59); F( 60); F( 61); F( 62); F( 63);
256 F( 64); F( 65); F( 66); F( 67); F( 68); F( 69); F( 70); F( 71);
257 F( 72); F( 73); F( 74); F( 75); F( 76); F( 77); F( 78); F( 79);
258 F( 80); F( 81); F( 82); F( 83); F( 84); F( 85); F( 86); F( 87);
259 F( 88); F( 89); F( 90); F( 91); F( 92); F( 93); F( 94); F( 95);
260 F( 96); F( 97); F( 98); F( 99); F(100); F(101); F(102); F(103);
261 F(104); F(105); F(106); F(107); F(108); F(109); F(110); F(111);
262 F(112); F(113); F(114); F(115); F(116); F(117); F(118); F(119);
263 F(120); F(121); F(122); F(123); F(124); F(125); F(126); F(127);
268 /* Invalidate ALAT entry for floating-point register REGNO. */
270 invala_fr (int regno
)
272 # define F(reg) case reg: ia64_invala_fr(reg); break
275 F( 0); F( 1); F( 2); F( 3); F( 4); F( 5); F( 6); F( 7);
276 F( 8); F( 9); F( 10); F( 11); F( 12); F( 13); F( 14); F( 15);
277 F( 16); F( 17); F( 18); F( 19); F( 20); F( 21); F( 22); F( 23);
278 F( 24); F( 25); F( 26); F( 27); F( 28); F( 29); F( 30); F( 31);
279 F( 32); F( 33); F( 34); F( 35); F( 36); F( 37); F( 38); F( 39);
280 F( 40); F( 41); F( 42); F( 43); F( 44); F( 45); F( 46); F( 47);
281 F( 48); F( 49); F( 50); F( 51); F( 52); F( 53); F( 54); F( 55);
282 F( 56); F( 57); F( 58); F( 59); F( 60); F( 61); F( 62); F( 63);
283 F( 64); F( 65); F( 66); F( 67); F( 68); F( 69); F( 70); F( 71);
284 F( 72); F( 73); F( 74); F( 75); F( 76); F( 77); F( 78); F( 79);
285 F( 80); F( 81); F( 82); F( 83); F( 84); F( 85); F( 86); F( 87);
286 F( 88); F( 89); F( 90); F( 91); F( 92); F( 93); F( 94); F( 95);
287 F( 96); F( 97); F( 98); F( 99); F(100); F(101); F(102); F(103);
288 F(104); F(105); F(106); F(107); F(108); F(109); F(110); F(111);
289 F(112); F(113); F(114); F(115); F(116); F(117); F(118); F(119);
290 F(120); F(121); F(122); F(123); F(124); F(125); F(126); F(127);
295 static inline unsigned long
296 rotate_reg (unsigned long sor
, unsigned long rrb
, unsigned long reg
)
305 set_rse_reg (struct pt_regs
*regs
, unsigned long r1
, unsigned long val
, int nat
)
307 struct switch_stack
*sw
= (struct switch_stack
*) regs
- 1;
308 unsigned long *bsp
, *bspstore
, *addr
, *rnat_addr
, *ubs_end
;
309 unsigned long *kbs
= (void *) current
+ IA64_RBS_OFFSET
;
310 unsigned long rnats
, nat_mask
;
311 unsigned long on_kbs
;
312 long sof
= (regs
->cr_ifs
) & 0x7f;
313 long sor
= 8 * ((regs
->cr_ifs
>> 14) & 0xf);
314 long rrb_gr
= (regs
->cr_ifs
>> 18) & 0x7f;
318 /* this should never happen, as the "rsvd register fault" has higher priority */
319 DPRINT("ignoring write to r%lu; only %lu registers are allocated!\n", r1
, sof
);
324 ridx
= rotate_reg(sor
, rrb_gr
, ridx
);
326 DPRINT("r%lu, sw.bspstore=%lx pt.bspstore=%lx sof=%ld sol=%ld ridx=%ld\n",
327 r1
, sw
->ar_bspstore
, regs
->ar_bspstore
, sof
, (regs
->cr_ifs
>> 7) & 0x7f, ridx
);
329 on_kbs
= ia64_rse_num_regs(kbs
, (unsigned long *) sw
->ar_bspstore
);
330 addr
= ia64_rse_skip_regs((unsigned long *) sw
->ar_bspstore
, -sof
+ ridx
);
332 /* the register is on the kernel backing store: easy... */
333 rnat_addr
= ia64_rse_rnat_addr(addr
);
334 if ((unsigned long) rnat_addr
>= sw
->ar_bspstore
)
335 rnat_addr
= &sw
->ar_rnat
;
336 nat_mask
= 1UL << ia64_rse_slot_num(addr
);
340 *rnat_addr
|= nat_mask
;
342 *rnat_addr
&= ~nat_mask
;
346 if (!user_stack(current
, regs
)) {
347 DPRINT("ignoring kernel write to r%lu; register isn't on the kernel RBS!", r1
);
351 bspstore
= (unsigned long *)regs
->ar_bspstore
;
352 ubs_end
= ia64_rse_skip_regs(bspstore
, on_kbs
);
353 bsp
= ia64_rse_skip_regs(ubs_end
, -sof
);
354 addr
= ia64_rse_skip_regs(bsp
, ridx
);
356 DPRINT("ubs_end=%p bsp=%p addr=%p\n", (void *) ubs_end
, (void *) bsp
, (void *) addr
);
358 ia64_poke(current
, sw
, (unsigned long) ubs_end
, (unsigned long) addr
, val
);
360 rnat_addr
= ia64_rse_rnat_addr(addr
);
362 ia64_peek(current
, sw
, (unsigned long) ubs_end
, (unsigned long) rnat_addr
, &rnats
);
363 DPRINT("rnat @%p = 0x%lx nat=%d old nat=%ld\n",
364 (void *) rnat_addr
, rnats
, nat
, (rnats
>> ia64_rse_slot_num(addr
)) & 1);
366 nat_mask
= 1UL << ia64_rse_slot_num(addr
);
371 ia64_poke(current
, sw
, (unsigned long) ubs_end
, (unsigned long) rnat_addr
, rnats
);
373 DPRINT("rnat changed to @%p = 0x%lx\n", (void *) rnat_addr
, rnats
);
378 get_rse_reg (struct pt_regs
*regs
, unsigned long r1
, unsigned long *val
, int *nat
)
380 struct switch_stack
*sw
= (struct switch_stack
*) regs
- 1;
381 unsigned long *bsp
, *addr
, *rnat_addr
, *ubs_end
, *bspstore
;
382 unsigned long *kbs
= (void *) current
+ IA64_RBS_OFFSET
;
383 unsigned long rnats
, nat_mask
;
384 unsigned long on_kbs
;
385 long sof
= (regs
->cr_ifs
) & 0x7f;
386 long sor
= 8 * ((regs
->cr_ifs
>> 14) & 0xf);
387 long rrb_gr
= (regs
->cr_ifs
>> 18) & 0x7f;
391 /* read of out-of-frame register returns an undefined value; 0 in our case. */
392 DPRINT("ignoring read from r%lu; only %lu registers are allocated!\n", r1
, sof
);
397 ridx
= rotate_reg(sor
, rrb_gr
, ridx
);
399 DPRINT("r%lu, sw.bspstore=%lx pt.bspstore=%lx sof=%ld sol=%ld ridx=%ld\n",
400 r1
, sw
->ar_bspstore
, regs
->ar_bspstore
, sof
, (regs
->cr_ifs
>> 7) & 0x7f, ridx
);
402 on_kbs
= ia64_rse_num_regs(kbs
, (unsigned long *) sw
->ar_bspstore
);
403 addr
= ia64_rse_skip_regs((unsigned long *) sw
->ar_bspstore
, -sof
+ ridx
);
405 /* the register is on the kernel backing store: easy... */
408 rnat_addr
= ia64_rse_rnat_addr(addr
);
409 if ((unsigned long) rnat_addr
>= sw
->ar_bspstore
)
410 rnat_addr
= &sw
->ar_rnat
;
411 nat_mask
= 1UL << ia64_rse_slot_num(addr
);
412 *nat
= (*rnat_addr
& nat_mask
) != 0;
417 if (!user_stack(current
, regs
)) {
418 DPRINT("ignoring kernel read of r%lu; register isn't on the RBS!", r1
);
422 bspstore
= (unsigned long *)regs
->ar_bspstore
;
423 ubs_end
= ia64_rse_skip_regs(bspstore
, on_kbs
);
424 bsp
= ia64_rse_skip_regs(ubs_end
, -sof
);
425 addr
= ia64_rse_skip_regs(bsp
, ridx
);
427 DPRINT("ubs_end=%p bsp=%p addr=%p\n", (void *) ubs_end
, (void *) bsp
, (void *) addr
);
429 ia64_peek(current
, sw
, (unsigned long) ubs_end
, (unsigned long) addr
, val
);
432 rnat_addr
= ia64_rse_rnat_addr(addr
);
433 nat_mask
= 1UL << ia64_rse_slot_num(addr
);
435 DPRINT("rnat @%p = 0x%lx\n", (void *) rnat_addr
, rnats
);
437 ia64_peek(current
, sw
, (unsigned long) ubs_end
, (unsigned long) rnat_addr
, &rnats
);
438 *nat
= (rnats
& nat_mask
) != 0;
451 setreg (unsigned long regnum
, unsigned long val
, int nat
, struct pt_regs
*regs
)
453 struct switch_stack
*sw
= (struct switch_stack
*) regs
- 1;
455 unsigned long bitmask
;
459 * First takes care of stacked registers
461 if (regnum
>= IA64_FIRST_STACKED_GR
) {
462 set_rse_reg(regs
, regnum
, val
, nat
);
467 * Using r0 as a target raises a General Exception fault which has higher priority
468 * than the Unaligned Reference fault.
472 * Now look at registers in [0-31] range and init correct UNAT
474 if (GR_IN_SW(regnum
)) {
475 addr
= (unsigned long)sw
;
478 addr
= (unsigned long)regs
;
479 unat
= &sw
->caller_unat
;
481 DPRINT("tmp_base=%lx switch_stack=%s offset=%d\n",
482 addr
, unat
==&sw
->ar_unat
? "yes":"no", GR_OFFS(regnum
));
484 * add offset from base of struct
487 addr
+= GR_OFFS(regnum
);
489 *(unsigned long *)addr
= val
;
492 * We need to clear the corresponding UNAT bit to fully emulate the load
493 * UNAT bit_pos = GR[r3]{8:3} form EAS-2.4
495 bitmask
= 1UL << (addr
>> 3 & 0x3f);
496 DPRINT("*0x%lx=0x%lx NaT=%d prev_unat @%p=%lx\n", addr
, val
, nat
, (void *) unat
, *unat
);
502 DPRINT("*0x%lx=0x%lx NaT=%d new unat: %p=%lx\n", addr
, val
, nat
, (void *) unat
,*unat
);
506 * Return the (rotated) index for floating point register REGNUM (REGNUM must be in the
507 * range from 32-127, result is in the range from 0-95.
509 static inline unsigned long
510 fph_index (struct pt_regs
*regs
, long regnum
)
512 unsigned long rrb_fr
= (regs
->cr_ifs
>> 25) & 0x7f;
513 return rotate_reg(96, rrb_fr
, (regnum
- IA64_FIRST_ROTATING_FR
));
517 setfpreg (unsigned long regnum
, struct ia64_fpreg
*fpval
, struct pt_regs
*regs
)
519 struct switch_stack
*sw
= (struct switch_stack
*)regs
- 1;
523 * From EAS-2.5: FPDisableFault has higher priority than Unaligned
524 * Fault. Thus, when we get here, we know the partition is enabled.
525 * To update f32-f127, there are three choices:
527 * (1) save f32-f127 to thread.fph and update the values there
528 * (2) use a gigantic switch statement to directly access the registers
529 * (3) generate code on the fly to update the desired register
531 * For now, we are using approach (1).
533 if (regnum
>= IA64_FIRST_ROTATING_FR
) {
534 ia64_sync_fph(current
);
535 current
->thread
.fph
[fph_index(regs
, regnum
)] = *fpval
;
538 * pt_regs or switch_stack ?
540 if (FR_IN_SW(regnum
)) {
541 addr
= (unsigned long)sw
;
543 addr
= (unsigned long)regs
;
546 DPRINT("tmp_base=%lx offset=%d\n", addr
, FR_OFFS(regnum
));
548 addr
+= FR_OFFS(regnum
);
549 *(struct ia64_fpreg
*)addr
= *fpval
;
552 * mark the low partition as being used now
554 * It is highly unlikely that this bit is not already set, but
555 * let's do it for safety.
557 regs
->cr_ipsr
|= IA64_PSR_MFL
;
562 * Those 2 inline functions generate the spilled versions of the constant floating point
563 * registers which can be used with stfX
566 float_spill_f0 (struct ia64_fpreg
*final
)
568 ia64_stf_spill(final
, 0);
572 float_spill_f1 (struct ia64_fpreg
*final
)
574 ia64_stf_spill(final
, 1);
578 getfpreg (unsigned long regnum
, struct ia64_fpreg
*fpval
, struct pt_regs
*regs
)
580 struct switch_stack
*sw
= (struct switch_stack
*) regs
- 1;
584 * From EAS-2.5: FPDisableFault has higher priority than
585 * Unaligned Fault. Thus, when we get here, we know the partition is
588 * When regnum > 31, the register is still live and we need to force a save
589 * to current->thread.fph to get access to it. See discussion in setfpreg()
590 * for reasons and other ways of doing this.
592 if (regnum
>= IA64_FIRST_ROTATING_FR
) {
593 ia64_flush_fph(current
);
594 *fpval
= current
->thread
.fph
[fph_index(regs
, regnum
)];
597 * f0 = 0.0, f1= 1.0. Those registers are constant and are thus
598 * not saved, we must generate their spilled form on the fly
602 float_spill_f0(fpval
);
605 float_spill_f1(fpval
);
609 * pt_regs or switch_stack ?
611 addr
= FR_IN_SW(regnum
) ? (unsigned long)sw
612 : (unsigned long)regs
;
614 DPRINT("is_sw=%d tmp_base=%lx offset=0x%x\n",
615 FR_IN_SW(regnum
), addr
, FR_OFFS(regnum
));
617 addr
+= FR_OFFS(regnum
);
618 *fpval
= *(struct ia64_fpreg
*)addr
;
625 getreg (unsigned long regnum
, unsigned long *val
, int *nat
, struct pt_regs
*regs
)
627 struct switch_stack
*sw
= (struct switch_stack
*) regs
- 1;
628 unsigned long addr
, *unat
;
630 if (regnum
>= IA64_FIRST_STACKED_GR
) {
631 get_rse_reg(regs
, regnum
, val
, nat
);
636 * take care of r0 (read-only always evaluate to 0)
646 * Now look at registers in [0-31] range and init correct UNAT
648 if (GR_IN_SW(regnum
)) {
649 addr
= (unsigned long)sw
;
652 addr
= (unsigned long)regs
;
653 unat
= &sw
->caller_unat
;
656 DPRINT("addr_base=%lx offset=0x%x\n", addr
, GR_OFFS(regnum
));
658 addr
+= GR_OFFS(regnum
);
660 *val
= *(unsigned long *)addr
;
663 * do it only when requested
666 *nat
= (*unat
>> (addr
>> 3 & 0x3f)) & 0x1UL
;
670 emulate_load_updates (update_t type
, load_store_t ld
, struct pt_regs
*regs
, unsigned long ifa
)
674 * Given the way we handle unaligned speculative loads, we should
675 * not get to this point in the code but we keep this sanity check,
678 if (ld
.x6_op
== 1 || ld
.x6_op
== 3) {
679 printk(KERN_ERR
"%s: register update on speculative load, error\n", __func__
);
680 if (die_if_kernel("unaligned reference on speculative load with register update\n",
687 * at this point, we know that the base register to update is valid i.e.,
690 if (type
== UPD_IMMEDIATE
) {
694 * Load +Imm: ldXZ r1=[r3],imm(9)
697 * form imm9: [13:19] contain the first 7 bits
699 imm
= ld
.x
<< 7 | ld
.imm
;
702 * sign extend (1+8bits) if m set
704 if (ld
.m
) imm
|= SIGN_EXT9
;
707 * ifa == r3 and we know that the NaT bit on r3 was clear so
708 * we can directly use ifa.
712 setreg(ld
.r3
, ifa
, 0, regs
);
714 DPRINT("ld.x=%d ld.m=%d imm=%ld r3=0x%lx\n", ld
.x
, ld
.m
, imm
, ifa
);
721 * Load +Reg Opcode: ldXZ r1=[r3],r2
723 * Note: that we update r3 even in the case of ldfX.a
724 * (where the load does not happen)
726 * The way the load algorithm works, we know that r3 does not
727 * have its NaT bit set (would have gotten NaT consumption
728 * before getting the unaligned fault). So we can use ifa
729 * which equals r3 at this point.
732 * The above statement holds ONLY because we know that we
733 * never reach this code when trying to do a ldX.s.
734 * If we ever make it to here on an ldfX.s then
736 getreg(ld
.imm
, &r2
, &nat_r2
, regs
);
741 * propagate Nat r2 -> r3
743 setreg(ld
.r3
, ifa
, nat_r2
, regs
);
745 DPRINT("imm=%d r2=%ld r3=0x%lx nat_r2=%d\n",ld
.imm
, r2
, ifa
, nat_r2
);
751 emulate_load_int (unsigned long ifa
, load_store_t ld
, struct pt_regs
*regs
)
753 unsigned int len
= 1 << ld
.x6_sz
;
754 unsigned long val
= 0;
757 * r0, as target, doesn't need to be checked because Illegal Instruction
758 * faults have higher priority than unaligned faults.
760 * r0 cannot be found as the base as it would never generate an
761 * unaligned reference.
765 * ldX.a we will emulate load and also invalidate the ALAT entry.
766 * See comment below for explanation on how we handle ldX.a
769 if (len
!= 2 && len
!= 4 && len
!= 8) {
770 DPRINT("unknown size: x6=%d\n", ld
.x6_sz
);
773 /* this assumes little-endian byte-order: */
774 if (copy_from_user(&val
, (void __user
*) ifa
, len
))
776 setreg(ld
.r1
, val
, 0, regs
);
779 * check for updates on any kind of loads
781 if (ld
.op
== 0x5 || ld
.m
)
782 emulate_load_updates(ld
.op
== 0x5 ? UPD_IMMEDIATE
: UPD_REG
, ld
, regs
, ifa
);
785 * handling of various loads (based on EAS2.4):
787 * ldX.acq (ordered load):
788 * - acquire semantics would have been used, so force fence instead.
790 * ldX.c.clr (check load and clear):
791 * - if we get to this handler, it's because the entry was not in the ALAT.
792 * Therefore the operation reverts to a normal load
794 * ldX.c.nc (check load no clear):
795 * - same as previous one
797 * ldX.c.clr.acq (ordered check load and clear):
798 * - same as above for c.clr part. The load needs to have acquire semantics. So
799 * we use the fence semantics which is stronger and thus ensures correctness.
801 * ldX.a (advanced load):
802 * - suppose ldX.a r1=[r3]. If we get to the unaligned trap it's because the
803 * address doesn't match requested size alignment. This means that we would
804 * possibly need more than one load to get the result.
806 * The load part can be handled just like a normal load, however the difficult
807 * part is to get the right thing into the ALAT. The critical piece of information
808 * in the base address of the load & size. To do that, a ld.a must be executed,
809 * clearly any address can be pushed into the table by using ld1.a r1=[r3]. Now
810 * if we use the same target register, we will be okay for the check.a instruction.
811 * If we look at the store, basically a stX [r3]=r1 checks the ALAT for any entry
812 * which would overlap within [r3,r3+X] (the size of the load was store in the
813 * ALAT). If such an entry is found the entry is invalidated. But this is not good
814 * enough, take the following example:
818 * Could be emulated by doing:
820 * store to temporary;
822 * store & shift to temporary;
824 * store & shift to temporary;
826 * store & shift to temporary;
829 * So in this case, you would get the right value is r1 but the wrong info in
830 * the ALAT. Notice that you could do it in reverse to finish with address 3
831 * but you would still get the size wrong. To get the size right, one needs to
832 * execute exactly the same kind of load. You could do it from a aligned
833 * temporary location, but you would get the address wrong.
835 * So no matter what, it is not possible to emulate an advanced load
836 * correctly. But is that really critical ?
838 * We will always convert ld.a into a normal load with ALAT invalidated. This
839 * will enable compiler to do optimization where certain code path after ld.a
840 * is not required to have ld.c/chk.a, e.g., code path with no intervening stores.
842 * If there is a store after the advanced load, one must either do a ld.c.* or
843 * chk.a.* to reuse the value stored in the ALAT. Both can "fail" (meaning no
844 * entry found in ALAT), and that's perfectly ok because:
846 * - ld.c.*, if the entry is not present a normal load is executed
847 * - chk.a.*, if the entry is not present, execution jumps to recovery code
849 * In either case, the load can be potentially retried in another form.
851 * ALAT must be invalidated for the register (so that chk.a or ld.c don't pick
852 * up a stale entry later). The register base update MUST also be performed.
856 * when the load has the .acq completer then
857 * use ordering fence.
859 if (ld
.x6_op
== 0x5 || ld
.x6_op
== 0xa)
863 * invalidate ALAT entry in case of advanced load
872 emulate_store_int (unsigned long ifa
, load_store_t ld
, struct pt_regs
*regs
)
875 unsigned int len
= 1 << ld
.x6_sz
;
878 * if we get to this handler, Nat bits on both r3 and r2 have already
879 * been checked. so we don't need to do it
881 * extract the value to be stored
883 getreg(ld
.imm
, &r2
, NULL
, regs
);
886 * we rely on the macros in unaligned.h for now i.e.,
887 * we let the compiler figure out how to read memory gracefully.
889 * We need this switch/case because the way the inline function
890 * works. The code is optimized by the compiler and looks like
891 * a single switch/case.
893 DPRINT("st%d [%lx]=%lx\n", len
, ifa
, r2
);
895 if (len
!= 2 && len
!= 4 && len
!= 8) {
896 DPRINT("unknown size: x6=%d\n", ld
.x6_sz
);
900 /* this assumes little-endian byte-order: */
901 if (copy_to_user((void __user
*) ifa
, &r2
, len
))
908 * ld.r3 can never be r0, because r0 would not generate an
915 * form imm9: [12:6] contain first 7bits
917 imm
= ld
.x
<< 7 | ld
.r1
;
919 * sign extend (8bits) if m set
921 if (ld
.m
) imm
|= SIGN_EXT9
;
923 * ifa == r3 (NaT is necessarily cleared)
927 DPRINT("imm=%lx r3=%lx\n", imm
, ifa
);
929 setreg(ld
.r3
, ifa
, 0, regs
);
932 * we don't have alat_invalidate_multiple() so we need
933 * to do the complete flush :-<<
938 * stX.rel: use fence instead of release
947 * floating point operations sizes in bytes
949 static const unsigned char float_fsz
[4]={
950 10, /* extended precision (e) */
952 4, /* single precision (s) */
953 8 /* double precision (d) */
957 mem2float_extended (struct ia64_fpreg
*init
, struct ia64_fpreg
*final
)
961 ia64_stf_spill(final
, 6);
965 mem2float_integer (struct ia64_fpreg
*init
, struct ia64_fpreg
*final
)
969 ia64_stf_spill(final
, 6);
973 mem2float_single (struct ia64_fpreg
*init
, struct ia64_fpreg
*final
)
977 ia64_stf_spill(final
, 6);
981 mem2float_double (struct ia64_fpreg
*init
, struct ia64_fpreg
*final
)
985 ia64_stf_spill(final
, 6);
989 float2mem_extended (struct ia64_fpreg
*init
, struct ia64_fpreg
*final
)
991 ia64_ldf_fill(6, init
);
997 float2mem_integer (struct ia64_fpreg
*init
, struct ia64_fpreg
*final
)
999 ia64_ldf_fill(6, init
);
1001 ia64_stf8(final
, 6);
1005 float2mem_single (struct ia64_fpreg
*init
, struct ia64_fpreg
*final
)
1007 ia64_ldf_fill(6, init
);
1009 ia64_stfs(final
, 6);
1013 float2mem_double (struct ia64_fpreg
*init
, struct ia64_fpreg
*final
)
1015 ia64_ldf_fill(6, init
);
1017 ia64_stfd(final
, 6);
1021 emulate_load_floatpair (unsigned long ifa
, load_store_t ld
, struct pt_regs
*regs
)
1023 struct ia64_fpreg fpr_init
[2];
1024 struct ia64_fpreg fpr_final
[2];
1025 unsigned long len
= float_fsz
[ld
.x6_sz
];
1028 * fr0 & fr1 don't need to be checked because Illegal Instruction faults have
1029 * higher priority than unaligned faults.
1031 * r0 cannot be found as the base as it would never generate an unaligned
1036 * make sure we get clean buffers
1038 memset(&fpr_init
, 0, sizeof(fpr_init
));
1039 memset(&fpr_final
, 0, sizeof(fpr_final
));
1042 * ldfpX.a: we don't try to emulate anything but we must
1043 * invalidate the ALAT entry and execute updates, if any.
1045 if (ld
.x6_op
!= 0x2) {
1047 * This assumes little-endian byte-order. Note that there is no "ldfpe"
1050 if (copy_from_user(&fpr_init
[0], (void __user
*) ifa
, len
)
1051 || copy_from_user(&fpr_init
[1], (void __user
*) (ifa
+ len
), len
))
1054 DPRINT("ld.r1=%d ld.imm=%d x6_sz=%d\n", ld
.r1
, ld
.imm
, ld
.x6_sz
);
1055 DDUMP("frp_init =", &fpr_init
, 2*len
);
1058 * Could optimize inlines by using ldfpX & 2 spills
1060 switch( ld
.x6_sz
) {
1062 mem2float_extended(&fpr_init
[0], &fpr_final
[0]);
1063 mem2float_extended(&fpr_init
[1], &fpr_final
[1]);
1066 mem2float_integer(&fpr_init
[0], &fpr_final
[0]);
1067 mem2float_integer(&fpr_init
[1], &fpr_final
[1]);
1070 mem2float_single(&fpr_init
[0], &fpr_final
[0]);
1071 mem2float_single(&fpr_init
[1], &fpr_final
[1]);
1074 mem2float_double(&fpr_init
[0], &fpr_final
[0]);
1075 mem2float_double(&fpr_init
[1], &fpr_final
[1]);
1078 DDUMP("fpr_final =", &fpr_final
, 2*len
);
1082 * A possible optimization would be to drop fpr_final and directly
1083 * use the storage from the saved context i.e., the actual final
1084 * destination (pt_regs, switch_stack or thread structure).
1086 setfpreg(ld
.r1
, &fpr_final
[0], regs
);
1087 setfpreg(ld
.imm
, &fpr_final
[1], regs
);
1091 * Check for updates: only immediate updates are available for this
1096 * the immediate is implicit given the ldsz of the operation:
1097 * single: 8 (2x4) and for all others it's 16 (2x8)
1103 * the fact that we force the NaT of r3 to zero is ONLY valid
1104 * as long as we don't come here with a ldfpX.s.
1105 * For this reason we keep this sanity check
1107 if (ld
.x6_op
== 1 || ld
.x6_op
== 3)
1108 printk(KERN_ERR
"%s: register update on speculative load pair, error\n",
1111 setreg(ld
.r3
, ifa
, 0, regs
);
1115 * Invalidate ALAT entries, if any, for both registers.
1117 if (ld
.x6_op
== 0x2) {
1126 emulate_load_float (unsigned long ifa
, load_store_t ld
, struct pt_regs
*regs
)
1128 struct ia64_fpreg fpr_init
;
1129 struct ia64_fpreg fpr_final
;
1130 unsigned long len
= float_fsz
[ld
.x6_sz
];
1133 * fr0 & fr1 don't need to be checked because Illegal Instruction
1134 * faults have higher priority than unaligned faults.
1136 * r0 cannot be found as the base as it would never generate an
1137 * unaligned reference.
1141 * make sure we get clean buffers
1143 memset(&fpr_init
,0, sizeof(fpr_init
));
1144 memset(&fpr_final
,0, sizeof(fpr_final
));
1147 * ldfX.a we don't try to emulate anything but we must
1148 * invalidate the ALAT entry.
1149 * See comments in ldX for descriptions on how the various loads are handled.
1151 if (ld
.x6_op
!= 0x2) {
1152 if (copy_from_user(&fpr_init
, (void __user
*) ifa
, len
))
1155 DPRINT("ld.r1=%d x6_sz=%d\n", ld
.r1
, ld
.x6_sz
);
1156 DDUMP("fpr_init =", &fpr_init
, len
);
1158 * we only do something for x6_op={0,8,9}
1160 switch( ld
.x6_sz
) {
1162 mem2float_extended(&fpr_init
, &fpr_final
);
1165 mem2float_integer(&fpr_init
, &fpr_final
);
1168 mem2float_single(&fpr_init
, &fpr_final
);
1171 mem2float_double(&fpr_init
, &fpr_final
);
1174 DDUMP("fpr_final =", &fpr_final
, len
);
1178 * A possible optimization would be to drop fpr_final and directly
1179 * use the storage from the saved context i.e., the actual final
1180 * destination (pt_regs, switch_stack or thread structure).
1182 setfpreg(ld
.r1
, &fpr_final
, regs
);
1186 * check for updates on any loads
1188 if (ld
.op
== 0x7 || ld
.m
)
1189 emulate_load_updates(ld
.op
== 0x7 ? UPD_IMMEDIATE
: UPD_REG
, ld
, regs
, ifa
);
1192 * invalidate ALAT entry in case of advanced floating point loads
1194 if (ld
.x6_op
== 0x2)
1202 emulate_store_float (unsigned long ifa
, load_store_t ld
, struct pt_regs
*regs
)
1204 struct ia64_fpreg fpr_init
;
1205 struct ia64_fpreg fpr_final
;
1206 unsigned long len
= float_fsz
[ld
.x6_sz
];
1209 * make sure we get clean buffers
1211 memset(&fpr_init
,0, sizeof(fpr_init
));
1212 memset(&fpr_final
,0, sizeof(fpr_final
));
1215 * if we get to this handler, Nat bits on both r3 and r2 have already
1216 * been checked. so we don't need to do it
1218 * extract the value to be stored
1220 getfpreg(ld
.imm
, &fpr_init
, regs
);
1222 * during this step, we extract the spilled registers from the saved
1223 * context i.e., we refill. Then we store (no spill) to temporary
1226 switch( ld
.x6_sz
) {
1228 float2mem_extended(&fpr_init
, &fpr_final
);
1231 float2mem_integer(&fpr_init
, &fpr_final
);
1234 float2mem_single(&fpr_init
, &fpr_final
);
1237 float2mem_double(&fpr_init
, &fpr_final
);
1240 DPRINT("ld.r1=%d x6_sz=%d\n", ld
.r1
, ld
.x6_sz
);
1241 DDUMP("fpr_init =", &fpr_init
, len
);
1242 DDUMP("fpr_final =", &fpr_final
, len
);
1244 if (copy_to_user((void __user
*) ifa
, &fpr_final
, len
))
1248 * stfX [r3]=r2,imm(9)
1251 * ld.r3 can never be r0, because r0 would not generate an
1258 * form imm9: [12:6] contain first 7bits
1260 imm
= ld
.x
<< 7 | ld
.r1
;
1262 * sign extend (8bits) if m set
1267 * ifa == r3 (NaT is necessarily cleared)
1271 DPRINT("imm=%lx r3=%lx\n", imm
, ifa
);
1273 setreg(ld
.r3
, ifa
, 0, regs
);
1276 * we don't have alat_invalidate_multiple() so we need
1277 * to do the complete flush :-<<
1285 * Make sure we log the unaligned access, so that user/sysadmin can notice it and
1286 * eventually fix the program. However, we don't want to do that for every access so we
1287 * pace it with jiffies.
1289 static DEFINE_RATELIMIT_STATE(logging_rate_limit
, 5 * HZ
, 5);
1292 ia64_handle_unaligned (unsigned long ifa
, struct pt_regs
*regs
)
1294 struct ia64_psr
*ipsr
= ia64_psr(regs
);
1295 mm_segment_t old_fs
= get_fs();
1296 unsigned long bundle
[2];
1297 unsigned long opcode
;
1299 const struct exception_table_entry
*eh
= NULL
;
1306 if (ia64_psr(regs
)->be
) {
1307 /* we don't support big-endian accesses */
1308 if (die_if_kernel("big-endian unaligned accesses are not supported", regs
, 0))
1314 * Treat kernel accesses for which there is an exception handler entry the same as
1315 * user-level unaligned accesses. Otherwise, a clever program could trick this
1316 * handler into reading an arbitrary kernel addresses...
1318 if (!user_mode(regs
))
1319 eh
= search_exception_tables(regs
->cr_iip
+ ia64_psr(regs
)->ri
);
1320 if (user_mode(regs
) || eh
) {
1321 if ((current
->thread
.flags
& IA64_THREAD_UAC_SIGBUS
) != 0)
1324 if (!no_unaligned_warning
&&
1325 !(current
->thread
.flags
& IA64_THREAD_UAC_NOPRINT
) &&
1326 __ratelimit(&logging_rate_limit
))
1328 char buf
[200]; /* comm[] is at most 16 bytes... */
1331 len
= sprintf(buf
, "%s(%d): unaligned access to 0x%016lx, "
1332 "ip=0x%016lx\n\r", current
->comm
,
1333 task_pid_nr(current
),
1334 ifa
, regs
->cr_iip
+ ipsr
->ri
);
1336 * Don't call tty_write_message() if we're in the kernel; we might
1337 * be holding locks...
1339 if (user_mode(regs
)) {
1340 struct tty_struct
*tty
= get_current_tty();
1341 tty_write_message(tty
, buf
);
1344 buf
[len
-1] = '\0'; /* drop '\r' */
1345 /* watch for command names containing %s */
1346 printk(KERN_WARNING
"%s", buf
);
1348 if (no_unaligned_warning
) {
1349 printk_once(KERN_WARNING
"%s(%d) encountered an "
1350 "unaligned exception which required\n"
1351 "kernel assistance, which degrades "
1352 "the performance of the application.\n"
1353 "Unaligned exception warnings have "
1354 "been disabled by the system "
1356 "echo 0 > /proc/sys/kernel/ignore-"
1357 "unaligned-usertrap to re-enable\n",
1358 current
->comm
, task_pid_nr(current
));
1362 if (__ratelimit(&logging_rate_limit
)) {
1363 printk(KERN_WARNING
"kernel unaligned access to 0x%016lx, ip=0x%016lx\n",
1364 ifa
, regs
->cr_iip
+ ipsr
->ri
);
1365 if (unaligned_dump_stack
)
1371 DPRINT("iip=%lx ifa=%lx isr=%lx (ei=%d, sp=%d)\n",
1372 regs
->cr_iip
, ifa
, regs
->cr_ipsr
, ipsr
->ri
, ipsr
->it
);
1374 if (__copy_from_user(bundle
, (void __user
*) regs
->cr_iip
, 16))
1378 * extract the instruction from the bundle given the slot number
1382 case 0: u
.l
= (bundle
[0] >> 5); break;
1383 case 1: u
.l
= (bundle
[0] >> 46) | (bundle
[1] << 18); break;
1384 case 2: u
.l
= (bundle
[1] >> 23); break;
1386 opcode
= (u
.l
>> IA64_OPCODE_SHIFT
) & IA64_OPCODE_MASK
;
1388 DPRINT("opcode=%lx ld.qp=%d ld.r1=%d ld.imm=%d ld.r3=%d ld.x=%d ld.hint=%d "
1389 "ld.x6=0x%x ld.m=%d ld.op=%d\n", opcode
, u
.insn
.qp
, u
.insn
.r1
, u
.insn
.imm
,
1390 u
.insn
.r3
, u
.insn
.x
, u
.insn
.hint
, u
.insn
.x6_sz
, u
.insn
.m
, u
.insn
.op
);
1394 * Notice that the switch statement DOES not cover all possible instructions
1395 * that DO generate unaligned references. This is made on purpose because for some
1396 * instructions it DOES NOT make sense to try and emulate the access. Sometimes it
1397 * is WRONG to try and emulate. Here is a list of instruction we don't emulate i.e.,
1398 * the program will get a signal and die:
1403 * Reason: RNATs are based on addresses
1406 * Reason: ld16 and st16 are supposed to occur in a single
1413 * Reason: ATOMIC operations cannot be emulated properly using multiple
1416 * speculative loads:
1418 * Reason: side effects, code must be ready to deal with failure so simpler
1419 * to let the load fail.
1420 * ---------------------------------------------------------------------------------
1423 * I would like to get rid of this switch case and do something
1430 /* oops, really a semaphore op (cmpxchg, etc) */
1439 * The instruction will be retried with deferred exceptions turned on, and
1440 * we should get Nat bit installed
1442 * IMPORTANT: When PSR_ED is set, the register & immediate update forms
1443 * are actually executed even though the operation failed. So we don't
1444 * need to take care of this.
1446 DPRINT("forcing PSR_ED\n");
1447 regs
->cr_ipsr
|= IA64_PSR_ED
;
1458 /* oops, really a semaphore op (cmpxchg, etc) */
1467 case LDCCLRACQ_IMM_OP
:
1468 ret
= emulate_load_int(ifa
, u
.insn
, regs
);
1474 /* oops, really a semaphore op (cmpxchg, etc) */
1479 ret
= emulate_store_int(ifa
, u
.insn
, regs
);
1487 ret
= emulate_load_floatpair(ifa
, u
.insn
, regs
);
1489 ret
= emulate_load_float(ifa
, u
.insn
, regs
);
1494 case LDFCCLR_IMM_OP
:
1496 ret
= emulate_load_float(ifa
, u
.insn
, regs
);
1501 ret
= emulate_store_float(ifa
, u
.insn
, regs
);
1507 DPRINT("ret=%d\n", ret
);
1513 * given today's architecture this case is not likely to happen because a
1514 * memory access instruction (M) can never be in the last slot of a
1515 * bundle. But let's keep it for now.
1518 ipsr
->ri
= (ipsr
->ri
+ 1) & 0x3;
1520 DPRINT("ipsr->ri=%d iip=%lx\n", ipsr
->ri
, regs
->cr_iip
);
1522 set_fs(old_fs
); /* restore original address limit */
1526 /* something went wrong... */
1527 if (!user_mode(regs
)) {
1529 ia64_handle_exception(regs
, eh
);
1532 if (die_if_kernel("error during unaligned kernel access\n", regs
, ret
))
1537 si
.si_signo
= SIGBUS
;
1539 si
.si_code
= BUS_ADRALN
;
1540 si
.si_addr
= (void __user
*) ifa
;
1544 force_sig_info(SIGBUS
, &si
, current
);