x86/mm: Add TLB purge to free pmd/pte page interfaces
[linux/fpc-iii.git] / arch / sh / kernel / kgdb.c
blobadad46e41a1d933387f0d5b7faf4eb5c79c642a5
1 /*
2 * SuperH KGDB support
4 * Copyright (C) 2008 - 2012 Paul Mundt
6 * Single stepping taken from the old stub by Henry Bell and Jeremy Siegel.
8 * This file is subject to the terms and conditions of the GNU General Public
9 * License. See the file "COPYING" in the main directory of this archive
10 * for more details.
12 #include <linux/kgdb.h>
13 #include <linux/kdebug.h>
14 #include <linux/irq.h>
15 #include <linux/io.h>
16 #include <linux/sched.h>
17 #include <asm/cacheflush.h>
18 #include <asm/traps.h>
20 /* Macros for single step instruction identification */
21 #define OPCODE_BT(op) (((op) & 0xff00) == 0x8900)
22 #define OPCODE_BF(op) (((op) & 0xff00) == 0x8b00)
23 #define OPCODE_BTF_DISP(op) (((op) & 0x80) ? (((op) | 0xffffff80) << 1) : \
24 (((op) & 0x7f ) << 1))
25 #define OPCODE_BFS(op) (((op) & 0xff00) == 0x8f00)
26 #define OPCODE_BTS(op) (((op) & 0xff00) == 0x8d00)
27 #define OPCODE_BRA(op) (((op) & 0xf000) == 0xa000)
28 #define OPCODE_BRA_DISP(op) (((op) & 0x800) ? (((op) | 0xfffff800) << 1) : \
29 (((op) & 0x7ff) << 1))
30 #define OPCODE_BRAF(op) (((op) & 0xf0ff) == 0x0023)
31 #define OPCODE_BRAF_REG(op) (((op) & 0x0f00) >> 8)
32 #define OPCODE_BSR(op) (((op) & 0xf000) == 0xb000)
33 #define OPCODE_BSR_DISP(op) (((op) & 0x800) ? (((op) | 0xfffff800) << 1) : \
34 (((op) & 0x7ff) << 1))
35 #define OPCODE_BSRF(op) (((op) & 0xf0ff) == 0x0003)
36 #define OPCODE_BSRF_REG(op) (((op) >> 8) & 0xf)
37 #define OPCODE_JMP(op) (((op) & 0xf0ff) == 0x402b)
38 #define OPCODE_JMP_REG(op) (((op) >> 8) & 0xf)
39 #define OPCODE_JSR(op) (((op) & 0xf0ff) == 0x400b)
40 #define OPCODE_JSR_REG(op) (((op) >> 8) & 0xf)
41 #define OPCODE_RTS(op) ((op) == 0xb)
42 #define OPCODE_RTE(op) ((op) == 0x2b)
44 #define SR_T_BIT_MASK 0x1
45 #define STEP_OPCODE 0xc33d
47 /* Calculate the new address for after a step */
48 static short *get_step_address(struct pt_regs *linux_regs)
50 insn_size_t op = __raw_readw(linux_regs->pc);
51 long addr;
53 /* BT */
54 if (OPCODE_BT(op)) {
55 if (linux_regs->sr & SR_T_BIT_MASK)
56 addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
57 else
58 addr = linux_regs->pc + 2;
61 /* BTS */
62 else if (OPCODE_BTS(op)) {
63 if (linux_regs->sr & SR_T_BIT_MASK)
64 addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
65 else
66 addr = linux_regs->pc + 4; /* Not in delay slot */
69 /* BF */
70 else if (OPCODE_BF(op)) {
71 if (!(linux_regs->sr & SR_T_BIT_MASK))
72 addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
73 else
74 addr = linux_regs->pc + 2;
77 /* BFS */
78 else if (OPCODE_BFS(op)) {
79 if (!(linux_regs->sr & SR_T_BIT_MASK))
80 addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
81 else
82 addr = linux_regs->pc + 4; /* Not in delay slot */
85 /* BRA */
86 else if (OPCODE_BRA(op))
87 addr = linux_regs->pc + 4 + OPCODE_BRA_DISP(op);
89 /* BRAF */
90 else if (OPCODE_BRAF(op))
91 addr = linux_regs->pc + 4
92 + linux_regs->regs[OPCODE_BRAF_REG(op)];
94 /* BSR */
95 else if (OPCODE_BSR(op))
96 addr = linux_regs->pc + 4 + OPCODE_BSR_DISP(op);
98 /* BSRF */
99 else if (OPCODE_BSRF(op))
100 addr = linux_regs->pc + 4
101 + linux_regs->regs[OPCODE_BSRF_REG(op)];
103 /* JMP */
104 else if (OPCODE_JMP(op))
105 addr = linux_regs->regs[OPCODE_JMP_REG(op)];
107 /* JSR */
108 else if (OPCODE_JSR(op))
109 addr = linux_regs->regs[OPCODE_JSR_REG(op)];
111 /* RTS */
112 else if (OPCODE_RTS(op))
113 addr = linux_regs->pr;
115 /* RTE */
116 else if (OPCODE_RTE(op))
117 addr = linux_regs->regs[15];
119 /* Other */
120 else
121 addr = linux_regs->pc + instruction_size(op);
123 flush_icache_range(addr, addr + instruction_size(op));
124 return (short *)addr;
128 * Replace the instruction immediately after the current instruction
129 * (i.e. next in the expected flow of control) with a trap instruction,
130 * so that returning will cause only a single instruction to be executed.
131 * Note that this model is slightly broken for instructions with delay
132 * slots (e.g. B[TF]S, BSR, BRA etc), where both the branch and the
133 * instruction in the delay slot will be executed.
136 static unsigned long stepped_address;
137 static insn_size_t stepped_opcode;
139 static void do_single_step(struct pt_regs *linux_regs)
141 /* Determine where the target instruction will send us to */
142 unsigned short *addr = get_step_address(linux_regs);
144 stepped_address = (int)addr;
146 /* Replace it */
147 stepped_opcode = __raw_readw((long)addr);
148 *addr = STEP_OPCODE;
150 /* Flush and return */
151 flush_icache_range((long)addr, (long)addr +
152 instruction_size(stepped_opcode));
155 /* Undo a single step */
156 static void undo_single_step(struct pt_regs *linux_regs)
158 /* If we have stepped, put back the old instruction */
159 /* Use stepped_address in case we stopped elsewhere */
160 if (stepped_opcode != 0) {
161 __raw_writew(stepped_opcode, stepped_address);
162 flush_icache_range(stepped_address, stepped_address + 2);
165 stepped_opcode = 0;
168 struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] = {
169 { "r0", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[0]) },
170 { "r1", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[1]) },
171 { "r2", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[2]) },
172 { "r3", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[3]) },
173 { "r4", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[4]) },
174 { "r5", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[5]) },
175 { "r6", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[6]) },
176 { "r7", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[7]) },
177 { "r8", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[8]) },
178 { "r9", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[9]) },
179 { "r10", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[10]) },
180 { "r11", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[11]) },
181 { "r12", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[12]) },
182 { "r13", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[13]) },
183 { "r14", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[14]) },
184 { "r15", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[15]) },
185 { "pc", GDB_SIZEOF_REG, offsetof(struct pt_regs, pc) },
186 { "pr", GDB_SIZEOF_REG, offsetof(struct pt_regs, pr) },
187 { "sr", GDB_SIZEOF_REG, offsetof(struct pt_regs, sr) },
188 { "gbr", GDB_SIZEOF_REG, offsetof(struct pt_regs, gbr) },
189 { "mach", GDB_SIZEOF_REG, offsetof(struct pt_regs, mach) },
190 { "macl", GDB_SIZEOF_REG, offsetof(struct pt_regs, macl) },
191 { "vbr", GDB_SIZEOF_REG, -1 },
194 int dbg_set_reg(int regno, void *mem, struct pt_regs *regs)
196 if (regno < 0 || regno >= DBG_MAX_REG_NUM)
197 return -EINVAL;
199 if (dbg_reg_def[regno].offset != -1)
200 memcpy((void *)regs + dbg_reg_def[regno].offset, mem,
201 dbg_reg_def[regno].size);
203 return 0;
206 char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs)
208 if (regno >= DBG_MAX_REG_NUM || regno < 0)
209 return NULL;
211 if (dbg_reg_def[regno].size != -1)
212 memcpy(mem, (void *)regs + dbg_reg_def[regno].offset,
213 dbg_reg_def[regno].size);
215 switch (regno) {
216 case GDB_VBR:
217 __asm__ __volatile__ ("stc vbr, %0" : "=r" (mem));
218 break;
221 return dbg_reg_def[regno].name;
224 void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
226 struct pt_regs *thread_regs = task_pt_regs(p);
227 int reg;
229 /* Initialize to zero */
230 for (reg = 0; reg < DBG_MAX_REG_NUM; reg++)
231 gdb_regs[reg] = 0;
234 * Copy out GP regs 8 to 14.
236 * switch_to() relies on SR.RB toggling, so regs 0->7 are banked
237 * and need privileged instructions to get to. The r15 value we
238 * fetch from the thread info directly.
240 for (reg = GDB_R8; reg < GDB_R15; reg++)
241 gdb_regs[reg] = thread_regs->regs[reg];
243 gdb_regs[GDB_R15] = p->thread.sp;
244 gdb_regs[GDB_PC] = p->thread.pc;
247 * Additional registers we have context for
249 gdb_regs[GDB_PR] = thread_regs->pr;
250 gdb_regs[GDB_GBR] = thread_regs->gbr;
253 int kgdb_arch_handle_exception(int e_vector, int signo, int err_code,
254 char *remcomInBuffer, char *remcomOutBuffer,
255 struct pt_regs *linux_regs)
257 unsigned long addr;
258 char *ptr;
260 /* Undo any stepping we may have done */
261 undo_single_step(linux_regs);
263 switch (remcomInBuffer[0]) {
264 case 'c':
265 case 's':
266 /* try to read optional parameter, pc unchanged if no parm */
267 ptr = &remcomInBuffer[1];
268 if (kgdb_hex2long(&ptr, &addr))
269 linux_regs->pc = addr;
270 case 'D':
271 case 'k':
272 atomic_set(&kgdb_cpu_doing_single_step, -1);
274 if (remcomInBuffer[0] == 's') {
275 do_single_step(linux_regs);
276 kgdb_single_step = 1;
278 atomic_set(&kgdb_cpu_doing_single_step,
279 raw_smp_processor_id());
282 return 0;
285 /* this means that we do not want to exit from the handler: */
286 return -1;
289 unsigned long kgdb_arch_pc(int exception, struct pt_regs *regs)
291 if (exception == 60)
292 return instruction_pointer(regs) - 2;
293 return instruction_pointer(regs);
296 void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long ip)
298 regs->pc = ip;
302 * The primary entry points for the kgdb debug trap table entries.
304 BUILD_TRAP_HANDLER(singlestep)
306 unsigned long flags;
307 TRAP_HANDLER_DECL;
309 local_irq_save(flags);
310 regs->pc -= instruction_size(__raw_readw(regs->pc - 4));
311 kgdb_handle_exception(0, SIGTRAP, 0, regs);
312 local_irq_restore(flags);
315 static void kgdb_call_nmi_hook(void *ignored)
317 kgdb_nmicallback(raw_smp_processor_id(), get_irq_regs());
320 void kgdb_roundup_cpus(unsigned long flags)
322 local_irq_enable();
323 smp_call_function(kgdb_call_nmi_hook, NULL, 0);
324 local_irq_disable();
327 static int __kgdb_notify(struct die_args *args, unsigned long cmd)
329 int ret;
331 switch (cmd) {
332 case DIE_BREAKPOINT:
334 * This means a user thread is single stepping
335 * a system call which should be ignored
337 if (test_thread_flag(TIF_SINGLESTEP))
338 return NOTIFY_DONE;
340 ret = kgdb_handle_exception(args->trapnr & 0xff, args->signr,
341 args->err, args->regs);
342 if (ret)
343 return NOTIFY_DONE;
345 break;
348 return NOTIFY_STOP;
351 static int
352 kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr)
354 unsigned long flags;
355 int ret;
357 local_irq_save(flags);
358 ret = __kgdb_notify(ptr, cmd);
359 local_irq_restore(flags);
361 return ret;
364 static struct notifier_block kgdb_notifier = {
365 .notifier_call = kgdb_notify,
368 * Lowest-prio notifier priority, we want to be notified last:
370 .priority = -INT_MAX,
373 int kgdb_arch_init(void)
375 return register_die_notifier(&kgdb_notifier);
378 void kgdb_arch_exit(void)
380 unregister_die_notifier(&kgdb_notifier);
383 struct kgdb_arch arch_kgdb_ops = {
384 /* Breakpoint instruction: trapa #0x3c */
385 #ifdef CONFIG_CPU_LITTLE_ENDIAN
386 .gdb_bpt_instr = { 0x3c, 0xc3 },
387 #else
388 .gdb_bpt_instr = { 0xc3, 0x3c },
389 #endif