2 * Common EFI (Extensible Firmware Interface) support functions
3 * Based on Extensible Firmware Interface Specification version 1.0
5 * Copyright (C) 1999 VA Linux Systems
6 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
7 * Copyright (C) 1999-2002 Hewlett-Packard Co.
8 * David Mosberger-Tang <davidm@hpl.hp.com>
9 * Stephane Eranian <eranian@hpl.hp.com>
10 * Copyright (C) 2005-2008 Intel Co.
11 * Fenghua Yu <fenghua.yu@intel.com>
12 * Bibo Mao <bibo.mao@intel.com>
13 * Chandramouli Narayanan <mouli@linux.intel.com>
14 * Huang Ying <ying.huang@intel.com>
15 * Copyright (C) 2013 SuSE Labs
16 * Borislav Petkov <bp@suse.de> - runtime services VA mapping
18 * Copied from efi_32.c to eliminate the duplicated code between EFI
19 * 32/64 support code. --ying 2007-10-26
21 * All EFI Runtime Services are not implemented yet as EFI only
22 * supports physical mode addressing on SoftSDV. This is to be fixed
23 * in a future version. --drummond 1999-07-20
25 * Implemented EFI runtime services and virtual mode calls. --davidm
27 * Goutham Rao: <goutham.rao@intel.com>
28 * Skip non-WB memory and ignore empty memory ranges.
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/efi.h>
36 #include <linux/efi-bgrt.h>
37 #include <linux/export.h>
38 #include <linux/bootmem.h>
39 #include <linux/slab.h>
40 #include <linux/memblock.h>
41 #include <linux/spinlock.h>
42 #include <linux/uaccess.h>
43 #include <linux/time.h>
45 #include <linux/reboot.h>
46 #include <linux/bcd.h>
48 #include <asm/setup.h>
51 #include <asm/cacheflush.h>
52 #include <asm/tlbflush.h>
53 #include <asm/x86_init.h>
54 #include <asm/uv/uv.h>
56 static struct efi efi_phys __initdata
;
57 static efi_system_table_t efi_systab __initdata
;
59 static efi_config_table_type_t arch_tables
[] __initdata
= {
61 {UV_SYSTEM_TABLE_GUID
, "UVsystab", &efi
.uv_systab
},
63 {NULL_GUID
, NULL
, NULL
},
66 u64 efi_setup
; /* efi setup_data physical address */
68 static int add_efi_memmap __initdata
;
69 static int __init
setup_add_efi_memmap(char *arg
)
74 early_param("add_efi_memmap", setup_add_efi_memmap
);
76 static efi_status_t __init
phys_efi_set_virtual_address_map(
77 unsigned long memory_map_size
,
78 unsigned long descriptor_size
,
79 u32 descriptor_version
,
80 efi_memory_desc_t
*virtual_map
)
86 save_pgd
= efi_call_phys_prolog();
88 /* Disable interrupts around EFI calls: */
89 local_irq_save(flags
);
90 status
= efi_call_phys(efi_phys
.set_virtual_address_map
,
91 memory_map_size
, descriptor_size
,
92 descriptor_version
, virtual_map
);
93 local_irq_restore(flags
);
95 efi_call_phys_epilog(save_pgd
);
100 void __init
efi_find_mirror(void)
102 efi_memory_desc_t
*md
;
103 u64 mirror_size
= 0, total_size
= 0;
105 for_each_efi_memory_desc(md
) {
106 unsigned long long start
= md
->phys_addr
;
107 unsigned long long size
= md
->num_pages
<< EFI_PAGE_SHIFT
;
110 if (md
->attribute
& EFI_MEMORY_MORE_RELIABLE
) {
111 memblock_mark_mirror(start
, size
);
116 pr_info("Memory: %lldM/%lldM mirrored memory\n",
117 mirror_size
>>20, total_size
>>20);
121 * Tell the kernel about the EFI memory map. This might include
122 * more than the max 128 entries that can fit in the e820 legacy
123 * (zeropage) memory map.
126 static void __init
do_add_efi_memmap(void)
128 efi_memory_desc_t
*md
;
130 for_each_efi_memory_desc(md
) {
131 unsigned long long start
= md
->phys_addr
;
132 unsigned long long size
= md
->num_pages
<< EFI_PAGE_SHIFT
;
136 case EFI_LOADER_CODE
:
137 case EFI_LOADER_DATA
:
138 case EFI_BOOT_SERVICES_CODE
:
139 case EFI_BOOT_SERVICES_DATA
:
140 case EFI_CONVENTIONAL_MEMORY
:
141 if (md
->attribute
& EFI_MEMORY_WB
)
142 e820_type
= E820_RAM
;
144 e820_type
= E820_RESERVED
;
146 case EFI_ACPI_RECLAIM_MEMORY
:
147 e820_type
= E820_ACPI
;
149 case EFI_ACPI_MEMORY_NVS
:
150 e820_type
= E820_NVS
;
152 case EFI_UNUSABLE_MEMORY
:
153 e820_type
= E820_UNUSABLE
;
155 case EFI_PERSISTENT_MEMORY
:
156 e820_type
= E820_PMEM
;
160 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
161 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
162 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
164 e820_type
= E820_RESERVED
;
167 e820_add_region(start
, size
, e820_type
);
169 sanitize_e820_map(e820
->map
, ARRAY_SIZE(e820
->map
), &e820
->nr_map
);
172 int __init
efi_memblock_x86_reserve_range(void)
174 struct efi_info
*e
= &boot_params
.efi_info
;
175 struct efi_memory_map_data data
;
179 if (efi_enabled(EFI_PARAVIRT
))
183 /* Can't handle data above 4GB at this time */
184 if (e
->efi_memmap_hi
) {
185 pr_err("Memory map is above 4GB, disabling EFI.\n");
188 pmap
= e
->efi_memmap
;
190 pmap
= (e
->efi_memmap
| ((__u64
)e
->efi_memmap_hi
<< 32));
192 data
.phys_map
= pmap
;
193 data
.size
= e
->efi_memmap_size
;
194 data
.desc_size
= e
->efi_memdesc_size
;
195 data
.desc_version
= e
->efi_memdesc_version
;
197 rv
= efi_memmap_init_early(&data
);
204 WARN(efi
.memmap
.desc_version
!= 1,
205 "Unexpected EFI_MEMORY_DESCRIPTOR version %ld",
206 efi
.memmap
.desc_version
);
208 memblock_reserve(pmap
, efi
.memmap
.nr_map
* efi
.memmap
.desc_size
);
213 #define OVERFLOW_ADDR_SHIFT (64 - EFI_PAGE_SHIFT)
214 #define OVERFLOW_ADDR_MASK (U64_MAX << OVERFLOW_ADDR_SHIFT)
215 #define U64_HIGH_BIT (~(U64_MAX >> 1))
217 static bool __init
efi_memmap_entry_valid(const efi_memory_desc_t
*md
, int i
)
219 u64 end
= (md
->num_pages
<< EFI_PAGE_SHIFT
) + md
->phys_addr
- 1;
223 if (md
->num_pages
== 0) {
225 } else if (md
->num_pages
> EFI_PAGES_MAX
||
226 EFI_PAGES_MAX
- md
->num_pages
<
227 (md
->phys_addr
>> EFI_PAGE_SHIFT
)) {
228 end_hi
= (md
->num_pages
& OVERFLOW_ADDR_MASK
)
229 >> OVERFLOW_ADDR_SHIFT
;
231 if ((md
->phys_addr
& U64_HIGH_BIT
) && !(end
& U64_HIGH_BIT
))
237 pr_warn_once(FW_BUG
"Invalid EFI memory map entries:\n");
240 pr_warn("mem%02u: %s range=[0x%016llx-0x%llx%016llx] (invalid)\n",
241 i
, efi_md_typeattr_format(buf
, sizeof(buf
), md
),
242 md
->phys_addr
, end_hi
, end
);
244 pr_warn("mem%02u: %s range=[0x%016llx-0x%016llx] (invalid)\n",
245 i
, efi_md_typeattr_format(buf
, sizeof(buf
), md
),
251 static void __init
efi_clean_memmap(void)
253 efi_memory_desc_t
*out
= efi
.memmap
.map
;
254 const efi_memory_desc_t
*in
= out
;
255 const efi_memory_desc_t
*end
= efi
.memmap
.map_end
;
258 for (i
= n_removal
= 0; in
< end
; i
++) {
259 if (efi_memmap_entry_valid(in
, i
)) {
261 memcpy(out
, in
, efi
.memmap
.desc_size
);
262 out
= (void *)out
+ efi
.memmap
.desc_size
;
266 in
= (void *)in
+ efi
.memmap
.desc_size
;
270 u64 size
= efi
.memmap
.nr_map
- n_removal
;
272 pr_warn("Removing %d invalid memory map entries.\n", n_removal
);
273 efi_memmap_install(efi
.memmap
.phys_map
, size
);
277 void __init
efi_print_memmap(void)
279 efi_memory_desc_t
*md
;
282 for_each_efi_memory_desc(md
) {
285 pr_info("mem%02u: %s range=[0x%016llx-0x%016llx] (%lluMB)\n",
286 i
++, efi_md_typeattr_format(buf
, sizeof(buf
), md
),
288 md
->phys_addr
+ (md
->num_pages
<< EFI_PAGE_SHIFT
) - 1,
289 (md
->num_pages
>> (20 - EFI_PAGE_SHIFT
)));
293 static int __init
efi_systab_init(void *phys
)
295 if (efi_enabled(EFI_64BIT
)) {
296 efi_system_table_64_t
*systab64
;
297 struct efi_setup_data
*data
= NULL
;
301 data
= early_memremap(efi_setup
, sizeof(*data
));
305 systab64
= early_memremap((unsigned long)phys
,
307 if (systab64
== NULL
) {
308 pr_err("Couldn't map the system table!\n");
310 early_memunmap(data
, sizeof(*data
));
314 efi_systab
.hdr
= systab64
->hdr
;
315 efi_systab
.fw_vendor
= data
? (unsigned long)data
->fw_vendor
:
317 tmp
|= data
? data
->fw_vendor
: systab64
->fw_vendor
;
318 efi_systab
.fw_revision
= systab64
->fw_revision
;
319 efi_systab
.con_in_handle
= systab64
->con_in_handle
;
320 tmp
|= systab64
->con_in_handle
;
321 efi_systab
.con_in
= systab64
->con_in
;
322 tmp
|= systab64
->con_in
;
323 efi_systab
.con_out_handle
= systab64
->con_out_handle
;
324 tmp
|= systab64
->con_out_handle
;
325 efi_systab
.con_out
= systab64
->con_out
;
326 tmp
|= systab64
->con_out
;
327 efi_systab
.stderr_handle
= systab64
->stderr_handle
;
328 tmp
|= systab64
->stderr_handle
;
329 efi_systab
.stderr
= systab64
->stderr
;
330 tmp
|= systab64
->stderr
;
331 efi_systab
.runtime
= data
?
332 (void *)(unsigned long)data
->runtime
:
333 (void *)(unsigned long)systab64
->runtime
;
334 tmp
|= data
? data
->runtime
: systab64
->runtime
;
335 efi_systab
.boottime
= (void *)(unsigned long)systab64
->boottime
;
336 tmp
|= systab64
->boottime
;
337 efi_systab
.nr_tables
= systab64
->nr_tables
;
338 efi_systab
.tables
= data
? (unsigned long)data
->tables
:
340 tmp
|= data
? data
->tables
: systab64
->tables
;
342 early_memunmap(systab64
, sizeof(*systab64
));
344 early_memunmap(data
, sizeof(*data
));
347 pr_err("EFI data located above 4GB, disabling EFI.\n");
352 efi_system_table_32_t
*systab32
;
354 systab32
= early_memremap((unsigned long)phys
,
356 if (systab32
== NULL
) {
357 pr_err("Couldn't map the system table!\n");
361 efi_systab
.hdr
= systab32
->hdr
;
362 efi_systab
.fw_vendor
= systab32
->fw_vendor
;
363 efi_systab
.fw_revision
= systab32
->fw_revision
;
364 efi_systab
.con_in_handle
= systab32
->con_in_handle
;
365 efi_systab
.con_in
= systab32
->con_in
;
366 efi_systab
.con_out_handle
= systab32
->con_out_handle
;
367 efi_systab
.con_out
= systab32
->con_out
;
368 efi_systab
.stderr_handle
= systab32
->stderr_handle
;
369 efi_systab
.stderr
= systab32
->stderr
;
370 efi_systab
.runtime
= (void *)(unsigned long)systab32
->runtime
;
371 efi_systab
.boottime
= (void *)(unsigned long)systab32
->boottime
;
372 efi_systab
.nr_tables
= systab32
->nr_tables
;
373 efi_systab
.tables
= systab32
->tables
;
375 early_memunmap(systab32
, sizeof(*systab32
));
378 efi
.systab
= &efi_systab
;
381 * Verify the EFI Table
383 if (efi
.systab
->hdr
.signature
!= EFI_SYSTEM_TABLE_SIGNATURE
) {
384 pr_err("System table signature incorrect!\n");
387 if ((efi
.systab
->hdr
.revision
>> 16) == 0)
388 pr_err("Warning: System table version %d.%02d, expected 1.00 or greater!\n",
389 efi
.systab
->hdr
.revision
>> 16,
390 efi
.systab
->hdr
.revision
& 0xffff);
395 static int __init
efi_runtime_init32(void)
397 efi_runtime_services_32_t
*runtime
;
399 runtime
= early_memremap((unsigned long)efi
.systab
->runtime
,
400 sizeof(efi_runtime_services_32_t
));
402 pr_err("Could not map the runtime service table!\n");
407 * We will only need *early* access to the SetVirtualAddressMap
408 * EFI runtime service. All other runtime services will be called
409 * via the virtual mapping.
411 efi_phys
.set_virtual_address_map
=
412 (efi_set_virtual_address_map_t
*)
413 (unsigned long)runtime
->set_virtual_address_map
;
414 early_memunmap(runtime
, sizeof(efi_runtime_services_32_t
));
419 static int __init
efi_runtime_init64(void)
421 efi_runtime_services_64_t
*runtime
;
423 runtime
= early_memremap((unsigned long)efi
.systab
->runtime
,
424 sizeof(efi_runtime_services_64_t
));
426 pr_err("Could not map the runtime service table!\n");
431 * We will only need *early* access to the SetVirtualAddressMap
432 * EFI runtime service. All other runtime services will be called
433 * via the virtual mapping.
435 efi_phys
.set_virtual_address_map
=
436 (efi_set_virtual_address_map_t
*)
437 (unsigned long)runtime
->set_virtual_address_map
;
438 early_memunmap(runtime
, sizeof(efi_runtime_services_64_t
));
443 static int __init
efi_runtime_init(void)
448 * Check out the runtime services table. We need to map
449 * the runtime services table so that we can grab the physical
450 * address of several of the EFI runtime functions, needed to
451 * set the firmware into virtual mode.
453 * When EFI_PARAVIRT is in force then we could not map runtime
454 * service memory region because we do not have direct access to it.
455 * However, runtime services are available through proxy functions
456 * (e.g. in case of Xen dom0 EFI implementation they call special
457 * hypercall which executes relevant EFI functions) and that is why
458 * they are always enabled.
461 if (!efi_enabled(EFI_PARAVIRT
)) {
462 if (efi_enabled(EFI_64BIT
))
463 rv
= efi_runtime_init64();
465 rv
= efi_runtime_init32();
471 set_bit(EFI_RUNTIME_SERVICES
, &efi
.flags
);
476 void __init
efi_init(void)
479 char vendor
[100] = "unknown";
484 if (boot_params
.efi_info
.efi_systab_hi
||
485 boot_params
.efi_info
.efi_memmap_hi
) {
486 pr_info("Table located above 4GB, disabling EFI.\n");
489 efi_phys
.systab
= (efi_system_table_t
*)boot_params
.efi_info
.efi_systab
;
491 efi_phys
.systab
= (efi_system_table_t
*)
492 (boot_params
.efi_info
.efi_systab
|
493 ((__u64
)boot_params
.efi_info
.efi_systab_hi
<<32));
496 if (efi_systab_init(efi_phys
.systab
))
499 efi
.config_table
= (unsigned long)efi
.systab
->tables
;
500 efi
.fw_vendor
= (unsigned long)efi
.systab
->fw_vendor
;
501 efi
.runtime
= (unsigned long)efi
.systab
->runtime
;
504 * Show what we know for posterity
506 c16
= tmp
= early_memremap(efi
.systab
->fw_vendor
, 2);
508 for (i
= 0; i
< sizeof(vendor
) - 1 && *c16
; ++i
)
512 pr_err("Could not map the firmware vendor!\n");
513 early_memunmap(tmp
, 2);
515 pr_info("EFI v%u.%.02u by %s\n",
516 efi
.systab
->hdr
.revision
>> 16,
517 efi
.systab
->hdr
.revision
& 0xffff, vendor
);
519 if (efi_reuse_config(efi
.systab
->tables
, efi
.systab
->nr_tables
))
522 if (efi_config_init(arch_tables
))
526 * Note: We currently don't support runtime services on an EFI
527 * that doesn't match the kernel 32/64-bit mode.
530 if (!efi_runtime_supported())
531 pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n");
533 if (efi_runtime_disabled() || efi_runtime_init()) {
541 if (efi_enabled(EFI_DBG
))
545 void __init
efi_late_init(void)
550 void __init
efi_set_executable(efi_memory_desc_t
*md
, bool executable
)
554 addr
= md
->virt_addr
;
555 npages
= md
->num_pages
;
557 memrange_efi_to_native(&addr
, &npages
);
560 set_memory_x(addr
, npages
);
562 set_memory_nx(addr
, npages
);
565 void __init
runtime_code_page_mkexec(void)
567 efi_memory_desc_t
*md
;
569 /* Make EFI runtime service code area executable */
570 for_each_efi_memory_desc(md
) {
571 if (md
->type
!= EFI_RUNTIME_SERVICES_CODE
)
574 efi_set_executable(md
, true);
578 void __init
efi_memory_uc(u64 addr
, unsigned long size
)
580 unsigned long page_shift
= 1UL << EFI_PAGE_SHIFT
;
583 npages
= round_up(size
, page_shift
) / page_shift
;
584 memrange_efi_to_native(&addr
, &npages
);
585 set_memory_uc(addr
, npages
);
588 void __init
old_map_region(efi_memory_desc_t
*md
)
590 u64 start_pfn
, end_pfn
, end
;
594 start_pfn
= PFN_DOWN(md
->phys_addr
);
595 size
= md
->num_pages
<< PAGE_SHIFT
;
596 end
= md
->phys_addr
+ size
;
597 end_pfn
= PFN_UP(end
);
599 if (pfn_range_is_mapped(start_pfn
, end_pfn
)) {
600 va
= __va(md
->phys_addr
);
602 if (!(md
->attribute
& EFI_MEMORY_WB
))
603 efi_memory_uc((u64
)(unsigned long)va
, size
);
605 va
= efi_ioremap(md
->phys_addr
, size
,
606 md
->type
, md
->attribute
);
608 md
->virt_addr
= (u64
) (unsigned long) va
;
610 pr_err("ioremap of 0x%llX failed!\n",
611 (unsigned long long)md
->phys_addr
);
614 /* Merge contiguous regions of the same type and attribute */
615 static void __init
efi_merge_regions(void)
617 efi_memory_desc_t
*md
, *prev_md
= NULL
;
619 for_each_efi_memory_desc(md
) {
627 if (prev_md
->type
!= md
->type
||
628 prev_md
->attribute
!= md
->attribute
) {
633 prev_size
= prev_md
->num_pages
<< EFI_PAGE_SHIFT
;
635 if (md
->phys_addr
== (prev_md
->phys_addr
+ prev_size
)) {
636 prev_md
->num_pages
+= md
->num_pages
;
637 md
->type
= EFI_RESERVED_TYPE
;
645 static void __init
get_systab_virt_addr(efi_memory_desc_t
*md
)
650 size
= md
->num_pages
<< EFI_PAGE_SHIFT
;
651 end
= md
->phys_addr
+ size
;
652 systab
= (u64
)(unsigned long)efi_phys
.systab
;
653 if (md
->phys_addr
<= systab
&& systab
< end
) {
654 systab
+= md
->virt_addr
- md
->phys_addr
;
655 efi
.systab
= (efi_system_table_t
*)(unsigned long)systab
;
659 static void *realloc_pages(void *old_memmap
, int old_shift
)
663 ret
= (void *)__get_free_pages(GFP_KERNEL
, old_shift
+ 1);
668 * A first-time allocation doesn't have anything to copy.
673 memcpy(ret
, old_memmap
, PAGE_SIZE
<< old_shift
);
676 free_pages((unsigned long)old_memmap
, old_shift
);
681 * Iterate the EFI memory map in reverse order because the regions
682 * will be mapped top-down. The end result is the same as if we had
683 * mapped things forward, but doesn't require us to change the
684 * existing implementation of efi_map_region().
686 static inline void *efi_map_next_entry_reverse(void *entry
)
690 return efi
.memmap
.map_end
- efi
.memmap
.desc_size
;
692 entry
-= efi
.memmap
.desc_size
;
693 if (entry
< efi
.memmap
.map
)
700 * efi_map_next_entry - Return the next EFI memory map descriptor
701 * @entry: Previous EFI memory map descriptor
703 * This is a helper function to iterate over the EFI memory map, which
704 * we do in different orders depending on the current configuration.
706 * To begin traversing the memory map @entry must be %NULL.
708 * Returns %NULL when we reach the end of the memory map.
710 static void *efi_map_next_entry(void *entry
)
712 if (!efi_enabled(EFI_OLD_MEMMAP
) && efi_enabled(EFI_64BIT
)) {
714 * Starting in UEFI v2.5 the EFI_PROPERTIES_TABLE
715 * config table feature requires us to map all entries
716 * in the same order as they appear in the EFI memory
717 * map. That is to say, entry N must have a lower
718 * virtual address than entry N+1. This is because the
719 * firmware toolchain leaves relative references in
720 * the code/data sections, which are split and become
721 * separate EFI memory regions. Mapping things
722 * out-of-order leads to the firmware accessing
723 * unmapped addresses.
725 * Since we need to map things this way whether or not
726 * the kernel actually makes use of
727 * EFI_PROPERTIES_TABLE, let's just switch to this
728 * scheme by default for 64-bit.
730 return efi_map_next_entry_reverse(entry
);
735 return efi
.memmap
.map
;
737 entry
+= efi
.memmap
.desc_size
;
738 if (entry
>= efi
.memmap
.map_end
)
744 static bool should_map_region(efi_memory_desc_t
*md
)
747 * Runtime regions always require runtime mappings (obviously).
749 if (md
->attribute
& EFI_MEMORY_RUNTIME
)
753 * 32-bit EFI doesn't suffer from the bug that requires us to
754 * reserve boot services regions, and mixed mode support
755 * doesn't exist for 32-bit kernels.
757 if (IS_ENABLED(CONFIG_X86_32
))
761 * Map all of RAM so that we can access arguments in the 1:1
762 * mapping when making EFI runtime calls.
764 if (IS_ENABLED(CONFIG_EFI_MIXED
) && !efi_is_native()) {
765 if (md
->type
== EFI_CONVENTIONAL_MEMORY
||
766 md
->type
== EFI_LOADER_DATA
||
767 md
->type
== EFI_LOADER_CODE
)
772 * Map boot services regions as a workaround for buggy
773 * firmware that accesses them even when they shouldn't.
775 * See efi_{reserve,free}_boot_services().
777 if (md
->type
== EFI_BOOT_SERVICES_CODE
||
778 md
->type
== EFI_BOOT_SERVICES_DATA
)
785 * Map the efi memory ranges of the runtime services and update new_mmap with
788 static void * __init
efi_map_regions(int *count
, int *pg_shift
)
790 void *p
, *new_memmap
= NULL
;
791 unsigned long left
= 0;
792 unsigned long desc_size
;
793 efi_memory_desc_t
*md
;
795 desc_size
= efi
.memmap
.desc_size
;
798 while ((p
= efi_map_next_entry(p
))) {
801 if (!should_map_region(md
))
805 get_systab_virt_addr(md
);
807 if (left
< desc_size
) {
808 new_memmap
= realloc_pages(new_memmap
, *pg_shift
);
812 left
+= PAGE_SIZE
<< *pg_shift
;
816 memcpy(new_memmap
+ (*count
* desc_size
), md
, desc_size
);
825 static void __init
kexec_enter_virtual_mode(void)
827 #ifdef CONFIG_KEXEC_CORE
828 efi_memory_desc_t
*md
;
829 unsigned int num_pages
;
834 * We don't do virtual mode, since we don't do runtime services, on
835 * non-native EFI. With efi=old_map, we don't do runtime services in
836 * kexec kernel because in the initial boot something else might
837 * have been mapped at these virtual addresses.
839 if (!efi_is_native() || efi_enabled(EFI_OLD_MEMMAP
)) {
841 clear_bit(EFI_RUNTIME_SERVICES
, &efi
.flags
);
845 if (efi_alloc_page_tables()) {
846 pr_err("Failed to allocate EFI page tables\n");
847 clear_bit(EFI_RUNTIME_SERVICES
, &efi
.flags
);
852 * Map efi regions which were passed via setup_data. The virt_addr is a
853 * fixed addr which was used in first kernel of a kexec boot.
855 for_each_efi_memory_desc(md
) {
856 efi_map_region_fixed(md
); /* FIXME: add error handling */
857 get_systab_virt_addr(md
);
861 * Unregister the early EFI memmap from efi_init() and install
862 * the new EFI memory map.
866 if (efi_memmap_init_late(efi
.memmap
.phys_map
,
867 efi
.memmap
.desc_size
* efi
.memmap
.nr_map
)) {
868 pr_err("Failed to remap late EFI memory map\n");
869 clear_bit(EFI_RUNTIME_SERVICES
, &efi
.flags
);
875 num_pages
= ALIGN(efi
.memmap
.nr_map
* efi
.memmap
.desc_size
, PAGE_SIZE
);
876 num_pages
>>= PAGE_SHIFT
;
878 if (efi_setup_page_tables(efi
.memmap
.phys_map
, num_pages
)) {
879 clear_bit(EFI_RUNTIME_SERVICES
, &efi
.flags
);
883 efi_sync_low_kernel_mappings();
886 * Now that EFI is in virtual mode, update the function
887 * pointers in the runtime service table to the new virtual addresses.
889 * Call EFI services through wrapper functions.
891 efi
.runtime_version
= efi_systab
.hdr
.revision
;
893 efi_native_runtime_setup();
895 efi
.set_virtual_address_map
= NULL
;
897 if (efi_enabled(EFI_OLD_MEMMAP
) && (__supported_pte_mask
& _PAGE_NX
))
898 runtime_code_page_mkexec();
900 /* clean DUMMY object */
901 efi_delete_dummy_variable();
906 * This function will switch the EFI runtime services to virtual mode.
907 * Essentially, we look through the EFI memmap and map every region that
908 * has the runtime attribute bit set in its memory descriptor into the
909 * efi_pgd page table.
911 * The old method which used to update that memory descriptor with the
912 * virtual address obtained from ioremap() is still supported when the
913 * kernel is booted with efi=old_map on its command line. Same old
914 * method enabled the runtime services to be called without having to
915 * thunk back into physical mode for every invocation.
917 * The new method does a pagetable switch in a preemption-safe manner
918 * so that we're in a different address space when calling a runtime
919 * function. For function arguments passing we do copy the PUDs of the
920 * kernel page table into efi_pgd prior to each call.
922 * Specially for kexec boot, efi runtime maps in previous kernel should
923 * be passed in via setup_data. In that case runtime ranges will be mapped
924 * to the same virtual addresses as the first kernel, see
925 * kexec_enter_virtual_mode().
927 static void __init
__efi_enter_virtual_mode(void)
929 int count
= 0, pg_shift
= 0;
930 void *new_memmap
= NULL
;
936 if (efi_alloc_page_tables()) {
937 pr_err("Failed to allocate EFI page tables\n");
938 clear_bit(EFI_RUNTIME_SERVICES
, &efi
.flags
);
943 new_memmap
= efi_map_regions(&count
, &pg_shift
);
945 pr_err("Error reallocating memory, EFI runtime non-functional!\n");
946 clear_bit(EFI_RUNTIME_SERVICES
, &efi
.flags
);
950 pa
= __pa(new_memmap
);
953 * Unregister the early EFI memmap from efi_init() and install
954 * the new EFI memory map that we are about to pass to the
955 * firmware via SetVirtualAddressMap().
959 if (efi_memmap_init_late(pa
, efi
.memmap
.desc_size
* count
)) {
960 pr_err("Failed to remap late EFI memory map\n");
961 clear_bit(EFI_RUNTIME_SERVICES
, &efi
.flags
);
967 if (efi_setup_page_tables(pa
, 1 << pg_shift
)) {
968 clear_bit(EFI_RUNTIME_SERVICES
, &efi
.flags
);
972 efi_sync_low_kernel_mappings();
974 if (efi_is_native()) {
975 status
= phys_efi_set_virtual_address_map(
976 efi
.memmap
.desc_size
* count
,
977 efi
.memmap
.desc_size
,
978 efi
.memmap
.desc_version
,
979 (efi_memory_desc_t
*)pa
);
981 status
= efi_thunk_set_virtual_address_map(
982 efi_phys
.set_virtual_address_map
,
983 efi
.memmap
.desc_size
* count
,
984 efi
.memmap
.desc_size
,
985 efi
.memmap
.desc_version
,
986 (efi_memory_desc_t
*)pa
);
989 if (status
!= EFI_SUCCESS
) {
990 pr_alert("Unable to switch EFI into virtual mode (status=%lx)!\n",
992 panic("EFI call to SetVirtualAddressMap() failed!");
996 * Now that EFI is in virtual mode, update the function
997 * pointers in the runtime service table to the new virtual addresses.
999 * Call EFI services through wrapper functions.
1001 efi
.runtime_version
= efi_systab
.hdr
.revision
;
1003 if (efi_is_native())
1004 efi_native_runtime_setup();
1006 efi_thunk_runtime_setup();
1008 efi
.set_virtual_address_map
= NULL
;
1011 * Apply more restrictive page table mapping attributes now that
1012 * SVAM() has been called and the firmware has performed all
1013 * necessary relocation fixups for the new virtual addresses.
1015 efi_runtime_update_mappings();
1016 efi_dump_pagetable();
1018 /* clean DUMMY object */
1019 efi_delete_dummy_variable();
1022 void __init
efi_enter_virtual_mode(void)
1024 if (efi_enabled(EFI_PARAVIRT
))
1028 kexec_enter_virtual_mode();
1030 __efi_enter_virtual_mode();
1034 * Convenience functions to obtain memory types and attributes
1036 u32
efi_mem_type(unsigned long phys_addr
)
1038 efi_memory_desc_t
*md
;
1040 if (!efi_enabled(EFI_MEMMAP
))
1043 for_each_efi_memory_desc(md
) {
1044 if ((md
->phys_addr
<= phys_addr
) &&
1045 (phys_addr
< (md
->phys_addr
+
1046 (md
->num_pages
<< EFI_PAGE_SHIFT
))))
1052 static int __init
arch_parse_efi_cmdline(char *str
)
1055 pr_warn("need at least one option\n");
1059 if (parse_option_str(str
, "old_map"))
1060 set_bit(EFI_OLD_MEMMAP
, &efi
.flags
);
1064 early_param("efi", arch_parse_efi_cmdline
);