x86/mm: Add TLB purge to free pmd/pte page interfaces
[linux/fpc-iii.git] / arch / x86 / platform / efi / efi.c
bloba0e85f2aff7d871bf443d202cb53a2a54b448efb
1 /*
2 * Common EFI (Extensible Firmware Interface) support functions
3 * Based on Extensible Firmware Interface Specification version 1.0
5 * Copyright (C) 1999 VA Linux Systems
6 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
7 * Copyright (C) 1999-2002 Hewlett-Packard Co.
8 * David Mosberger-Tang <davidm@hpl.hp.com>
9 * Stephane Eranian <eranian@hpl.hp.com>
10 * Copyright (C) 2005-2008 Intel Co.
11 * Fenghua Yu <fenghua.yu@intel.com>
12 * Bibo Mao <bibo.mao@intel.com>
13 * Chandramouli Narayanan <mouli@linux.intel.com>
14 * Huang Ying <ying.huang@intel.com>
15 * Copyright (C) 2013 SuSE Labs
16 * Borislav Petkov <bp@suse.de> - runtime services VA mapping
18 * Copied from efi_32.c to eliminate the duplicated code between EFI
19 * 32/64 support code. --ying 2007-10-26
21 * All EFI Runtime Services are not implemented yet as EFI only
22 * supports physical mode addressing on SoftSDV. This is to be fixed
23 * in a future version. --drummond 1999-07-20
25 * Implemented EFI runtime services and virtual mode calls. --davidm
27 * Goutham Rao: <goutham.rao@intel.com>
28 * Skip non-WB memory and ignore empty memory ranges.
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/efi.h>
36 #include <linux/efi-bgrt.h>
37 #include <linux/export.h>
38 #include <linux/bootmem.h>
39 #include <linux/slab.h>
40 #include <linux/memblock.h>
41 #include <linux/spinlock.h>
42 #include <linux/uaccess.h>
43 #include <linux/time.h>
44 #include <linux/io.h>
45 #include <linux/reboot.h>
46 #include <linux/bcd.h>
48 #include <asm/setup.h>
49 #include <asm/efi.h>
50 #include <asm/time.h>
51 #include <asm/cacheflush.h>
52 #include <asm/tlbflush.h>
53 #include <asm/x86_init.h>
54 #include <asm/uv/uv.h>
56 static struct efi efi_phys __initdata;
57 static efi_system_table_t efi_systab __initdata;
59 static efi_config_table_type_t arch_tables[] __initdata = {
60 #ifdef CONFIG_X86_UV
61 {UV_SYSTEM_TABLE_GUID, "UVsystab", &efi.uv_systab},
62 #endif
63 {NULL_GUID, NULL, NULL},
66 u64 efi_setup; /* efi setup_data physical address */
68 static int add_efi_memmap __initdata;
69 static int __init setup_add_efi_memmap(char *arg)
71 add_efi_memmap = 1;
72 return 0;
74 early_param("add_efi_memmap", setup_add_efi_memmap);
76 static efi_status_t __init phys_efi_set_virtual_address_map(
77 unsigned long memory_map_size,
78 unsigned long descriptor_size,
79 u32 descriptor_version,
80 efi_memory_desc_t *virtual_map)
82 efi_status_t status;
83 unsigned long flags;
84 pgd_t *save_pgd;
86 save_pgd = efi_call_phys_prolog();
88 /* Disable interrupts around EFI calls: */
89 local_irq_save(flags);
90 status = efi_call_phys(efi_phys.set_virtual_address_map,
91 memory_map_size, descriptor_size,
92 descriptor_version, virtual_map);
93 local_irq_restore(flags);
95 efi_call_phys_epilog(save_pgd);
97 return status;
100 void __init efi_find_mirror(void)
102 efi_memory_desc_t *md;
103 u64 mirror_size = 0, total_size = 0;
105 for_each_efi_memory_desc(md) {
106 unsigned long long start = md->phys_addr;
107 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
109 total_size += size;
110 if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
111 memblock_mark_mirror(start, size);
112 mirror_size += size;
115 if (mirror_size)
116 pr_info("Memory: %lldM/%lldM mirrored memory\n",
117 mirror_size>>20, total_size>>20);
121 * Tell the kernel about the EFI memory map. This might include
122 * more than the max 128 entries that can fit in the e820 legacy
123 * (zeropage) memory map.
126 static void __init do_add_efi_memmap(void)
128 efi_memory_desc_t *md;
130 for_each_efi_memory_desc(md) {
131 unsigned long long start = md->phys_addr;
132 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
133 int e820_type;
135 switch (md->type) {
136 case EFI_LOADER_CODE:
137 case EFI_LOADER_DATA:
138 case EFI_BOOT_SERVICES_CODE:
139 case EFI_BOOT_SERVICES_DATA:
140 case EFI_CONVENTIONAL_MEMORY:
141 if (md->attribute & EFI_MEMORY_WB)
142 e820_type = E820_RAM;
143 else
144 e820_type = E820_RESERVED;
145 break;
146 case EFI_ACPI_RECLAIM_MEMORY:
147 e820_type = E820_ACPI;
148 break;
149 case EFI_ACPI_MEMORY_NVS:
150 e820_type = E820_NVS;
151 break;
152 case EFI_UNUSABLE_MEMORY:
153 e820_type = E820_UNUSABLE;
154 break;
155 case EFI_PERSISTENT_MEMORY:
156 e820_type = E820_PMEM;
157 break;
158 default:
160 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
161 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
162 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
164 e820_type = E820_RESERVED;
165 break;
167 e820_add_region(start, size, e820_type);
169 sanitize_e820_map(e820->map, ARRAY_SIZE(e820->map), &e820->nr_map);
172 int __init efi_memblock_x86_reserve_range(void)
174 struct efi_info *e = &boot_params.efi_info;
175 struct efi_memory_map_data data;
176 phys_addr_t pmap;
177 int rv;
179 if (efi_enabled(EFI_PARAVIRT))
180 return 0;
182 #ifdef CONFIG_X86_32
183 /* Can't handle data above 4GB at this time */
184 if (e->efi_memmap_hi) {
185 pr_err("Memory map is above 4GB, disabling EFI.\n");
186 return -EINVAL;
188 pmap = e->efi_memmap;
189 #else
190 pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32));
191 #endif
192 data.phys_map = pmap;
193 data.size = e->efi_memmap_size;
194 data.desc_size = e->efi_memdesc_size;
195 data.desc_version = e->efi_memdesc_version;
197 rv = efi_memmap_init_early(&data);
198 if (rv)
199 return rv;
201 if (add_efi_memmap)
202 do_add_efi_memmap();
204 WARN(efi.memmap.desc_version != 1,
205 "Unexpected EFI_MEMORY_DESCRIPTOR version %ld",
206 efi.memmap.desc_version);
208 memblock_reserve(pmap, efi.memmap.nr_map * efi.memmap.desc_size);
210 return 0;
213 #define OVERFLOW_ADDR_SHIFT (64 - EFI_PAGE_SHIFT)
214 #define OVERFLOW_ADDR_MASK (U64_MAX << OVERFLOW_ADDR_SHIFT)
215 #define U64_HIGH_BIT (~(U64_MAX >> 1))
217 static bool __init efi_memmap_entry_valid(const efi_memory_desc_t *md, int i)
219 u64 end = (md->num_pages << EFI_PAGE_SHIFT) + md->phys_addr - 1;
220 u64 end_hi = 0;
221 char buf[64];
223 if (md->num_pages == 0) {
224 end = 0;
225 } else if (md->num_pages > EFI_PAGES_MAX ||
226 EFI_PAGES_MAX - md->num_pages <
227 (md->phys_addr >> EFI_PAGE_SHIFT)) {
228 end_hi = (md->num_pages & OVERFLOW_ADDR_MASK)
229 >> OVERFLOW_ADDR_SHIFT;
231 if ((md->phys_addr & U64_HIGH_BIT) && !(end & U64_HIGH_BIT))
232 end_hi += 1;
233 } else {
234 return true;
237 pr_warn_once(FW_BUG "Invalid EFI memory map entries:\n");
239 if (end_hi) {
240 pr_warn("mem%02u: %s range=[0x%016llx-0x%llx%016llx] (invalid)\n",
241 i, efi_md_typeattr_format(buf, sizeof(buf), md),
242 md->phys_addr, end_hi, end);
243 } else {
244 pr_warn("mem%02u: %s range=[0x%016llx-0x%016llx] (invalid)\n",
245 i, efi_md_typeattr_format(buf, sizeof(buf), md),
246 md->phys_addr, end);
248 return false;
251 static void __init efi_clean_memmap(void)
253 efi_memory_desc_t *out = efi.memmap.map;
254 const efi_memory_desc_t *in = out;
255 const efi_memory_desc_t *end = efi.memmap.map_end;
256 int i, n_removal;
258 for (i = n_removal = 0; in < end; i++) {
259 if (efi_memmap_entry_valid(in, i)) {
260 if (out != in)
261 memcpy(out, in, efi.memmap.desc_size);
262 out = (void *)out + efi.memmap.desc_size;
263 } else {
264 n_removal++;
266 in = (void *)in + efi.memmap.desc_size;
269 if (n_removal > 0) {
270 u64 size = efi.memmap.nr_map - n_removal;
272 pr_warn("Removing %d invalid memory map entries.\n", n_removal);
273 efi_memmap_install(efi.memmap.phys_map, size);
277 void __init efi_print_memmap(void)
279 efi_memory_desc_t *md;
280 int i = 0;
282 for_each_efi_memory_desc(md) {
283 char buf[64];
285 pr_info("mem%02u: %s range=[0x%016llx-0x%016llx] (%lluMB)\n",
286 i++, efi_md_typeattr_format(buf, sizeof(buf), md),
287 md->phys_addr,
288 md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1,
289 (md->num_pages >> (20 - EFI_PAGE_SHIFT)));
293 static int __init efi_systab_init(void *phys)
295 if (efi_enabled(EFI_64BIT)) {
296 efi_system_table_64_t *systab64;
297 struct efi_setup_data *data = NULL;
298 u64 tmp = 0;
300 if (efi_setup) {
301 data = early_memremap(efi_setup, sizeof(*data));
302 if (!data)
303 return -ENOMEM;
305 systab64 = early_memremap((unsigned long)phys,
306 sizeof(*systab64));
307 if (systab64 == NULL) {
308 pr_err("Couldn't map the system table!\n");
309 if (data)
310 early_memunmap(data, sizeof(*data));
311 return -ENOMEM;
314 efi_systab.hdr = systab64->hdr;
315 efi_systab.fw_vendor = data ? (unsigned long)data->fw_vendor :
316 systab64->fw_vendor;
317 tmp |= data ? data->fw_vendor : systab64->fw_vendor;
318 efi_systab.fw_revision = systab64->fw_revision;
319 efi_systab.con_in_handle = systab64->con_in_handle;
320 tmp |= systab64->con_in_handle;
321 efi_systab.con_in = systab64->con_in;
322 tmp |= systab64->con_in;
323 efi_systab.con_out_handle = systab64->con_out_handle;
324 tmp |= systab64->con_out_handle;
325 efi_systab.con_out = systab64->con_out;
326 tmp |= systab64->con_out;
327 efi_systab.stderr_handle = systab64->stderr_handle;
328 tmp |= systab64->stderr_handle;
329 efi_systab.stderr = systab64->stderr;
330 tmp |= systab64->stderr;
331 efi_systab.runtime = data ?
332 (void *)(unsigned long)data->runtime :
333 (void *)(unsigned long)systab64->runtime;
334 tmp |= data ? data->runtime : systab64->runtime;
335 efi_systab.boottime = (void *)(unsigned long)systab64->boottime;
336 tmp |= systab64->boottime;
337 efi_systab.nr_tables = systab64->nr_tables;
338 efi_systab.tables = data ? (unsigned long)data->tables :
339 systab64->tables;
340 tmp |= data ? data->tables : systab64->tables;
342 early_memunmap(systab64, sizeof(*systab64));
343 if (data)
344 early_memunmap(data, sizeof(*data));
345 #ifdef CONFIG_X86_32
346 if (tmp >> 32) {
347 pr_err("EFI data located above 4GB, disabling EFI.\n");
348 return -EINVAL;
350 #endif
351 } else {
352 efi_system_table_32_t *systab32;
354 systab32 = early_memremap((unsigned long)phys,
355 sizeof(*systab32));
356 if (systab32 == NULL) {
357 pr_err("Couldn't map the system table!\n");
358 return -ENOMEM;
361 efi_systab.hdr = systab32->hdr;
362 efi_systab.fw_vendor = systab32->fw_vendor;
363 efi_systab.fw_revision = systab32->fw_revision;
364 efi_systab.con_in_handle = systab32->con_in_handle;
365 efi_systab.con_in = systab32->con_in;
366 efi_systab.con_out_handle = systab32->con_out_handle;
367 efi_systab.con_out = systab32->con_out;
368 efi_systab.stderr_handle = systab32->stderr_handle;
369 efi_systab.stderr = systab32->stderr;
370 efi_systab.runtime = (void *)(unsigned long)systab32->runtime;
371 efi_systab.boottime = (void *)(unsigned long)systab32->boottime;
372 efi_systab.nr_tables = systab32->nr_tables;
373 efi_systab.tables = systab32->tables;
375 early_memunmap(systab32, sizeof(*systab32));
378 efi.systab = &efi_systab;
381 * Verify the EFI Table
383 if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
384 pr_err("System table signature incorrect!\n");
385 return -EINVAL;
387 if ((efi.systab->hdr.revision >> 16) == 0)
388 pr_err("Warning: System table version %d.%02d, expected 1.00 or greater!\n",
389 efi.systab->hdr.revision >> 16,
390 efi.systab->hdr.revision & 0xffff);
392 return 0;
395 static int __init efi_runtime_init32(void)
397 efi_runtime_services_32_t *runtime;
399 runtime = early_memremap((unsigned long)efi.systab->runtime,
400 sizeof(efi_runtime_services_32_t));
401 if (!runtime) {
402 pr_err("Could not map the runtime service table!\n");
403 return -ENOMEM;
407 * We will only need *early* access to the SetVirtualAddressMap
408 * EFI runtime service. All other runtime services will be called
409 * via the virtual mapping.
411 efi_phys.set_virtual_address_map =
412 (efi_set_virtual_address_map_t *)
413 (unsigned long)runtime->set_virtual_address_map;
414 early_memunmap(runtime, sizeof(efi_runtime_services_32_t));
416 return 0;
419 static int __init efi_runtime_init64(void)
421 efi_runtime_services_64_t *runtime;
423 runtime = early_memremap((unsigned long)efi.systab->runtime,
424 sizeof(efi_runtime_services_64_t));
425 if (!runtime) {
426 pr_err("Could not map the runtime service table!\n");
427 return -ENOMEM;
431 * We will only need *early* access to the SetVirtualAddressMap
432 * EFI runtime service. All other runtime services will be called
433 * via the virtual mapping.
435 efi_phys.set_virtual_address_map =
436 (efi_set_virtual_address_map_t *)
437 (unsigned long)runtime->set_virtual_address_map;
438 early_memunmap(runtime, sizeof(efi_runtime_services_64_t));
440 return 0;
443 static int __init efi_runtime_init(void)
445 int rv;
448 * Check out the runtime services table. We need to map
449 * the runtime services table so that we can grab the physical
450 * address of several of the EFI runtime functions, needed to
451 * set the firmware into virtual mode.
453 * When EFI_PARAVIRT is in force then we could not map runtime
454 * service memory region because we do not have direct access to it.
455 * However, runtime services are available through proxy functions
456 * (e.g. in case of Xen dom0 EFI implementation they call special
457 * hypercall which executes relevant EFI functions) and that is why
458 * they are always enabled.
461 if (!efi_enabled(EFI_PARAVIRT)) {
462 if (efi_enabled(EFI_64BIT))
463 rv = efi_runtime_init64();
464 else
465 rv = efi_runtime_init32();
467 if (rv)
468 return rv;
471 set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
473 return 0;
476 void __init efi_init(void)
478 efi_char16_t *c16;
479 char vendor[100] = "unknown";
480 int i = 0;
481 void *tmp;
483 #ifdef CONFIG_X86_32
484 if (boot_params.efi_info.efi_systab_hi ||
485 boot_params.efi_info.efi_memmap_hi) {
486 pr_info("Table located above 4GB, disabling EFI.\n");
487 return;
489 efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
490 #else
491 efi_phys.systab = (efi_system_table_t *)
492 (boot_params.efi_info.efi_systab |
493 ((__u64)boot_params.efi_info.efi_systab_hi<<32));
494 #endif
496 if (efi_systab_init(efi_phys.systab))
497 return;
499 efi.config_table = (unsigned long)efi.systab->tables;
500 efi.fw_vendor = (unsigned long)efi.systab->fw_vendor;
501 efi.runtime = (unsigned long)efi.systab->runtime;
504 * Show what we know for posterity
506 c16 = tmp = early_memremap(efi.systab->fw_vendor, 2);
507 if (c16) {
508 for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i)
509 vendor[i] = *c16++;
510 vendor[i] = '\0';
511 } else
512 pr_err("Could not map the firmware vendor!\n");
513 early_memunmap(tmp, 2);
515 pr_info("EFI v%u.%.02u by %s\n",
516 efi.systab->hdr.revision >> 16,
517 efi.systab->hdr.revision & 0xffff, vendor);
519 if (efi_reuse_config(efi.systab->tables, efi.systab->nr_tables))
520 return;
522 if (efi_config_init(arch_tables))
523 return;
526 * Note: We currently don't support runtime services on an EFI
527 * that doesn't match the kernel 32/64-bit mode.
530 if (!efi_runtime_supported())
531 pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n");
532 else {
533 if (efi_runtime_disabled() || efi_runtime_init()) {
534 efi_memmap_unmap();
535 return;
539 efi_clean_memmap();
541 if (efi_enabled(EFI_DBG))
542 efi_print_memmap();
545 void __init efi_late_init(void)
547 efi_bgrt_init();
550 void __init efi_set_executable(efi_memory_desc_t *md, bool executable)
552 u64 addr, npages;
554 addr = md->virt_addr;
555 npages = md->num_pages;
557 memrange_efi_to_native(&addr, &npages);
559 if (executable)
560 set_memory_x(addr, npages);
561 else
562 set_memory_nx(addr, npages);
565 void __init runtime_code_page_mkexec(void)
567 efi_memory_desc_t *md;
569 /* Make EFI runtime service code area executable */
570 for_each_efi_memory_desc(md) {
571 if (md->type != EFI_RUNTIME_SERVICES_CODE)
572 continue;
574 efi_set_executable(md, true);
578 void __init efi_memory_uc(u64 addr, unsigned long size)
580 unsigned long page_shift = 1UL << EFI_PAGE_SHIFT;
581 u64 npages;
583 npages = round_up(size, page_shift) / page_shift;
584 memrange_efi_to_native(&addr, &npages);
585 set_memory_uc(addr, npages);
588 void __init old_map_region(efi_memory_desc_t *md)
590 u64 start_pfn, end_pfn, end;
591 unsigned long size;
592 void *va;
594 start_pfn = PFN_DOWN(md->phys_addr);
595 size = md->num_pages << PAGE_SHIFT;
596 end = md->phys_addr + size;
597 end_pfn = PFN_UP(end);
599 if (pfn_range_is_mapped(start_pfn, end_pfn)) {
600 va = __va(md->phys_addr);
602 if (!(md->attribute & EFI_MEMORY_WB))
603 efi_memory_uc((u64)(unsigned long)va, size);
604 } else
605 va = efi_ioremap(md->phys_addr, size,
606 md->type, md->attribute);
608 md->virt_addr = (u64) (unsigned long) va;
609 if (!va)
610 pr_err("ioremap of 0x%llX failed!\n",
611 (unsigned long long)md->phys_addr);
614 /* Merge contiguous regions of the same type and attribute */
615 static void __init efi_merge_regions(void)
617 efi_memory_desc_t *md, *prev_md = NULL;
619 for_each_efi_memory_desc(md) {
620 u64 prev_size;
622 if (!prev_md) {
623 prev_md = md;
624 continue;
627 if (prev_md->type != md->type ||
628 prev_md->attribute != md->attribute) {
629 prev_md = md;
630 continue;
633 prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
635 if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
636 prev_md->num_pages += md->num_pages;
637 md->type = EFI_RESERVED_TYPE;
638 md->attribute = 0;
639 continue;
641 prev_md = md;
645 static void __init get_systab_virt_addr(efi_memory_desc_t *md)
647 unsigned long size;
648 u64 end, systab;
650 size = md->num_pages << EFI_PAGE_SHIFT;
651 end = md->phys_addr + size;
652 systab = (u64)(unsigned long)efi_phys.systab;
653 if (md->phys_addr <= systab && systab < end) {
654 systab += md->virt_addr - md->phys_addr;
655 efi.systab = (efi_system_table_t *)(unsigned long)systab;
659 static void *realloc_pages(void *old_memmap, int old_shift)
661 void *ret;
663 ret = (void *)__get_free_pages(GFP_KERNEL, old_shift + 1);
664 if (!ret)
665 goto out;
668 * A first-time allocation doesn't have anything to copy.
670 if (!old_memmap)
671 return ret;
673 memcpy(ret, old_memmap, PAGE_SIZE << old_shift);
675 out:
676 free_pages((unsigned long)old_memmap, old_shift);
677 return ret;
681 * Iterate the EFI memory map in reverse order because the regions
682 * will be mapped top-down. The end result is the same as if we had
683 * mapped things forward, but doesn't require us to change the
684 * existing implementation of efi_map_region().
686 static inline void *efi_map_next_entry_reverse(void *entry)
688 /* Initial call */
689 if (!entry)
690 return efi.memmap.map_end - efi.memmap.desc_size;
692 entry -= efi.memmap.desc_size;
693 if (entry < efi.memmap.map)
694 return NULL;
696 return entry;
700 * efi_map_next_entry - Return the next EFI memory map descriptor
701 * @entry: Previous EFI memory map descriptor
703 * This is a helper function to iterate over the EFI memory map, which
704 * we do in different orders depending on the current configuration.
706 * To begin traversing the memory map @entry must be %NULL.
708 * Returns %NULL when we reach the end of the memory map.
710 static void *efi_map_next_entry(void *entry)
712 if (!efi_enabled(EFI_OLD_MEMMAP) && efi_enabled(EFI_64BIT)) {
714 * Starting in UEFI v2.5 the EFI_PROPERTIES_TABLE
715 * config table feature requires us to map all entries
716 * in the same order as they appear in the EFI memory
717 * map. That is to say, entry N must have a lower
718 * virtual address than entry N+1. This is because the
719 * firmware toolchain leaves relative references in
720 * the code/data sections, which are split and become
721 * separate EFI memory regions. Mapping things
722 * out-of-order leads to the firmware accessing
723 * unmapped addresses.
725 * Since we need to map things this way whether or not
726 * the kernel actually makes use of
727 * EFI_PROPERTIES_TABLE, let's just switch to this
728 * scheme by default for 64-bit.
730 return efi_map_next_entry_reverse(entry);
733 /* Initial call */
734 if (!entry)
735 return efi.memmap.map;
737 entry += efi.memmap.desc_size;
738 if (entry >= efi.memmap.map_end)
739 return NULL;
741 return entry;
744 static bool should_map_region(efi_memory_desc_t *md)
747 * Runtime regions always require runtime mappings (obviously).
749 if (md->attribute & EFI_MEMORY_RUNTIME)
750 return true;
753 * 32-bit EFI doesn't suffer from the bug that requires us to
754 * reserve boot services regions, and mixed mode support
755 * doesn't exist for 32-bit kernels.
757 if (IS_ENABLED(CONFIG_X86_32))
758 return false;
761 * Map all of RAM so that we can access arguments in the 1:1
762 * mapping when making EFI runtime calls.
764 if (IS_ENABLED(CONFIG_EFI_MIXED) && !efi_is_native()) {
765 if (md->type == EFI_CONVENTIONAL_MEMORY ||
766 md->type == EFI_LOADER_DATA ||
767 md->type == EFI_LOADER_CODE)
768 return true;
772 * Map boot services regions as a workaround for buggy
773 * firmware that accesses them even when they shouldn't.
775 * See efi_{reserve,free}_boot_services().
777 if (md->type == EFI_BOOT_SERVICES_CODE ||
778 md->type == EFI_BOOT_SERVICES_DATA)
779 return true;
781 return false;
785 * Map the efi memory ranges of the runtime services and update new_mmap with
786 * virtual addresses.
788 static void * __init efi_map_regions(int *count, int *pg_shift)
790 void *p, *new_memmap = NULL;
791 unsigned long left = 0;
792 unsigned long desc_size;
793 efi_memory_desc_t *md;
795 desc_size = efi.memmap.desc_size;
797 p = NULL;
798 while ((p = efi_map_next_entry(p))) {
799 md = p;
801 if (!should_map_region(md))
802 continue;
804 efi_map_region(md);
805 get_systab_virt_addr(md);
807 if (left < desc_size) {
808 new_memmap = realloc_pages(new_memmap, *pg_shift);
809 if (!new_memmap)
810 return NULL;
812 left += PAGE_SIZE << *pg_shift;
813 (*pg_shift)++;
816 memcpy(new_memmap + (*count * desc_size), md, desc_size);
818 left -= desc_size;
819 (*count)++;
822 return new_memmap;
825 static void __init kexec_enter_virtual_mode(void)
827 #ifdef CONFIG_KEXEC_CORE
828 efi_memory_desc_t *md;
829 unsigned int num_pages;
831 efi.systab = NULL;
834 * We don't do virtual mode, since we don't do runtime services, on
835 * non-native EFI. With efi=old_map, we don't do runtime services in
836 * kexec kernel because in the initial boot something else might
837 * have been mapped at these virtual addresses.
839 if (!efi_is_native() || efi_enabled(EFI_OLD_MEMMAP)) {
840 efi_memmap_unmap();
841 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
842 return;
845 if (efi_alloc_page_tables()) {
846 pr_err("Failed to allocate EFI page tables\n");
847 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
848 return;
852 * Map efi regions which were passed via setup_data. The virt_addr is a
853 * fixed addr which was used in first kernel of a kexec boot.
855 for_each_efi_memory_desc(md) {
856 efi_map_region_fixed(md); /* FIXME: add error handling */
857 get_systab_virt_addr(md);
861 * Unregister the early EFI memmap from efi_init() and install
862 * the new EFI memory map.
864 efi_memmap_unmap();
866 if (efi_memmap_init_late(efi.memmap.phys_map,
867 efi.memmap.desc_size * efi.memmap.nr_map)) {
868 pr_err("Failed to remap late EFI memory map\n");
869 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
870 return;
873 BUG_ON(!efi.systab);
875 num_pages = ALIGN(efi.memmap.nr_map * efi.memmap.desc_size, PAGE_SIZE);
876 num_pages >>= PAGE_SHIFT;
878 if (efi_setup_page_tables(efi.memmap.phys_map, num_pages)) {
879 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
880 return;
883 efi_sync_low_kernel_mappings();
886 * Now that EFI is in virtual mode, update the function
887 * pointers in the runtime service table to the new virtual addresses.
889 * Call EFI services through wrapper functions.
891 efi.runtime_version = efi_systab.hdr.revision;
893 efi_native_runtime_setup();
895 efi.set_virtual_address_map = NULL;
897 if (efi_enabled(EFI_OLD_MEMMAP) && (__supported_pte_mask & _PAGE_NX))
898 runtime_code_page_mkexec();
900 /* clean DUMMY object */
901 efi_delete_dummy_variable();
902 #endif
906 * This function will switch the EFI runtime services to virtual mode.
907 * Essentially, we look through the EFI memmap and map every region that
908 * has the runtime attribute bit set in its memory descriptor into the
909 * efi_pgd page table.
911 * The old method which used to update that memory descriptor with the
912 * virtual address obtained from ioremap() is still supported when the
913 * kernel is booted with efi=old_map on its command line. Same old
914 * method enabled the runtime services to be called without having to
915 * thunk back into physical mode for every invocation.
917 * The new method does a pagetable switch in a preemption-safe manner
918 * so that we're in a different address space when calling a runtime
919 * function. For function arguments passing we do copy the PUDs of the
920 * kernel page table into efi_pgd prior to each call.
922 * Specially for kexec boot, efi runtime maps in previous kernel should
923 * be passed in via setup_data. In that case runtime ranges will be mapped
924 * to the same virtual addresses as the first kernel, see
925 * kexec_enter_virtual_mode().
927 static void __init __efi_enter_virtual_mode(void)
929 int count = 0, pg_shift = 0;
930 void *new_memmap = NULL;
931 efi_status_t status;
932 unsigned long pa;
934 efi.systab = NULL;
936 if (efi_alloc_page_tables()) {
937 pr_err("Failed to allocate EFI page tables\n");
938 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
939 return;
942 efi_merge_regions();
943 new_memmap = efi_map_regions(&count, &pg_shift);
944 if (!new_memmap) {
945 pr_err("Error reallocating memory, EFI runtime non-functional!\n");
946 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
947 return;
950 pa = __pa(new_memmap);
953 * Unregister the early EFI memmap from efi_init() and install
954 * the new EFI memory map that we are about to pass to the
955 * firmware via SetVirtualAddressMap().
957 efi_memmap_unmap();
959 if (efi_memmap_init_late(pa, efi.memmap.desc_size * count)) {
960 pr_err("Failed to remap late EFI memory map\n");
961 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
962 return;
965 BUG_ON(!efi.systab);
967 if (efi_setup_page_tables(pa, 1 << pg_shift)) {
968 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
969 return;
972 efi_sync_low_kernel_mappings();
974 if (efi_is_native()) {
975 status = phys_efi_set_virtual_address_map(
976 efi.memmap.desc_size * count,
977 efi.memmap.desc_size,
978 efi.memmap.desc_version,
979 (efi_memory_desc_t *)pa);
980 } else {
981 status = efi_thunk_set_virtual_address_map(
982 efi_phys.set_virtual_address_map,
983 efi.memmap.desc_size * count,
984 efi.memmap.desc_size,
985 efi.memmap.desc_version,
986 (efi_memory_desc_t *)pa);
989 if (status != EFI_SUCCESS) {
990 pr_alert("Unable to switch EFI into virtual mode (status=%lx)!\n",
991 status);
992 panic("EFI call to SetVirtualAddressMap() failed!");
996 * Now that EFI is in virtual mode, update the function
997 * pointers in the runtime service table to the new virtual addresses.
999 * Call EFI services through wrapper functions.
1001 efi.runtime_version = efi_systab.hdr.revision;
1003 if (efi_is_native())
1004 efi_native_runtime_setup();
1005 else
1006 efi_thunk_runtime_setup();
1008 efi.set_virtual_address_map = NULL;
1011 * Apply more restrictive page table mapping attributes now that
1012 * SVAM() has been called and the firmware has performed all
1013 * necessary relocation fixups for the new virtual addresses.
1015 efi_runtime_update_mappings();
1016 efi_dump_pagetable();
1018 /* clean DUMMY object */
1019 efi_delete_dummy_variable();
1022 void __init efi_enter_virtual_mode(void)
1024 if (efi_enabled(EFI_PARAVIRT))
1025 return;
1027 if (efi_setup)
1028 kexec_enter_virtual_mode();
1029 else
1030 __efi_enter_virtual_mode();
1034 * Convenience functions to obtain memory types and attributes
1036 u32 efi_mem_type(unsigned long phys_addr)
1038 efi_memory_desc_t *md;
1040 if (!efi_enabled(EFI_MEMMAP))
1041 return 0;
1043 for_each_efi_memory_desc(md) {
1044 if ((md->phys_addr <= phys_addr) &&
1045 (phys_addr < (md->phys_addr +
1046 (md->num_pages << EFI_PAGE_SHIFT))))
1047 return md->type;
1049 return 0;
1052 static int __init arch_parse_efi_cmdline(char *str)
1054 if (!str) {
1055 pr_warn("need at least one option\n");
1056 return -EINVAL;
1059 if (parse_option_str(str, "old_map"))
1060 set_bit(EFI_OLD_MEMMAP, &efi.flags);
1062 return 0;
1064 early_param("efi", arch_parse_efi_cmdline);