x86/mm: Add TLB purge to free pmd/pte page interfaces
[linux/fpc-iii.git] / arch / x86 / platform / efi / efi_64.c
blob351a55dc4a1dce9ae70575f7cb0eff3c3412e154
1 /*
2 * x86_64 specific EFI support functions
3 * Based on Extensible Firmware Interface Specification version 1.0
5 * Copyright (C) 2005-2008 Intel Co.
6 * Fenghua Yu <fenghua.yu@intel.com>
7 * Bibo Mao <bibo.mao@intel.com>
8 * Chandramouli Narayanan <mouli@linux.intel.com>
9 * Huang Ying <ying.huang@intel.com>
11 * Code to convert EFI to E820 map has been implemented in elilo bootloader
12 * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table
13 * is setup appropriately for EFI runtime code.
14 * - mouli 06/14/2007.
18 #define pr_fmt(fmt) "efi: " fmt
20 #include <linux/kernel.h>
21 #include <linux/init.h>
22 #include <linux/mm.h>
23 #include <linux/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/bootmem.h>
26 #include <linux/ioport.h>
27 #include <linux/init.h>
28 #include <linux/mc146818rtc.h>
29 #include <linux/efi.h>
30 #include <linux/uaccess.h>
31 #include <linux/io.h>
32 #include <linux/reboot.h>
33 #include <linux/slab.h>
34 #include <linux/ucs2_string.h>
36 #include <asm/setup.h>
37 #include <asm/page.h>
38 #include <asm/e820.h>
39 #include <asm/pgtable.h>
40 #include <asm/tlbflush.h>
41 #include <asm/proto.h>
42 #include <asm/efi.h>
43 #include <asm/cacheflush.h>
44 #include <asm/fixmap.h>
45 #include <asm/realmode.h>
46 #include <asm/time.h>
47 #include <asm/pgalloc.h>
48 #include <asm/sections.h>
51 * We allocate runtime services regions bottom-up, starting from -4G, i.e.
52 * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G.
54 static u64 efi_va = EFI_VA_START;
56 struct efi_scratch efi_scratch;
58 static void __init early_code_mapping_set_exec(int executable)
60 efi_memory_desc_t *md;
62 if (!(__supported_pte_mask & _PAGE_NX))
63 return;
65 /* Make EFI service code area executable */
66 for_each_efi_memory_desc(md) {
67 if (md->type == EFI_RUNTIME_SERVICES_CODE ||
68 md->type == EFI_BOOT_SERVICES_CODE)
69 efi_set_executable(md, executable);
73 pgd_t * __init efi_call_phys_prolog(void)
75 unsigned long vaddress;
76 pgd_t *save_pgd;
78 int pgd;
79 int n_pgds;
81 if (!efi_enabled(EFI_OLD_MEMMAP)) {
82 save_pgd = (pgd_t *)read_cr3();
83 write_cr3((unsigned long)efi_scratch.efi_pgt);
84 goto out;
87 early_code_mapping_set_exec(1);
89 n_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT), PGDIR_SIZE);
90 save_pgd = kmalloc_array(n_pgds, sizeof(*save_pgd), GFP_KERNEL);
92 for (pgd = 0; pgd < n_pgds; pgd++) {
93 save_pgd[pgd] = *pgd_offset_k(pgd * PGDIR_SIZE);
94 vaddress = (unsigned long)__va(pgd * PGDIR_SIZE);
95 set_pgd(pgd_offset_k(pgd * PGDIR_SIZE), *pgd_offset_k(vaddress));
97 out:
98 __flush_tlb_all();
100 return save_pgd;
103 void __init efi_call_phys_epilog(pgd_t *save_pgd)
106 * After the lock is released, the original page table is restored.
108 int pgd_idx;
109 int nr_pgds;
111 if (!efi_enabled(EFI_OLD_MEMMAP)) {
112 write_cr3((unsigned long)save_pgd);
113 __flush_tlb_all();
114 return;
117 nr_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT) , PGDIR_SIZE);
119 for (pgd_idx = 0; pgd_idx < nr_pgds; pgd_idx++)
120 set_pgd(pgd_offset_k(pgd_idx * PGDIR_SIZE), save_pgd[pgd_idx]);
122 kfree(save_pgd);
124 __flush_tlb_all();
125 early_code_mapping_set_exec(0);
128 static pgd_t *efi_pgd;
131 * We need our own copy of the higher levels of the page tables
132 * because we want to avoid inserting EFI region mappings (EFI_VA_END
133 * to EFI_VA_START) into the standard kernel page tables. Everything
134 * else can be shared, see efi_sync_low_kernel_mappings().
136 int __init efi_alloc_page_tables(void)
138 pgd_t *pgd;
139 pud_t *pud;
140 gfp_t gfp_mask;
142 if (efi_enabled(EFI_OLD_MEMMAP))
143 return 0;
145 gfp_mask = GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO;
146 efi_pgd = (pgd_t *)__get_free_pages(gfp_mask, PGD_ALLOCATION_ORDER);
147 if (!efi_pgd)
148 return -ENOMEM;
150 pgd = efi_pgd + pgd_index(EFI_VA_END);
152 pud = pud_alloc_one(NULL, 0);
153 if (!pud) {
154 free_page((unsigned long)efi_pgd);
155 return -ENOMEM;
158 pgd_populate(NULL, pgd, pud);
160 return 0;
164 * Add low kernel mappings for passing arguments to EFI functions.
166 void efi_sync_low_kernel_mappings(void)
168 unsigned num_entries;
169 pgd_t *pgd_k, *pgd_efi;
170 pud_t *pud_k, *pud_efi;
172 if (efi_enabled(EFI_OLD_MEMMAP))
173 return;
176 * We can share all PGD entries apart from the one entry that
177 * covers the EFI runtime mapping space.
179 * Make sure the EFI runtime region mappings are guaranteed to
180 * only span a single PGD entry and that the entry also maps
181 * other important kernel regions.
183 BUILD_BUG_ON(pgd_index(EFI_VA_END) != pgd_index(MODULES_END));
184 BUILD_BUG_ON((EFI_VA_START & PGDIR_MASK) !=
185 (EFI_VA_END & PGDIR_MASK));
187 pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET);
188 pgd_k = pgd_offset_k(PAGE_OFFSET);
190 num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET);
191 memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries);
194 * We share all the PUD entries apart from those that map the
195 * EFI regions. Copy around them.
197 BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0);
198 BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0);
200 pgd_efi = efi_pgd + pgd_index(EFI_VA_END);
201 pud_efi = pud_offset(pgd_efi, 0);
203 pgd_k = pgd_offset_k(EFI_VA_END);
204 pud_k = pud_offset(pgd_k, 0);
206 num_entries = pud_index(EFI_VA_END);
207 memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
209 pud_efi = pud_offset(pgd_efi, EFI_VA_START);
210 pud_k = pud_offset(pgd_k, EFI_VA_START);
212 num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START);
213 memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
217 * Wrapper for slow_virt_to_phys() that handles NULL addresses.
219 static inline phys_addr_t
220 virt_to_phys_or_null_size(void *va, unsigned long size)
222 bool bad_size;
224 if (!va)
225 return 0;
227 if (virt_addr_valid(va))
228 return virt_to_phys(va);
231 * A fully aligned variable on the stack is guaranteed not to
232 * cross a page bounary. Try to catch strings on the stack by
233 * checking that 'size' is a power of two.
235 bad_size = size > PAGE_SIZE || !is_power_of_2(size);
237 WARN_ON(!IS_ALIGNED((unsigned long)va, size) || bad_size);
239 return slow_virt_to_phys(va);
242 #define virt_to_phys_or_null(addr) \
243 virt_to_phys_or_null_size((addr), sizeof(*(addr)))
245 int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
247 unsigned long pfn, text;
248 struct page *page;
249 unsigned npages;
250 pgd_t *pgd;
252 if (efi_enabled(EFI_OLD_MEMMAP))
253 return 0;
255 efi_scratch.efi_pgt = (pgd_t *)__pa(efi_pgd);
256 pgd = efi_pgd;
259 * It can happen that the physical address of new_memmap lands in memory
260 * which is not mapped in the EFI page table. Therefore we need to go
261 * and ident-map those pages containing the map before calling
262 * phys_efi_set_virtual_address_map().
264 pfn = pa_memmap >> PAGE_SHIFT;
265 if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, _PAGE_NX | _PAGE_RW)) {
266 pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap);
267 return 1;
270 efi_scratch.use_pgd = true;
273 * Certain firmware versions are way too sentimential and still believe
274 * they are exclusive and unquestionable owners of the first physical page,
275 * even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY
276 * (but then write-access it later during SetVirtualAddressMap()).
278 * Create a 1:1 mapping for this page, to avoid triple faults during early
279 * boot with such firmware. We are free to hand this page to the BIOS,
280 * as trim_bios_range() will reserve the first page and isolate it away
281 * from memory allocators anyway.
283 if (kernel_map_pages_in_pgd(pgd, 0x0, 0x0, 1, _PAGE_RW)) {
284 pr_err("Failed to create 1:1 mapping for the first page!\n");
285 return 1;
289 * When making calls to the firmware everything needs to be 1:1
290 * mapped and addressable with 32-bit pointers. Map the kernel
291 * text and allocate a new stack because we can't rely on the
292 * stack pointer being < 4GB.
294 if (!IS_ENABLED(CONFIG_EFI_MIXED) || efi_is_native())
295 return 0;
297 page = alloc_page(GFP_KERNEL|__GFP_DMA32);
298 if (!page)
299 panic("Unable to allocate EFI runtime stack < 4GB\n");
301 efi_scratch.phys_stack = virt_to_phys(page_address(page));
302 efi_scratch.phys_stack += PAGE_SIZE; /* stack grows down */
304 npages = (_etext - _text) >> PAGE_SHIFT;
305 text = __pa(_text);
306 pfn = text >> PAGE_SHIFT;
308 if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, _PAGE_RW)) {
309 pr_err("Failed to map kernel text 1:1\n");
310 return 1;
313 return 0;
316 static void __init __map_region(efi_memory_desc_t *md, u64 va)
318 unsigned long flags = _PAGE_RW;
319 unsigned long pfn;
320 pgd_t *pgd = efi_pgd;
322 if (!(md->attribute & EFI_MEMORY_WB))
323 flags |= _PAGE_PCD;
325 pfn = md->phys_addr >> PAGE_SHIFT;
326 if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags))
327 pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
328 md->phys_addr, va);
331 void __init efi_map_region(efi_memory_desc_t *md)
333 unsigned long size = md->num_pages << PAGE_SHIFT;
334 u64 pa = md->phys_addr;
336 if (efi_enabled(EFI_OLD_MEMMAP))
337 return old_map_region(md);
340 * Make sure the 1:1 mappings are present as a catch-all for b0rked
341 * firmware which doesn't update all internal pointers after switching
342 * to virtual mode and would otherwise crap on us.
344 __map_region(md, md->phys_addr);
347 * Enforce the 1:1 mapping as the default virtual address when
348 * booting in EFI mixed mode, because even though we may be
349 * running a 64-bit kernel, the firmware may only be 32-bit.
351 if (!efi_is_native () && IS_ENABLED(CONFIG_EFI_MIXED)) {
352 md->virt_addr = md->phys_addr;
353 return;
356 efi_va -= size;
358 /* Is PA 2M-aligned? */
359 if (!(pa & (PMD_SIZE - 1))) {
360 efi_va &= PMD_MASK;
361 } else {
362 u64 pa_offset = pa & (PMD_SIZE - 1);
363 u64 prev_va = efi_va;
365 /* get us the same offset within this 2M page */
366 efi_va = (efi_va & PMD_MASK) + pa_offset;
368 if (efi_va > prev_va)
369 efi_va -= PMD_SIZE;
372 if (efi_va < EFI_VA_END) {
373 pr_warn(FW_WARN "VA address range overflow!\n");
374 return;
377 /* Do the VA map */
378 __map_region(md, efi_va);
379 md->virt_addr = efi_va;
383 * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges.
384 * md->virt_addr is the original virtual address which had been mapped in kexec
385 * 1st kernel.
387 void __init efi_map_region_fixed(efi_memory_desc_t *md)
389 __map_region(md, md->phys_addr);
390 __map_region(md, md->virt_addr);
393 void __iomem *__init efi_ioremap(unsigned long phys_addr, unsigned long size,
394 u32 type, u64 attribute)
396 unsigned long last_map_pfn;
398 if (type == EFI_MEMORY_MAPPED_IO)
399 return ioremap(phys_addr, size);
401 last_map_pfn = init_memory_mapping(phys_addr, phys_addr + size);
402 if ((last_map_pfn << PAGE_SHIFT) < phys_addr + size) {
403 unsigned long top = last_map_pfn << PAGE_SHIFT;
404 efi_ioremap(top, size - (top - phys_addr), type, attribute);
407 if (!(attribute & EFI_MEMORY_WB))
408 efi_memory_uc((u64)(unsigned long)__va(phys_addr), size);
410 return (void __iomem *)__va(phys_addr);
413 void __init parse_efi_setup(u64 phys_addr, u32 data_len)
415 efi_setup = phys_addr + sizeof(struct setup_data);
418 void __init efi_runtime_update_mappings(void)
420 unsigned long pfn;
421 pgd_t *pgd = efi_pgd;
422 efi_memory_desc_t *md;
424 if (efi_enabled(EFI_OLD_MEMMAP)) {
425 if (__supported_pte_mask & _PAGE_NX)
426 runtime_code_page_mkexec();
427 return;
430 if (!efi_enabled(EFI_NX_PE_DATA))
431 return;
433 for_each_efi_memory_desc(md) {
434 unsigned long pf = 0;
436 if (!(md->attribute & EFI_MEMORY_RUNTIME))
437 continue;
439 if (!(md->attribute & EFI_MEMORY_WB))
440 pf |= _PAGE_PCD;
442 if ((md->attribute & EFI_MEMORY_XP) ||
443 (md->type == EFI_RUNTIME_SERVICES_DATA))
444 pf |= _PAGE_NX;
446 if (!(md->attribute & EFI_MEMORY_RO) &&
447 (md->type != EFI_RUNTIME_SERVICES_CODE))
448 pf |= _PAGE_RW;
450 /* Update the 1:1 mapping */
451 pfn = md->phys_addr >> PAGE_SHIFT;
452 if (kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf))
453 pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
454 md->phys_addr, md->virt_addr);
456 if (kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf))
457 pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
458 md->phys_addr, md->virt_addr);
462 void __init efi_dump_pagetable(void)
464 #ifdef CONFIG_EFI_PGT_DUMP
465 ptdump_walk_pgd_level(NULL, efi_pgd);
466 #endif
469 #ifdef CONFIG_EFI_MIXED
470 extern efi_status_t efi64_thunk(u32, ...);
472 #define runtime_service32(func) \
473 ({ \
474 u32 table = (u32)(unsigned long)efi.systab; \
475 u32 *rt, *___f; \
477 rt = (u32 *)(table + offsetof(efi_system_table_32_t, runtime)); \
478 ___f = (u32 *)(*rt + offsetof(efi_runtime_services_32_t, func)); \
479 *___f; \
483 * Switch to the EFI page tables early so that we can access the 1:1
484 * runtime services mappings which are not mapped in any other page
485 * tables. This function must be called before runtime_service32().
487 * Also, disable interrupts because the IDT points to 64-bit handlers,
488 * which aren't going to function correctly when we switch to 32-bit.
490 #define efi_thunk(f, ...) \
491 ({ \
492 efi_status_t __s; \
493 unsigned long __flags; \
494 u32 __func; \
496 local_irq_save(__flags); \
497 arch_efi_call_virt_setup(); \
499 __func = runtime_service32(f); \
500 __s = efi64_thunk(__func, __VA_ARGS__); \
502 arch_efi_call_virt_teardown(); \
503 local_irq_restore(__flags); \
505 __s; \
508 efi_status_t efi_thunk_set_virtual_address_map(
509 void *phys_set_virtual_address_map,
510 unsigned long memory_map_size,
511 unsigned long descriptor_size,
512 u32 descriptor_version,
513 efi_memory_desc_t *virtual_map)
515 efi_status_t status;
516 unsigned long flags;
517 u32 func;
519 efi_sync_low_kernel_mappings();
520 local_irq_save(flags);
522 efi_scratch.prev_cr3 = read_cr3();
523 write_cr3((unsigned long)efi_scratch.efi_pgt);
524 __flush_tlb_all();
526 func = (u32)(unsigned long)phys_set_virtual_address_map;
527 status = efi64_thunk(func, memory_map_size, descriptor_size,
528 descriptor_version, virtual_map);
530 write_cr3(efi_scratch.prev_cr3);
531 __flush_tlb_all();
532 local_irq_restore(flags);
534 return status;
537 static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc)
539 efi_status_t status;
540 u32 phys_tm, phys_tc;
542 spin_lock(&rtc_lock);
544 phys_tm = virt_to_phys_or_null(tm);
545 phys_tc = virt_to_phys_or_null(tc);
547 status = efi_thunk(get_time, phys_tm, phys_tc);
549 spin_unlock(&rtc_lock);
551 return status;
554 static efi_status_t efi_thunk_set_time(efi_time_t *tm)
556 efi_status_t status;
557 u32 phys_tm;
559 spin_lock(&rtc_lock);
561 phys_tm = virt_to_phys_or_null(tm);
563 status = efi_thunk(set_time, phys_tm);
565 spin_unlock(&rtc_lock);
567 return status;
570 static efi_status_t
571 efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending,
572 efi_time_t *tm)
574 efi_status_t status;
575 u32 phys_enabled, phys_pending, phys_tm;
577 spin_lock(&rtc_lock);
579 phys_enabled = virt_to_phys_or_null(enabled);
580 phys_pending = virt_to_phys_or_null(pending);
581 phys_tm = virt_to_phys_or_null(tm);
583 status = efi_thunk(get_wakeup_time, phys_enabled,
584 phys_pending, phys_tm);
586 spin_unlock(&rtc_lock);
588 return status;
591 static efi_status_t
592 efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
594 efi_status_t status;
595 u32 phys_tm;
597 spin_lock(&rtc_lock);
599 phys_tm = virt_to_phys_or_null(tm);
601 status = efi_thunk(set_wakeup_time, enabled, phys_tm);
603 spin_unlock(&rtc_lock);
605 return status;
608 static unsigned long efi_name_size(efi_char16_t *name)
610 return ucs2_strsize(name, EFI_VAR_NAME_LEN) + 1;
613 static efi_status_t
614 efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor,
615 u32 *attr, unsigned long *data_size, void *data)
617 efi_status_t status;
618 u32 phys_name, phys_vendor, phys_attr;
619 u32 phys_data_size, phys_data;
621 phys_data_size = virt_to_phys_or_null(data_size);
622 phys_vendor = virt_to_phys_or_null(vendor);
623 phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
624 phys_attr = virt_to_phys_or_null(attr);
625 phys_data = virt_to_phys_or_null_size(data, *data_size);
627 status = efi_thunk(get_variable, phys_name, phys_vendor,
628 phys_attr, phys_data_size, phys_data);
630 return status;
633 static efi_status_t
634 efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor,
635 u32 attr, unsigned long data_size, void *data)
637 u32 phys_name, phys_vendor, phys_data;
638 efi_status_t status;
640 phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
641 phys_vendor = virt_to_phys_or_null(vendor);
642 phys_data = virt_to_phys_or_null_size(data, data_size);
644 /* If data_size is > sizeof(u32) we've got problems */
645 status = efi_thunk(set_variable, phys_name, phys_vendor,
646 attr, data_size, phys_data);
648 return status;
651 static efi_status_t
652 efi_thunk_get_next_variable(unsigned long *name_size,
653 efi_char16_t *name,
654 efi_guid_t *vendor)
656 efi_status_t status;
657 u32 phys_name_size, phys_name, phys_vendor;
659 phys_name_size = virt_to_phys_or_null(name_size);
660 phys_vendor = virt_to_phys_or_null(vendor);
661 phys_name = virt_to_phys_or_null_size(name, *name_size);
663 status = efi_thunk(get_next_variable, phys_name_size,
664 phys_name, phys_vendor);
666 return status;
669 static efi_status_t
670 efi_thunk_get_next_high_mono_count(u32 *count)
672 efi_status_t status;
673 u32 phys_count;
675 phys_count = virt_to_phys_or_null(count);
676 status = efi_thunk(get_next_high_mono_count, phys_count);
678 return status;
681 static void
682 efi_thunk_reset_system(int reset_type, efi_status_t status,
683 unsigned long data_size, efi_char16_t *data)
685 u32 phys_data;
687 phys_data = virt_to_phys_or_null_size(data, data_size);
689 efi_thunk(reset_system, reset_type, status, data_size, phys_data);
692 static efi_status_t
693 efi_thunk_update_capsule(efi_capsule_header_t **capsules,
694 unsigned long count, unsigned long sg_list)
697 * To properly support this function we would need to repackage
698 * 'capsules' because the firmware doesn't understand 64-bit
699 * pointers.
701 return EFI_UNSUPPORTED;
704 static efi_status_t
705 efi_thunk_query_variable_info(u32 attr, u64 *storage_space,
706 u64 *remaining_space,
707 u64 *max_variable_size)
709 efi_status_t status;
710 u32 phys_storage, phys_remaining, phys_max;
712 if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
713 return EFI_UNSUPPORTED;
715 phys_storage = virt_to_phys_or_null(storage_space);
716 phys_remaining = virt_to_phys_or_null(remaining_space);
717 phys_max = virt_to_phys_or_null(max_variable_size);
719 status = efi_thunk(query_variable_info, attr, phys_storage,
720 phys_remaining, phys_max);
722 return status;
725 static efi_status_t
726 efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules,
727 unsigned long count, u64 *max_size,
728 int *reset_type)
731 * To properly support this function we would need to repackage
732 * 'capsules' because the firmware doesn't understand 64-bit
733 * pointers.
735 return EFI_UNSUPPORTED;
738 void efi_thunk_runtime_setup(void)
740 efi.get_time = efi_thunk_get_time;
741 efi.set_time = efi_thunk_set_time;
742 efi.get_wakeup_time = efi_thunk_get_wakeup_time;
743 efi.set_wakeup_time = efi_thunk_set_wakeup_time;
744 efi.get_variable = efi_thunk_get_variable;
745 efi.get_next_variable = efi_thunk_get_next_variable;
746 efi.set_variable = efi_thunk_set_variable;
747 efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count;
748 efi.reset_system = efi_thunk_reset_system;
749 efi.query_variable_info = efi_thunk_query_variable_info;
750 efi.update_capsule = efi_thunk_update_capsule;
751 efi.query_capsule_caps = efi_thunk_query_capsule_caps;
753 #endif /* CONFIG_EFI_MIXED */