x86/mm: Add TLB purge to free pmd/pte page interfaces
[linux/fpc-iii.git] / arch / x86 / platform / efi / quirks.c
blobdee99391d7b2ca119716ee9c0578d7e1bfe11e24
1 #define pr_fmt(fmt) "efi: " fmt
3 #include <linux/init.h>
4 #include <linux/kernel.h>
5 #include <linux/string.h>
6 #include <linux/time.h>
7 #include <linux/types.h>
8 #include <linux/efi.h>
9 #include <linux/slab.h>
10 #include <linux/memblock.h>
11 #include <linux/bootmem.h>
12 #include <linux/acpi.h>
13 #include <linux/dmi.h>
14 #include <asm/efi.h>
15 #include <asm/uv/uv.h>
16 #include <asm/sections.h>
18 #define EFI_MIN_RESERVE 5120
20 #define EFI_DUMMY_GUID \
21 EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9)
23 static efi_char16_t efi_dummy_name[6] = { 'D', 'U', 'M', 'M', 'Y', 0 };
25 static bool efi_no_storage_paranoia;
28 * Some firmware implementations refuse to boot if there's insufficient
29 * space in the variable store. The implementation of garbage collection
30 * in some FW versions causes stale (deleted) variables to take up space
31 * longer than intended and space is only freed once the store becomes
32 * almost completely full.
34 * Enabling this option disables the space checks in
35 * efi_query_variable_store() and forces garbage collection.
37 * Only enable this option if deleting EFI variables does not free up
38 * space in your variable store, e.g. if despite deleting variables
39 * you're unable to create new ones.
41 static int __init setup_storage_paranoia(char *arg)
43 efi_no_storage_paranoia = true;
44 return 0;
46 early_param("efi_no_storage_paranoia", setup_storage_paranoia);
49 * Deleting the dummy variable which kicks off garbage collection
51 void efi_delete_dummy_variable(void)
53 efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
54 EFI_VARIABLE_NON_VOLATILE |
55 EFI_VARIABLE_BOOTSERVICE_ACCESS |
56 EFI_VARIABLE_RUNTIME_ACCESS,
57 0, NULL);
61 * In the nonblocking case we do not attempt to perform garbage
62 * collection if we do not have enough free space. Rather, we do the
63 * bare minimum check and give up immediately if the available space
64 * is below EFI_MIN_RESERVE.
66 * This function is intended to be small and simple because it is
67 * invoked from crash handler paths.
69 static efi_status_t
70 query_variable_store_nonblocking(u32 attributes, unsigned long size)
72 efi_status_t status;
73 u64 storage_size, remaining_size, max_size;
75 status = efi.query_variable_info_nonblocking(attributes, &storage_size,
76 &remaining_size,
77 &max_size);
78 if (status != EFI_SUCCESS)
79 return status;
81 if (remaining_size - size < EFI_MIN_RESERVE)
82 return EFI_OUT_OF_RESOURCES;
84 return EFI_SUCCESS;
88 * Some firmware implementations refuse to boot if there's insufficient space
89 * in the variable store. Ensure that we never use more than a safe limit.
91 * Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable
92 * store.
94 efi_status_t efi_query_variable_store(u32 attributes, unsigned long size,
95 bool nonblocking)
97 efi_status_t status;
98 u64 storage_size, remaining_size, max_size;
100 if (!(attributes & EFI_VARIABLE_NON_VOLATILE))
101 return 0;
103 if (nonblocking)
104 return query_variable_store_nonblocking(attributes, size);
106 status = efi.query_variable_info(attributes, &storage_size,
107 &remaining_size, &max_size);
108 if (status != EFI_SUCCESS)
109 return status;
112 * We account for that by refusing the write if permitting it would
113 * reduce the available space to under 5KB. This figure was provided by
114 * Samsung, so should be safe.
116 if ((remaining_size - size < EFI_MIN_RESERVE) &&
117 !efi_no_storage_paranoia) {
120 * Triggering garbage collection may require that the firmware
121 * generate a real EFI_OUT_OF_RESOURCES error. We can force
122 * that by attempting to use more space than is available.
124 unsigned long dummy_size = remaining_size + 1024;
125 void *dummy = kzalloc(dummy_size, GFP_ATOMIC);
127 if (!dummy)
128 return EFI_OUT_OF_RESOURCES;
130 status = efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
131 EFI_VARIABLE_NON_VOLATILE |
132 EFI_VARIABLE_BOOTSERVICE_ACCESS |
133 EFI_VARIABLE_RUNTIME_ACCESS,
134 dummy_size, dummy);
136 if (status == EFI_SUCCESS) {
138 * This should have failed, so if it didn't make sure
139 * that we delete it...
141 efi_delete_dummy_variable();
144 kfree(dummy);
147 * The runtime code may now have triggered a garbage collection
148 * run, so check the variable info again
150 status = efi.query_variable_info(attributes, &storage_size,
151 &remaining_size, &max_size);
153 if (status != EFI_SUCCESS)
154 return status;
157 * There still isn't enough room, so return an error
159 if (remaining_size - size < EFI_MIN_RESERVE)
160 return EFI_OUT_OF_RESOURCES;
163 return EFI_SUCCESS;
165 EXPORT_SYMBOL_GPL(efi_query_variable_store);
168 * The UEFI specification makes it clear that the operating system is
169 * free to do whatever it wants with boot services code after
170 * ExitBootServices() has been called. Ignoring this recommendation a
171 * significant bunch of EFI implementations continue calling into boot
172 * services code (SetVirtualAddressMap). In order to work around such
173 * buggy implementations we reserve boot services region during EFI
174 * init and make sure it stays executable. Then, after
175 * SetVirtualAddressMap(), it is discarded.
177 * However, some boot services regions contain data that is required
178 * by drivers, so we need to track which memory ranges can never be
179 * freed. This is done by tagging those regions with the
180 * EFI_MEMORY_RUNTIME attribute.
182 * Any driver that wants to mark a region as reserved must use
183 * efi_mem_reserve() which will insert a new EFI memory descriptor
184 * into efi.memmap (splitting existing regions if necessary) and tag
185 * it with EFI_MEMORY_RUNTIME.
187 void __init efi_arch_mem_reserve(phys_addr_t addr, u64 size)
189 phys_addr_t new_phys, new_size;
190 struct efi_mem_range mr;
191 efi_memory_desc_t md;
192 int num_entries;
193 void *new;
195 if (efi_mem_desc_lookup(addr, &md)) {
196 pr_err("Failed to lookup EFI memory descriptor for %pa\n", &addr);
197 return;
200 if (addr + size > md.phys_addr + (md.num_pages << EFI_PAGE_SHIFT)) {
201 pr_err("Region spans EFI memory descriptors, %pa\n", &addr);
202 return;
205 /* No need to reserve regions that will never be freed. */
206 if (md.attribute & EFI_MEMORY_RUNTIME)
207 return;
209 size += addr % EFI_PAGE_SIZE;
210 size = round_up(size, EFI_PAGE_SIZE);
211 addr = round_down(addr, EFI_PAGE_SIZE);
213 mr.range.start = addr;
214 mr.range.end = addr + size - 1;
215 mr.attribute = md.attribute | EFI_MEMORY_RUNTIME;
217 num_entries = efi_memmap_split_count(&md, &mr.range);
218 num_entries += efi.memmap.nr_map;
220 new_size = efi.memmap.desc_size * num_entries;
222 new_phys = efi_memmap_alloc(num_entries);
223 if (!new_phys) {
224 pr_err("Could not allocate boot services memmap\n");
225 return;
228 new = early_memremap(new_phys, new_size);
229 if (!new) {
230 pr_err("Failed to map new boot services memmap\n");
231 return;
234 efi_memmap_insert(&efi.memmap, new, &mr);
235 early_memunmap(new, new_size);
237 efi_memmap_install(new_phys, num_entries);
241 * Helper function for efi_reserve_boot_services() to figure out if we
242 * can free regions in efi_free_boot_services().
244 * Use this function to ensure we do not free regions owned by somebody
245 * else. We must only reserve (and then free) regions:
247 * - Not within any part of the kernel
248 * - Not the BIOS reserved area (E820_RESERVED, E820_NVS, etc)
250 static bool can_free_region(u64 start, u64 size)
252 if (start + size > __pa_symbol(_text) && start <= __pa_symbol(_end))
253 return false;
255 if (!e820_all_mapped(start, start+size, E820_RAM))
256 return false;
258 return true;
261 void __init efi_reserve_boot_services(void)
263 efi_memory_desc_t *md;
265 for_each_efi_memory_desc(md) {
266 u64 start = md->phys_addr;
267 u64 size = md->num_pages << EFI_PAGE_SHIFT;
268 bool already_reserved;
270 if (md->type != EFI_BOOT_SERVICES_CODE &&
271 md->type != EFI_BOOT_SERVICES_DATA)
272 continue;
274 already_reserved = memblock_is_region_reserved(start, size);
277 * Because the following memblock_reserve() is paired
278 * with free_bootmem_late() for this region in
279 * efi_free_boot_services(), we must be extremely
280 * careful not to reserve, and subsequently free,
281 * critical regions of memory (like the kernel image) or
282 * those regions that somebody else has already
283 * reserved.
285 * A good example of a critical region that must not be
286 * freed is page zero (first 4Kb of memory), which may
287 * contain boot services code/data but is marked
288 * E820_RESERVED by trim_bios_range().
290 if (!already_reserved) {
291 memblock_reserve(start, size);
294 * If we are the first to reserve the region, no
295 * one else cares about it. We own it and can
296 * free it later.
298 if (can_free_region(start, size))
299 continue;
303 * We don't own the region. We must not free it.
305 * Setting this bit for a boot services region really
306 * doesn't make sense as far as the firmware is
307 * concerned, but it does provide us with a way to tag
308 * those regions that must not be paired with
309 * free_bootmem_late().
311 md->attribute |= EFI_MEMORY_RUNTIME;
315 void __init efi_free_boot_services(void)
317 phys_addr_t new_phys, new_size;
318 efi_memory_desc_t *md;
319 int num_entries = 0;
320 void *new, *new_md;
322 for_each_efi_memory_desc(md) {
323 unsigned long long start = md->phys_addr;
324 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
325 size_t rm_size;
327 if (md->type != EFI_BOOT_SERVICES_CODE &&
328 md->type != EFI_BOOT_SERVICES_DATA) {
329 num_entries++;
330 continue;
333 /* Do not free, someone else owns it: */
334 if (md->attribute & EFI_MEMORY_RUNTIME) {
335 num_entries++;
336 continue;
340 * Nasty quirk: if all sub-1MB memory is used for boot
341 * services, we can get here without having allocated the
342 * real mode trampoline. It's too late to hand boot services
343 * memory back to the memblock allocator, so instead
344 * try to manually allocate the trampoline if needed.
346 * I've seen this on a Dell XPS 13 9350 with firmware
347 * 1.4.4 with SGX enabled booting Linux via Fedora 24's
348 * grub2-efi on a hard disk. (And no, I don't know why
349 * this happened, but Linux should still try to boot rather
350 * panicing early.)
352 rm_size = real_mode_size_needed();
353 if (rm_size && (start + rm_size) < (1<<20) && size >= rm_size) {
354 set_real_mode_mem(start, rm_size);
355 start += rm_size;
356 size -= rm_size;
359 free_bootmem_late(start, size);
362 if (!num_entries)
363 return;
365 new_size = efi.memmap.desc_size * num_entries;
366 new_phys = efi_memmap_alloc(num_entries);
367 if (!new_phys) {
368 pr_err("Failed to allocate new EFI memmap\n");
369 return;
372 new = memremap(new_phys, new_size, MEMREMAP_WB);
373 if (!new) {
374 pr_err("Failed to map new EFI memmap\n");
375 return;
379 * Build a new EFI memmap that excludes any boot services
380 * regions that are not tagged EFI_MEMORY_RUNTIME, since those
381 * regions have now been freed.
383 new_md = new;
384 for_each_efi_memory_desc(md) {
385 if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
386 (md->type == EFI_BOOT_SERVICES_CODE ||
387 md->type == EFI_BOOT_SERVICES_DATA))
388 continue;
390 memcpy(new_md, md, efi.memmap.desc_size);
391 new_md += efi.memmap.desc_size;
394 memunmap(new);
396 if (efi_memmap_install(new_phys, num_entries)) {
397 pr_err("Could not install new EFI memmap\n");
398 return;
403 * A number of config table entries get remapped to virtual addresses
404 * after entering EFI virtual mode. However, the kexec kernel requires
405 * their physical addresses therefore we pass them via setup_data and
406 * correct those entries to their respective physical addresses here.
408 * Currently only handles smbios which is necessary for some firmware
409 * implementation.
411 int __init efi_reuse_config(u64 tables, int nr_tables)
413 int i, sz, ret = 0;
414 void *p, *tablep;
415 struct efi_setup_data *data;
417 if (!efi_setup)
418 return 0;
420 if (!efi_enabled(EFI_64BIT))
421 return 0;
423 data = early_memremap(efi_setup, sizeof(*data));
424 if (!data) {
425 ret = -ENOMEM;
426 goto out;
429 if (!data->smbios)
430 goto out_memremap;
432 sz = sizeof(efi_config_table_64_t);
434 p = tablep = early_memremap(tables, nr_tables * sz);
435 if (!p) {
436 pr_err("Could not map Configuration table!\n");
437 ret = -ENOMEM;
438 goto out_memremap;
441 for (i = 0; i < efi.systab->nr_tables; i++) {
442 efi_guid_t guid;
444 guid = ((efi_config_table_64_t *)p)->guid;
446 if (!efi_guidcmp(guid, SMBIOS_TABLE_GUID))
447 ((efi_config_table_64_t *)p)->table = data->smbios;
448 p += sz;
450 early_memunmap(tablep, nr_tables * sz);
452 out_memremap:
453 early_memunmap(data, sizeof(*data));
454 out:
455 return ret;
458 static const struct dmi_system_id sgi_uv1_dmi[] = {
459 { NULL, "SGI UV1",
460 { DMI_MATCH(DMI_PRODUCT_NAME, "Stoutland Platform"),
461 DMI_MATCH(DMI_PRODUCT_VERSION, "1.0"),
462 DMI_MATCH(DMI_BIOS_VENDOR, "SGI.COM"),
465 { } /* NULL entry stops DMI scanning */
468 void __init efi_apply_memmap_quirks(void)
471 * Once setup is done earlier, unmap the EFI memory map on mismatched
472 * firmware/kernel architectures since there is no support for runtime
473 * services.
475 if (!efi_runtime_supported()) {
476 pr_info("Setup done, disabling due to 32/64-bit mismatch\n");
477 efi_memmap_unmap();
480 /* UV2+ BIOS has a fix for this issue. UV1 still needs the quirk. */
481 if (dmi_check_system(sgi_uv1_dmi))
482 set_bit(EFI_OLD_MEMMAP, &efi.flags);
486 * For most modern platforms the preferred method of powering off is via
487 * ACPI. However, there are some that are known to require the use of
488 * EFI runtime services and for which ACPI does not work at all.
490 * Using EFI is a last resort, to be used only if no other option
491 * exists.
493 bool efi_reboot_required(void)
495 if (!acpi_gbl_reduced_hardware)
496 return false;
498 efi_reboot_quirk_mode = EFI_RESET_WARM;
499 return true;
502 bool efi_poweroff_required(void)
504 return acpi_gbl_reduced_hardware || acpi_no_s5;