1 #define pr_fmt(fmt) "efi: " fmt
3 #include <linux/init.h>
4 #include <linux/kernel.h>
5 #include <linux/string.h>
6 #include <linux/time.h>
7 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/memblock.h>
11 #include <linux/bootmem.h>
12 #include <linux/acpi.h>
13 #include <linux/dmi.h>
15 #include <asm/uv/uv.h>
16 #include <asm/sections.h>
18 #define EFI_MIN_RESERVE 5120
20 #define EFI_DUMMY_GUID \
21 EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9)
23 static efi_char16_t efi_dummy_name
[6] = { 'D', 'U', 'M', 'M', 'Y', 0 };
25 static bool efi_no_storage_paranoia
;
28 * Some firmware implementations refuse to boot if there's insufficient
29 * space in the variable store. The implementation of garbage collection
30 * in some FW versions causes stale (deleted) variables to take up space
31 * longer than intended and space is only freed once the store becomes
32 * almost completely full.
34 * Enabling this option disables the space checks in
35 * efi_query_variable_store() and forces garbage collection.
37 * Only enable this option if deleting EFI variables does not free up
38 * space in your variable store, e.g. if despite deleting variables
39 * you're unable to create new ones.
41 static int __init
setup_storage_paranoia(char *arg
)
43 efi_no_storage_paranoia
= true;
46 early_param("efi_no_storage_paranoia", setup_storage_paranoia
);
49 * Deleting the dummy variable which kicks off garbage collection
51 void efi_delete_dummy_variable(void)
53 efi
.set_variable(efi_dummy_name
, &EFI_DUMMY_GUID
,
54 EFI_VARIABLE_NON_VOLATILE
|
55 EFI_VARIABLE_BOOTSERVICE_ACCESS
|
56 EFI_VARIABLE_RUNTIME_ACCESS
,
61 * In the nonblocking case we do not attempt to perform garbage
62 * collection if we do not have enough free space. Rather, we do the
63 * bare minimum check and give up immediately if the available space
64 * is below EFI_MIN_RESERVE.
66 * This function is intended to be small and simple because it is
67 * invoked from crash handler paths.
70 query_variable_store_nonblocking(u32 attributes
, unsigned long size
)
73 u64 storage_size
, remaining_size
, max_size
;
75 status
= efi
.query_variable_info_nonblocking(attributes
, &storage_size
,
78 if (status
!= EFI_SUCCESS
)
81 if (remaining_size
- size
< EFI_MIN_RESERVE
)
82 return EFI_OUT_OF_RESOURCES
;
88 * Some firmware implementations refuse to boot if there's insufficient space
89 * in the variable store. Ensure that we never use more than a safe limit.
91 * Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable
94 efi_status_t
efi_query_variable_store(u32 attributes
, unsigned long size
,
98 u64 storage_size
, remaining_size
, max_size
;
100 if (!(attributes
& EFI_VARIABLE_NON_VOLATILE
))
104 return query_variable_store_nonblocking(attributes
, size
);
106 status
= efi
.query_variable_info(attributes
, &storage_size
,
107 &remaining_size
, &max_size
);
108 if (status
!= EFI_SUCCESS
)
112 * We account for that by refusing the write if permitting it would
113 * reduce the available space to under 5KB. This figure was provided by
114 * Samsung, so should be safe.
116 if ((remaining_size
- size
< EFI_MIN_RESERVE
) &&
117 !efi_no_storage_paranoia
) {
120 * Triggering garbage collection may require that the firmware
121 * generate a real EFI_OUT_OF_RESOURCES error. We can force
122 * that by attempting to use more space than is available.
124 unsigned long dummy_size
= remaining_size
+ 1024;
125 void *dummy
= kzalloc(dummy_size
, GFP_ATOMIC
);
128 return EFI_OUT_OF_RESOURCES
;
130 status
= efi
.set_variable(efi_dummy_name
, &EFI_DUMMY_GUID
,
131 EFI_VARIABLE_NON_VOLATILE
|
132 EFI_VARIABLE_BOOTSERVICE_ACCESS
|
133 EFI_VARIABLE_RUNTIME_ACCESS
,
136 if (status
== EFI_SUCCESS
) {
138 * This should have failed, so if it didn't make sure
139 * that we delete it...
141 efi_delete_dummy_variable();
147 * The runtime code may now have triggered a garbage collection
148 * run, so check the variable info again
150 status
= efi
.query_variable_info(attributes
, &storage_size
,
151 &remaining_size
, &max_size
);
153 if (status
!= EFI_SUCCESS
)
157 * There still isn't enough room, so return an error
159 if (remaining_size
- size
< EFI_MIN_RESERVE
)
160 return EFI_OUT_OF_RESOURCES
;
165 EXPORT_SYMBOL_GPL(efi_query_variable_store
);
168 * The UEFI specification makes it clear that the operating system is
169 * free to do whatever it wants with boot services code after
170 * ExitBootServices() has been called. Ignoring this recommendation a
171 * significant bunch of EFI implementations continue calling into boot
172 * services code (SetVirtualAddressMap). In order to work around such
173 * buggy implementations we reserve boot services region during EFI
174 * init and make sure it stays executable. Then, after
175 * SetVirtualAddressMap(), it is discarded.
177 * However, some boot services regions contain data that is required
178 * by drivers, so we need to track which memory ranges can never be
179 * freed. This is done by tagging those regions with the
180 * EFI_MEMORY_RUNTIME attribute.
182 * Any driver that wants to mark a region as reserved must use
183 * efi_mem_reserve() which will insert a new EFI memory descriptor
184 * into efi.memmap (splitting existing regions if necessary) and tag
185 * it with EFI_MEMORY_RUNTIME.
187 void __init
efi_arch_mem_reserve(phys_addr_t addr
, u64 size
)
189 phys_addr_t new_phys
, new_size
;
190 struct efi_mem_range mr
;
191 efi_memory_desc_t md
;
195 if (efi_mem_desc_lookup(addr
, &md
)) {
196 pr_err("Failed to lookup EFI memory descriptor for %pa\n", &addr
);
200 if (addr
+ size
> md
.phys_addr
+ (md
.num_pages
<< EFI_PAGE_SHIFT
)) {
201 pr_err("Region spans EFI memory descriptors, %pa\n", &addr
);
205 /* No need to reserve regions that will never be freed. */
206 if (md
.attribute
& EFI_MEMORY_RUNTIME
)
209 size
+= addr
% EFI_PAGE_SIZE
;
210 size
= round_up(size
, EFI_PAGE_SIZE
);
211 addr
= round_down(addr
, EFI_PAGE_SIZE
);
213 mr
.range
.start
= addr
;
214 mr
.range
.end
= addr
+ size
- 1;
215 mr
.attribute
= md
.attribute
| EFI_MEMORY_RUNTIME
;
217 num_entries
= efi_memmap_split_count(&md
, &mr
.range
);
218 num_entries
+= efi
.memmap
.nr_map
;
220 new_size
= efi
.memmap
.desc_size
* num_entries
;
222 new_phys
= efi_memmap_alloc(num_entries
);
224 pr_err("Could not allocate boot services memmap\n");
228 new = early_memremap(new_phys
, new_size
);
230 pr_err("Failed to map new boot services memmap\n");
234 efi_memmap_insert(&efi
.memmap
, new, &mr
);
235 early_memunmap(new, new_size
);
237 efi_memmap_install(new_phys
, num_entries
);
241 * Helper function for efi_reserve_boot_services() to figure out if we
242 * can free regions in efi_free_boot_services().
244 * Use this function to ensure we do not free regions owned by somebody
245 * else. We must only reserve (and then free) regions:
247 * - Not within any part of the kernel
248 * - Not the BIOS reserved area (E820_RESERVED, E820_NVS, etc)
250 static bool can_free_region(u64 start
, u64 size
)
252 if (start
+ size
> __pa_symbol(_text
) && start
<= __pa_symbol(_end
))
255 if (!e820_all_mapped(start
, start
+size
, E820_RAM
))
261 void __init
efi_reserve_boot_services(void)
263 efi_memory_desc_t
*md
;
265 for_each_efi_memory_desc(md
) {
266 u64 start
= md
->phys_addr
;
267 u64 size
= md
->num_pages
<< EFI_PAGE_SHIFT
;
268 bool already_reserved
;
270 if (md
->type
!= EFI_BOOT_SERVICES_CODE
&&
271 md
->type
!= EFI_BOOT_SERVICES_DATA
)
274 already_reserved
= memblock_is_region_reserved(start
, size
);
277 * Because the following memblock_reserve() is paired
278 * with free_bootmem_late() for this region in
279 * efi_free_boot_services(), we must be extremely
280 * careful not to reserve, and subsequently free,
281 * critical regions of memory (like the kernel image) or
282 * those regions that somebody else has already
285 * A good example of a critical region that must not be
286 * freed is page zero (first 4Kb of memory), which may
287 * contain boot services code/data but is marked
288 * E820_RESERVED by trim_bios_range().
290 if (!already_reserved
) {
291 memblock_reserve(start
, size
);
294 * If we are the first to reserve the region, no
295 * one else cares about it. We own it and can
298 if (can_free_region(start
, size
))
303 * We don't own the region. We must not free it.
305 * Setting this bit for a boot services region really
306 * doesn't make sense as far as the firmware is
307 * concerned, but it does provide us with a way to tag
308 * those regions that must not be paired with
309 * free_bootmem_late().
311 md
->attribute
|= EFI_MEMORY_RUNTIME
;
315 void __init
efi_free_boot_services(void)
317 phys_addr_t new_phys
, new_size
;
318 efi_memory_desc_t
*md
;
322 for_each_efi_memory_desc(md
) {
323 unsigned long long start
= md
->phys_addr
;
324 unsigned long long size
= md
->num_pages
<< EFI_PAGE_SHIFT
;
327 if (md
->type
!= EFI_BOOT_SERVICES_CODE
&&
328 md
->type
!= EFI_BOOT_SERVICES_DATA
) {
333 /* Do not free, someone else owns it: */
334 if (md
->attribute
& EFI_MEMORY_RUNTIME
) {
340 * Nasty quirk: if all sub-1MB memory is used for boot
341 * services, we can get here without having allocated the
342 * real mode trampoline. It's too late to hand boot services
343 * memory back to the memblock allocator, so instead
344 * try to manually allocate the trampoline if needed.
346 * I've seen this on a Dell XPS 13 9350 with firmware
347 * 1.4.4 with SGX enabled booting Linux via Fedora 24's
348 * grub2-efi on a hard disk. (And no, I don't know why
349 * this happened, but Linux should still try to boot rather
352 rm_size
= real_mode_size_needed();
353 if (rm_size
&& (start
+ rm_size
) < (1<<20) && size
>= rm_size
) {
354 set_real_mode_mem(start
, rm_size
);
359 free_bootmem_late(start
, size
);
365 new_size
= efi
.memmap
.desc_size
* num_entries
;
366 new_phys
= efi_memmap_alloc(num_entries
);
368 pr_err("Failed to allocate new EFI memmap\n");
372 new = memremap(new_phys
, new_size
, MEMREMAP_WB
);
374 pr_err("Failed to map new EFI memmap\n");
379 * Build a new EFI memmap that excludes any boot services
380 * regions that are not tagged EFI_MEMORY_RUNTIME, since those
381 * regions have now been freed.
384 for_each_efi_memory_desc(md
) {
385 if (!(md
->attribute
& EFI_MEMORY_RUNTIME
) &&
386 (md
->type
== EFI_BOOT_SERVICES_CODE
||
387 md
->type
== EFI_BOOT_SERVICES_DATA
))
390 memcpy(new_md
, md
, efi
.memmap
.desc_size
);
391 new_md
+= efi
.memmap
.desc_size
;
396 if (efi_memmap_install(new_phys
, num_entries
)) {
397 pr_err("Could not install new EFI memmap\n");
403 * A number of config table entries get remapped to virtual addresses
404 * after entering EFI virtual mode. However, the kexec kernel requires
405 * their physical addresses therefore we pass them via setup_data and
406 * correct those entries to their respective physical addresses here.
408 * Currently only handles smbios which is necessary for some firmware
411 int __init
efi_reuse_config(u64 tables
, int nr_tables
)
415 struct efi_setup_data
*data
;
420 if (!efi_enabled(EFI_64BIT
))
423 data
= early_memremap(efi_setup
, sizeof(*data
));
432 sz
= sizeof(efi_config_table_64_t
);
434 p
= tablep
= early_memremap(tables
, nr_tables
* sz
);
436 pr_err("Could not map Configuration table!\n");
441 for (i
= 0; i
< efi
.systab
->nr_tables
; i
++) {
444 guid
= ((efi_config_table_64_t
*)p
)->guid
;
446 if (!efi_guidcmp(guid
, SMBIOS_TABLE_GUID
))
447 ((efi_config_table_64_t
*)p
)->table
= data
->smbios
;
450 early_memunmap(tablep
, nr_tables
* sz
);
453 early_memunmap(data
, sizeof(*data
));
458 static const struct dmi_system_id sgi_uv1_dmi
[] = {
460 { DMI_MATCH(DMI_PRODUCT_NAME
, "Stoutland Platform"),
461 DMI_MATCH(DMI_PRODUCT_VERSION
, "1.0"),
462 DMI_MATCH(DMI_BIOS_VENDOR
, "SGI.COM"),
465 { } /* NULL entry stops DMI scanning */
468 void __init
efi_apply_memmap_quirks(void)
471 * Once setup is done earlier, unmap the EFI memory map on mismatched
472 * firmware/kernel architectures since there is no support for runtime
475 if (!efi_runtime_supported()) {
476 pr_info("Setup done, disabling due to 32/64-bit mismatch\n");
480 /* UV2+ BIOS has a fix for this issue. UV1 still needs the quirk. */
481 if (dmi_check_system(sgi_uv1_dmi
))
482 set_bit(EFI_OLD_MEMMAP
, &efi
.flags
);
486 * For most modern platforms the preferred method of powering off is via
487 * ACPI. However, there are some that are known to require the use of
488 * EFI runtime services and for which ACPI does not work at all.
490 * Using EFI is a last resort, to be used only if no other option
493 bool efi_reboot_required(void)
495 if (!acpi_gbl_reduced_hardware
)
498 efi_reboot_quirk_mode
= EFI_RESET_WARM
;
502 bool efi_poweroff_required(void)
504 return acpi_gbl_reduced_hardware
|| acpi_no_s5
;