2 * random.c -- A strong random number generator
4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, and the entire permission notice in its entirety,
14 * including the disclaimer of warranties.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 * products derived from this software without specific prior
22 * ALTERNATIVELY, this product may be distributed under the terms of
23 * the GNU General Public License, in which case the provisions of the GPL are
24 * required INSTEAD OF the above restrictions. (This clause is
25 * necessary due to a potential bad interaction between the GPL and
26 * the restrictions contained in a BSD-style copyright.)
28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
43 * (now, with legal B.S. out of the way.....)
45 * This routine gathers environmental noise from device drivers, etc.,
46 * and returns good random numbers, suitable for cryptographic use.
47 * Besides the obvious cryptographic uses, these numbers are also good
48 * for seeding TCP sequence numbers, and other places where it is
49 * desirable to have numbers which are not only random, but hard to
50 * predict by an attacker.
55 * Computers are very predictable devices. Hence it is extremely hard
56 * to produce truly random numbers on a computer --- as opposed to
57 * pseudo-random numbers, which can easily generated by using a
58 * algorithm. Unfortunately, it is very easy for attackers to guess
59 * the sequence of pseudo-random number generators, and for some
60 * applications this is not acceptable. So instead, we must try to
61 * gather "environmental noise" from the computer's environment, which
62 * must be hard for outside attackers to observe, and use that to
63 * generate random numbers. In a Unix environment, this is best done
64 * from inside the kernel.
66 * Sources of randomness from the environment include inter-keyboard
67 * timings, inter-interrupt timings from some interrupts, and other
68 * events which are both (a) non-deterministic and (b) hard for an
69 * outside observer to measure. Randomness from these sources are
70 * added to an "entropy pool", which is mixed using a CRC-like function.
71 * This is not cryptographically strong, but it is adequate assuming
72 * the randomness is not chosen maliciously, and it is fast enough that
73 * the overhead of doing it on every interrupt is very reasonable.
74 * As random bytes are mixed into the entropy pool, the routines keep
75 * an *estimate* of how many bits of randomness have been stored into
76 * the random number generator's internal state.
78 * When random bytes are desired, they are obtained by taking the SHA
79 * hash of the contents of the "entropy pool". The SHA hash avoids
80 * exposing the internal state of the entropy pool. It is believed to
81 * be computationally infeasible to derive any useful information
82 * about the input of SHA from its output. Even if it is possible to
83 * analyze SHA in some clever way, as long as the amount of data
84 * returned from the generator is less than the inherent entropy in
85 * the pool, the output data is totally unpredictable. For this
86 * reason, the routine decreases its internal estimate of how many
87 * bits of "true randomness" are contained in the entropy pool as it
88 * outputs random numbers.
90 * If this estimate goes to zero, the routine can still generate
91 * random numbers; however, an attacker may (at least in theory) be
92 * able to infer the future output of the generator from prior
93 * outputs. This requires successful cryptanalysis of SHA, which is
94 * not believed to be feasible, but there is a remote possibility.
95 * Nonetheless, these numbers should be useful for the vast majority
98 * Exported interfaces ---- output
99 * ===============================
101 * There are three exported interfaces; the first is one designed to
102 * be used from within the kernel:
104 * void get_random_bytes(void *buf, int nbytes);
106 * This interface will return the requested number of random bytes,
107 * and place it in the requested buffer.
109 * The two other interfaces are two character devices /dev/random and
110 * /dev/urandom. /dev/random is suitable for use when very high
111 * quality randomness is desired (for example, for key generation or
112 * one-time pads), as it will only return a maximum of the number of
113 * bits of randomness (as estimated by the random number generator)
114 * contained in the entropy pool.
116 * The /dev/urandom device does not have this limit, and will return
117 * as many bytes as are requested. As more and more random bytes are
118 * requested without giving time for the entropy pool to recharge,
119 * this will result in random numbers that are merely cryptographically
120 * strong. For many applications, however, this is acceptable.
122 * Exported interfaces ---- input
123 * ==============================
125 * The current exported interfaces for gathering environmental noise
126 * from the devices are:
128 * void add_device_randomness(const void *buf, unsigned int size);
129 * void add_input_randomness(unsigned int type, unsigned int code,
130 * unsigned int value);
131 * void add_interrupt_randomness(int irq, int irq_flags);
132 * void add_disk_randomness(struct gendisk *disk);
134 * add_device_randomness() is for adding data to the random pool that
135 * is likely to differ between two devices (or possibly even per boot).
136 * This would be things like MAC addresses or serial numbers, or the
137 * read-out of the RTC. This does *not* add any actual entropy to the
138 * pool, but it initializes the pool to different values for devices
139 * that might otherwise be identical and have very little entropy
140 * available to them (particularly common in the embedded world).
142 * add_input_randomness() uses the input layer interrupt timing, as well as
143 * the event type information from the hardware.
145 * add_interrupt_randomness() uses the interrupt timing as random
146 * inputs to the entropy pool. Using the cycle counters and the irq source
147 * as inputs, it feeds the randomness roughly once a second.
149 * add_disk_randomness() uses what amounts to the seek time of block
150 * layer request events, on a per-disk_devt basis, as input to the
151 * entropy pool. Note that high-speed solid state drives with very low
152 * seek times do not make for good sources of entropy, as their seek
153 * times are usually fairly consistent.
155 * All of these routines try to estimate how many bits of randomness a
156 * particular randomness source. They do this by keeping track of the
157 * first and second order deltas of the event timings.
159 * Ensuring unpredictability at system startup
160 * ============================================
162 * When any operating system starts up, it will go through a sequence
163 * of actions that are fairly predictable by an adversary, especially
164 * if the start-up does not involve interaction with a human operator.
165 * This reduces the actual number of bits of unpredictability in the
166 * entropy pool below the value in entropy_count. In order to
167 * counteract this effect, it helps to carry information in the
168 * entropy pool across shut-downs and start-ups. To do this, put the
169 * following lines an appropriate script which is run during the boot
172 * echo "Initializing random number generator..."
173 * random_seed=/var/run/random-seed
174 * # Carry a random seed from start-up to start-up
175 * # Load and then save the whole entropy pool
176 * if [ -f $random_seed ]; then
177 * cat $random_seed >/dev/urandom
181 * chmod 600 $random_seed
182 * dd if=/dev/urandom of=$random_seed count=1 bs=512
184 * and the following lines in an appropriate script which is run as
185 * the system is shutdown:
187 * # Carry a random seed from shut-down to start-up
188 * # Save the whole entropy pool
189 * echo "Saving random seed..."
190 * random_seed=/var/run/random-seed
192 * chmod 600 $random_seed
193 * dd if=/dev/urandom of=$random_seed count=1 bs=512
195 * For example, on most modern systems using the System V init
196 * scripts, such code fragments would be found in
197 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
200 * Effectively, these commands cause the contents of the entropy pool
201 * to be saved at shut-down time and reloaded into the entropy pool at
202 * start-up. (The 'dd' in the addition to the bootup script is to
203 * make sure that /etc/random-seed is different for every start-up,
204 * even if the system crashes without executing rc.0.) Even with
205 * complete knowledge of the start-up activities, predicting the state
206 * of the entropy pool requires knowledge of the previous history of
209 * Configuring the /dev/random driver under Linux
210 * ==============================================
212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
213 * the /dev/mem major number (#1). So if your system does not have
214 * /dev/random and /dev/urandom created already, they can be created
215 * by using the commands:
217 * mknod /dev/random c 1 8
218 * mknod /dev/urandom c 1 9
223 * Ideas for constructing this random number generator were derived
224 * from Pretty Good Privacy's random number generator, and from private
225 * discussions with Phil Karn. Colin Plumb provided a faster random
226 * number generator, which speed up the mixing function of the entropy
227 * pool, taken from PGPfone. Dale Worley has also contributed many
228 * useful ideas and suggestions to improve this driver.
230 * Any flaws in the design are solely my responsibility, and should
231 * not be attributed to the Phil, Colin, or any of authors of PGP.
233 * Further background information on this topic may be obtained from
234 * RFC 1750, "Randomness Recommendations for Security", by Donald
235 * Eastlake, Steve Crocker, and Jeff Schiller.
238 #include <linux/utsname.h>
239 #include <linux/module.h>
240 #include <linux/kernel.h>
241 #include <linux/major.h>
242 #include <linux/string.h>
243 #include <linux/fcntl.h>
244 #include <linux/slab.h>
245 #include <linux/random.h>
246 #include <linux/poll.h>
247 #include <linux/init.h>
248 #include <linux/fs.h>
249 #include <linux/genhd.h>
250 #include <linux/interrupt.h>
251 #include <linux/mm.h>
252 #include <linux/nodemask.h>
253 #include <linux/spinlock.h>
254 #include <linux/kthread.h>
255 #include <linux/percpu.h>
256 #include <linux/cryptohash.h>
257 #include <linux/fips.h>
258 #include <linux/ptrace.h>
259 #include <linux/kmemcheck.h>
260 #include <linux/workqueue.h>
261 #include <linux/irq.h>
262 #include <linux/ratelimit.h>
263 #include <linux/syscalls.h>
264 #include <linux/completion.h>
265 #include <linux/uuid.h>
266 #include <crypto/chacha20.h>
268 #include <asm/processor.h>
269 #include <asm/uaccess.h>
271 #include <asm/irq_regs.h>
274 #define CREATE_TRACE_POINTS
275 #include <trace/events/random.h>
277 /* #define ADD_INTERRUPT_BENCH */
280 * Configuration information
282 #define INPUT_POOL_SHIFT 12
283 #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
284 #define OUTPUT_POOL_SHIFT 10
285 #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
286 #define SEC_XFER_SIZE 512
287 #define EXTRACT_SIZE 10
289 #define DEBUG_RANDOM_BOOT 0
291 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
294 * To allow fractional bits to be tracked, the entropy_count field is
295 * denominated in units of 1/8th bits.
297 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
298 * credit_entropy_bits() needs to be 64 bits wide.
300 #define ENTROPY_SHIFT 3
301 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
304 * The minimum number of bits of entropy before we wake up a read on
305 * /dev/random. Should be enough to do a significant reseed.
307 static int random_read_wakeup_bits
= 64;
310 * If the entropy count falls under this number of bits, then we
311 * should wake up processes which are selecting or polling on write
312 * access to /dev/random.
314 static int random_write_wakeup_bits
= 28 * OUTPUT_POOL_WORDS
;
317 * The minimum number of seconds between urandom pool reseeding. We
318 * do this to limit the amount of entropy that can be drained from the
319 * input pool even if there are heavy demands on /dev/urandom.
321 static int random_min_urandom_seed
= 60;
324 * Originally, we used a primitive polynomial of degree .poolwords
325 * over GF(2). The taps for various sizes are defined below. They
326 * were chosen to be evenly spaced except for the last tap, which is 1
327 * to get the twisting happening as fast as possible.
329 * For the purposes of better mixing, we use the CRC-32 polynomial as
330 * well to make a (modified) twisted Generalized Feedback Shift
331 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
332 * generators. ACM Transactions on Modeling and Computer Simulation
333 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
334 * GFSR generators II. ACM Transactions on Modeling and Computer
335 * Simulation 4:254-266)
337 * Thanks to Colin Plumb for suggesting this.
339 * The mixing operation is much less sensitive than the output hash,
340 * where we use SHA-1. All that we want of mixing operation is that
341 * it be a good non-cryptographic hash; i.e. it not produce collisions
342 * when fed "random" data of the sort we expect to see. As long as
343 * the pool state differs for different inputs, we have preserved the
344 * input entropy and done a good job. The fact that an intelligent
345 * attacker can construct inputs that will produce controlled
346 * alterations to the pool's state is not important because we don't
347 * consider such inputs to contribute any randomness. The only
348 * property we need with respect to them is that the attacker can't
349 * increase his/her knowledge of the pool's state. Since all
350 * additions are reversible (knowing the final state and the input,
351 * you can reconstruct the initial state), if an attacker has any
352 * uncertainty about the initial state, he/she can only shuffle that
353 * uncertainty about, but never cause any collisions (which would
354 * decrease the uncertainty).
356 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
357 * Videau in their paper, "The Linux Pseudorandom Number Generator
358 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
359 * paper, they point out that we are not using a true Twisted GFSR,
360 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
361 * is, with only three taps, instead of the six that we are using).
362 * As a result, the resulting polynomial is neither primitive nor
363 * irreducible, and hence does not have a maximal period over
364 * GF(2**32). They suggest a slight change to the generator
365 * polynomial which improves the resulting TGFSR polynomial to be
366 * irreducible, which we have made here.
368 static struct poolinfo
{
369 int poolbitshift
, poolwords
, poolbytes
, poolbits
, poolfracbits
;
370 #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
371 int tap1
, tap2
, tap3
, tap4
, tap5
;
372 } poolinfo_table
[] = {
373 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
374 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
375 { S(128), 104, 76, 51, 25, 1 },
376 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
377 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
378 { S(32), 26, 19, 14, 7, 1 },
380 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
381 { S(2048), 1638, 1231, 819, 411, 1 },
383 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
384 { S(1024), 817, 615, 412, 204, 1 },
386 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
387 { S(1024), 819, 616, 410, 207, 2 },
389 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
390 { S(512), 411, 308, 208, 104, 1 },
392 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
393 { S(512), 409, 307, 206, 102, 2 },
394 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
395 { S(512), 409, 309, 205, 103, 2 },
397 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
398 { S(256), 205, 155, 101, 52, 1 },
400 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
401 { S(128), 103, 78, 51, 27, 2 },
403 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
404 { S(64), 52, 39, 26, 14, 1 },
409 * Static global variables
411 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait
);
412 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait
);
413 static DECLARE_WAIT_QUEUE_HEAD(urandom_init_wait
);
414 static struct fasync_struct
*fasync
;
416 static DEFINE_SPINLOCK(random_ready_list_lock
);
417 static LIST_HEAD(random_ready_list
);
421 unsigned long init_time
;
425 struct crng_state primary_crng
= {
426 .lock
= __SPIN_LOCK_UNLOCKED(primary_crng
.lock
),
430 * crng_init = 0 --> Uninitialized
432 * 2 --> Initialized from input_pool
434 * crng_init is protected by primary_crng->lock, and only increases
435 * its value (from 0->1->2).
437 static int crng_init
= 0;
438 #define crng_ready() (likely(crng_init > 1))
439 static int crng_init_cnt
= 0;
440 static unsigned long crng_global_init_time
= 0;
441 #define CRNG_INIT_CNT_THRESH (2*CHACHA20_KEY_SIZE)
442 static void _extract_crng(struct crng_state
*crng
,
443 __u8 out
[CHACHA20_BLOCK_SIZE
]);
444 static void _crng_backtrack_protect(struct crng_state
*crng
,
445 __u8 tmp
[CHACHA20_BLOCK_SIZE
], int used
);
446 static void process_random_ready_list(void);
448 static struct ratelimit_state unseeded_warning
=
449 RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ
, 3);
450 static struct ratelimit_state urandom_warning
=
451 RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ
, 3);
453 static int ratelimit_disable __read_mostly
;
455 module_param_named(ratelimit_disable
, ratelimit_disable
, int, 0644);
456 MODULE_PARM_DESC(ratelimit_disable
, "Disable random ratelimit suppression");
458 /**********************************************************************
460 * OS independent entropy store. Here are the functions which handle
461 * storing entropy in an entropy pool.
463 **********************************************************************/
465 struct entropy_store
;
466 struct entropy_store
{
467 /* read-only data: */
468 const struct poolinfo
*poolinfo
;
471 struct entropy_store
*pull
;
472 struct work_struct push_work
;
474 /* read-write data: */
475 unsigned long last_pulled
;
477 unsigned short add_ptr
;
478 unsigned short input_rotate
;
481 unsigned int initialized
:1;
482 unsigned int limit
:1;
483 unsigned int last_data_init
:1;
484 __u8 last_data
[EXTRACT_SIZE
];
487 static ssize_t
extract_entropy(struct entropy_store
*r
, void *buf
,
488 size_t nbytes
, int min
, int rsvd
);
489 static ssize_t
_extract_entropy(struct entropy_store
*r
, void *buf
,
490 size_t nbytes
, int fips
);
492 static void crng_reseed(struct crng_state
*crng
, struct entropy_store
*r
);
493 static void push_to_pool(struct work_struct
*work
);
494 static __u32 input_pool_data
[INPUT_POOL_WORDS
] __latent_entropy
;
495 static __u32 blocking_pool_data
[OUTPUT_POOL_WORDS
] __latent_entropy
;
497 static struct entropy_store input_pool
= {
498 .poolinfo
= &poolinfo_table
[0],
501 .lock
= __SPIN_LOCK_UNLOCKED(input_pool
.lock
),
502 .pool
= input_pool_data
505 static struct entropy_store blocking_pool
= {
506 .poolinfo
= &poolinfo_table
[1],
510 .lock
= __SPIN_LOCK_UNLOCKED(blocking_pool
.lock
),
511 .pool
= blocking_pool_data
,
512 .push_work
= __WORK_INITIALIZER(blocking_pool
.push_work
,
516 static __u32
const twist_table
[8] = {
517 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
518 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
521 * This function adds bytes into the entropy "pool". It does not
522 * update the entropy estimate. The caller should call
523 * credit_entropy_bits if this is appropriate.
525 * The pool is stirred with a primitive polynomial of the appropriate
526 * degree, and then twisted. We twist by three bits at a time because
527 * it's cheap to do so and helps slightly in the expected case where
528 * the entropy is concentrated in the low-order bits.
530 static void _mix_pool_bytes(struct entropy_store
*r
, const void *in
,
533 unsigned long i
, tap1
, tap2
, tap3
, tap4
, tap5
;
535 int wordmask
= r
->poolinfo
->poolwords
- 1;
536 const char *bytes
= in
;
539 tap1
= r
->poolinfo
->tap1
;
540 tap2
= r
->poolinfo
->tap2
;
541 tap3
= r
->poolinfo
->tap3
;
542 tap4
= r
->poolinfo
->tap4
;
543 tap5
= r
->poolinfo
->tap5
;
545 input_rotate
= r
->input_rotate
;
548 /* mix one byte at a time to simplify size handling and churn faster */
550 w
= rol32(*bytes
++, input_rotate
);
551 i
= (i
- 1) & wordmask
;
553 /* XOR in the various taps */
555 w
^= r
->pool
[(i
+ tap1
) & wordmask
];
556 w
^= r
->pool
[(i
+ tap2
) & wordmask
];
557 w
^= r
->pool
[(i
+ tap3
) & wordmask
];
558 w
^= r
->pool
[(i
+ tap4
) & wordmask
];
559 w
^= r
->pool
[(i
+ tap5
) & wordmask
];
561 /* Mix the result back in with a twist */
562 r
->pool
[i
] = (w
>> 3) ^ twist_table
[w
& 7];
565 * Normally, we add 7 bits of rotation to the pool.
566 * At the beginning of the pool, add an extra 7 bits
567 * rotation, so that successive passes spread the
568 * input bits across the pool evenly.
570 input_rotate
= (input_rotate
+ (i
? 7 : 14)) & 31;
573 r
->input_rotate
= input_rotate
;
577 static void __mix_pool_bytes(struct entropy_store
*r
, const void *in
,
580 trace_mix_pool_bytes_nolock(r
->name
, nbytes
, _RET_IP_
);
581 _mix_pool_bytes(r
, in
, nbytes
);
584 static void mix_pool_bytes(struct entropy_store
*r
, const void *in
,
589 trace_mix_pool_bytes(r
->name
, nbytes
, _RET_IP_
);
590 spin_lock_irqsave(&r
->lock
, flags
);
591 _mix_pool_bytes(r
, in
, nbytes
);
592 spin_unlock_irqrestore(&r
->lock
, flags
);
598 unsigned short reg_idx
;
603 * This is a fast mixing routine used by the interrupt randomness
604 * collector. It's hardcoded for an 128 bit pool and assumes that any
605 * locks that might be needed are taken by the caller.
607 static void fast_mix(struct fast_pool
*f
)
609 __u32 a
= f
->pool
[0], b
= f
->pool
[1];
610 __u32 c
= f
->pool
[2], d
= f
->pool
[3];
613 b
= rol32(b
, 6); d
= rol32(d
, 27);
617 b
= rol32(b
, 16); d
= rol32(d
, 14);
621 b
= rol32(b
, 6); d
= rol32(d
, 27);
625 b
= rol32(b
, 16); d
= rol32(d
, 14);
628 f
->pool
[0] = a
; f
->pool
[1] = b
;
629 f
->pool
[2] = c
; f
->pool
[3] = d
;
633 static void process_random_ready_list(void)
636 struct random_ready_callback
*rdy
, *tmp
;
638 spin_lock_irqsave(&random_ready_list_lock
, flags
);
639 list_for_each_entry_safe(rdy
, tmp
, &random_ready_list
, list
) {
640 struct module
*owner
= rdy
->owner
;
642 list_del_init(&rdy
->list
);
646 spin_unlock_irqrestore(&random_ready_list_lock
, flags
);
650 * Credit (or debit) the entropy store with n bits of entropy.
651 * Use credit_entropy_bits_safe() if the value comes from userspace
652 * or otherwise should be checked for extreme values.
654 static void credit_entropy_bits(struct entropy_store
*r
, int nbits
)
656 int entropy_count
, orig
;
657 const int pool_size
= r
->poolinfo
->poolfracbits
;
658 int nfrac
= nbits
<< ENTROPY_SHIFT
;
664 entropy_count
= orig
= ACCESS_ONCE(r
->entropy_count
);
667 entropy_count
+= nfrac
;
670 * Credit: we have to account for the possibility of
671 * overwriting already present entropy. Even in the
672 * ideal case of pure Shannon entropy, new contributions
673 * approach the full value asymptotically:
675 * entropy <- entropy + (pool_size - entropy) *
676 * (1 - exp(-add_entropy/pool_size))
678 * For add_entropy <= pool_size/2 then
679 * (1 - exp(-add_entropy/pool_size)) >=
680 * (add_entropy/pool_size)*0.7869...
681 * so we can approximate the exponential with
682 * 3/4*add_entropy/pool_size and still be on the
683 * safe side by adding at most pool_size/2 at a time.
685 * The use of pool_size-2 in the while statement is to
686 * prevent rounding artifacts from making the loop
687 * arbitrarily long; this limits the loop to log2(pool_size)*2
688 * turns no matter how large nbits is.
691 const int s
= r
->poolinfo
->poolbitshift
+ ENTROPY_SHIFT
+ 2;
692 /* The +2 corresponds to the /4 in the denominator */
695 unsigned int anfrac
= min(pnfrac
, pool_size
/2);
697 ((pool_size
- entropy_count
)*anfrac
*3) >> s
;
699 entropy_count
+= add
;
701 } while (unlikely(entropy_count
< pool_size
-2 && pnfrac
));
704 if (unlikely(entropy_count
< 0)) {
705 pr_warn("random: negative entropy/overflow: pool %s count %d\n",
706 r
->name
, entropy_count
);
709 } else if (entropy_count
> pool_size
)
710 entropy_count
= pool_size
;
711 if (cmpxchg(&r
->entropy_count
, orig
, entropy_count
) != orig
)
714 r
->entropy_total
+= nbits
;
715 if (!r
->initialized
&& r
->entropy_total
> 128) {
717 r
->entropy_total
= 0;
720 trace_credit_entropy_bits(r
->name
, nbits
,
721 entropy_count
>> ENTROPY_SHIFT
,
722 r
->entropy_total
, _RET_IP_
);
724 if (r
== &input_pool
) {
725 int entropy_bits
= entropy_count
>> ENTROPY_SHIFT
;
727 if (crng_init
< 2 && entropy_bits
>= 128) {
728 crng_reseed(&primary_crng
, r
);
729 entropy_bits
= r
->entropy_count
>> ENTROPY_SHIFT
;
732 /* should we wake readers? */
733 if (entropy_bits
>= random_read_wakeup_bits
) {
734 wake_up_interruptible(&random_read_wait
);
735 kill_fasync(&fasync
, SIGIO
, POLL_IN
);
737 /* If the input pool is getting full, send some
738 * entropy to the blocking pool until it is 75% full.
740 if (entropy_bits
> random_write_wakeup_bits
&&
742 r
->entropy_total
>= 2*random_read_wakeup_bits
) {
743 struct entropy_store
*other
= &blocking_pool
;
745 if (other
->entropy_count
<=
746 3 * other
->poolinfo
->poolfracbits
/ 4) {
747 schedule_work(&other
->push_work
);
748 r
->entropy_total
= 0;
754 static int credit_entropy_bits_safe(struct entropy_store
*r
, int nbits
)
756 const int nbits_max
= r
->poolinfo
->poolwords
* 32;
761 /* Cap the value to avoid overflows */
762 nbits
= min(nbits
, nbits_max
);
764 credit_entropy_bits(r
, nbits
);
768 /*********************************************************************
770 * CRNG using CHACHA20
772 *********************************************************************/
774 #define CRNG_RESEED_INTERVAL (300*HZ)
776 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait
);
780 * Hack to deal with crazy userspace progams when they are all trying
781 * to access /dev/urandom in parallel. The programs are almost
782 * certainly doing something terribly wrong, but we'll work around
783 * their brain damage.
785 static struct crng_state
**crng_node_pool __read_mostly
;
788 static void crng_initialize(struct crng_state
*crng
)
793 memcpy(&crng
->state
[0], "expand 32-byte k", 16);
794 if (crng
== &primary_crng
)
795 _extract_entropy(&input_pool
, &crng
->state
[4],
796 sizeof(__u32
) * 12, 0);
798 get_random_bytes(&crng
->state
[4], sizeof(__u32
) * 12);
799 for (i
= 4; i
< 16; i
++) {
800 if (!arch_get_random_seed_long(&rv
) &&
801 !arch_get_random_long(&rv
))
802 rv
= random_get_entropy();
803 crng
->state
[i
] ^= rv
;
805 crng
->init_time
= jiffies
- CRNG_RESEED_INTERVAL
- 1;
808 static int crng_fast_load(const char *cp
, size_t len
)
813 if (!spin_trylock_irqsave(&primary_crng
.lock
, flags
))
815 if (crng_init
!= 0) {
816 spin_unlock_irqrestore(&primary_crng
.lock
, flags
);
819 p
= (unsigned char *) &primary_crng
.state
[4];
820 while (len
> 0 && crng_init_cnt
< CRNG_INIT_CNT_THRESH
) {
821 p
[crng_init_cnt
% CHACHA20_KEY_SIZE
] ^= *cp
;
822 cp
++; crng_init_cnt
++; len
--;
824 if (crng_init_cnt
>= CRNG_INIT_CNT_THRESH
) {
826 wake_up_interruptible(&crng_init_wait
);
827 pr_notice("random: fast init done\n");
829 spin_unlock_irqrestore(&primary_crng
.lock
, flags
);
834 static void do_numa_crng_init(struct work_struct
*work
)
837 struct crng_state
*crng
;
838 struct crng_state
**pool
;
840 pool
= kcalloc(nr_node_ids
, sizeof(*pool
), GFP_KERNEL
|__GFP_NOFAIL
);
841 for_each_online_node(i
) {
842 crng
= kmalloc_node(sizeof(struct crng_state
),
843 GFP_KERNEL
| __GFP_NOFAIL
, i
);
844 spin_lock_init(&crng
->lock
);
845 crng_initialize(crng
);
849 if (cmpxchg(&crng_node_pool
, NULL
, pool
)) {
856 static DECLARE_WORK(numa_crng_init_work
, do_numa_crng_init
);
858 static void numa_crng_init(void)
860 schedule_work(&numa_crng_init_work
);
863 static void numa_crng_init(void) {}
866 static void crng_reseed(struct crng_state
*crng
, struct entropy_store
*r
)
871 __u8 block
[CHACHA20_BLOCK_SIZE
];
876 num
= extract_entropy(r
, &buf
, 32, 16, 0);
880 _extract_crng(&primary_crng
, buf
.block
);
881 _crng_backtrack_protect(&primary_crng
, buf
.block
,
884 spin_lock_irqsave(&crng
->lock
, flags
);
885 for (i
= 0; i
< 8; i
++) {
887 if (!arch_get_random_seed_long(&rv
) &&
888 !arch_get_random_long(&rv
))
889 rv
= random_get_entropy();
890 crng
->state
[i
+4] ^= buf
.key
[i
] ^ rv
;
892 memzero_explicit(&buf
, sizeof(buf
));
893 crng
->init_time
= jiffies
;
894 if (crng
== &primary_crng
&& crng_init
< 2) {
897 process_random_ready_list();
898 wake_up_interruptible(&crng_init_wait
);
899 pr_notice("random: crng init done\n");
900 if (unseeded_warning
.missed
) {
901 pr_notice("random: %d get_random_xx warning(s) missed "
902 "due to ratelimiting\n",
903 unseeded_warning
.missed
);
904 unseeded_warning
.missed
= 0;
906 if (urandom_warning
.missed
) {
907 pr_notice("random: %d urandom warning(s) missed "
908 "due to ratelimiting\n",
909 urandom_warning
.missed
);
910 urandom_warning
.missed
= 0;
913 spin_unlock_irqrestore(&crng
->lock
, flags
);
916 static inline void maybe_reseed_primary_crng(void)
919 time_after(jiffies
, primary_crng
.init_time
+ CRNG_RESEED_INTERVAL
))
920 crng_reseed(&primary_crng
, &input_pool
);
923 static inline void crng_wait_ready(void)
925 wait_event_interruptible(crng_init_wait
, crng_ready());
928 static void _extract_crng(struct crng_state
*crng
,
929 __u8 out
[CHACHA20_BLOCK_SIZE
])
931 unsigned long v
, flags
;
934 (time_after(crng_global_init_time
, crng
->init_time
) ||
935 time_after(jiffies
, crng
->init_time
+ CRNG_RESEED_INTERVAL
)))
936 crng_reseed(crng
, crng
== &primary_crng
? &input_pool
: NULL
);
937 spin_lock_irqsave(&crng
->lock
, flags
);
938 if (arch_get_random_long(&v
))
939 crng
->state
[14] ^= v
;
940 chacha20_block(&crng
->state
[0], out
);
941 if (crng
->state
[12] == 0)
943 spin_unlock_irqrestore(&crng
->lock
, flags
);
946 static void extract_crng(__u8 out
[CHACHA20_BLOCK_SIZE
])
948 struct crng_state
*crng
= NULL
;
952 crng
= crng_node_pool
[numa_node_id()];
955 crng
= &primary_crng
;
956 _extract_crng(crng
, out
);
960 * Use the leftover bytes from the CRNG block output (if there is
961 * enough) to mutate the CRNG key to provide backtracking protection.
963 static void _crng_backtrack_protect(struct crng_state
*crng
,
964 __u8 tmp
[CHACHA20_BLOCK_SIZE
], int used
)
970 used
= round_up(used
, sizeof(__u32
));
971 if (used
+ CHACHA20_KEY_SIZE
> CHACHA20_BLOCK_SIZE
) {
975 spin_lock_irqsave(&crng
->lock
, flags
);
976 s
= (__u32
*) &tmp
[used
];
978 for (i
=0; i
< 8; i
++)
980 spin_unlock_irqrestore(&crng
->lock
, flags
);
983 static void crng_backtrack_protect(__u8 tmp
[CHACHA20_BLOCK_SIZE
], int used
)
985 struct crng_state
*crng
= NULL
;
989 crng
= crng_node_pool
[numa_node_id()];
992 crng
= &primary_crng
;
993 _crng_backtrack_protect(crng
, tmp
, used
);
996 static ssize_t
extract_crng_user(void __user
*buf
, size_t nbytes
)
998 ssize_t ret
= 0, i
= CHACHA20_BLOCK_SIZE
;
999 __u8 tmp
[CHACHA20_BLOCK_SIZE
];
1000 int large_request
= (nbytes
> 256);
1003 if (large_request
&& need_resched()) {
1004 if (signal_pending(current
)) {
1013 i
= min_t(int, nbytes
, CHACHA20_BLOCK_SIZE
);
1014 if (copy_to_user(buf
, tmp
, i
)) {
1023 crng_backtrack_protect(tmp
, i
);
1025 /* Wipe data just written to memory */
1026 memzero_explicit(tmp
, sizeof(tmp
));
1032 /*********************************************************************
1034 * Entropy input management
1036 *********************************************************************/
1038 /* There is one of these per entropy source */
1039 struct timer_rand_state
{
1041 long last_delta
, last_delta2
;
1042 unsigned dont_count_entropy
:1;
1045 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
1048 * Add device- or boot-specific data to the input pool to help
1051 * None of this adds any entropy; it is meant to avoid the problem of
1052 * the entropy pool having similar initial state across largely
1053 * identical devices.
1055 void add_device_randomness(const void *buf
, unsigned int size
)
1057 unsigned long time
= random_get_entropy() ^ jiffies
;
1058 unsigned long flags
;
1060 trace_add_device_randomness(size
, _RET_IP_
);
1061 spin_lock_irqsave(&input_pool
.lock
, flags
);
1062 _mix_pool_bytes(&input_pool
, buf
, size
);
1063 _mix_pool_bytes(&input_pool
, &time
, sizeof(time
));
1064 spin_unlock_irqrestore(&input_pool
.lock
, flags
);
1066 EXPORT_SYMBOL(add_device_randomness
);
1068 static struct timer_rand_state input_timer_state
= INIT_TIMER_RAND_STATE
;
1071 * This function adds entropy to the entropy "pool" by using timing
1072 * delays. It uses the timer_rand_state structure to make an estimate
1073 * of how many bits of entropy this call has added to the pool.
1075 * The number "num" is also added to the pool - it should somehow describe
1076 * the type of event which just happened. This is currently 0-255 for
1077 * keyboard scan codes, and 256 upwards for interrupts.
1080 static void add_timer_randomness(struct timer_rand_state
*state
, unsigned num
)
1082 struct entropy_store
*r
;
1088 long delta
, delta2
, delta3
;
1092 sample
.jiffies
= jiffies
;
1093 sample
.cycles
= random_get_entropy();
1096 mix_pool_bytes(r
, &sample
, sizeof(sample
));
1099 * Calculate number of bits of randomness we probably added.
1100 * We take into account the first, second and third-order deltas
1101 * in order to make our estimate.
1104 if (!state
->dont_count_entropy
) {
1105 delta
= sample
.jiffies
- state
->last_time
;
1106 state
->last_time
= sample
.jiffies
;
1108 delta2
= delta
- state
->last_delta
;
1109 state
->last_delta
= delta
;
1111 delta3
= delta2
- state
->last_delta2
;
1112 state
->last_delta2
= delta2
;
1126 * delta is now minimum absolute delta.
1127 * Round down by 1 bit on general principles,
1128 * and limit entropy entimate to 12 bits.
1130 credit_entropy_bits(r
, min_t(int, fls(delta
>>1), 11));
1135 void add_input_randomness(unsigned int type
, unsigned int code
,
1138 static unsigned char last_value
;
1140 /* ignore autorepeat and the like */
1141 if (value
== last_value
)
1145 add_timer_randomness(&input_timer_state
,
1146 (type
<< 4) ^ code
^ (code
>> 4) ^ value
);
1147 trace_add_input_randomness(ENTROPY_BITS(&input_pool
));
1149 EXPORT_SYMBOL_GPL(add_input_randomness
);
1151 static DEFINE_PER_CPU(struct fast_pool
, irq_randomness
);
1153 #ifdef ADD_INTERRUPT_BENCH
1154 static unsigned long avg_cycles
, avg_deviation
;
1156 #define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
1157 #define FIXED_1_2 (1 << (AVG_SHIFT-1))
1159 static void add_interrupt_bench(cycles_t start
)
1161 long delta
= random_get_entropy() - start
;
1163 /* Use a weighted moving average */
1164 delta
= delta
- ((avg_cycles
+ FIXED_1_2
) >> AVG_SHIFT
);
1165 avg_cycles
+= delta
;
1166 /* And average deviation */
1167 delta
= abs(delta
) - ((avg_deviation
+ FIXED_1_2
) >> AVG_SHIFT
);
1168 avg_deviation
+= delta
;
1171 #define add_interrupt_bench(x)
1174 static __u32
get_reg(struct fast_pool
*f
, struct pt_regs
*regs
)
1176 __u32
*ptr
= (__u32
*) regs
;
1181 idx
= READ_ONCE(f
->reg_idx
);
1182 if (idx
>= sizeof(struct pt_regs
) / sizeof(__u32
))
1185 WRITE_ONCE(f
->reg_idx
, idx
);
1189 void add_interrupt_randomness(int irq
, int irq_flags
)
1191 struct entropy_store
*r
;
1192 struct fast_pool
*fast_pool
= this_cpu_ptr(&irq_randomness
);
1193 struct pt_regs
*regs
= get_irq_regs();
1194 unsigned long now
= jiffies
;
1195 cycles_t cycles
= random_get_entropy();
1196 __u32 c_high
, j_high
;
1202 cycles
= get_reg(fast_pool
, regs
);
1203 c_high
= (sizeof(cycles
) > 4) ? cycles
>> 32 : 0;
1204 j_high
= (sizeof(now
) > 4) ? now
>> 32 : 0;
1205 fast_pool
->pool
[0] ^= cycles
^ j_high
^ irq
;
1206 fast_pool
->pool
[1] ^= now
^ c_high
;
1207 ip
= regs
? instruction_pointer(regs
) : _RET_IP_
;
1208 fast_pool
->pool
[2] ^= ip
;
1209 fast_pool
->pool
[3] ^= (sizeof(ip
) > 4) ? ip
>> 32 :
1210 get_reg(fast_pool
, regs
);
1212 fast_mix(fast_pool
);
1213 add_interrupt_bench(cycles
);
1215 if (unlikely(crng_init
== 0)) {
1216 if ((fast_pool
->count
>= 64) &&
1217 crng_fast_load((char *) fast_pool
->pool
,
1218 sizeof(fast_pool
->pool
))) {
1219 fast_pool
->count
= 0;
1220 fast_pool
->last
= now
;
1225 if ((fast_pool
->count
< 64) &&
1226 !time_after(now
, fast_pool
->last
+ HZ
))
1230 if (!spin_trylock(&r
->lock
))
1233 fast_pool
->last
= now
;
1234 __mix_pool_bytes(r
, &fast_pool
->pool
, sizeof(fast_pool
->pool
));
1237 * If we have architectural seed generator, produce a seed and
1238 * add it to the pool. For the sake of paranoia don't let the
1239 * architectural seed generator dominate the input from the
1242 if (arch_get_random_seed_long(&seed
)) {
1243 __mix_pool_bytes(r
, &seed
, sizeof(seed
));
1246 spin_unlock(&r
->lock
);
1248 fast_pool
->count
= 0;
1250 /* award one bit for the contents of the fast pool */
1251 credit_entropy_bits(r
, credit
+ 1);
1253 EXPORT_SYMBOL_GPL(add_interrupt_randomness
);
1256 void add_disk_randomness(struct gendisk
*disk
)
1258 if (!disk
|| !disk
->random
)
1260 /* first major is 1, so we get >= 0x200 here */
1261 add_timer_randomness(disk
->random
, 0x100 + disk_devt(disk
));
1262 trace_add_disk_randomness(disk_devt(disk
), ENTROPY_BITS(&input_pool
));
1264 EXPORT_SYMBOL_GPL(add_disk_randomness
);
1267 /*********************************************************************
1269 * Entropy extraction routines
1271 *********************************************************************/
1274 * This utility inline function is responsible for transferring entropy
1275 * from the primary pool to the secondary extraction pool. We make
1276 * sure we pull enough for a 'catastrophic reseed'.
1278 static void _xfer_secondary_pool(struct entropy_store
*r
, size_t nbytes
);
1279 static void xfer_secondary_pool(struct entropy_store
*r
, size_t nbytes
)
1282 r
->entropy_count
>= (nbytes
<< (ENTROPY_SHIFT
+ 3)) ||
1283 r
->entropy_count
> r
->poolinfo
->poolfracbits
)
1286 if (r
->limit
== 0 && random_min_urandom_seed
) {
1287 unsigned long now
= jiffies
;
1289 if (time_before(now
,
1290 r
->last_pulled
+ random_min_urandom_seed
* HZ
))
1292 r
->last_pulled
= now
;
1295 _xfer_secondary_pool(r
, nbytes
);
1298 static void _xfer_secondary_pool(struct entropy_store
*r
, size_t nbytes
)
1300 __u32 tmp
[OUTPUT_POOL_WORDS
];
1302 /* For /dev/random's pool, always leave two wakeups' worth */
1303 int rsvd_bytes
= r
->limit
? 0 : random_read_wakeup_bits
/ 4;
1306 /* pull at least as much as a wakeup */
1307 bytes
= max_t(int, bytes
, random_read_wakeup_bits
/ 8);
1308 /* but never more than the buffer size */
1309 bytes
= min_t(int, bytes
, sizeof(tmp
));
1311 trace_xfer_secondary_pool(r
->name
, bytes
* 8, nbytes
* 8,
1312 ENTROPY_BITS(r
), ENTROPY_BITS(r
->pull
));
1313 bytes
= extract_entropy(r
->pull
, tmp
, bytes
,
1314 random_read_wakeup_bits
/ 8, rsvd_bytes
);
1315 mix_pool_bytes(r
, tmp
, bytes
);
1316 credit_entropy_bits(r
, bytes
*8);
1320 * Used as a workqueue function so that when the input pool is getting
1321 * full, we can "spill over" some entropy to the output pools. That
1322 * way the output pools can store some of the excess entropy instead
1323 * of letting it go to waste.
1325 static void push_to_pool(struct work_struct
*work
)
1327 struct entropy_store
*r
= container_of(work
, struct entropy_store
,
1330 _xfer_secondary_pool(r
, random_read_wakeup_bits
/8);
1331 trace_push_to_pool(r
->name
, r
->entropy_count
>> ENTROPY_SHIFT
,
1332 r
->pull
->entropy_count
>> ENTROPY_SHIFT
);
1336 * This function decides how many bytes to actually take from the
1337 * given pool, and also debits the entropy count accordingly.
1339 static size_t account(struct entropy_store
*r
, size_t nbytes
, int min
,
1342 int entropy_count
, orig
;
1343 size_t ibytes
, nfrac
;
1345 BUG_ON(r
->entropy_count
> r
->poolinfo
->poolfracbits
);
1347 /* Can we pull enough? */
1349 entropy_count
= orig
= ACCESS_ONCE(r
->entropy_count
);
1351 /* If limited, never pull more than available */
1353 int have_bytes
= entropy_count
>> (ENTROPY_SHIFT
+ 3);
1355 if ((have_bytes
-= reserved
) < 0)
1357 ibytes
= min_t(size_t, ibytes
, have_bytes
);
1362 if (unlikely(entropy_count
< 0)) {
1363 pr_warn("random: negative entropy count: pool %s count %d\n",
1364 r
->name
, entropy_count
);
1368 nfrac
= ibytes
<< (ENTROPY_SHIFT
+ 3);
1369 if ((size_t) entropy_count
> nfrac
)
1370 entropy_count
-= nfrac
;
1374 if (cmpxchg(&r
->entropy_count
, orig
, entropy_count
) != orig
)
1377 trace_debit_entropy(r
->name
, 8 * ibytes
);
1379 (r
->entropy_count
>> ENTROPY_SHIFT
) < random_write_wakeup_bits
) {
1380 wake_up_interruptible(&random_write_wait
);
1381 kill_fasync(&fasync
, SIGIO
, POLL_OUT
);
1388 * This function does the actual extraction for extract_entropy and
1389 * extract_entropy_user.
1391 * Note: we assume that .poolwords is a multiple of 16 words.
1393 static void extract_buf(struct entropy_store
*r
, __u8
*out
)
1398 unsigned long l
[LONGS(20)];
1400 __u32 workspace
[SHA_WORKSPACE_WORDS
];
1401 unsigned long flags
;
1404 * If we have an architectural hardware random number
1405 * generator, use it for SHA's initial vector
1408 for (i
= 0; i
< LONGS(20); i
++) {
1410 if (!arch_get_random_long(&v
))
1415 /* Generate a hash across the pool, 16 words (512 bits) at a time */
1416 spin_lock_irqsave(&r
->lock
, flags
);
1417 for (i
= 0; i
< r
->poolinfo
->poolwords
; i
+= 16)
1418 sha_transform(hash
.w
, (__u8
*)(r
->pool
+ i
), workspace
);
1421 * We mix the hash back into the pool to prevent backtracking
1422 * attacks (where the attacker knows the state of the pool
1423 * plus the current outputs, and attempts to find previous
1424 * ouputs), unless the hash function can be inverted. By
1425 * mixing at least a SHA1 worth of hash data back, we make
1426 * brute-forcing the feedback as hard as brute-forcing the
1429 __mix_pool_bytes(r
, hash
.w
, sizeof(hash
.w
));
1430 spin_unlock_irqrestore(&r
->lock
, flags
);
1432 memzero_explicit(workspace
, sizeof(workspace
));
1435 * In case the hash function has some recognizable output
1436 * pattern, we fold it in half. Thus, we always feed back
1437 * twice as much data as we output.
1439 hash
.w
[0] ^= hash
.w
[3];
1440 hash
.w
[1] ^= hash
.w
[4];
1441 hash
.w
[2] ^= rol32(hash
.w
[2], 16);
1443 memcpy(out
, &hash
, EXTRACT_SIZE
);
1444 memzero_explicit(&hash
, sizeof(hash
));
1447 static ssize_t
_extract_entropy(struct entropy_store
*r
, void *buf
,
1448 size_t nbytes
, int fips
)
1451 __u8 tmp
[EXTRACT_SIZE
];
1452 unsigned long flags
;
1455 extract_buf(r
, tmp
);
1458 spin_lock_irqsave(&r
->lock
, flags
);
1459 if (!memcmp(tmp
, r
->last_data
, EXTRACT_SIZE
))
1460 panic("Hardware RNG duplicated output!\n");
1461 memcpy(r
->last_data
, tmp
, EXTRACT_SIZE
);
1462 spin_unlock_irqrestore(&r
->lock
, flags
);
1464 i
= min_t(int, nbytes
, EXTRACT_SIZE
);
1465 memcpy(buf
, tmp
, i
);
1471 /* Wipe data just returned from memory */
1472 memzero_explicit(tmp
, sizeof(tmp
));
1478 * This function extracts randomness from the "entropy pool", and
1479 * returns it in a buffer.
1481 * The min parameter specifies the minimum amount we can pull before
1482 * failing to avoid races that defeat catastrophic reseeding while the
1483 * reserved parameter indicates how much entropy we must leave in the
1484 * pool after each pull to avoid starving other readers.
1486 static ssize_t
extract_entropy(struct entropy_store
*r
, void *buf
,
1487 size_t nbytes
, int min
, int reserved
)
1489 __u8 tmp
[EXTRACT_SIZE
];
1490 unsigned long flags
;
1492 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1494 spin_lock_irqsave(&r
->lock
, flags
);
1495 if (!r
->last_data_init
) {
1496 r
->last_data_init
= 1;
1497 spin_unlock_irqrestore(&r
->lock
, flags
);
1498 trace_extract_entropy(r
->name
, EXTRACT_SIZE
,
1499 ENTROPY_BITS(r
), _RET_IP_
);
1500 xfer_secondary_pool(r
, EXTRACT_SIZE
);
1501 extract_buf(r
, tmp
);
1502 spin_lock_irqsave(&r
->lock
, flags
);
1503 memcpy(r
->last_data
, tmp
, EXTRACT_SIZE
);
1505 spin_unlock_irqrestore(&r
->lock
, flags
);
1508 trace_extract_entropy(r
->name
, nbytes
, ENTROPY_BITS(r
), _RET_IP_
);
1509 xfer_secondary_pool(r
, nbytes
);
1510 nbytes
= account(r
, nbytes
, min
, reserved
);
1512 return _extract_entropy(r
, buf
, nbytes
, fips_enabled
);
1516 * This function extracts randomness from the "entropy pool", and
1517 * returns it in a userspace buffer.
1519 static ssize_t
extract_entropy_user(struct entropy_store
*r
, void __user
*buf
,
1523 __u8 tmp
[EXTRACT_SIZE
];
1524 int large_request
= (nbytes
> 256);
1526 trace_extract_entropy_user(r
->name
, nbytes
, ENTROPY_BITS(r
), _RET_IP_
);
1527 xfer_secondary_pool(r
, nbytes
);
1528 nbytes
= account(r
, nbytes
, 0, 0);
1531 if (large_request
&& need_resched()) {
1532 if (signal_pending(current
)) {
1540 extract_buf(r
, tmp
);
1541 i
= min_t(int, nbytes
, EXTRACT_SIZE
);
1542 if (copy_to_user(buf
, tmp
, i
)) {
1552 /* Wipe data just returned from memory */
1553 memzero_explicit(tmp
, sizeof(tmp
));
1559 * This function is the exported kernel interface. It returns some
1560 * number of good random numbers, suitable for key generation, seeding
1561 * TCP sequence numbers, etc. It does not rely on the hardware random
1562 * number generator. For random bytes direct from the hardware RNG
1563 * (when available), use get_random_bytes_arch().
1565 void get_random_bytes(void *buf
, int nbytes
)
1567 __u8 tmp
[CHACHA20_BLOCK_SIZE
];
1569 #if DEBUG_RANDOM_BOOT > 0
1571 printk(KERN_NOTICE
"random: %pF get_random_bytes called "
1572 "with crng_init = %d\n", (void *) _RET_IP_
, crng_init
);
1574 trace_get_random_bytes(nbytes
, _RET_IP_
);
1576 while (nbytes
>= CHACHA20_BLOCK_SIZE
) {
1578 buf
+= CHACHA20_BLOCK_SIZE
;
1579 nbytes
-= CHACHA20_BLOCK_SIZE
;
1584 memcpy(buf
, tmp
, nbytes
);
1585 crng_backtrack_protect(tmp
, nbytes
);
1587 crng_backtrack_protect(tmp
, CHACHA20_BLOCK_SIZE
);
1588 memzero_explicit(tmp
, sizeof(tmp
));
1590 EXPORT_SYMBOL(get_random_bytes
);
1593 * Add a callback function that will be invoked when the nonblocking
1594 * pool is initialised.
1596 * returns: 0 if callback is successfully added
1597 * -EALREADY if pool is already initialised (callback not called)
1598 * -ENOENT if module for callback is not alive
1600 int add_random_ready_callback(struct random_ready_callback
*rdy
)
1602 struct module
*owner
;
1603 unsigned long flags
;
1604 int err
= -EALREADY
;
1610 if (!try_module_get(owner
))
1613 spin_lock_irqsave(&random_ready_list_lock
, flags
);
1619 list_add(&rdy
->list
, &random_ready_list
);
1623 spin_unlock_irqrestore(&random_ready_list_lock
, flags
);
1629 EXPORT_SYMBOL(add_random_ready_callback
);
1632 * Delete a previously registered readiness callback function.
1634 void del_random_ready_callback(struct random_ready_callback
*rdy
)
1636 unsigned long flags
;
1637 struct module
*owner
= NULL
;
1639 spin_lock_irqsave(&random_ready_list_lock
, flags
);
1640 if (!list_empty(&rdy
->list
)) {
1641 list_del_init(&rdy
->list
);
1644 spin_unlock_irqrestore(&random_ready_list_lock
, flags
);
1648 EXPORT_SYMBOL(del_random_ready_callback
);
1651 * This function will use the architecture-specific hardware random
1652 * number generator if it is available. The arch-specific hw RNG will
1653 * almost certainly be faster than what we can do in software, but it
1654 * is impossible to verify that it is implemented securely (as
1655 * opposed, to, say, the AES encryption of a sequence number using a
1656 * key known by the NSA). So it's useful if we need the speed, but
1657 * only if we're willing to trust the hardware manufacturer not to
1658 * have put in a back door.
1660 void get_random_bytes_arch(void *buf
, int nbytes
)
1664 trace_get_random_bytes_arch(nbytes
, _RET_IP_
);
1667 int chunk
= min(nbytes
, (int)sizeof(unsigned long));
1669 if (!arch_get_random_long(&v
))
1672 memcpy(p
, &v
, chunk
);
1678 get_random_bytes(p
, nbytes
);
1680 EXPORT_SYMBOL(get_random_bytes_arch
);
1684 * init_std_data - initialize pool with system data
1686 * @r: pool to initialize
1688 * This function clears the pool's entropy count and mixes some system
1689 * data into the pool to prepare it for use. The pool is not cleared
1690 * as that can only decrease the entropy in the pool.
1692 static void init_std_data(struct entropy_store
*r
)
1695 ktime_t now
= ktime_get_real();
1698 r
->last_pulled
= jiffies
;
1699 mix_pool_bytes(r
, &now
, sizeof(now
));
1700 for (i
= r
->poolinfo
->poolbytes
; i
> 0; i
-= sizeof(rv
)) {
1701 if (!arch_get_random_seed_long(&rv
) &&
1702 !arch_get_random_long(&rv
))
1703 rv
= random_get_entropy();
1704 mix_pool_bytes(r
, &rv
, sizeof(rv
));
1706 mix_pool_bytes(r
, utsname(), sizeof(*(utsname())));
1710 * Note that setup_arch() may call add_device_randomness()
1711 * long before we get here. This allows seeding of the pools
1712 * with some platform dependent data very early in the boot
1713 * process. But it limits our options here. We must use
1714 * statically allocated structures that already have all
1715 * initializations complete at compile time. We should also
1716 * take care not to overwrite the precious per platform data
1719 static int rand_initialize(void)
1721 init_std_data(&input_pool
);
1722 init_std_data(&blocking_pool
);
1723 crng_initialize(&primary_crng
);
1724 crng_global_init_time
= jiffies
;
1725 if (ratelimit_disable
) {
1726 urandom_warning
.interval
= 0;
1727 unseeded_warning
.interval
= 0;
1731 early_initcall(rand_initialize
);
1734 void rand_initialize_disk(struct gendisk
*disk
)
1736 struct timer_rand_state
*state
;
1739 * If kzalloc returns null, we just won't use that entropy
1742 state
= kzalloc(sizeof(struct timer_rand_state
), GFP_KERNEL
);
1744 state
->last_time
= INITIAL_JIFFIES
;
1745 disk
->random
= state
;
1751 _random_read(int nonblock
, char __user
*buf
, size_t nbytes
)
1758 nbytes
= min_t(size_t, nbytes
, SEC_XFER_SIZE
);
1760 n
= extract_entropy_user(&blocking_pool
, buf
, nbytes
);
1763 trace_random_read(n
*8, (nbytes
-n
)*8,
1764 ENTROPY_BITS(&blocking_pool
),
1765 ENTROPY_BITS(&input_pool
));
1769 /* Pool is (near) empty. Maybe wait and retry. */
1773 wait_event_interruptible(random_read_wait
,
1774 ENTROPY_BITS(&input_pool
) >=
1775 random_read_wakeup_bits
);
1776 if (signal_pending(current
))
1777 return -ERESTARTSYS
;
1782 random_read(struct file
*file
, char __user
*buf
, size_t nbytes
, loff_t
*ppos
)
1784 return _random_read(file
->f_flags
& O_NONBLOCK
, buf
, nbytes
);
1788 urandom_read(struct file
*file
, char __user
*buf
, size_t nbytes
, loff_t
*ppos
)
1790 unsigned long flags
;
1791 static int maxwarn
= 10;
1794 if (!crng_ready() && maxwarn
> 0) {
1796 if (__ratelimit(&urandom_warning
))
1797 printk(KERN_NOTICE
"random: %s: uninitialized "
1798 "urandom read (%zd bytes read)\n",
1799 current
->comm
, nbytes
);
1800 spin_lock_irqsave(&primary_crng
.lock
, flags
);
1802 spin_unlock_irqrestore(&primary_crng
.lock
, flags
);
1804 nbytes
= min_t(size_t, nbytes
, INT_MAX
>> (ENTROPY_SHIFT
+ 3));
1805 ret
= extract_crng_user(buf
, nbytes
);
1806 trace_urandom_read(8 * nbytes
, 0, ENTROPY_BITS(&input_pool
));
1811 random_poll(struct file
*file
, poll_table
* wait
)
1815 poll_wait(file
, &random_read_wait
, wait
);
1816 poll_wait(file
, &random_write_wait
, wait
);
1818 if (ENTROPY_BITS(&input_pool
) >= random_read_wakeup_bits
)
1819 mask
|= POLLIN
| POLLRDNORM
;
1820 if (ENTROPY_BITS(&input_pool
) < random_write_wakeup_bits
)
1821 mask
|= POLLOUT
| POLLWRNORM
;
1826 write_pool(struct entropy_store
*r
, const char __user
*buffer
, size_t count
)
1830 const char __user
*p
= buffer
;
1835 bytes
= min(count
, sizeof(buf
));
1836 if (copy_from_user(&buf
, p
, bytes
))
1839 for (b
= bytes
; b
> 0 ; b
-= sizeof(__u32
), i
++) {
1840 if (!arch_get_random_int(&t
))
1848 mix_pool_bytes(r
, buf
, bytes
);
1855 static ssize_t
random_write(struct file
*file
, const char __user
*buffer
,
1856 size_t count
, loff_t
*ppos
)
1860 ret
= write_pool(&input_pool
, buffer
, count
);
1864 return (ssize_t
)count
;
1867 static long random_ioctl(struct file
*f
, unsigned int cmd
, unsigned long arg
)
1869 int size
, ent_count
;
1870 int __user
*p
= (int __user
*)arg
;
1875 /* inherently racy, no point locking */
1876 ent_count
= ENTROPY_BITS(&input_pool
);
1877 if (put_user(ent_count
, p
))
1880 case RNDADDTOENTCNT
:
1881 if (!capable(CAP_SYS_ADMIN
))
1883 if (get_user(ent_count
, p
))
1885 return credit_entropy_bits_safe(&input_pool
, ent_count
);
1887 if (!capable(CAP_SYS_ADMIN
))
1889 if (get_user(ent_count
, p
++))
1893 if (get_user(size
, p
++))
1895 retval
= write_pool(&input_pool
, (const char __user
*)p
,
1899 return credit_entropy_bits_safe(&input_pool
, ent_count
);
1903 * Clear the entropy pool counters. We no longer clear
1904 * the entropy pool, as that's silly.
1906 if (!capable(CAP_SYS_ADMIN
))
1908 input_pool
.entropy_count
= 0;
1909 blocking_pool
.entropy_count
= 0;
1912 if (!capable(CAP_SYS_ADMIN
))
1916 crng_reseed(&primary_crng
, NULL
);
1917 crng_global_init_time
= jiffies
- 1;
1924 static int random_fasync(int fd
, struct file
*filp
, int on
)
1926 return fasync_helper(fd
, filp
, on
, &fasync
);
1929 const struct file_operations random_fops
= {
1930 .read
= random_read
,
1931 .write
= random_write
,
1932 .poll
= random_poll
,
1933 .unlocked_ioctl
= random_ioctl
,
1934 .fasync
= random_fasync
,
1935 .llseek
= noop_llseek
,
1938 const struct file_operations urandom_fops
= {
1939 .read
= urandom_read
,
1940 .write
= random_write
,
1941 .unlocked_ioctl
= random_ioctl
,
1942 .fasync
= random_fasync
,
1943 .llseek
= noop_llseek
,
1946 SYSCALL_DEFINE3(getrandom
, char __user
*, buf
, size_t, count
,
1947 unsigned int, flags
)
1949 if (flags
& ~(GRND_NONBLOCK
|GRND_RANDOM
))
1952 if (count
> INT_MAX
)
1955 if (flags
& GRND_RANDOM
)
1956 return _random_read(flags
& GRND_NONBLOCK
, buf
, count
);
1958 if (!crng_ready()) {
1959 if (flags
& GRND_NONBLOCK
)
1962 if (signal_pending(current
))
1963 return -ERESTARTSYS
;
1965 return urandom_read(NULL
, buf
, count
, NULL
);
1968 /********************************************************************
1972 ********************************************************************/
1974 #ifdef CONFIG_SYSCTL
1976 #include <linux/sysctl.h>
1978 static int min_read_thresh
= 8, min_write_thresh
;
1979 static int max_read_thresh
= OUTPUT_POOL_WORDS
* 32;
1980 static int max_write_thresh
= INPUT_POOL_WORDS
* 32;
1981 static char sysctl_bootid
[16];
1984 * This function is used to return both the bootid UUID, and random
1985 * UUID. The difference is in whether table->data is NULL; if it is,
1986 * then a new UUID is generated and returned to the user.
1988 * If the user accesses this via the proc interface, the UUID will be
1989 * returned as an ASCII string in the standard UUID format; if via the
1990 * sysctl system call, as 16 bytes of binary data.
1992 static int proc_do_uuid(struct ctl_table
*table
, int write
,
1993 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
1995 struct ctl_table fake_table
;
1996 unsigned char buf
[64], tmp_uuid
[16], *uuid
;
2001 generate_random_uuid(uuid
);
2003 static DEFINE_SPINLOCK(bootid_spinlock
);
2005 spin_lock(&bootid_spinlock
);
2007 generate_random_uuid(uuid
);
2008 spin_unlock(&bootid_spinlock
);
2011 sprintf(buf
, "%pU", uuid
);
2013 fake_table
.data
= buf
;
2014 fake_table
.maxlen
= sizeof(buf
);
2016 return proc_dostring(&fake_table
, write
, buffer
, lenp
, ppos
);
2020 * Return entropy available scaled to integral bits
2022 static int proc_do_entropy(struct ctl_table
*table
, int write
,
2023 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
2025 struct ctl_table fake_table
;
2028 entropy_count
= *(int *)table
->data
>> ENTROPY_SHIFT
;
2030 fake_table
.data
= &entropy_count
;
2031 fake_table
.maxlen
= sizeof(entropy_count
);
2033 return proc_dointvec(&fake_table
, write
, buffer
, lenp
, ppos
);
2036 static int sysctl_poolsize
= INPUT_POOL_WORDS
* 32;
2037 extern struct ctl_table random_table
[];
2038 struct ctl_table random_table
[] = {
2040 .procname
= "poolsize",
2041 .data
= &sysctl_poolsize
,
2042 .maxlen
= sizeof(int),
2044 .proc_handler
= proc_dointvec
,
2047 .procname
= "entropy_avail",
2048 .maxlen
= sizeof(int),
2050 .proc_handler
= proc_do_entropy
,
2051 .data
= &input_pool
.entropy_count
,
2054 .procname
= "read_wakeup_threshold",
2055 .data
= &random_read_wakeup_bits
,
2056 .maxlen
= sizeof(int),
2058 .proc_handler
= proc_dointvec_minmax
,
2059 .extra1
= &min_read_thresh
,
2060 .extra2
= &max_read_thresh
,
2063 .procname
= "write_wakeup_threshold",
2064 .data
= &random_write_wakeup_bits
,
2065 .maxlen
= sizeof(int),
2067 .proc_handler
= proc_dointvec_minmax
,
2068 .extra1
= &min_write_thresh
,
2069 .extra2
= &max_write_thresh
,
2072 .procname
= "urandom_min_reseed_secs",
2073 .data
= &random_min_urandom_seed
,
2074 .maxlen
= sizeof(int),
2076 .proc_handler
= proc_dointvec
,
2079 .procname
= "boot_id",
2080 .data
= &sysctl_bootid
,
2083 .proc_handler
= proc_do_uuid
,
2089 .proc_handler
= proc_do_uuid
,
2091 #ifdef ADD_INTERRUPT_BENCH
2093 .procname
= "add_interrupt_avg_cycles",
2094 .data
= &avg_cycles
,
2095 .maxlen
= sizeof(avg_cycles
),
2097 .proc_handler
= proc_doulongvec_minmax
,
2100 .procname
= "add_interrupt_avg_deviation",
2101 .data
= &avg_deviation
,
2102 .maxlen
= sizeof(avg_deviation
),
2104 .proc_handler
= proc_doulongvec_minmax
,
2109 #endif /* CONFIG_SYSCTL */
2111 struct batched_entropy
{
2113 unsigned long entropy_long
[CHACHA20_BLOCK_SIZE
/ sizeof(unsigned long)];
2114 unsigned int entropy_int
[CHACHA20_BLOCK_SIZE
/ sizeof(unsigned int)];
2116 unsigned int position
;
2120 * Get a random word for internal kernel use only. The quality of the random
2121 * number is either as good as RDRAND or as good as /dev/urandom, with the
2122 * goal of being quite fast and not depleting entropy.
2124 static DEFINE_PER_CPU(struct batched_entropy
, batched_entropy_long
);
2125 unsigned long get_random_long(void)
2128 struct batched_entropy
*batch
;
2130 if (arch_get_random_long(&ret
))
2133 batch
= &get_cpu_var(batched_entropy_long
);
2134 if (batch
->position
% ARRAY_SIZE(batch
->entropy_long
) == 0) {
2135 extract_crng((u8
*)batch
->entropy_long
);
2136 batch
->position
= 0;
2138 ret
= batch
->entropy_long
[batch
->position
++];
2139 put_cpu_var(batched_entropy_long
);
2142 EXPORT_SYMBOL(get_random_long
);
2144 #if BITS_PER_LONG == 32
2145 unsigned int get_random_int(void)
2147 return get_random_long();
2150 static DEFINE_PER_CPU(struct batched_entropy
, batched_entropy_int
);
2151 unsigned int get_random_int(void)
2154 struct batched_entropy
*batch
;
2156 if (arch_get_random_int(&ret
))
2159 batch
= &get_cpu_var(batched_entropy_int
);
2160 if (batch
->position
% ARRAY_SIZE(batch
->entropy_int
) == 0) {
2161 extract_crng((u8
*)batch
->entropy_int
);
2162 batch
->position
= 0;
2164 ret
= batch
->entropy_int
[batch
->position
++];
2165 put_cpu_var(batched_entropy_int
);
2169 EXPORT_SYMBOL(get_random_int
);
2172 * randomize_page - Generate a random, page aligned address
2173 * @start: The smallest acceptable address the caller will take.
2174 * @range: The size of the area, starting at @start, within which the
2175 * random address must fall.
2177 * If @start + @range would overflow, @range is capped.
2179 * NOTE: Historical use of randomize_range, which this replaces, presumed that
2180 * @start was already page aligned. We now align it regardless.
2182 * Return: A page aligned address within [start, start + range). On error,
2183 * @start is returned.
2186 randomize_page(unsigned long start
, unsigned long range
)
2188 if (!PAGE_ALIGNED(start
)) {
2189 range
-= PAGE_ALIGN(start
) - start
;
2190 start
= PAGE_ALIGN(start
);
2193 if (start
> ULONG_MAX
- range
)
2194 range
= ULONG_MAX
- start
;
2196 range
>>= PAGE_SHIFT
;
2201 return start
+ (get_random_long() % range
<< PAGE_SHIFT
);
2204 /* Interface for in-kernel drivers of true hardware RNGs.
2205 * Those devices may produce endless random bits and will be throttled
2206 * when our pool is full.
2208 void add_hwgenerator_randomness(const char *buffer
, size_t count
,
2211 struct entropy_store
*poolp
= &input_pool
;
2213 if (unlikely(crng_init
== 0)) {
2214 crng_fast_load(buffer
, count
);
2218 /* Suspend writing if we're above the trickle threshold.
2219 * We'll be woken up again once below random_write_wakeup_thresh,
2220 * or when the calling thread is about to terminate.
2222 wait_event_interruptible(random_write_wait
, kthread_should_stop() ||
2223 ENTROPY_BITS(&input_pool
) <= random_write_wakeup_bits
);
2224 mix_pool_bytes(poolp
, buffer
, count
);
2225 credit_entropy_bits(poolp
, entropy
);
2227 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness
);