1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
7 * This file is part of the SCTP kernel implementation
9 * These functions implement the sctp_outq class. The outqueue handles
10 * bundling and queueing of outgoing SCTP chunks.
12 * This SCTP implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
18 * This SCTP implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 * ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING. If not, see
26 * <http://www.gnu.org/licenses/>.
28 * Please send any bug reports or fixes you make to the
30 * lksctp developers <linux-sctp@vger.kernel.org>
32 * Written or modified by:
33 * La Monte H.P. Yarroll <piggy@acm.org>
34 * Karl Knutson <karl@athena.chicago.il.us>
35 * Perry Melange <pmelange@null.cc.uic.edu>
36 * Xingang Guo <xingang.guo@intel.com>
37 * Hui Huang <hui.huang@nokia.com>
38 * Sridhar Samudrala <sri@us.ibm.com>
39 * Jon Grimm <jgrimm@us.ibm.com>
42 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
44 #include <linux/types.h>
45 #include <linux/list.h> /* For struct list_head */
46 #include <linux/socket.h>
48 #include <linux/slab.h>
49 #include <net/sock.h> /* For skb_set_owner_w */
51 #include <net/sctp/sctp.h>
52 #include <net/sctp/sm.h>
54 /* Declare internal functions here. */
55 static int sctp_acked(struct sctp_sackhdr
*sack
, __u32 tsn
);
56 static void sctp_check_transmitted(struct sctp_outq
*q
,
57 struct list_head
*transmitted_queue
,
58 struct sctp_transport
*transport
,
59 union sctp_addr
*saddr
,
60 struct sctp_sackhdr
*sack
,
61 __u32
*highest_new_tsn
);
63 static void sctp_mark_missing(struct sctp_outq
*q
,
64 struct list_head
*transmitted_queue
,
65 struct sctp_transport
*transport
,
66 __u32 highest_new_tsn
,
67 int count_of_newacks
);
69 static void sctp_generate_fwdtsn(struct sctp_outq
*q
, __u32 sack_ctsn
);
71 static void sctp_outq_flush(struct sctp_outq
*q
, int rtx_timeout
, gfp_t gfp
);
73 /* Add data to the front of the queue. */
74 static inline void sctp_outq_head_data(struct sctp_outq
*q
,
75 struct sctp_chunk
*ch
)
77 list_add(&ch
->list
, &q
->out_chunk_list
);
78 q
->out_qlen
+= ch
->skb
->len
;
81 /* Take data from the front of the queue. */
82 static inline struct sctp_chunk
*sctp_outq_dequeue_data(struct sctp_outq
*q
)
84 struct sctp_chunk
*ch
= NULL
;
86 if (!list_empty(&q
->out_chunk_list
)) {
87 struct list_head
*entry
= q
->out_chunk_list
.next
;
89 ch
= list_entry(entry
, struct sctp_chunk
, list
);
91 q
->out_qlen
-= ch
->skb
->len
;
95 /* Add data chunk to the end of the queue. */
96 static inline void sctp_outq_tail_data(struct sctp_outq
*q
,
97 struct sctp_chunk
*ch
)
99 list_add_tail(&ch
->list
, &q
->out_chunk_list
);
100 q
->out_qlen
+= ch
->skb
->len
;
104 * SFR-CACC algorithm:
105 * D) If count_of_newacks is greater than or equal to 2
106 * and t was not sent to the current primary then the
107 * sender MUST NOT increment missing report count for t.
109 static inline int sctp_cacc_skip_3_1_d(struct sctp_transport
*primary
,
110 struct sctp_transport
*transport
,
111 int count_of_newacks
)
113 if (count_of_newacks
>= 2 && transport
!= primary
)
119 * SFR-CACC algorithm:
120 * F) If count_of_newacks is less than 2, let d be the
121 * destination to which t was sent. If cacc_saw_newack
122 * is 0 for destination d, then the sender MUST NOT
123 * increment missing report count for t.
125 static inline int sctp_cacc_skip_3_1_f(struct sctp_transport
*transport
,
126 int count_of_newacks
)
128 if (count_of_newacks
< 2 &&
129 (transport
&& !transport
->cacc
.cacc_saw_newack
))
135 * SFR-CACC algorithm:
136 * 3.1) If CYCLING_CHANGEOVER is 0, the sender SHOULD
137 * execute steps C, D, F.
139 * C has been implemented in sctp_outq_sack
141 static inline int sctp_cacc_skip_3_1(struct sctp_transport
*primary
,
142 struct sctp_transport
*transport
,
143 int count_of_newacks
)
145 if (!primary
->cacc
.cycling_changeover
) {
146 if (sctp_cacc_skip_3_1_d(primary
, transport
, count_of_newacks
))
148 if (sctp_cacc_skip_3_1_f(transport
, count_of_newacks
))
156 * SFR-CACC algorithm:
157 * 3.2) Else if CYCLING_CHANGEOVER is 1, and t is less
158 * than next_tsn_at_change of the current primary, then
159 * the sender MUST NOT increment missing report count
162 static inline int sctp_cacc_skip_3_2(struct sctp_transport
*primary
, __u32 tsn
)
164 if (primary
->cacc
.cycling_changeover
&&
165 TSN_lt(tsn
, primary
->cacc
.next_tsn_at_change
))
171 * SFR-CACC algorithm:
172 * 3) If the missing report count for TSN t is to be
173 * incremented according to [RFC2960] and
174 * [SCTP_STEWART-2002], and CHANGEOVER_ACTIVE is set,
175 * then the sender MUST further execute steps 3.1 and
176 * 3.2 to determine if the missing report count for
177 * TSN t SHOULD NOT be incremented.
179 * 3.3) If 3.1 and 3.2 do not dictate that the missing
180 * report count for t should not be incremented, then
181 * the sender SHOULD increment missing report count for
182 * t (according to [RFC2960] and [SCTP_STEWART_2002]).
184 static inline int sctp_cacc_skip(struct sctp_transport
*primary
,
185 struct sctp_transport
*transport
,
186 int count_of_newacks
,
189 if (primary
->cacc
.changeover_active
&&
190 (sctp_cacc_skip_3_1(primary
, transport
, count_of_newacks
) ||
191 sctp_cacc_skip_3_2(primary
, tsn
)))
196 /* Initialize an existing sctp_outq. This does the boring stuff.
197 * You still need to define handlers if you really want to DO
198 * something with this structure...
200 void sctp_outq_init(struct sctp_association
*asoc
, struct sctp_outq
*q
)
202 memset(q
, 0, sizeof(struct sctp_outq
));
205 INIT_LIST_HEAD(&q
->out_chunk_list
);
206 INIT_LIST_HEAD(&q
->control_chunk_list
);
207 INIT_LIST_HEAD(&q
->retransmit
);
208 INIT_LIST_HEAD(&q
->sacked
);
209 INIT_LIST_HEAD(&q
->abandoned
);
212 /* Free the outqueue structure and any related pending chunks.
214 static void __sctp_outq_teardown(struct sctp_outq
*q
)
216 struct sctp_transport
*transport
;
217 struct list_head
*lchunk
, *temp
;
218 struct sctp_chunk
*chunk
, *tmp
;
220 /* Throw away unacknowledged chunks. */
221 list_for_each_entry(transport
, &q
->asoc
->peer
.transport_addr_list
,
223 while ((lchunk
= sctp_list_dequeue(&transport
->transmitted
)) != NULL
) {
224 chunk
= list_entry(lchunk
, struct sctp_chunk
,
226 /* Mark as part of a failed message. */
227 sctp_chunk_fail(chunk
, q
->error
);
228 sctp_chunk_free(chunk
);
232 /* Throw away chunks that have been gap ACKed. */
233 list_for_each_safe(lchunk
, temp
, &q
->sacked
) {
234 list_del_init(lchunk
);
235 chunk
= list_entry(lchunk
, struct sctp_chunk
,
237 sctp_chunk_fail(chunk
, q
->error
);
238 sctp_chunk_free(chunk
);
241 /* Throw away any chunks in the retransmit queue. */
242 list_for_each_safe(lchunk
, temp
, &q
->retransmit
) {
243 list_del_init(lchunk
);
244 chunk
= list_entry(lchunk
, struct sctp_chunk
,
246 sctp_chunk_fail(chunk
, q
->error
);
247 sctp_chunk_free(chunk
);
250 /* Throw away any chunks that are in the abandoned queue. */
251 list_for_each_safe(lchunk
, temp
, &q
->abandoned
) {
252 list_del_init(lchunk
);
253 chunk
= list_entry(lchunk
, struct sctp_chunk
,
255 sctp_chunk_fail(chunk
, q
->error
);
256 sctp_chunk_free(chunk
);
259 /* Throw away any leftover data chunks. */
260 while ((chunk
= sctp_outq_dequeue_data(q
)) != NULL
) {
262 /* Mark as send failure. */
263 sctp_chunk_fail(chunk
, q
->error
);
264 sctp_chunk_free(chunk
);
267 /* Throw away any leftover control chunks. */
268 list_for_each_entry_safe(chunk
, tmp
, &q
->control_chunk_list
, list
) {
269 list_del_init(&chunk
->list
);
270 sctp_chunk_free(chunk
);
274 void sctp_outq_teardown(struct sctp_outq
*q
)
276 __sctp_outq_teardown(q
);
277 sctp_outq_init(q
->asoc
, q
);
280 /* Free the outqueue structure and any related pending chunks. */
281 void sctp_outq_free(struct sctp_outq
*q
)
283 /* Throw away leftover chunks. */
284 __sctp_outq_teardown(q
);
287 /* Put a new chunk in an sctp_outq. */
288 void sctp_outq_tail(struct sctp_outq
*q
, struct sctp_chunk
*chunk
, gfp_t gfp
)
290 struct net
*net
= sock_net(q
->asoc
->base
.sk
);
292 pr_debug("%s: outq:%p, chunk:%p[%s]\n", __func__
, q
, chunk
,
293 chunk
&& chunk
->chunk_hdr
?
294 sctp_cname(SCTP_ST_CHUNK(chunk
->chunk_hdr
->type
)) :
297 /* If it is data, queue it up, otherwise, send it
300 if (sctp_chunk_is_data(chunk
)) {
301 pr_debug("%s: outqueueing: outq:%p, chunk:%p[%s])\n",
302 __func__
, q
, chunk
, chunk
&& chunk
->chunk_hdr
?
303 sctp_cname(SCTP_ST_CHUNK(chunk
->chunk_hdr
->type
)) :
306 sctp_outq_tail_data(q
, chunk
);
307 if (chunk
->asoc
->peer
.prsctp_capable
&&
308 SCTP_PR_PRIO_ENABLED(chunk
->sinfo
.sinfo_flags
))
309 chunk
->asoc
->sent_cnt_removable
++;
310 if (chunk
->chunk_hdr
->flags
& SCTP_DATA_UNORDERED
)
311 SCTP_INC_STATS(net
, SCTP_MIB_OUTUNORDERCHUNKS
);
313 SCTP_INC_STATS(net
, SCTP_MIB_OUTORDERCHUNKS
);
315 list_add_tail(&chunk
->list
, &q
->control_chunk_list
);
316 SCTP_INC_STATS(net
, SCTP_MIB_OUTCTRLCHUNKS
);
320 sctp_outq_flush(q
, 0, gfp
);
323 /* Insert a chunk into the sorted list based on the TSNs. The retransmit list
324 * and the abandoned list are in ascending order.
326 static void sctp_insert_list(struct list_head
*head
, struct list_head
*new)
328 struct list_head
*pos
;
329 struct sctp_chunk
*nchunk
, *lchunk
;
333 nchunk
= list_entry(new, struct sctp_chunk
, transmitted_list
);
334 ntsn
= ntohl(nchunk
->subh
.data_hdr
->tsn
);
336 list_for_each(pos
, head
) {
337 lchunk
= list_entry(pos
, struct sctp_chunk
, transmitted_list
);
338 ltsn
= ntohl(lchunk
->subh
.data_hdr
->tsn
);
339 if (TSN_lt(ntsn
, ltsn
)) {
340 list_add(new, pos
->prev
);
346 list_add_tail(new, head
);
349 static int sctp_prsctp_prune_sent(struct sctp_association
*asoc
,
350 struct sctp_sndrcvinfo
*sinfo
,
351 struct list_head
*queue
, int msg_len
)
353 struct sctp_chunk
*chk
, *temp
;
355 list_for_each_entry_safe(chk
, temp
, queue
, transmitted_list
) {
356 if (!SCTP_PR_PRIO_ENABLED(chk
->sinfo
.sinfo_flags
) ||
357 chk
->sinfo
.sinfo_timetolive
<= sinfo
->sinfo_timetolive
)
360 list_del_init(&chk
->transmitted_list
);
361 sctp_insert_list(&asoc
->outqueue
.abandoned
,
362 &chk
->transmitted_list
);
364 asoc
->sent_cnt_removable
--;
365 asoc
->abandoned_sent
[SCTP_PR_INDEX(PRIO
)]++;
367 if (queue
!= &asoc
->outqueue
.retransmit
&&
368 !chk
->tsn_gap_acked
) {
370 chk
->transport
->flight_size
-=
372 asoc
->outqueue
.outstanding_bytes
-= sctp_data_size(chk
);
375 msg_len
-= SCTP_DATA_SNDSIZE(chk
) +
376 sizeof(struct sk_buff
) +
377 sizeof(struct sctp_chunk
);
385 static int sctp_prsctp_prune_unsent(struct sctp_association
*asoc
,
386 struct sctp_sndrcvinfo
*sinfo
, int msg_len
)
388 struct sctp_outq
*q
= &asoc
->outqueue
;
389 struct sctp_chunk
*chk
, *temp
;
391 list_for_each_entry_safe(chk
, temp
, &q
->out_chunk_list
, list
) {
392 if (!SCTP_PR_PRIO_ENABLED(chk
->sinfo
.sinfo_flags
) ||
393 chk
->sinfo
.sinfo_timetolive
<= sinfo
->sinfo_timetolive
)
396 list_del_init(&chk
->list
);
397 q
->out_qlen
-= chk
->skb
->len
;
398 asoc
->sent_cnt_removable
--;
399 asoc
->abandoned_unsent
[SCTP_PR_INDEX(PRIO
)]++;
401 msg_len
-= SCTP_DATA_SNDSIZE(chk
) +
402 sizeof(struct sk_buff
) +
403 sizeof(struct sctp_chunk
);
404 sctp_chunk_free(chk
);
412 /* Abandon the chunks according their priorities */
413 void sctp_prsctp_prune(struct sctp_association
*asoc
,
414 struct sctp_sndrcvinfo
*sinfo
, int msg_len
)
416 struct sctp_transport
*transport
;
418 if (!asoc
->peer
.prsctp_capable
|| !asoc
->sent_cnt_removable
)
421 msg_len
= sctp_prsctp_prune_sent(asoc
, sinfo
,
422 &asoc
->outqueue
.retransmit
,
427 list_for_each_entry(transport
, &asoc
->peer
.transport_addr_list
,
429 msg_len
= sctp_prsctp_prune_sent(asoc
, sinfo
,
430 &transport
->transmitted
,
436 sctp_prsctp_prune_unsent(asoc
, sinfo
, msg_len
);
439 /* Mark all the eligible packets on a transport for retransmission. */
440 void sctp_retransmit_mark(struct sctp_outq
*q
,
441 struct sctp_transport
*transport
,
444 struct list_head
*lchunk
, *ltemp
;
445 struct sctp_chunk
*chunk
;
447 /* Walk through the specified transmitted queue. */
448 list_for_each_safe(lchunk
, ltemp
, &transport
->transmitted
) {
449 chunk
= list_entry(lchunk
, struct sctp_chunk
,
452 /* If the chunk is abandoned, move it to abandoned list. */
453 if (sctp_chunk_abandoned(chunk
)) {
454 list_del_init(lchunk
);
455 sctp_insert_list(&q
->abandoned
, lchunk
);
457 /* If this chunk has not been previousely acked,
458 * stop considering it 'outstanding'. Our peer
459 * will most likely never see it since it will
460 * not be retransmitted
462 if (!chunk
->tsn_gap_acked
) {
463 if (chunk
->transport
)
464 chunk
->transport
->flight_size
-=
465 sctp_data_size(chunk
);
466 q
->outstanding_bytes
-= sctp_data_size(chunk
);
467 q
->asoc
->peer
.rwnd
+= sctp_data_size(chunk
);
472 /* If we are doing retransmission due to a timeout or pmtu
473 * discovery, only the chunks that are not yet acked should
474 * be added to the retransmit queue.
476 if ((reason
== SCTP_RTXR_FAST_RTX
&&
477 (chunk
->fast_retransmit
== SCTP_NEED_FRTX
)) ||
478 (reason
!= SCTP_RTXR_FAST_RTX
&& !chunk
->tsn_gap_acked
)) {
479 /* RFC 2960 6.2.1 Processing a Received SACK
481 * C) Any time a DATA chunk is marked for
482 * retransmission (via either T3-rtx timer expiration
483 * (Section 6.3.3) or via fast retransmit
484 * (Section 7.2.4)), add the data size of those
485 * chunks to the rwnd.
487 q
->asoc
->peer
.rwnd
+= sctp_data_size(chunk
);
488 q
->outstanding_bytes
-= sctp_data_size(chunk
);
489 if (chunk
->transport
)
490 transport
->flight_size
-= sctp_data_size(chunk
);
492 /* sctpimpguide-05 Section 2.8.2
493 * M5) If a T3-rtx timer expires, the
494 * 'TSN.Missing.Report' of all affected TSNs is set
497 chunk
->tsn_missing_report
= 0;
499 /* If a chunk that is being used for RTT measurement
500 * has to be retransmitted, we cannot use this chunk
501 * anymore for RTT measurements. Reset rto_pending so
502 * that a new RTT measurement is started when a new
503 * data chunk is sent.
505 if (chunk
->rtt_in_progress
) {
506 chunk
->rtt_in_progress
= 0;
507 transport
->rto_pending
= 0;
512 /* Move the chunk to the retransmit queue. The chunks
513 * on the retransmit queue are always kept in order.
515 list_del_init(lchunk
);
516 sctp_insert_list(&q
->retransmit
, lchunk
);
520 pr_debug("%s: transport:%p, reason:%d, cwnd:%d, ssthresh:%d, "
521 "flight_size:%d, pba:%d\n", __func__
, transport
, reason
,
522 transport
->cwnd
, transport
->ssthresh
, transport
->flight_size
,
523 transport
->partial_bytes_acked
);
526 /* Mark all the eligible packets on a transport for retransmission and force
529 void sctp_retransmit(struct sctp_outq
*q
, struct sctp_transport
*transport
,
530 sctp_retransmit_reason_t reason
)
532 struct net
*net
= sock_net(q
->asoc
->base
.sk
);
535 case SCTP_RTXR_T3_RTX
:
536 SCTP_INC_STATS(net
, SCTP_MIB_T3_RETRANSMITS
);
537 sctp_transport_lower_cwnd(transport
, SCTP_LOWER_CWND_T3_RTX
);
538 /* Update the retran path if the T3-rtx timer has expired for
539 * the current retran path.
541 if (transport
== transport
->asoc
->peer
.retran_path
)
542 sctp_assoc_update_retran_path(transport
->asoc
);
543 transport
->asoc
->rtx_data_chunks
+=
544 transport
->asoc
->unack_data
;
546 case SCTP_RTXR_FAST_RTX
:
547 SCTP_INC_STATS(net
, SCTP_MIB_FAST_RETRANSMITS
);
548 sctp_transport_lower_cwnd(transport
, SCTP_LOWER_CWND_FAST_RTX
);
551 case SCTP_RTXR_PMTUD
:
552 SCTP_INC_STATS(net
, SCTP_MIB_PMTUD_RETRANSMITS
);
554 case SCTP_RTXR_T1_RTX
:
555 SCTP_INC_STATS(net
, SCTP_MIB_T1_RETRANSMITS
);
556 transport
->asoc
->init_retries
++;
562 sctp_retransmit_mark(q
, transport
, reason
);
564 /* PR-SCTP A5) Any time the T3-rtx timer expires, on any destination,
565 * the sender SHOULD try to advance the "Advanced.Peer.Ack.Point" by
566 * following the procedures outlined in C1 - C5.
568 if (reason
== SCTP_RTXR_T3_RTX
)
569 sctp_generate_fwdtsn(q
, q
->asoc
->ctsn_ack_point
);
571 /* Flush the queues only on timeout, since fast_rtx is only
572 * triggered during sack processing and the queue
573 * will be flushed at the end.
575 if (reason
!= SCTP_RTXR_FAST_RTX
)
576 sctp_outq_flush(q
, /* rtx_timeout */ 1, GFP_ATOMIC
);
580 * Transmit DATA chunks on the retransmit queue. Upon return from
581 * sctp_outq_flush_rtx() the packet 'pkt' may contain chunks which
582 * need to be transmitted by the caller.
583 * We assume that pkt->transport has already been set.
585 * The return value is a normal kernel error return value.
587 static int sctp_outq_flush_rtx(struct sctp_outq
*q
, struct sctp_packet
*pkt
,
588 int rtx_timeout
, int *start_timer
)
590 struct list_head
*lqueue
;
591 struct sctp_transport
*transport
= pkt
->transport
;
593 struct sctp_chunk
*chunk
, *chunk1
;
599 lqueue
= &q
->retransmit
;
600 fast_rtx
= q
->fast_rtx
;
602 /* This loop handles time-out retransmissions, fast retransmissions,
603 * and retransmissions due to opening of whindow.
605 * RFC 2960 6.3.3 Handle T3-rtx Expiration
607 * E3) Determine how many of the earliest (i.e., lowest TSN)
608 * outstanding DATA chunks for the address for which the
609 * T3-rtx has expired will fit into a single packet, subject
610 * to the MTU constraint for the path corresponding to the
611 * destination transport address to which the retransmission
612 * is being sent (this may be different from the address for
613 * which the timer expires [see Section 6.4]). Call this value
614 * K. Bundle and retransmit those K DATA chunks in a single
615 * packet to the destination endpoint.
617 * [Just to be painfully clear, if we are retransmitting
618 * because a timeout just happened, we should send only ONE
619 * packet of retransmitted data.]
621 * For fast retransmissions we also send only ONE packet. However,
622 * if we are just flushing the queue due to open window, we'll
623 * try to send as much as possible.
625 list_for_each_entry_safe(chunk
, chunk1
, lqueue
, transmitted_list
) {
626 /* If the chunk is abandoned, move it to abandoned list. */
627 if (sctp_chunk_abandoned(chunk
)) {
628 list_del_init(&chunk
->transmitted_list
);
629 sctp_insert_list(&q
->abandoned
,
630 &chunk
->transmitted_list
);
634 /* Make sure that Gap Acked TSNs are not retransmitted. A
635 * simple approach is just to move such TSNs out of the
636 * way and into a 'transmitted' queue and skip to the
639 if (chunk
->tsn_gap_acked
) {
640 list_move_tail(&chunk
->transmitted_list
,
641 &transport
->transmitted
);
645 /* If we are doing fast retransmit, ignore non-fast_rtransmit
648 if (fast_rtx
&& !chunk
->fast_retransmit
)
652 /* Attempt to append this chunk to the packet. */
653 status
= sctp_packet_append_chunk(pkt
, chunk
);
656 case SCTP_XMIT_PMTU_FULL
:
657 if (!pkt
->has_data
&& !pkt
->has_cookie_echo
) {
658 /* If this packet did not contain DATA then
659 * retransmission did not happen, so do it
660 * again. We'll ignore the error here since
661 * control chunks are already freed so there
662 * is nothing we can do.
664 sctp_packet_transmit(pkt
, GFP_ATOMIC
);
668 /* Send this packet. */
669 error
= sctp_packet_transmit(pkt
, GFP_ATOMIC
);
671 /* If we are retransmitting, we should only
672 * send a single packet.
673 * Otherwise, try appending this chunk again.
675 if (rtx_timeout
|| fast_rtx
)
680 /* Bundle next chunk in the next round. */
683 case SCTP_XMIT_RWND_FULL
:
684 /* Send this packet. */
685 error
= sctp_packet_transmit(pkt
, GFP_ATOMIC
);
687 /* Stop sending DATA as there is no more room
693 case SCTP_XMIT_DELAY
:
694 /* Send this packet. */
695 error
= sctp_packet_transmit(pkt
, GFP_ATOMIC
);
697 /* Stop sending DATA because of nagle delay. */
702 /* The append was successful, so add this chunk to
703 * the transmitted list.
705 list_move_tail(&chunk
->transmitted_list
,
706 &transport
->transmitted
);
708 /* Mark the chunk as ineligible for fast retransmit
709 * after it is retransmitted.
711 if (chunk
->fast_retransmit
== SCTP_NEED_FRTX
)
712 chunk
->fast_retransmit
= SCTP_DONT_FRTX
;
714 q
->asoc
->stats
.rtxchunks
++;
718 /* Set the timer if there were no errors */
719 if (!error
&& !timer
)
726 /* If we are here due to a retransmit timeout or a fast
727 * retransmit and if there are any chunks left in the retransmit
728 * queue that could not fit in the PMTU sized packet, they need
729 * to be marked as ineligible for a subsequent fast retransmit.
731 if (rtx_timeout
|| fast_rtx
) {
732 list_for_each_entry(chunk1
, lqueue
, transmitted_list
) {
733 if (chunk1
->fast_retransmit
== SCTP_NEED_FRTX
)
734 chunk1
->fast_retransmit
= SCTP_DONT_FRTX
;
738 *start_timer
= timer
;
740 /* Clear fast retransmit hint */
747 /* Cork the outqueue so queued chunks are really queued. */
748 void sctp_outq_uncork(struct sctp_outq
*q
, gfp_t gfp
)
753 sctp_outq_flush(q
, 0, gfp
);
758 * Try to flush an outqueue.
760 * Description: Send everything in q which we legally can, subject to
761 * congestion limitations.
762 * * Note: This function can be called from multiple contexts so appropriate
763 * locking concerns must be made. Today we use the sock lock to protect
766 static void sctp_outq_flush(struct sctp_outq
*q
, int rtx_timeout
, gfp_t gfp
)
768 struct sctp_packet
*packet
;
769 struct sctp_packet singleton
;
770 struct sctp_association
*asoc
= q
->asoc
;
771 __u16 sport
= asoc
->base
.bind_addr
.port
;
772 __u16 dport
= asoc
->peer
.port
;
773 __u32 vtag
= asoc
->peer
.i
.init_tag
;
774 struct sctp_transport
*transport
= NULL
;
775 struct sctp_transport
*new_transport
;
776 struct sctp_chunk
*chunk
, *tmp
;
782 /* These transports have chunks to send. */
783 struct list_head transport_list
;
784 struct list_head
*ltransport
;
786 INIT_LIST_HEAD(&transport_list
);
792 * When bundling control chunks with DATA chunks, an
793 * endpoint MUST place control chunks first in the outbound
794 * SCTP packet. The transmitter MUST transmit DATA chunks
795 * within a SCTP packet in increasing order of TSN.
799 list_for_each_entry_safe(chunk
, tmp
, &q
->control_chunk_list
, list
) {
801 * F1) This means that until such time as the ASCONF
802 * containing the add is acknowledged, the sender MUST
803 * NOT use the new IP address as a source for ANY SCTP
804 * packet except on carrying an ASCONF Chunk.
806 if (asoc
->src_out_of_asoc_ok
&&
807 chunk
->chunk_hdr
->type
!= SCTP_CID_ASCONF
)
810 list_del_init(&chunk
->list
);
812 /* Pick the right transport to use. */
813 new_transport
= chunk
->transport
;
815 if (!new_transport
) {
817 * If we have a prior transport pointer, see if
818 * the destination address of the chunk
819 * matches the destination address of the
820 * current transport. If not a match, then
821 * try to look up the transport with a given
822 * destination address. We do this because
823 * after processing ASCONFs, we may have new
824 * transports created.
827 sctp_cmp_addr_exact(&chunk
->dest
,
829 new_transport
= transport
;
831 new_transport
= sctp_assoc_lookup_paddr(asoc
,
834 /* if we still don't have a new transport, then
835 * use the current active path.
838 new_transport
= asoc
->peer
.active_path
;
839 } else if ((new_transport
->state
== SCTP_INACTIVE
) ||
840 (new_transport
->state
== SCTP_UNCONFIRMED
) ||
841 (new_transport
->state
== SCTP_PF
)) {
842 /* If the chunk is Heartbeat or Heartbeat Ack,
843 * send it to chunk->transport, even if it's
846 * 3.3.6 Heartbeat Acknowledgement:
848 * A HEARTBEAT ACK is always sent to the source IP
849 * address of the IP datagram containing the
850 * HEARTBEAT chunk to which this ack is responding.
853 * ASCONF_ACKs also must be sent to the source.
855 if (chunk
->chunk_hdr
->type
!= SCTP_CID_HEARTBEAT
&&
856 chunk
->chunk_hdr
->type
!= SCTP_CID_HEARTBEAT_ACK
&&
857 chunk
->chunk_hdr
->type
!= SCTP_CID_ASCONF_ACK
)
858 new_transport
= asoc
->peer
.active_path
;
861 /* Are we switching transports?
862 * Take care of transport locks.
864 if (new_transport
!= transport
) {
865 transport
= new_transport
;
866 if (list_empty(&transport
->send_ready
)) {
867 list_add_tail(&transport
->send_ready
,
870 packet
= &transport
->packet
;
871 sctp_packet_config(packet
, vtag
,
872 asoc
->peer
.ecn_capable
);
875 switch (chunk
->chunk_hdr
->type
) {
879 * An endpoint MUST NOT bundle INIT, INIT ACK or SHUTDOWN
880 * COMPLETE with any other chunks. [Send them immediately.]
883 case SCTP_CID_INIT_ACK
:
884 case SCTP_CID_SHUTDOWN_COMPLETE
:
885 sctp_packet_init(&singleton
, transport
, sport
, dport
);
886 sctp_packet_config(&singleton
, vtag
, 0);
887 sctp_packet_append_chunk(&singleton
, chunk
);
888 error
= sctp_packet_transmit(&singleton
, gfp
);
890 asoc
->base
.sk
->sk_err
= -error
;
896 if (sctp_test_T_bit(chunk
)) {
897 packet
->vtag
= asoc
->c
.my_vtag
;
899 /* The following chunks are "response" chunks, i.e.
900 * they are generated in response to something we
901 * received. If we are sending these, then we can
902 * send only 1 packet containing these chunks.
904 case SCTP_CID_HEARTBEAT_ACK
:
905 case SCTP_CID_SHUTDOWN_ACK
:
906 case SCTP_CID_COOKIE_ACK
:
907 case SCTP_CID_COOKIE_ECHO
:
909 case SCTP_CID_ECN_CWR
:
910 case SCTP_CID_ASCONF_ACK
:
915 case SCTP_CID_HEARTBEAT
:
916 case SCTP_CID_SHUTDOWN
:
917 case SCTP_CID_ECN_ECNE
:
918 case SCTP_CID_ASCONF
:
919 case SCTP_CID_FWD_TSN
:
920 status
= sctp_packet_transmit_chunk(packet
, chunk
,
922 if (status
!= SCTP_XMIT_OK
) {
923 /* put the chunk back */
924 list_add(&chunk
->list
, &q
->control_chunk_list
);
926 asoc
->stats
.octrlchunks
++;
927 /* PR-SCTP C5) If a FORWARD TSN is sent, the
928 * sender MUST assure that at least one T3-rtx
931 if (chunk
->chunk_hdr
->type
== SCTP_CID_FWD_TSN
) {
932 sctp_transport_reset_t3_rtx(transport
);
933 transport
->last_time_sent
= jiffies
;
939 /* We built a chunk with an illegal type! */
944 if (q
->asoc
->src_out_of_asoc_ok
)
947 /* Is it OK to send data chunks? */
948 switch (asoc
->state
) {
949 case SCTP_STATE_COOKIE_ECHOED
:
950 /* Only allow bundling when this packet has a COOKIE-ECHO
953 if (!packet
|| !packet
->has_cookie_echo
)
957 case SCTP_STATE_ESTABLISHED
:
958 case SCTP_STATE_SHUTDOWN_PENDING
:
959 case SCTP_STATE_SHUTDOWN_RECEIVED
:
961 * RFC 2960 6.1 Transmission of DATA Chunks
963 * C) When the time comes for the sender to transmit,
964 * before sending new DATA chunks, the sender MUST
965 * first transmit any outstanding DATA chunks which
966 * are marked for retransmission (limited by the
969 if (!list_empty(&q
->retransmit
)) {
970 if (asoc
->peer
.retran_path
->state
== SCTP_UNCONFIRMED
)
972 if (transport
== asoc
->peer
.retran_path
)
975 /* Switch transports & prepare the packet. */
977 transport
= asoc
->peer
.retran_path
;
979 if (list_empty(&transport
->send_ready
)) {
980 list_add_tail(&transport
->send_ready
,
984 packet
= &transport
->packet
;
985 sctp_packet_config(packet
, vtag
,
986 asoc
->peer
.ecn_capable
);
988 error
= sctp_outq_flush_rtx(q
, packet
,
989 rtx_timeout
, &start_timer
);
991 asoc
->base
.sk
->sk_err
= -error
;
994 sctp_transport_reset_t3_rtx(transport
);
995 transport
->last_time_sent
= jiffies
;
998 /* This can happen on COOKIE-ECHO resend. Only
999 * one chunk can get bundled with a COOKIE-ECHO.
1001 if (packet
->has_cookie_echo
)
1002 goto sctp_flush_out
;
1004 /* Don't send new data if there is still data
1005 * waiting to retransmit.
1007 if (!list_empty(&q
->retransmit
))
1008 goto sctp_flush_out
;
1011 /* Apply Max.Burst limitation to the current transport in
1012 * case it will be used for new data. We are going to
1013 * rest it before we return, but we want to apply the limit
1014 * to the currently queued data.
1017 sctp_transport_burst_limited(transport
);
1019 /* Finally, transmit new packets. */
1020 while ((chunk
= sctp_outq_dequeue_data(q
)) != NULL
) {
1021 /* RFC 2960 6.5 Every DATA chunk MUST carry a valid
1022 * stream identifier.
1024 if (chunk
->sinfo
.sinfo_stream
>=
1025 asoc
->c
.sinit_num_ostreams
) {
1027 /* Mark as failed send. */
1028 sctp_chunk_fail(chunk
, SCTP_ERROR_INV_STRM
);
1029 if (asoc
->peer
.prsctp_capable
&&
1030 SCTP_PR_PRIO_ENABLED(chunk
->sinfo
.sinfo_flags
))
1031 asoc
->sent_cnt_removable
--;
1032 sctp_chunk_free(chunk
);
1036 /* Has this chunk expired? */
1037 if (sctp_chunk_abandoned(chunk
)) {
1038 sctp_chunk_fail(chunk
, 0);
1039 sctp_chunk_free(chunk
);
1043 /* If there is a specified transport, use it.
1044 * Otherwise, we want to use the active path.
1046 new_transport
= chunk
->transport
;
1047 if (!new_transport
||
1048 ((new_transport
->state
== SCTP_INACTIVE
) ||
1049 (new_transport
->state
== SCTP_UNCONFIRMED
) ||
1050 (new_transport
->state
== SCTP_PF
)))
1051 new_transport
= asoc
->peer
.active_path
;
1052 if (new_transport
->state
== SCTP_UNCONFIRMED
) {
1053 WARN_ONCE(1, "Atempt to send packet on unconfirmed path.");
1054 sctp_chunk_fail(chunk
, 0);
1055 sctp_chunk_free(chunk
);
1059 /* Change packets if necessary. */
1060 if (new_transport
!= transport
) {
1061 transport
= new_transport
;
1063 /* Schedule to have this transport's
1066 if (list_empty(&transport
->send_ready
)) {
1067 list_add_tail(&transport
->send_ready
,
1071 packet
= &transport
->packet
;
1072 sctp_packet_config(packet
, vtag
,
1073 asoc
->peer
.ecn_capable
);
1074 /* We've switched transports, so apply the
1075 * Burst limit to the new transport.
1077 sctp_transport_burst_limited(transport
);
1080 pr_debug("%s: outq:%p, chunk:%p[%s], tx-tsn:0x%x skb->head:%p "
1082 __func__
, q
, chunk
, chunk
&& chunk
->chunk_hdr
?
1083 sctp_cname(SCTP_ST_CHUNK(chunk
->chunk_hdr
->type
)) :
1084 "illegal chunk", ntohl(chunk
->subh
.data_hdr
->tsn
),
1085 chunk
->skb
? chunk
->skb
->head
: NULL
, chunk
->skb
?
1086 atomic_read(&chunk
->skb
->users
) : -1);
1088 /* Add the chunk to the packet. */
1089 status
= sctp_packet_transmit_chunk(packet
, chunk
, 0, gfp
);
1092 case SCTP_XMIT_PMTU_FULL
:
1093 case SCTP_XMIT_RWND_FULL
:
1094 case SCTP_XMIT_DELAY
:
1095 /* We could not append this chunk, so put
1096 * the chunk back on the output queue.
1098 pr_debug("%s: could not transmit tsn:0x%x, status:%d\n",
1099 __func__
, ntohl(chunk
->subh
.data_hdr
->tsn
),
1102 sctp_outq_head_data(q
, chunk
);
1103 goto sctp_flush_out
;
1106 /* The sender is in the SHUTDOWN-PENDING state,
1107 * The sender MAY set the I-bit in the DATA
1110 if (asoc
->state
== SCTP_STATE_SHUTDOWN_PENDING
)
1111 chunk
->chunk_hdr
->flags
|= SCTP_DATA_SACK_IMM
;
1112 if (chunk
->chunk_hdr
->flags
& SCTP_DATA_UNORDERED
)
1113 asoc
->stats
.ouodchunks
++;
1115 asoc
->stats
.oodchunks
++;
1123 /* BUG: We assume that the sctp_packet_transmit()
1124 * call below will succeed all the time and add the
1125 * chunk to the transmitted list and restart the
1127 * It is possible that the call can fail under OOM
1130 * Is this really a problem? Won't this behave
1133 list_add_tail(&chunk
->transmitted_list
,
1134 &transport
->transmitted
);
1136 sctp_transport_reset_t3_rtx(transport
);
1137 transport
->last_time_sent
= jiffies
;
1139 /* Only let one DATA chunk get bundled with a
1140 * COOKIE-ECHO chunk.
1142 if (packet
->has_cookie_echo
)
1143 goto sctp_flush_out
;
1154 /* Before returning, examine all the transports touched in
1155 * this call. Right now, we bluntly force clear all the
1156 * transports. Things might change after we implement Nagle.
1157 * But such an examination is still required.
1161 while ((ltransport
= sctp_list_dequeue(&transport_list
)) != NULL
) {
1162 struct sctp_transport
*t
= list_entry(ltransport
,
1163 struct sctp_transport
,
1165 packet
= &t
->packet
;
1166 if (!sctp_packet_empty(packet
)) {
1167 error
= sctp_packet_transmit(packet
, gfp
);
1169 asoc
->base
.sk
->sk_err
= -error
;
1172 /* Clear the burst limited state, if any */
1173 sctp_transport_burst_reset(t
);
1177 /* Update unack_data based on the incoming SACK chunk */
1178 static void sctp_sack_update_unack_data(struct sctp_association
*assoc
,
1179 struct sctp_sackhdr
*sack
)
1181 sctp_sack_variable_t
*frags
;
1185 unack_data
= assoc
->next_tsn
- assoc
->ctsn_ack_point
- 1;
1187 frags
= sack
->variable
;
1188 for (i
= 0; i
< ntohs(sack
->num_gap_ack_blocks
); i
++) {
1189 unack_data
-= ((ntohs(frags
[i
].gab
.end
) -
1190 ntohs(frags
[i
].gab
.start
) + 1));
1193 assoc
->unack_data
= unack_data
;
1196 /* This is where we REALLY process a SACK.
1198 * Process the SACK against the outqueue. Mostly, this just frees
1199 * things off the transmitted queue.
1201 int sctp_outq_sack(struct sctp_outq
*q
, struct sctp_chunk
*chunk
)
1203 struct sctp_association
*asoc
= q
->asoc
;
1204 struct sctp_sackhdr
*sack
= chunk
->subh
.sack_hdr
;
1205 struct sctp_transport
*transport
;
1206 struct sctp_chunk
*tchunk
= NULL
;
1207 struct list_head
*lchunk
, *transport_list
, *temp
;
1208 sctp_sack_variable_t
*frags
= sack
->variable
;
1209 __u32 sack_ctsn
, ctsn
, tsn
;
1210 __u32 highest_tsn
, highest_new_tsn
;
1212 unsigned int outstanding
;
1213 struct sctp_transport
*primary
= asoc
->peer
.primary_path
;
1214 int count_of_newacks
= 0;
1218 /* Grab the association's destination address list. */
1219 transport_list
= &asoc
->peer
.transport_addr_list
;
1221 sack_ctsn
= ntohl(sack
->cum_tsn_ack
);
1222 gap_ack_blocks
= ntohs(sack
->num_gap_ack_blocks
);
1223 asoc
->stats
.gapcnt
+= gap_ack_blocks
;
1225 * SFR-CACC algorithm:
1226 * On receipt of a SACK the sender SHOULD execute the
1227 * following statements.
1229 * 1) If the cumulative ack in the SACK passes next tsn_at_change
1230 * on the current primary, the CHANGEOVER_ACTIVE flag SHOULD be
1231 * cleared. The CYCLING_CHANGEOVER flag SHOULD also be cleared for
1233 * 2) If the SACK contains gap acks and the flag CHANGEOVER_ACTIVE
1234 * is set the receiver of the SACK MUST take the following actions:
1236 * A) Initialize the cacc_saw_newack to 0 for all destination
1239 * Only bother if changeover_active is set. Otherwise, this is
1240 * totally suboptimal to do on every SACK.
1242 if (primary
->cacc
.changeover_active
) {
1243 u8 clear_cycling
= 0;
1245 if (TSN_lte(primary
->cacc
.next_tsn_at_change
, sack_ctsn
)) {
1246 primary
->cacc
.changeover_active
= 0;
1250 if (clear_cycling
|| gap_ack_blocks
) {
1251 list_for_each_entry(transport
, transport_list
,
1254 transport
->cacc
.cycling_changeover
= 0;
1256 transport
->cacc
.cacc_saw_newack
= 0;
1261 /* Get the highest TSN in the sack. */
1262 highest_tsn
= sack_ctsn
;
1264 highest_tsn
+= ntohs(frags
[gap_ack_blocks
- 1].gab
.end
);
1266 if (TSN_lt(asoc
->highest_sacked
, highest_tsn
))
1267 asoc
->highest_sacked
= highest_tsn
;
1269 highest_new_tsn
= sack_ctsn
;
1271 /* Run through the retransmit queue. Credit bytes received
1272 * and free those chunks that we can.
1274 sctp_check_transmitted(q
, &q
->retransmit
, NULL
, NULL
, sack
, &highest_new_tsn
);
1276 /* Run through the transmitted queue.
1277 * Credit bytes received and free those chunks which we can.
1279 * This is a MASSIVE candidate for optimization.
1281 list_for_each_entry(transport
, transport_list
, transports
) {
1282 sctp_check_transmitted(q
, &transport
->transmitted
,
1283 transport
, &chunk
->source
, sack
,
1286 * SFR-CACC algorithm:
1287 * C) Let count_of_newacks be the number of
1288 * destinations for which cacc_saw_newack is set.
1290 if (transport
->cacc
.cacc_saw_newack
)
1294 /* Move the Cumulative TSN Ack Point if appropriate. */
1295 if (TSN_lt(asoc
->ctsn_ack_point
, sack_ctsn
)) {
1296 asoc
->ctsn_ack_point
= sack_ctsn
;
1300 if (gap_ack_blocks
) {
1302 if (asoc
->fast_recovery
&& accum_moved
)
1303 highest_new_tsn
= highest_tsn
;
1305 list_for_each_entry(transport
, transport_list
, transports
)
1306 sctp_mark_missing(q
, &transport
->transmitted
, transport
,
1307 highest_new_tsn
, count_of_newacks
);
1310 /* Update unack_data field in the assoc. */
1311 sctp_sack_update_unack_data(asoc
, sack
);
1313 ctsn
= asoc
->ctsn_ack_point
;
1315 /* Throw away stuff rotting on the sack queue. */
1316 list_for_each_safe(lchunk
, temp
, &q
->sacked
) {
1317 tchunk
= list_entry(lchunk
, struct sctp_chunk
,
1319 tsn
= ntohl(tchunk
->subh
.data_hdr
->tsn
);
1320 if (TSN_lte(tsn
, ctsn
)) {
1321 list_del_init(&tchunk
->transmitted_list
);
1322 if (asoc
->peer
.prsctp_capable
&&
1323 SCTP_PR_PRIO_ENABLED(chunk
->sinfo
.sinfo_flags
))
1324 asoc
->sent_cnt_removable
--;
1325 sctp_chunk_free(tchunk
);
1329 /* ii) Set rwnd equal to the newly received a_rwnd minus the
1330 * number of bytes still outstanding after processing the
1331 * Cumulative TSN Ack and the Gap Ack Blocks.
1334 sack_a_rwnd
= ntohl(sack
->a_rwnd
);
1335 asoc
->peer
.zero_window_announced
= !sack_a_rwnd
;
1336 outstanding
= q
->outstanding_bytes
;
1338 if (outstanding
< sack_a_rwnd
)
1339 sack_a_rwnd
-= outstanding
;
1343 asoc
->peer
.rwnd
= sack_a_rwnd
;
1345 sctp_generate_fwdtsn(q
, sack_ctsn
);
1347 pr_debug("%s: sack cumulative tsn ack:0x%x\n", __func__
, sack_ctsn
);
1348 pr_debug("%s: cumulative tsn ack of assoc:%p is 0x%x, "
1349 "advertised peer ack point:0x%x\n", __func__
, asoc
, ctsn
,
1350 asoc
->adv_peer_ack_point
);
1352 return sctp_outq_is_empty(q
);
1355 /* Is the outqueue empty?
1356 * The queue is empty when we have not pending data, no in-flight data
1357 * and nothing pending retransmissions.
1359 int sctp_outq_is_empty(const struct sctp_outq
*q
)
1361 return q
->out_qlen
== 0 && q
->outstanding_bytes
== 0 &&
1362 list_empty(&q
->retransmit
);
1365 /********************************************************************
1366 * 2nd Level Abstractions
1367 ********************************************************************/
1369 /* Go through a transport's transmitted list or the association's retransmit
1370 * list and move chunks that are acked by the Cumulative TSN Ack to q->sacked.
1371 * The retransmit list will not have an associated transport.
1373 * I added coherent debug information output. --xguo
1375 * Instead of printing 'sacked' or 'kept' for each TSN on the
1376 * transmitted_queue, we print a range: SACKED: TSN1-TSN2, TSN3, TSN4-TSN5.
1377 * KEPT TSN6-TSN7, etc.
1379 static void sctp_check_transmitted(struct sctp_outq
*q
,
1380 struct list_head
*transmitted_queue
,
1381 struct sctp_transport
*transport
,
1382 union sctp_addr
*saddr
,
1383 struct sctp_sackhdr
*sack
,
1384 __u32
*highest_new_tsn_in_sack
)
1386 struct list_head
*lchunk
;
1387 struct sctp_chunk
*tchunk
;
1388 struct list_head tlist
;
1392 __u8 restart_timer
= 0;
1393 int bytes_acked
= 0;
1394 int migrate_bytes
= 0;
1395 bool forward_progress
= false;
1397 sack_ctsn
= ntohl(sack
->cum_tsn_ack
);
1399 INIT_LIST_HEAD(&tlist
);
1401 /* The while loop will skip empty transmitted queues. */
1402 while (NULL
!= (lchunk
= sctp_list_dequeue(transmitted_queue
))) {
1403 tchunk
= list_entry(lchunk
, struct sctp_chunk
,
1406 if (sctp_chunk_abandoned(tchunk
)) {
1407 /* Move the chunk to abandoned list. */
1408 sctp_insert_list(&q
->abandoned
, lchunk
);
1410 /* If this chunk has not been acked, stop
1411 * considering it as 'outstanding'.
1413 if (transmitted_queue
!= &q
->retransmit
&&
1414 !tchunk
->tsn_gap_acked
) {
1415 if (tchunk
->transport
)
1416 tchunk
->transport
->flight_size
-=
1417 sctp_data_size(tchunk
);
1418 q
->outstanding_bytes
-= sctp_data_size(tchunk
);
1423 tsn
= ntohl(tchunk
->subh
.data_hdr
->tsn
);
1424 if (sctp_acked(sack
, tsn
)) {
1425 /* If this queue is the retransmit queue, the
1426 * retransmit timer has already reclaimed
1427 * the outstanding bytes for this chunk, so only
1428 * count bytes associated with a transport.
1431 /* If this chunk is being used for RTT
1432 * measurement, calculate the RTT and update
1433 * the RTO using this value.
1435 * 6.3.1 C5) Karn's algorithm: RTT measurements
1436 * MUST NOT be made using packets that were
1437 * retransmitted (and thus for which it is
1438 * ambiguous whether the reply was for the
1439 * first instance of the packet or a later
1442 if (!tchunk
->tsn_gap_acked
&&
1444 tchunk
->rtt_in_progress
) {
1445 tchunk
->rtt_in_progress
= 0;
1446 rtt
= jiffies
- tchunk
->sent_at
;
1447 sctp_transport_update_rto(transport
,
1452 /* If the chunk hasn't been marked as ACKED,
1453 * mark it and account bytes_acked if the
1454 * chunk had a valid transport (it will not
1455 * have a transport if ASCONF had deleted it
1456 * while DATA was outstanding).
1458 if (!tchunk
->tsn_gap_acked
) {
1459 tchunk
->tsn_gap_acked
= 1;
1460 if (TSN_lt(*highest_new_tsn_in_sack
, tsn
))
1461 *highest_new_tsn_in_sack
= tsn
;
1462 bytes_acked
+= sctp_data_size(tchunk
);
1463 if (!tchunk
->transport
)
1464 migrate_bytes
+= sctp_data_size(tchunk
);
1465 forward_progress
= true;
1468 if (TSN_lte(tsn
, sack_ctsn
)) {
1469 /* RFC 2960 6.3.2 Retransmission Timer Rules
1471 * R3) Whenever a SACK is received
1472 * that acknowledges the DATA chunk
1473 * with the earliest outstanding TSN
1474 * for that address, restart T3-rtx
1475 * timer for that address with its
1479 forward_progress
= true;
1481 if (!tchunk
->tsn_gap_acked
) {
1483 * SFR-CACC algorithm:
1484 * 2) If the SACK contains gap acks
1485 * and the flag CHANGEOVER_ACTIVE is
1486 * set the receiver of the SACK MUST
1487 * take the following action:
1489 * B) For each TSN t being acked that
1490 * has not been acked in any SACK so
1491 * far, set cacc_saw_newack to 1 for
1492 * the destination that the TSN was
1496 sack
->num_gap_ack_blocks
&&
1497 q
->asoc
->peer
.primary_path
->cacc
.
1499 transport
->cacc
.cacc_saw_newack
1503 list_add_tail(&tchunk
->transmitted_list
,
1506 /* RFC2960 7.2.4, sctpimpguide-05 2.8.2
1507 * M2) Each time a SACK arrives reporting
1508 * 'Stray DATA chunk(s)' record the highest TSN
1509 * reported as newly acknowledged, call this
1510 * value 'HighestTSNinSack'. A newly
1511 * acknowledged DATA chunk is one not
1512 * previously acknowledged in a SACK.
1514 * When the SCTP sender of data receives a SACK
1515 * chunk that acknowledges, for the first time,
1516 * the receipt of a DATA chunk, all the still
1517 * unacknowledged DATA chunks whose TSN is
1518 * older than that newly acknowledged DATA
1519 * chunk, are qualified as 'Stray DATA chunks'.
1521 list_add_tail(lchunk
, &tlist
);
1524 if (tchunk
->tsn_gap_acked
) {
1525 pr_debug("%s: receiver reneged on data TSN:0x%x\n",
1528 tchunk
->tsn_gap_acked
= 0;
1530 if (tchunk
->transport
)
1531 bytes_acked
-= sctp_data_size(tchunk
);
1533 /* RFC 2960 6.3.2 Retransmission Timer Rules
1535 * R4) Whenever a SACK is received missing a
1536 * TSN that was previously acknowledged via a
1537 * Gap Ack Block, start T3-rtx for the
1538 * destination address to which the DATA
1539 * chunk was originally
1540 * transmitted if it is not already running.
1545 list_add_tail(lchunk
, &tlist
);
1551 struct sctp_association
*asoc
= transport
->asoc
;
1553 /* We may have counted DATA that was migrated
1554 * to this transport due to DEL-IP operation.
1555 * Subtract those bytes, since the were never
1556 * send on this transport and shouldn't be
1557 * credited to this transport.
1559 bytes_acked
-= migrate_bytes
;
1561 /* 8.2. When an outstanding TSN is acknowledged,
1562 * the endpoint shall clear the error counter of
1563 * the destination transport address to which the
1564 * DATA chunk was last sent.
1565 * The association's overall error counter is
1568 transport
->error_count
= 0;
1569 transport
->asoc
->overall_error_count
= 0;
1570 forward_progress
= true;
1573 * While in SHUTDOWN PENDING, we may have started
1574 * the T5 shutdown guard timer after reaching the
1575 * retransmission limit. Stop that timer as soon
1576 * as the receiver acknowledged any data.
1578 if (asoc
->state
== SCTP_STATE_SHUTDOWN_PENDING
&&
1579 del_timer(&asoc
->timers
1580 [SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD
]))
1581 sctp_association_put(asoc
);
1583 /* Mark the destination transport address as
1584 * active if it is not so marked.
1586 if ((transport
->state
== SCTP_INACTIVE
||
1587 transport
->state
== SCTP_UNCONFIRMED
) &&
1588 sctp_cmp_addr_exact(&transport
->ipaddr
, saddr
)) {
1589 sctp_assoc_control_transport(
1593 SCTP_RECEIVED_SACK
);
1596 sctp_transport_raise_cwnd(transport
, sack_ctsn
,
1599 transport
->flight_size
-= bytes_acked
;
1600 if (transport
->flight_size
== 0)
1601 transport
->partial_bytes_acked
= 0;
1602 q
->outstanding_bytes
-= bytes_acked
+ migrate_bytes
;
1604 /* RFC 2960 6.1, sctpimpguide-06 2.15.2
1605 * When a sender is doing zero window probing, it
1606 * should not timeout the association if it continues
1607 * to receive new packets from the receiver. The
1608 * reason is that the receiver MAY keep its window
1609 * closed for an indefinite time.
1610 * A sender is doing zero window probing when the
1611 * receiver's advertised window is zero, and there is
1612 * only one data chunk in flight to the receiver.
1614 * Allow the association to timeout while in SHUTDOWN
1615 * PENDING or SHUTDOWN RECEIVED in case the receiver
1616 * stays in zero window mode forever.
1618 if (!q
->asoc
->peer
.rwnd
&&
1619 !list_empty(&tlist
) &&
1620 (sack_ctsn
+2 == q
->asoc
->next_tsn
) &&
1621 q
->asoc
->state
< SCTP_STATE_SHUTDOWN_PENDING
) {
1622 pr_debug("%s: sack received for zero window "
1623 "probe:%u\n", __func__
, sack_ctsn
);
1625 q
->asoc
->overall_error_count
= 0;
1626 transport
->error_count
= 0;
1630 /* RFC 2960 6.3.2 Retransmission Timer Rules
1632 * R2) Whenever all outstanding data sent to an address have
1633 * been acknowledged, turn off the T3-rtx timer of that
1636 if (!transport
->flight_size
) {
1637 if (del_timer(&transport
->T3_rtx_timer
))
1638 sctp_transport_put(transport
);
1639 } else if (restart_timer
) {
1640 if (!mod_timer(&transport
->T3_rtx_timer
,
1641 jiffies
+ transport
->rto
))
1642 sctp_transport_hold(transport
);
1645 if (forward_progress
) {
1647 dst_confirm(transport
->dst
);
1651 list_splice(&tlist
, transmitted_queue
);
1654 /* Mark chunks as missing and consequently may get retransmitted. */
1655 static void sctp_mark_missing(struct sctp_outq
*q
,
1656 struct list_head
*transmitted_queue
,
1657 struct sctp_transport
*transport
,
1658 __u32 highest_new_tsn_in_sack
,
1659 int count_of_newacks
)
1661 struct sctp_chunk
*chunk
;
1663 char do_fast_retransmit
= 0;
1664 struct sctp_association
*asoc
= q
->asoc
;
1665 struct sctp_transport
*primary
= asoc
->peer
.primary_path
;
1667 list_for_each_entry(chunk
, transmitted_queue
, transmitted_list
) {
1669 tsn
= ntohl(chunk
->subh
.data_hdr
->tsn
);
1671 /* RFC 2960 7.2.4, sctpimpguide-05 2.8.2 M3) Examine all
1672 * 'Unacknowledged TSN's', if the TSN number of an
1673 * 'Unacknowledged TSN' is smaller than the 'HighestTSNinSack'
1674 * value, increment the 'TSN.Missing.Report' count on that
1675 * chunk if it has NOT been fast retransmitted or marked for
1676 * fast retransmit already.
1678 if (chunk
->fast_retransmit
== SCTP_CAN_FRTX
&&
1679 !chunk
->tsn_gap_acked
&&
1680 TSN_lt(tsn
, highest_new_tsn_in_sack
)) {
1682 /* SFR-CACC may require us to skip marking
1683 * this chunk as missing.
1685 if (!transport
|| !sctp_cacc_skip(primary
,
1687 count_of_newacks
, tsn
)) {
1688 chunk
->tsn_missing_report
++;
1690 pr_debug("%s: tsn:0x%x missing counter:%d\n",
1691 __func__
, tsn
, chunk
->tsn_missing_report
);
1695 * M4) If any DATA chunk is found to have a
1696 * 'TSN.Missing.Report'
1697 * value larger than or equal to 3, mark that chunk for
1698 * retransmission and start the fast retransmit procedure.
1701 if (chunk
->tsn_missing_report
>= 3) {
1702 chunk
->fast_retransmit
= SCTP_NEED_FRTX
;
1703 do_fast_retransmit
= 1;
1708 if (do_fast_retransmit
)
1709 sctp_retransmit(q
, transport
, SCTP_RTXR_FAST_RTX
);
1711 pr_debug("%s: transport:%p, cwnd:%d, ssthresh:%d, "
1712 "flight_size:%d, pba:%d\n", __func__
, transport
,
1713 transport
->cwnd
, transport
->ssthresh
,
1714 transport
->flight_size
, transport
->partial_bytes_acked
);
1718 /* Is the given TSN acked by this packet? */
1719 static int sctp_acked(struct sctp_sackhdr
*sack
, __u32 tsn
)
1722 sctp_sack_variable_t
*frags
;
1723 __u16 tsn_offset
, blocks
;
1724 __u32 ctsn
= ntohl(sack
->cum_tsn_ack
);
1726 if (TSN_lte(tsn
, ctsn
))
1729 /* 3.3.4 Selective Acknowledgement (SACK) (3):
1732 * These fields contain the Gap Ack Blocks. They are repeated
1733 * for each Gap Ack Block up to the number of Gap Ack Blocks
1734 * defined in the Number of Gap Ack Blocks field. All DATA
1735 * chunks with TSNs greater than or equal to (Cumulative TSN
1736 * Ack + Gap Ack Block Start) and less than or equal to
1737 * (Cumulative TSN Ack + Gap Ack Block End) of each Gap Ack
1738 * Block are assumed to have been received correctly.
1741 frags
= sack
->variable
;
1742 blocks
= ntohs(sack
->num_gap_ack_blocks
);
1743 tsn_offset
= tsn
- ctsn
;
1744 for (i
= 0; i
< blocks
; ++i
) {
1745 if (tsn_offset
>= ntohs(frags
[i
].gab
.start
) &&
1746 tsn_offset
<= ntohs(frags
[i
].gab
.end
))
1755 static inline int sctp_get_skip_pos(struct sctp_fwdtsn_skip
*skiplist
,
1756 int nskips
, __be16 stream
)
1760 for (i
= 0; i
< nskips
; i
++) {
1761 if (skiplist
[i
].stream
== stream
)
1767 /* Create and add a fwdtsn chunk to the outq's control queue if needed. */
1768 static void sctp_generate_fwdtsn(struct sctp_outq
*q
, __u32 ctsn
)
1770 struct sctp_association
*asoc
= q
->asoc
;
1771 struct sctp_chunk
*ftsn_chunk
= NULL
;
1772 struct sctp_fwdtsn_skip ftsn_skip_arr
[10];
1776 struct sctp_chunk
*chunk
;
1777 struct list_head
*lchunk
, *temp
;
1779 if (!asoc
->peer
.prsctp_capable
)
1782 /* PR-SCTP C1) Let SackCumAck be the Cumulative TSN ACK carried in the
1785 * If (Advanced.Peer.Ack.Point < SackCumAck), then update
1786 * Advanced.Peer.Ack.Point to be equal to SackCumAck.
1788 if (TSN_lt(asoc
->adv_peer_ack_point
, ctsn
))
1789 asoc
->adv_peer_ack_point
= ctsn
;
1791 /* PR-SCTP C2) Try to further advance the "Advanced.Peer.Ack.Point"
1792 * locally, that is, to move "Advanced.Peer.Ack.Point" up as long as
1793 * the chunk next in the out-queue space is marked as "abandoned" as
1794 * shown in the following example:
1796 * Assuming that a SACK arrived with the Cumulative TSN ACK 102
1797 * and the Advanced.Peer.Ack.Point is updated to this value:
1799 * out-queue at the end of ==> out-queue after Adv.Ack.Point
1800 * normal SACK processing local advancement
1802 * Adv.Ack.Pt-> 102 acked 102 acked
1803 * 103 abandoned 103 abandoned
1804 * 104 abandoned Adv.Ack.P-> 104 abandoned
1806 * 106 acked 106 acked
1809 * In this example, the data sender successfully advanced the
1810 * "Advanced.Peer.Ack.Point" from 102 to 104 locally.
1812 list_for_each_safe(lchunk
, temp
, &q
->abandoned
) {
1813 chunk
= list_entry(lchunk
, struct sctp_chunk
,
1815 tsn
= ntohl(chunk
->subh
.data_hdr
->tsn
);
1817 /* Remove any chunks in the abandoned queue that are acked by
1820 if (TSN_lte(tsn
, ctsn
)) {
1821 list_del_init(lchunk
);
1822 sctp_chunk_free(chunk
);
1824 if (TSN_lte(tsn
, asoc
->adv_peer_ack_point
+1)) {
1825 asoc
->adv_peer_ack_point
= tsn
;
1826 if (chunk
->chunk_hdr
->flags
&
1827 SCTP_DATA_UNORDERED
)
1829 skip_pos
= sctp_get_skip_pos(&ftsn_skip_arr
[0],
1831 chunk
->subh
.data_hdr
->stream
);
1832 ftsn_skip_arr
[skip_pos
].stream
=
1833 chunk
->subh
.data_hdr
->stream
;
1834 ftsn_skip_arr
[skip_pos
].ssn
=
1835 chunk
->subh
.data_hdr
->ssn
;
1836 if (skip_pos
== nskips
)
1845 /* PR-SCTP C3) If, after step C1 and C2, the "Advanced.Peer.Ack.Point"
1846 * is greater than the Cumulative TSN ACK carried in the received
1847 * SACK, the data sender MUST send the data receiver a FORWARD TSN
1848 * chunk containing the latest value of the
1849 * "Advanced.Peer.Ack.Point".
1851 * C4) For each "abandoned" TSN the sender of the FORWARD TSN SHOULD
1852 * list each stream and sequence number in the forwarded TSN. This
1853 * information will enable the receiver to easily find any
1854 * stranded TSN's waiting on stream reorder queues. Each stream
1855 * SHOULD only be reported once; this means that if multiple
1856 * abandoned messages occur in the same stream then only the
1857 * highest abandoned stream sequence number is reported. If the
1858 * total size of the FORWARD TSN does NOT fit in a single MTU then
1859 * the sender of the FORWARD TSN SHOULD lower the
1860 * Advanced.Peer.Ack.Point to the last TSN that will fit in a
1863 if (asoc
->adv_peer_ack_point
> ctsn
)
1864 ftsn_chunk
= sctp_make_fwdtsn(asoc
, asoc
->adv_peer_ack_point
,
1865 nskips
, &ftsn_skip_arr
[0]);
1868 list_add_tail(&ftsn_chunk
->list
, &q
->control_chunk_list
);
1869 SCTP_INC_STATS(sock_net(asoc
->base
.sk
), SCTP_MIB_OUTCTRLCHUNKS
);