[IA64, X86_64] fix swiotlb sizing
[linux/fpc-iii.git] / fs / nfs / read.c
blob6f866b8aa2d56908553972bb18ed6b700ebebfa2
1 /*
2 * linux/fs/nfs/read.c
4 * Block I/O for NFS
6 * Partial copy of Linus' read cache modifications to fs/nfs/file.c
7 * modified for async RPC by okir@monad.swb.de
9 * We do an ugly hack here in order to return proper error codes to the
10 * user program when a read request failed: since generic_file_read
11 * only checks the return value of inode->i_op->readpage() which is always 0
12 * for async RPC, we set the error bit of the page to 1 when an error occurs,
13 * and make nfs_readpage transmit requests synchronously when encountering this.
14 * This is only a small problem, though, since we now retry all operations
15 * within the RPC code when root squashing is suspected.
18 #include <linux/config.h>
19 #include <linux/time.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/fcntl.h>
23 #include <linux/stat.h>
24 #include <linux/mm.h>
25 #include <linux/slab.h>
26 #include <linux/pagemap.h>
27 #include <linux/sunrpc/clnt.h>
28 #include <linux/nfs_fs.h>
29 #include <linux/nfs_page.h>
30 #include <linux/smp_lock.h>
32 #include <asm/system.h>
34 #define NFSDBG_FACILITY NFSDBG_PAGECACHE
36 static int nfs_pagein_one(struct list_head *, struct inode *);
37 static void nfs_readpage_result_partial(struct nfs_read_data *, int);
38 static void nfs_readpage_result_full(struct nfs_read_data *, int);
40 static kmem_cache_t *nfs_rdata_cachep;
41 mempool_t *nfs_rdata_mempool;
43 #define MIN_POOL_READ (32)
45 void nfs_readdata_release(struct rpc_task *task)
47 struct nfs_read_data *data = (struct nfs_read_data *)task->tk_calldata;
48 nfs_readdata_free(data);
51 static
52 unsigned int nfs_page_length(struct inode *inode, struct page *page)
54 loff_t i_size = i_size_read(inode);
55 unsigned long idx;
57 if (i_size <= 0)
58 return 0;
59 idx = (i_size - 1) >> PAGE_CACHE_SHIFT;
60 if (page->index > idx)
61 return 0;
62 if (page->index != idx)
63 return PAGE_CACHE_SIZE;
64 return 1 + ((i_size - 1) & (PAGE_CACHE_SIZE - 1));
67 static
68 int nfs_return_empty_page(struct page *page)
70 memclear_highpage_flush(page, 0, PAGE_CACHE_SIZE);
71 SetPageUptodate(page);
72 unlock_page(page);
73 return 0;
77 * Read a page synchronously.
79 static int nfs_readpage_sync(struct nfs_open_context *ctx, struct inode *inode,
80 struct page *page)
82 unsigned int rsize = NFS_SERVER(inode)->rsize;
83 unsigned int count = PAGE_CACHE_SIZE;
84 int result;
85 struct nfs_read_data *rdata;
87 rdata = nfs_readdata_alloc();
88 if (!rdata)
89 return -ENOMEM;
91 memset(rdata, 0, sizeof(*rdata));
92 rdata->flags = (IS_SWAPFILE(inode)? NFS_RPC_SWAPFLAGS : 0);
93 rdata->cred = ctx->cred;
94 rdata->inode = inode;
95 INIT_LIST_HEAD(&rdata->pages);
96 rdata->args.fh = NFS_FH(inode);
97 rdata->args.context = ctx;
98 rdata->args.pages = &page;
99 rdata->args.pgbase = 0UL;
100 rdata->args.count = rsize;
101 rdata->res.fattr = &rdata->fattr;
103 dprintk("NFS: nfs_readpage_sync(%p)\n", page);
106 * This works now because the socket layer never tries to DMA
107 * into this buffer directly.
109 do {
110 if (count < rsize)
111 rdata->args.count = count;
112 rdata->res.count = rdata->args.count;
113 rdata->args.offset = page_offset(page) + rdata->args.pgbase;
115 dprintk("NFS: nfs_proc_read(%s, (%s/%Ld), %Lu, %u)\n",
116 NFS_SERVER(inode)->hostname,
117 inode->i_sb->s_id,
118 (long long)NFS_FILEID(inode),
119 (unsigned long long)rdata->args.pgbase,
120 rdata->args.count);
122 lock_kernel();
123 result = NFS_PROTO(inode)->read(rdata);
124 unlock_kernel();
127 * Even if we had a partial success we can't mark the page
128 * cache valid.
130 if (result < 0) {
131 if (result == -EISDIR)
132 result = -EINVAL;
133 goto io_error;
135 count -= result;
136 rdata->args.pgbase += result;
137 /* Note: result == 0 should only happen if we're caching
138 * a write that extends the file and punches a hole.
140 if (rdata->res.eof != 0 || result == 0)
141 break;
142 } while (count);
143 NFS_FLAGS(inode) |= NFS_INO_INVALID_ATIME;
145 if (count)
146 memclear_highpage_flush(page, rdata->args.pgbase, count);
147 SetPageUptodate(page);
148 if (PageError(page))
149 ClearPageError(page);
150 result = 0;
152 io_error:
153 unlock_page(page);
154 nfs_readdata_free(rdata);
155 return result;
158 static int nfs_readpage_async(struct nfs_open_context *ctx, struct inode *inode,
159 struct page *page)
161 LIST_HEAD(one_request);
162 struct nfs_page *new;
163 unsigned int len;
165 len = nfs_page_length(inode, page);
166 if (len == 0)
167 return nfs_return_empty_page(page);
168 new = nfs_create_request(ctx, inode, page, 0, len);
169 if (IS_ERR(new)) {
170 unlock_page(page);
171 return PTR_ERR(new);
173 if (len < PAGE_CACHE_SIZE)
174 memclear_highpage_flush(page, len, PAGE_CACHE_SIZE - len);
176 nfs_list_add_request(new, &one_request);
177 nfs_pagein_one(&one_request, inode);
178 return 0;
181 static void nfs_readpage_release(struct nfs_page *req)
183 unlock_page(req->wb_page);
185 nfs_clear_request(req);
186 nfs_release_request(req);
188 dprintk("NFS: read done (%s/%Ld %d@%Ld)\n",
189 req->wb_context->dentry->d_inode->i_sb->s_id,
190 (long long)NFS_FILEID(req->wb_context->dentry->d_inode),
191 req->wb_bytes,
192 (long long)req_offset(req));
196 * Set up the NFS read request struct
198 static void nfs_read_rpcsetup(struct nfs_page *req, struct nfs_read_data *data,
199 unsigned int count, unsigned int offset)
201 struct inode *inode;
203 data->req = req;
204 data->inode = inode = req->wb_context->dentry->d_inode;
205 data->cred = req->wb_context->cred;
207 data->args.fh = NFS_FH(inode);
208 data->args.offset = req_offset(req) + offset;
209 data->args.pgbase = req->wb_pgbase + offset;
210 data->args.pages = data->pagevec;
211 data->args.count = count;
212 data->args.context = req->wb_context;
214 data->res.fattr = &data->fattr;
215 data->res.count = count;
216 data->res.eof = 0;
218 NFS_PROTO(inode)->read_setup(data);
220 data->task.tk_cookie = (unsigned long)inode;
221 data->task.tk_calldata = data;
222 /* Release requests */
223 data->task.tk_release = nfs_readdata_release;
225 dprintk("NFS: %4d initiated read call (req %s/%Ld, %u bytes @ offset %Lu)\n",
226 data->task.tk_pid,
227 inode->i_sb->s_id,
228 (long long)NFS_FILEID(inode),
229 count,
230 (unsigned long long)data->args.offset);
233 static void
234 nfs_async_read_error(struct list_head *head)
236 struct nfs_page *req;
238 while (!list_empty(head)) {
239 req = nfs_list_entry(head->next);
240 nfs_list_remove_request(req);
241 SetPageError(req->wb_page);
242 nfs_readpage_release(req);
247 * Start an async read operation
249 static void nfs_execute_read(struct nfs_read_data *data)
251 struct rpc_clnt *clnt = NFS_CLIENT(data->inode);
252 sigset_t oldset;
254 rpc_clnt_sigmask(clnt, &oldset);
255 lock_kernel();
256 rpc_execute(&data->task);
257 unlock_kernel();
258 rpc_clnt_sigunmask(clnt, &oldset);
262 * Generate multiple requests to fill a single page.
264 * We optimize to reduce the number of read operations on the wire. If we
265 * detect that we're reading a page, or an area of a page, that is past the
266 * end of file, we do not generate NFS read operations but just clear the
267 * parts of the page that would have come back zero from the server anyway.
269 * We rely on the cached value of i_size to make this determination; another
270 * client can fill pages on the server past our cached end-of-file, but we
271 * won't see the new data until our attribute cache is updated. This is more
272 * or less conventional NFS client behavior.
274 static int nfs_pagein_multi(struct list_head *head, struct inode *inode)
276 struct nfs_page *req = nfs_list_entry(head->next);
277 struct page *page = req->wb_page;
278 struct nfs_read_data *data;
279 unsigned int rsize = NFS_SERVER(inode)->rsize;
280 unsigned int nbytes, offset;
281 int requests = 0;
282 LIST_HEAD(list);
284 nfs_list_remove_request(req);
286 nbytes = req->wb_bytes;
287 for(;;) {
288 data = nfs_readdata_alloc();
289 if (!data)
290 goto out_bad;
291 INIT_LIST_HEAD(&data->pages);
292 list_add(&data->pages, &list);
293 requests++;
294 if (nbytes <= rsize)
295 break;
296 nbytes -= rsize;
298 atomic_set(&req->wb_complete, requests);
300 ClearPageError(page);
301 offset = 0;
302 nbytes = req->wb_bytes;
303 do {
304 data = list_entry(list.next, struct nfs_read_data, pages);
305 list_del_init(&data->pages);
307 data->pagevec[0] = page;
308 data->complete = nfs_readpage_result_partial;
310 if (nbytes > rsize) {
311 nfs_read_rpcsetup(req, data, rsize, offset);
312 offset += rsize;
313 nbytes -= rsize;
314 } else {
315 nfs_read_rpcsetup(req, data, nbytes, offset);
316 nbytes = 0;
318 nfs_execute_read(data);
319 } while (nbytes != 0);
321 return 0;
323 out_bad:
324 while (!list_empty(&list)) {
325 data = list_entry(list.next, struct nfs_read_data, pages);
326 list_del(&data->pages);
327 nfs_readdata_free(data);
329 SetPageError(page);
330 nfs_readpage_release(req);
331 return -ENOMEM;
334 static int nfs_pagein_one(struct list_head *head, struct inode *inode)
336 struct nfs_page *req;
337 struct page **pages;
338 struct nfs_read_data *data;
339 unsigned int count;
341 if (NFS_SERVER(inode)->rsize < PAGE_CACHE_SIZE)
342 return nfs_pagein_multi(head, inode);
344 data = nfs_readdata_alloc();
345 if (!data)
346 goto out_bad;
348 INIT_LIST_HEAD(&data->pages);
349 pages = data->pagevec;
350 count = 0;
351 while (!list_empty(head)) {
352 req = nfs_list_entry(head->next);
353 nfs_list_remove_request(req);
354 nfs_list_add_request(req, &data->pages);
355 ClearPageError(req->wb_page);
356 *pages++ = req->wb_page;
357 count += req->wb_bytes;
359 req = nfs_list_entry(data->pages.next);
361 data->complete = nfs_readpage_result_full;
362 nfs_read_rpcsetup(req, data, count, 0);
364 nfs_execute_read(data);
365 return 0;
366 out_bad:
367 nfs_async_read_error(head);
368 return -ENOMEM;
371 static int
372 nfs_pagein_list(struct list_head *head, int rpages)
374 LIST_HEAD(one_request);
375 struct nfs_page *req;
376 int error = 0;
377 unsigned int pages = 0;
379 while (!list_empty(head)) {
380 pages += nfs_coalesce_requests(head, &one_request, rpages);
381 req = nfs_list_entry(one_request.next);
382 error = nfs_pagein_one(&one_request, req->wb_context->dentry->d_inode);
383 if (error < 0)
384 break;
386 if (error >= 0)
387 return pages;
389 nfs_async_read_error(head);
390 return error;
394 * Handle a read reply that fills part of a page.
396 static void nfs_readpage_result_partial(struct nfs_read_data *data, int status)
398 struct nfs_page *req = data->req;
399 struct page *page = req->wb_page;
401 if (status >= 0) {
402 unsigned int request = data->args.count;
403 unsigned int result = data->res.count;
405 if (result < request) {
406 memclear_highpage_flush(page,
407 data->args.pgbase + result,
408 request - result);
410 } else
411 SetPageError(page);
413 if (atomic_dec_and_test(&req->wb_complete)) {
414 if (!PageError(page))
415 SetPageUptodate(page);
416 nfs_readpage_release(req);
421 * This is the callback from RPC telling us whether a reply was
422 * received or some error occurred (timeout or socket shutdown).
424 static void nfs_readpage_result_full(struct nfs_read_data *data, int status)
426 unsigned int count = data->res.count;
428 while (!list_empty(&data->pages)) {
429 struct nfs_page *req = nfs_list_entry(data->pages.next);
430 struct page *page = req->wb_page;
431 nfs_list_remove_request(req);
433 if (status >= 0) {
434 if (count < PAGE_CACHE_SIZE) {
435 if (count < req->wb_bytes)
436 memclear_highpage_flush(page,
437 req->wb_pgbase + count,
438 req->wb_bytes - count);
439 count = 0;
440 } else
441 count -= PAGE_CACHE_SIZE;
442 SetPageUptodate(page);
443 } else
444 SetPageError(page);
445 nfs_readpage_release(req);
450 * This is the callback from RPC telling us whether a reply was
451 * received or some error occurred (timeout or socket shutdown).
453 void nfs_readpage_result(struct rpc_task *task)
455 struct nfs_read_data *data = (struct nfs_read_data *)task->tk_calldata;
456 struct nfs_readargs *argp = &data->args;
457 struct nfs_readres *resp = &data->res;
458 int status = task->tk_status;
460 dprintk("NFS: %4d nfs_readpage_result, (status %d)\n",
461 task->tk_pid, status);
463 /* Is this a short read? */
464 if (task->tk_status >= 0 && resp->count < argp->count && !resp->eof) {
465 /* Has the server at least made some progress? */
466 if (resp->count != 0) {
467 /* Yes, so retry the read at the end of the data */
468 argp->offset += resp->count;
469 argp->pgbase += resp->count;
470 argp->count -= resp->count;
471 rpc_restart_call(task);
472 return;
474 task->tk_status = -EIO;
476 NFS_FLAGS(data->inode) |= NFS_INO_INVALID_ATIME;
477 data->complete(data, status);
481 * Read a page over NFS.
482 * We read the page synchronously in the following case:
483 * - The error flag is set for this page. This happens only when a
484 * previous async read operation failed.
486 int nfs_readpage(struct file *file, struct page *page)
488 struct nfs_open_context *ctx;
489 struct inode *inode = page->mapping->host;
490 int error;
492 dprintk("NFS: nfs_readpage (%p %ld@%lu)\n",
493 page, PAGE_CACHE_SIZE, page->index);
495 * Try to flush any pending writes to the file..
497 * NOTE! Because we own the page lock, there cannot
498 * be any new pending writes generated at this point
499 * for this page (other pages can be written to).
501 error = nfs_wb_page(inode, page);
502 if (error)
503 goto out_error;
505 if (file == NULL) {
506 ctx = nfs_find_open_context(inode, FMODE_READ);
507 if (ctx == NULL)
508 return -EBADF;
509 } else
510 ctx = get_nfs_open_context((struct nfs_open_context *)
511 file->private_data);
512 if (!IS_SYNC(inode)) {
513 error = nfs_readpage_async(ctx, inode, page);
514 goto out;
517 error = nfs_readpage_sync(ctx, inode, page);
518 if (error < 0 && IS_SWAPFILE(inode))
519 printk("Aiee.. nfs swap-in of page failed!\n");
520 out:
521 put_nfs_open_context(ctx);
522 return error;
524 out_error:
525 unlock_page(page);
526 return error;
529 struct nfs_readdesc {
530 struct list_head *head;
531 struct nfs_open_context *ctx;
534 static int
535 readpage_async_filler(void *data, struct page *page)
537 struct nfs_readdesc *desc = (struct nfs_readdesc *)data;
538 struct inode *inode = page->mapping->host;
539 struct nfs_page *new;
540 unsigned int len;
542 nfs_wb_page(inode, page);
543 len = nfs_page_length(inode, page);
544 if (len == 0)
545 return nfs_return_empty_page(page);
546 new = nfs_create_request(desc->ctx, inode, page, 0, len);
547 if (IS_ERR(new)) {
548 SetPageError(page);
549 unlock_page(page);
550 return PTR_ERR(new);
552 if (len < PAGE_CACHE_SIZE)
553 memclear_highpage_flush(page, len, PAGE_CACHE_SIZE - len);
554 nfs_list_add_request(new, desc->head);
555 return 0;
558 int nfs_readpages(struct file *filp, struct address_space *mapping,
559 struct list_head *pages, unsigned nr_pages)
561 LIST_HEAD(head);
562 struct nfs_readdesc desc = {
563 .head = &head,
565 struct inode *inode = mapping->host;
566 struct nfs_server *server = NFS_SERVER(inode);
567 int ret;
569 dprintk("NFS: nfs_readpages (%s/%Ld %d)\n",
570 inode->i_sb->s_id,
571 (long long)NFS_FILEID(inode),
572 nr_pages);
574 if (filp == NULL) {
575 desc.ctx = nfs_find_open_context(inode, FMODE_READ);
576 if (desc.ctx == NULL)
577 return -EBADF;
578 } else
579 desc.ctx = get_nfs_open_context((struct nfs_open_context *)
580 filp->private_data);
581 ret = read_cache_pages(mapping, pages, readpage_async_filler, &desc);
582 if (!list_empty(&head)) {
583 int err = nfs_pagein_list(&head, server->rpages);
584 if (!ret)
585 ret = err;
587 put_nfs_open_context(desc.ctx);
588 return ret;
591 int nfs_init_readpagecache(void)
593 nfs_rdata_cachep = kmem_cache_create("nfs_read_data",
594 sizeof(struct nfs_read_data),
595 0, SLAB_HWCACHE_ALIGN,
596 NULL, NULL);
597 if (nfs_rdata_cachep == NULL)
598 return -ENOMEM;
600 nfs_rdata_mempool = mempool_create(MIN_POOL_READ,
601 mempool_alloc_slab,
602 mempool_free_slab,
603 nfs_rdata_cachep);
604 if (nfs_rdata_mempool == NULL)
605 return -ENOMEM;
607 return 0;
610 void nfs_destroy_readpagecache(void)
612 mempool_destroy(nfs_rdata_mempool);
613 if (kmem_cache_destroy(nfs_rdata_cachep))
614 printk(KERN_INFO "nfs_read_data: not all structures were freed\n");