2 * Procedures for maintaining information about logical memory blocks.
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/kmemleak.h>
21 #include <linux/seq_file.h>
22 #include <linux/memblock.h>
23 #include <linux/bootmem.h>
25 #include <asm/sections.h>
30 static struct memblock_region memblock_memory_init_regions
[INIT_MEMBLOCK_REGIONS
] __initdata_memblock
;
31 static struct memblock_region memblock_reserved_init_regions
[INIT_MEMBLOCK_REGIONS
] __initdata_memblock
;
32 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
33 static struct memblock_region memblock_physmem_init_regions
[INIT_PHYSMEM_REGIONS
] __initdata_memblock
;
36 struct memblock memblock __initdata_memblock
= {
37 .memory
.regions
= memblock_memory_init_regions
,
38 .memory
.cnt
= 1, /* empty dummy entry */
39 .memory
.max
= INIT_MEMBLOCK_REGIONS
,
40 .memory
.name
= "memory",
42 .reserved
.regions
= memblock_reserved_init_regions
,
43 .reserved
.cnt
= 1, /* empty dummy entry */
44 .reserved
.max
= INIT_MEMBLOCK_REGIONS
,
45 .reserved
.name
= "reserved",
47 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
48 .physmem
.regions
= memblock_physmem_init_regions
,
49 .physmem
.cnt
= 1, /* empty dummy entry */
50 .physmem
.max
= INIT_PHYSMEM_REGIONS
,
51 .physmem
.name
= "physmem",
55 .current_limit
= MEMBLOCK_ALLOC_ANYWHERE
,
58 int memblock_debug __initdata_memblock
;
59 static bool system_has_some_mirror __initdata_memblock
= false;
60 static int memblock_can_resize __initdata_memblock
;
61 static int memblock_memory_in_slab __initdata_memblock
= 0;
62 static int memblock_reserved_in_slab __initdata_memblock
= 0;
64 ulong __init_memblock
choose_memblock_flags(void)
66 return system_has_some_mirror
? MEMBLOCK_MIRROR
: MEMBLOCK_NONE
;
69 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
70 static inline phys_addr_t
memblock_cap_size(phys_addr_t base
, phys_addr_t
*size
)
72 return *size
= min(*size
, PHYS_ADDR_MAX
- base
);
76 * Address comparison utilities
78 static unsigned long __init_memblock
memblock_addrs_overlap(phys_addr_t base1
, phys_addr_t size1
,
79 phys_addr_t base2
, phys_addr_t size2
)
81 return ((base1
< (base2
+ size2
)) && (base2
< (base1
+ size1
)));
84 bool __init_memblock
memblock_overlaps_region(struct memblock_type
*type
,
85 phys_addr_t base
, phys_addr_t size
)
89 for (i
= 0; i
< type
->cnt
; i
++)
90 if (memblock_addrs_overlap(base
, size
, type
->regions
[i
].base
,
91 type
->regions
[i
].size
))
97 * __memblock_find_range_bottom_up - find free area utility in bottom-up
98 * @start: start of candidate range
99 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
100 * @size: size of free area to find
101 * @align: alignment of free area to find
102 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
103 * @flags: pick from blocks based on memory attributes
105 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
108 * Found address on success, 0 on failure.
110 static phys_addr_t __init_memblock
111 __memblock_find_range_bottom_up(phys_addr_t start
, phys_addr_t end
,
112 phys_addr_t size
, phys_addr_t align
, int nid
,
115 phys_addr_t this_start
, this_end
, cand
;
118 for_each_free_mem_range(i
, nid
, flags
, &this_start
, &this_end
, NULL
) {
119 this_start
= clamp(this_start
, start
, end
);
120 this_end
= clamp(this_end
, start
, end
);
122 cand
= round_up(this_start
, align
);
123 if (cand
< this_end
&& this_end
- cand
>= size
)
131 * __memblock_find_range_top_down - find free area utility, in top-down
132 * @start: start of candidate range
133 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
134 * @size: size of free area to find
135 * @align: alignment of free area to find
136 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
137 * @flags: pick from blocks based on memory attributes
139 * Utility called from memblock_find_in_range_node(), find free area top-down.
142 * Found address on success, 0 on failure.
144 static phys_addr_t __init_memblock
145 __memblock_find_range_top_down(phys_addr_t start
, phys_addr_t end
,
146 phys_addr_t size
, phys_addr_t align
, int nid
,
149 phys_addr_t this_start
, this_end
, cand
;
152 for_each_free_mem_range_reverse(i
, nid
, flags
, &this_start
, &this_end
,
154 this_start
= clamp(this_start
, start
, end
);
155 this_end
= clamp(this_end
, start
, end
);
160 cand
= round_down(this_end
- size
, align
);
161 if (cand
>= this_start
)
169 * memblock_find_in_range_node - find free area in given range and node
170 * @size: size of free area to find
171 * @align: alignment of free area to find
172 * @start: start of candidate range
173 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
174 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
175 * @flags: pick from blocks based on memory attributes
177 * Find @size free area aligned to @align in the specified range and node.
179 * When allocation direction is bottom-up, the @start should be greater
180 * than the end of the kernel image. Otherwise, it will be trimmed. The
181 * reason is that we want the bottom-up allocation just near the kernel
182 * image so it is highly likely that the allocated memory and the kernel
183 * will reside in the same node.
185 * If bottom-up allocation failed, will try to allocate memory top-down.
188 * Found address on success, 0 on failure.
190 phys_addr_t __init_memblock
memblock_find_in_range_node(phys_addr_t size
,
191 phys_addr_t align
, phys_addr_t start
,
192 phys_addr_t end
, int nid
, ulong flags
)
194 phys_addr_t kernel_end
, ret
;
197 if (end
== MEMBLOCK_ALLOC_ACCESSIBLE
)
198 end
= memblock
.current_limit
;
200 /* avoid allocating the first page */
201 start
= max_t(phys_addr_t
, start
, PAGE_SIZE
);
202 end
= max(start
, end
);
203 kernel_end
= __pa_symbol(_end
);
206 * try bottom-up allocation only when bottom-up mode
207 * is set and @end is above the kernel image.
209 if (memblock_bottom_up() && end
> kernel_end
) {
210 phys_addr_t bottom_up_start
;
212 /* make sure we will allocate above the kernel */
213 bottom_up_start
= max(start
, kernel_end
);
215 /* ok, try bottom-up allocation first */
216 ret
= __memblock_find_range_bottom_up(bottom_up_start
, end
,
217 size
, align
, nid
, flags
);
222 * we always limit bottom-up allocation above the kernel,
223 * but top-down allocation doesn't have the limit, so
224 * retrying top-down allocation may succeed when bottom-up
227 * bottom-up allocation is expected to be fail very rarely,
228 * so we use WARN_ONCE() here to see the stack trace if
231 WARN_ONCE(1, "memblock: bottom-up allocation failed, memory hotunplug may be affected\n");
234 return __memblock_find_range_top_down(start
, end
, size
, align
, nid
,
239 * memblock_find_in_range - find free area in given range
240 * @start: start of candidate range
241 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
242 * @size: size of free area to find
243 * @align: alignment of free area to find
245 * Find @size free area aligned to @align in the specified range.
248 * Found address on success, 0 on failure.
250 phys_addr_t __init_memblock
memblock_find_in_range(phys_addr_t start
,
251 phys_addr_t end
, phys_addr_t size
,
255 ulong flags
= choose_memblock_flags();
258 ret
= memblock_find_in_range_node(size
, align
, start
, end
,
259 NUMA_NO_NODE
, flags
);
261 if (!ret
&& (flags
& MEMBLOCK_MIRROR
)) {
262 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
264 flags
&= ~MEMBLOCK_MIRROR
;
271 static void __init_memblock
memblock_remove_region(struct memblock_type
*type
, unsigned long r
)
273 type
->total_size
-= type
->regions
[r
].size
;
274 memmove(&type
->regions
[r
], &type
->regions
[r
+ 1],
275 (type
->cnt
- (r
+ 1)) * sizeof(type
->regions
[r
]));
278 /* Special case for empty arrays */
279 if (type
->cnt
== 0) {
280 WARN_ON(type
->total_size
!= 0);
282 type
->regions
[0].base
= 0;
283 type
->regions
[0].size
= 0;
284 type
->regions
[0].flags
= 0;
285 memblock_set_region_node(&type
->regions
[0], MAX_NUMNODES
);
289 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
291 * Discard memory and reserved arrays if they were allocated
293 void __init
memblock_discard(void)
295 phys_addr_t addr
, size
;
297 if (memblock
.reserved
.regions
!= memblock_reserved_init_regions
) {
298 addr
= __pa(memblock
.reserved
.regions
);
299 size
= PAGE_ALIGN(sizeof(struct memblock_region
) *
300 memblock
.reserved
.max
);
301 __memblock_free_late(addr
, size
);
304 if (memblock
.memory
.regions
!= memblock_memory_init_regions
) {
305 addr
= __pa(memblock
.memory
.regions
);
306 size
= PAGE_ALIGN(sizeof(struct memblock_region
) *
307 memblock
.memory
.max
);
308 __memblock_free_late(addr
, size
);
314 * memblock_double_array - double the size of the memblock regions array
315 * @type: memblock type of the regions array being doubled
316 * @new_area_start: starting address of memory range to avoid overlap with
317 * @new_area_size: size of memory range to avoid overlap with
319 * Double the size of the @type regions array. If memblock is being used to
320 * allocate memory for a new reserved regions array and there is a previously
321 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
322 * waiting to be reserved, ensure the memory used by the new array does
326 * 0 on success, -1 on failure.
328 static int __init_memblock
memblock_double_array(struct memblock_type
*type
,
329 phys_addr_t new_area_start
,
330 phys_addr_t new_area_size
)
332 struct memblock_region
*new_array
, *old_array
;
333 phys_addr_t old_alloc_size
, new_alloc_size
;
334 phys_addr_t old_size
, new_size
, addr
;
335 int use_slab
= slab_is_available();
338 /* We don't allow resizing until we know about the reserved regions
339 * of memory that aren't suitable for allocation
341 if (!memblock_can_resize
)
344 /* Calculate new doubled size */
345 old_size
= type
->max
* sizeof(struct memblock_region
);
346 new_size
= old_size
<< 1;
348 * We need to allocated new one align to PAGE_SIZE,
349 * so we can free them completely later.
351 old_alloc_size
= PAGE_ALIGN(old_size
);
352 new_alloc_size
= PAGE_ALIGN(new_size
);
354 /* Retrieve the slab flag */
355 if (type
== &memblock
.memory
)
356 in_slab
= &memblock_memory_in_slab
;
358 in_slab
= &memblock_reserved_in_slab
;
360 /* Try to find some space for it.
362 * WARNING: We assume that either slab_is_available() and we use it or
363 * we use MEMBLOCK for allocations. That means that this is unsafe to
364 * use when bootmem is currently active (unless bootmem itself is
365 * implemented on top of MEMBLOCK which isn't the case yet)
367 * This should however not be an issue for now, as we currently only
368 * call into MEMBLOCK while it's still active, or much later when slab
369 * is active for memory hotplug operations
372 new_array
= kmalloc(new_size
, GFP_KERNEL
);
373 addr
= new_array
? __pa(new_array
) : 0;
375 /* only exclude range when trying to double reserved.regions */
376 if (type
!= &memblock
.reserved
)
377 new_area_start
= new_area_size
= 0;
379 addr
= memblock_find_in_range(new_area_start
+ new_area_size
,
380 memblock
.current_limit
,
381 new_alloc_size
, PAGE_SIZE
);
382 if (!addr
&& new_area_size
)
383 addr
= memblock_find_in_range(0,
384 min(new_area_start
, memblock
.current_limit
),
385 new_alloc_size
, PAGE_SIZE
);
387 new_array
= addr
? __va(addr
) : NULL
;
390 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
391 type
->name
, type
->max
, type
->max
* 2);
395 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
396 type
->name
, type
->max
* 2, (u64
)addr
,
397 (u64
)addr
+ new_size
- 1);
400 * Found space, we now need to move the array over before we add the
401 * reserved region since it may be our reserved array itself that is
404 memcpy(new_array
, type
->regions
, old_size
);
405 memset(new_array
+ type
->max
, 0, old_size
);
406 old_array
= type
->regions
;
407 type
->regions
= new_array
;
410 /* Free old array. We needn't free it if the array is the static one */
413 else if (old_array
!= memblock_memory_init_regions
&&
414 old_array
!= memblock_reserved_init_regions
)
415 memblock_free(__pa(old_array
), old_alloc_size
);
418 * Reserve the new array if that comes from the memblock. Otherwise, we
422 BUG_ON(memblock_reserve(addr
, new_alloc_size
));
424 /* Update slab flag */
431 * memblock_merge_regions - merge neighboring compatible regions
432 * @type: memblock type to scan
434 * Scan @type and merge neighboring compatible regions.
436 static void __init_memblock
memblock_merge_regions(struct memblock_type
*type
)
440 /* cnt never goes below 1 */
441 while (i
< type
->cnt
- 1) {
442 struct memblock_region
*this = &type
->regions
[i
];
443 struct memblock_region
*next
= &type
->regions
[i
+ 1];
445 if (this->base
+ this->size
!= next
->base
||
446 memblock_get_region_node(this) !=
447 memblock_get_region_node(next
) ||
448 this->flags
!= next
->flags
) {
449 BUG_ON(this->base
+ this->size
> next
->base
);
454 this->size
+= next
->size
;
455 /* move forward from next + 1, index of which is i + 2 */
456 memmove(next
, next
+ 1, (type
->cnt
- (i
+ 2)) * sizeof(*next
));
462 * memblock_insert_region - insert new memblock region
463 * @type: memblock type to insert into
464 * @idx: index for the insertion point
465 * @base: base address of the new region
466 * @size: size of the new region
467 * @nid: node id of the new region
468 * @flags: flags of the new region
470 * Insert new memblock region [@base,@base+@size) into @type at @idx.
471 * @type must already have extra room to accommodate the new region.
473 static void __init_memblock
memblock_insert_region(struct memblock_type
*type
,
474 int idx
, phys_addr_t base
,
476 int nid
, unsigned long flags
)
478 struct memblock_region
*rgn
= &type
->regions
[idx
];
480 BUG_ON(type
->cnt
>= type
->max
);
481 memmove(rgn
+ 1, rgn
, (type
->cnt
- idx
) * sizeof(*rgn
));
485 memblock_set_region_node(rgn
, nid
);
487 type
->total_size
+= size
;
491 * memblock_add_range - add new memblock region
492 * @type: memblock type to add new region into
493 * @base: base address of the new region
494 * @size: size of the new region
495 * @nid: nid of the new region
496 * @flags: flags of the new region
498 * Add new memblock region [@base,@base+@size) into @type. The new region
499 * is allowed to overlap with existing ones - overlaps don't affect already
500 * existing regions. @type is guaranteed to be minimal (all neighbouring
501 * compatible regions are merged) after the addition.
504 * 0 on success, -errno on failure.
506 int __init_memblock
memblock_add_range(struct memblock_type
*type
,
507 phys_addr_t base
, phys_addr_t size
,
508 int nid
, unsigned long flags
)
511 phys_addr_t obase
= base
;
512 phys_addr_t end
= base
+ memblock_cap_size(base
, &size
);
514 struct memblock_region
*rgn
;
519 /* special case for empty array */
520 if (type
->regions
[0].size
== 0) {
521 WARN_ON(type
->cnt
!= 1 || type
->total_size
);
522 type
->regions
[0].base
= base
;
523 type
->regions
[0].size
= size
;
524 type
->regions
[0].flags
= flags
;
525 memblock_set_region_node(&type
->regions
[0], nid
);
526 type
->total_size
= size
;
531 * The following is executed twice. Once with %false @insert and
532 * then with %true. The first counts the number of regions needed
533 * to accommodate the new area. The second actually inserts them.
538 for_each_memblock_type(idx
, type
, rgn
) {
539 phys_addr_t rbase
= rgn
->base
;
540 phys_addr_t rend
= rbase
+ rgn
->size
;
547 * @rgn overlaps. If it separates the lower part of new
548 * area, insert that portion.
551 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
552 WARN_ON(nid
!= memblock_get_region_node(rgn
));
554 WARN_ON(flags
!= rgn
->flags
);
557 memblock_insert_region(type
, idx
++, base
,
561 /* area below @rend is dealt with, forget about it */
562 base
= min(rend
, end
);
565 /* insert the remaining portion */
569 memblock_insert_region(type
, idx
, base
, end
- base
,
577 * If this was the first round, resize array and repeat for actual
578 * insertions; otherwise, merge and return.
581 while (type
->cnt
+ nr_new
> type
->max
)
582 if (memblock_double_array(type
, obase
, size
) < 0)
587 memblock_merge_regions(type
);
592 int __init_memblock
memblock_add_node(phys_addr_t base
, phys_addr_t size
,
595 return memblock_add_range(&memblock
.memory
, base
, size
, nid
, 0);
598 int __init_memblock
memblock_add(phys_addr_t base
, phys_addr_t size
)
600 phys_addr_t end
= base
+ size
- 1;
602 memblock_dbg("memblock_add: [%pa-%pa] %pF\n",
603 &base
, &end
, (void *)_RET_IP_
);
605 return memblock_add_range(&memblock
.memory
, base
, size
, MAX_NUMNODES
, 0);
609 * memblock_isolate_range - isolate given range into disjoint memblocks
610 * @type: memblock type to isolate range for
611 * @base: base of range to isolate
612 * @size: size of range to isolate
613 * @start_rgn: out parameter for the start of isolated region
614 * @end_rgn: out parameter for the end of isolated region
616 * Walk @type and ensure that regions don't cross the boundaries defined by
617 * [@base,@base+@size). Crossing regions are split at the boundaries,
618 * which may create at most two more regions. The index of the first
619 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
622 * 0 on success, -errno on failure.
624 static int __init_memblock
memblock_isolate_range(struct memblock_type
*type
,
625 phys_addr_t base
, phys_addr_t size
,
626 int *start_rgn
, int *end_rgn
)
628 phys_addr_t end
= base
+ memblock_cap_size(base
, &size
);
630 struct memblock_region
*rgn
;
632 *start_rgn
= *end_rgn
= 0;
637 /* we'll create at most two more regions */
638 while (type
->cnt
+ 2 > type
->max
)
639 if (memblock_double_array(type
, base
, size
) < 0)
642 for_each_memblock_type(idx
, type
, rgn
) {
643 phys_addr_t rbase
= rgn
->base
;
644 phys_addr_t rend
= rbase
+ rgn
->size
;
653 * @rgn intersects from below. Split and continue
654 * to process the next region - the new top half.
657 rgn
->size
-= base
- rbase
;
658 type
->total_size
-= base
- rbase
;
659 memblock_insert_region(type
, idx
, rbase
, base
- rbase
,
660 memblock_get_region_node(rgn
),
662 } else if (rend
> end
) {
664 * @rgn intersects from above. Split and redo the
665 * current region - the new bottom half.
668 rgn
->size
-= end
- rbase
;
669 type
->total_size
-= end
- rbase
;
670 memblock_insert_region(type
, idx
--, rbase
, end
- rbase
,
671 memblock_get_region_node(rgn
),
674 /* @rgn is fully contained, record it */
684 static int __init_memblock
memblock_remove_range(struct memblock_type
*type
,
685 phys_addr_t base
, phys_addr_t size
)
687 int start_rgn
, end_rgn
;
690 ret
= memblock_isolate_range(type
, base
, size
, &start_rgn
, &end_rgn
);
694 for (i
= end_rgn
- 1; i
>= start_rgn
; i
--)
695 memblock_remove_region(type
, i
);
699 int __init_memblock
memblock_remove(phys_addr_t base
, phys_addr_t size
)
701 phys_addr_t end
= base
+ size
- 1;
703 memblock_dbg("memblock_remove: [%pa-%pa] %pS\n",
704 &base
, &end
, (void *)_RET_IP_
);
706 return memblock_remove_range(&memblock
.memory
, base
, size
);
710 int __init_memblock
memblock_free(phys_addr_t base
, phys_addr_t size
)
712 phys_addr_t end
= base
+ size
- 1;
714 memblock_dbg(" memblock_free: [%pa-%pa] %pF\n",
715 &base
, &end
, (void *)_RET_IP_
);
717 kmemleak_free_part_phys(base
, size
);
718 return memblock_remove_range(&memblock
.reserved
, base
, size
);
721 int __init_memblock
memblock_reserve(phys_addr_t base
, phys_addr_t size
)
723 phys_addr_t end
= base
+ size
- 1;
725 memblock_dbg("memblock_reserve: [%pa-%pa] %pF\n",
726 &base
, &end
, (void *)_RET_IP_
);
728 return memblock_add_range(&memblock
.reserved
, base
, size
, MAX_NUMNODES
, 0);
733 * This function isolates region [@base, @base + @size), and sets/clears flag
735 * Return 0 on success, -errno on failure.
737 static int __init_memblock
memblock_setclr_flag(phys_addr_t base
,
738 phys_addr_t size
, int set
, int flag
)
740 struct memblock_type
*type
= &memblock
.memory
;
741 int i
, ret
, start_rgn
, end_rgn
;
743 ret
= memblock_isolate_range(type
, base
, size
, &start_rgn
, &end_rgn
);
747 for (i
= start_rgn
; i
< end_rgn
; i
++)
749 memblock_set_region_flags(&type
->regions
[i
], flag
);
751 memblock_clear_region_flags(&type
->regions
[i
], flag
);
753 memblock_merge_regions(type
);
758 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
759 * @base: the base phys addr of the region
760 * @size: the size of the region
762 * Return 0 on success, -errno on failure.
764 int __init_memblock
memblock_mark_hotplug(phys_addr_t base
, phys_addr_t size
)
766 return memblock_setclr_flag(base
, size
, 1, MEMBLOCK_HOTPLUG
);
770 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
771 * @base: the base phys addr of the region
772 * @size: the size of the region
774 * Return 0 on success, -errno on failure.
776 int __init_memblock
memblock_clear_hotplug(phys_addr_t base
, phys_addr_t size
)
778 return memblock_setclr_flag(base
, size
, 0, MEMBLOCK_HOTPLUG
);
782 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
783 * @base: the base phys addr of the region
784 * @size: the size of the region
786 * Return 0 on success, -errno on failure.
788 int __init_memblock
memblock_mark_mirror(phys_addr_t base
, phys_addr_t size
)
790 system_has_some_mirror
= true;
792 return memblock_setclr_flag(base
, size
, 1, MEMBLOCK_MIRROR
);
796 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
797 * @base: the base phys addr of the region
798 * @size: the size of the region
800 * Return 0 on success, -errno on failure.
802 int __init_memblock
memblock_mark_nomap(phys_addr_t base
, phys_addr_t size
)
804 return memblock_setclr_flag(base
, size
, 1, MEMBLOCK_NOMAP
);
808 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
809 * @base: the base phys addr of the region
810 * @size: the size of the region
812 * Return 0 on success, -errno on failure.
814 int __init_memblock
memblock_clear_nomap(phys_addr_t base
, phys_addr_t size
)
816 return memblock_setclr_flag(base
, size
, 0, MEMBLOCK_NOMAP
);
820 * __next_reserved_mem_region - next function for for_each_reserved_region()
821 * @idx: pointer to u64 loop variable
822 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
823 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
825 * Iterate over all reserved memory regions.
827 void __init_memblock
__next_reserved_mem_region(u64
*idx
,
828 phys_addr_t
*out_start
,
829 phys_addr_t
*out_end
)
831 struct memblock_type
*type
= &memblock
.reserved
;
833 if (*idx
< type
->cnt
) {
834 struct memblock_region
*r
= &type
->regions
[*idx
];
835 phys_addr_t base
= r
->base
;
836 phys_addr_t size
= r
->size
;
841 *out_end
= base
+ size
- 1;
847 /* signal end of iteration */
852 * __next__mem_range - next function for for_each_free_mem_range() etc.
853 * @idx: pointer to u64 loop variable
854 * @nid: node selector, %NUMA_NO_NODE for all nodes
855 * @flags: pick from blocks based on memory attributes
856 * @type_a: pointer to memblock_type from where the range is taken
857 * @type_b: pointer to memblock_type which excludes memory from being taken
858 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
859 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
860 * @out_nid: ptr to int for nid of the range, can be %NULL
862 * Find the first area from *@idx which matches @nid, fill the out
863 * parameters, and update *@idx for the next iteration. The lower 32bit of
864 * *@idx contains index into type_a and the upper 32bit indexes the
865 * areas before each region in type_b. For example, if type_b regions
866 * look like the following,
868 * 0:[0-16), 1:[32-48), 2:[128-130)
870 * The upper 32bit indexes the following regions.
872 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
874 * As both region arrays are sorted, the function advances the two indices
875 * in lockstep and returns each intersection.
877 void __init_memblock
__next_mem_range(u64
*idx
, int nid
, ulong flags
,
878 struct memblock_type
*type_a
,
879 struct memblock_type
*type_b
,
880 phys_addr_t
*out_start
,
881 phys_addr_t
*out_end
, int *out_nid
)
883 int idx_a
= *idx
& 0xffffffff;
884 int idx_b
= *idx
>> 32;
886 if (WARN_ONCE(nid
== MAX_NUMNODES
,
887 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
890 for (; idx_a
< type_a
->cnt
; idx_a
++) {
891 struct memblock_region
*m
= &type_a
->regions
[idx_a
];
893 phys_addr_t m_start
= m
->base
;
894 phys_addr_t m_end
= m
->base
+ m
->size
;
895 int m_nid
= memblock_get_region_node(m
);
897 /* only memory regions are associated with nodes, check it */
898 if (nid
!= NUMA_NO_NODE
&& nid
!= m_nid
)
901 /* skip hotpluggable memory regions if needed */
902 if (movable_node_is_enabled() && memblock_is_hotpluggable(m
))
905 /* if we want mirror memory skip non-mirror memory regions */
906 if ((flags
& MEMBLOCK_MIRROR
) && !memblock_is_mirror(m
))
909 /* skip nomap memory unless we were asked for it explicitly */
910 if (!(flags
& MEMBLOCK_NOMAP
) && memblock_is_nomap(m
))
915 *out_start
= m_start
;
921 *idx
= (u32
)idx_a
| (u64
)idx_b
<< 32;
925 /* scan areas before each reservation */
926 for (; idx_b
< type_b
->cnt
+ 1; idx_b
++) {
927 struct memblock_region
*r
;
931 r
= &type_b
->regions
[idx_b
];
932 r_start
= idx_b
? r
[-1].base
+ r
[-1].size
: 0;
933 r_end
= idx_b
< type_b
->cnt
?
934 r
->base
: PHYS_ADDR_MAX
;
937 * if idx_b advanced past idx_a,
938 * break out to advance idx_a
940 if (r_start
>= m_end
)
942 /* if the two regions intersect, we're done */
943 if (m_start
< r_end
) {
946 max(m_start
, r_start
);
948 *out_end
= min(m_end
, r_end
);
952 * The region which ends first is
953 * advanced for the next iteration.
959 *idx
= (u32
)idx_a
| (u64
)idx_b
<< 32;
965 /* signal end of iteration */
970 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
972 * Finds the next range from type_a which is not marked as unsuitable
975 * @idx: pointer to u64 loop variable
976 * @nid: node selector, %NUMA_NO_NODE for all nodes
977 * @flags: pick from blocks based on memory attributes
978 * @type_a: pointer to memblock_type from where the range is taken
979 * @type_b: pointer to memblock_type which excludes memory from being taken
980 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
981 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
982 * @out_nid: ptr to int for nid of the range, can be %NULL
984 * Reverse of __next_mem_range().
986 void __init_memblock
__next_mem_range_rev(u64
*idx
, int nid
, ulong flags
,
987 struct memblock_type
*type_a
,
988 struct memblock_type
*type_b
,
989 phys_addr_t
*out_start
,
990 phys_addr_t
*out_end
, int *out_nid
)
992 int idx_a
= *idx
& 0xffffffff;
993 int idx_b
= *idx
>> 32;
995 if (WARN_ONCE(nid
== MAX_NUMNODES
, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
998 if (*idx
== (u64
)ULLONG_MAX
) {
999 idx_a
= type_a
->cnt
- 1;
1001 idx_b
= type_b
->cnt
;
1006 for (; idx_a
>= 0; idx_a
--) {
1007 struct memblock_region
*m
= &type_a
->regions
[idx_a
];
1009 phys_addr_t m_start
= m
->base
;
1010 phys_addr_t m_end
= m
->base
+ m
->size
;
1011 int m_nid
= memblock_get_region_node(m
);
1013 /* only memory regions are associated with nodes, check it */
1014 if (nid
!= NUMA_NO_NODE
&& nid
!= m_nid
)
1017 /* skip hotpluggable memory regions if needed */
1018 if (movable_node_is_enabled() && memblock_is_hotpluggable(m
))
1021 /* if we want mirror memory skip non-mirror memory regions */
1022 if ((flags
& MEMBLOCK_MIRROR
) && !memblock_is_mirror(m
))
1025 /* skip nomap memory unless we were asked for it explicitly */
1026 if (!(flags
& MEMBLOCK_NOMAP
) && memblock_is_nomap(m
))
1031 *out_start
= m_start
;
1037 *idx
= (u32
)idx_a
| (u64
)idx_b
<< 32;
1041 /* scan areas before each reservation */
1042 for (; idx_b
>= 0; idx_b
--) {
1043 struct memblock_region
*r
;
1044 phys_addr_t r_start
;
1047 r
= &type_b
->regions
[idx_b
];
1048 r_start
= idx_b
? r
[-1].base
+ r
[-1].size
: 0;
1049 r_end
= idx_b
< type_b
->cnt
?
1050 r
->base
: PHYS_ADDR_MAX
;
1052 * if idx_b advanced past idx_a,
1053 * break out to advance idx_a
1056 if (r_end
<= m_start
)
1058 /* if the two regions intersect, we're done */
1059 if (m_end
> r_start
) {
1061 *out_start
= max(m_start
, r_start
);
1063 *out_end
= min(m_end
, r_end
);
1066 if (m_start
>= r_start
)
1070 *idx
= (u32
)idx_a
| (u64
)idx_b
<< 32;
1075 /* signal end of iteration */
1079 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1081 * Common iterator interface used to define for_each_mem_range().
1083 void __init_memblock
__next_mem_pfn_range(int *idx
, int nid
,
1084 unsigned long *out_start_pfn
,
1085 unsigned long *out_end_pfn
, int *out_nid
)
1087 struct memblock_type
*type
= &memblock
.memory
;
1088 struct memblock_region
*r
;
1090 while (++*idx
< type
->cnt
) {
1091 r
= &type
->regions
[*idx
];
1093 if (PFN_UP(r
->base
) >= PFN_DOWN(r
->base
+ r
->size
))
1095 if (nid
== MAX_NUMNODES
|| nid
== r
->nid
)
1098 if (*idx
>= type
->cnt
) {
1104 *out_start_pfn
= PFN_UP(r
->base
);
1106 *out_end_pfn
= PFN_DOWN(r
->base
+ r
->size
);
1112 * memblock_set_node - set node ID on memblock regions
1113 * @base: base of area to set node ID for
1114 * @size: size of area to set node ID for
1115 * @type: memblock type to set node ID for
1116 * @nid: node ID to set
1118 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
1119 * Regions which cross the area boundaries are split as necessary.
1122 * 0 on success, -errno on failure.
1124 int __init_memblock
memblock_set_node(phys_addr_t base
, phys_addr_t size
,
1125 struct memblock_type
*type
, int nid
)
1127 int start_rgn
, end_rgn
;
1130 ret
= memblock_isolate_range(type
, base
, size
, &start_rgn
, &end_rgn
);
1134 for (i
= start_rgn
; i
< end_rgn
; i
++)
1135 memblock_set_region_node(&type
->regions
[i
], nid
);
1137 memblock_merge_regions(type
);
1140 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1142 static phys_addr_t __init
memblock_alloc_range_nid(phys_addr_t size
,
1143 phys_addr_t align
, phys_addr_t start
,
1144 phys_addr_t end
, int nid
, ulong flags
)
1149 align
= SMP_CACHE_BYTES
;
1151 found
= memblock_find_in_range_node(size
, align
, start
, end
, nid
,
1153 if (found
&& !memblock_reserve(found
, size
)) {
1155 * The min_count is set to 0 so that memblock allocations are
1156 * never reported as leaks.
1158 kmemleak_alloc_phys(found
, size
, 0, 0);
1164 phys_addr_t __init
memblock_alloc_range(phys_addr_t size
, phys_addr_t align
,
1165 phys_addr_t start
, phys_addr_t end
,
1168 return memblock_alloc_range_nid(size
, align
, start
, end
, NUMA_NO_NODE
,
1172 phys_addr_t __init
memblock_alloc_base_nid(phys_addr_t size
,
1173 phys_addr_t align
, phys_addr_t max_addr
,
1174 int nid
, ulong flags
)
1176 return memblock_alloc_range_nid(size
, align
, 0, max_addr
, nid
, flags
);
1179 phys_addr_t __init
memblock_alloc_nid(phys_addr_t size
, phys_addr_t align
, int nid
)
1181 ulong flags
= choose_memblock_flags();
1185 ret
= memblock_alloc_base_nid(size
, align
, MEMBLOCK_ALLOC_ACCESSIBLE
,
1188 if (!ret
&& (flags
& MEMBLOCK_MIRROR
)) {
1189 flags
&= ~MEMBLOCK_MIRROR
;
1195 phys_addr_t __init
__memblock_alloc_base(phys_addr_t size
, phys_addr_t align
, phys_addr_t max_addr
)
1197 return memblock_alloc_base_nid(size
, align
, max_addr
, NUMA_NO_NODE
,
1201 phys_addr_t __init
memblock_alloc_base(phys_addr_t size
, phys_addr_t align
, phys_addr_t max_addr
)
1205 alloc
= __memblock_alloc_base(size
, align
, max_addr
);
1208 panic("ERROR: Failed to allocate %pa bytes below %pa.\n",
1214 phys_addr_t __init
memblock_alloc(phys_addr_t size
, phys_addr_t align
)
1216 return memblock_alloc_base(size
, align
, MEMBLOCK_ALLOC_ACCESSIBLE
);
1219 phys_addr_t __init
memblock_alloc_try_nid(phys_addr_t size
, phys_addr_t align
, int nid
)
1221 phys_addr_t res
= memblock_alloc_nid(size
, align
, nid
);
1225 return memblock_alloc_base(size
, align
, MEMBLOCK_ALLOC_ACCESSIBLE
);
1229 * memblock_virt_alloc_internal - allocate boot memory block
1230 * @size: size of memory block to be allocated in bytes
1231 * @align: alignment of the region and block's size
1232 * @min_addr: the lower bound of the memory region to allocate (phys address)
1233 * @max_addr: the upper bound of the memory region to allocate (phys address)
1234 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1236 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1237 * will fall back to memory below @min_addr. Also, allocation may fall back
1238 * to any node in the system if the specified node can not
1239 * hold the requested memory.
1241 * The allocation is performed from memory region limited by
1242 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1244 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1246 * The phys address of allocated boot memory block is converted to virtual and
1247 * allocated memory is reset to 0.
1249 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1250 * allocated boot memory block, so that it is never reported as leaks.
1253 * Virtual address of allocated memory block on success, NULL on failure.
1255 static void * __init
memblock_virt_alloc_internal(
1256 phys_addr_t size
, phys_addr_t align
,
1257 phys_addr_t min_addr
, phys_addr_t max_addr
,
1262 ulong flags
= choose_memblock_flags();
1264 if (WARN_ONCE(nid
== MAX_NUMNODES
, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1268 * Detect any accidental use of these APIs after slab is ready, as at
1269 * this moment memblock may be deinitialized already and its
1270 * internal data may be destroyed (after execution of free_all_bootmem)
1272 if (WARN_ON_ONCE(slab_is_available()))
1273 return kzalloc_node(size
, GFP_NOWAIT
, nid
);
1276 align
= SMP_CACHE_BYTES
;
1278 if (max_addr
> memblock
.current_limit
)
1279 max_addr
= memblock
.current_limit
;
1281 alloc
= memblock_find_in_range_node(size
, align
, min_addr
, max_addr
,
1283 if (alloc
&& !memblock_reserve(alloc
, size
))
1286 if (nid
!= NUMA_NO_NODE
) {
1287 alloc
= memblock_find_in_range_node(size
, align
, min_addr
,
1288 max_addr
, NUMA_NO_NODE
,
1290 if (alloc
&& !memblock_reserve(alloc
, size
))
1299 if (flags
& MEMBLOCK_MIRROR
) {
1300 flags
&= ~MEMBLOCK_MIRROR
;
1301 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1308 ptr
= phys_to_virt(alloc
);
1311 * The min_count is set to 0 so that bootmem allocated blocks
1312 * are never reported as leaks. This is because many of these blocks
1313 * are only referred via the physical address which is not
1314 * looked up by kmemleak.
1316 kmemleak_alloc(ptr
, size
, 0, 0);
1322 * memblock_virt_alloc_try_nid_raw - allocate boot memory block without zeroing
1323 * memory and without panicking
1324 * @size: size of memory block to be allocated in bytes
1325 * @align: alignment of the region and block's size
1326 * @min_addr: the lower bound of the memory region from where the allocation
1327 * is preferred (phys address)
1328 * @max_addr: the upper bound of the memory region from where the allocation
1329 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1330 * allocate only from memory limited by memblock.current_limit value
1331 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1333 * Public function, provides additional debug information (including caller
1334 * info), if enabled. Does not zero allocated memory, does not panic if request
1335 * cannot be satisfied.
1338 * Virtual address of allocated memory block on success, NULL on failure.
1340 void * __init
memblock_virt_alloc_try_nid_raw(
1341 phys_addr_t size
, phys_addr_t align
,
1342 phys_addr_t min_addr
, phys_addr_t max_addr
,
1347 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1348 __func__
, (u64
)size
, (u64
)align
, nid
, (u64
)min_addr
,
1349 (u64
)max_addr
, (void *)_RET_IP_
);
1351 ptr
= memblock_virt_alloc_internal(size
, align
,
1352 min_addr
, max_addr
, nid
);
1353 #ifdef CONFIG_DEBUG_VM
1354 if (ptr
&& size
> 0)
1355 memset(ptr
, PAGE_POISON_PATTERN
, size
);
1361 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1362 * @size: size of memory block to be allocated in bytes
1363 * @align: alignment of the region and block's size
1364 * @min_addr: the lower bound of the memory region from where the allocation
1365 * is preferred (phys address)
1366 * @max_addr: the upper bound of the memory region from where the allocation
1367 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1368 * allocate only from memory limited by memblock.current_limit value
1369 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1371 * Public function, provides additional debug information (including caller
1372 * info), if enabled. This function zeroes the allocated memory.
1375 * Virtual address of allocated memory block on success, NULL on failure.
1377 void * __init
memblock_virt_alloc_try_nid_nopanic(
1378 phys_addr_t size
, phys_addr_t align
,
1379 phys_addr_t min_addr
, phys_addr_t max_addr
,
1384 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1385 __func__
, (u64
)size
, (u64
)align
, nid
, (u64
)min_addr
,
1386 (u64
)max_addr
, (void *)_RET_IP_
);
1388 ptr
= memblock_virt_alloc_internal(size
, align
,
1389 min_addr
, max_addr
, nid
);
1391 memset(ptr
, 0, size
);
1396 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1397 * @size: size of memory block to be allocated in bytes
1398 * @align: alignment of the region and block's size
1399 * @min_addr: the lower bound of the memory region from where the allocation
1400 * is preferred (phys address)
1401 * @max_addr: the upper bound of the memory region from where the allocation
1402 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1403 * allocate only from memory limited by memblock.current_limit value
1404 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1406 * Public panicking version of memblock_virt_alloc_try_nid_nopanic()
1407 * which provides debug information (including caller info), if enabled,
1408 * and panics if the request can not be satisfied.
1411 * Virtual address of allocated memory block on success, NULL on failure.
1413 void * __init
memblock_virt_alloc_try_nid(
1414 phys_addr_t size
, phys_addr_t align
,
1415 phys_addr_t min_addr
, phys_addr_t max_addr
,
1420 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1421 __func__
, (u64
)size
, (u64
)align
, nid
, (u64
)min_addr
,
1422 (u64
)max_addr
, (void *)_RET_IP_
);
1423 ptr
= memblock_virt_alloc_internal(size
, align
,
1424 min_addr
, max_addr
, nid
);
1426 memset(ptr
, 0, size
);
1430 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1431 __func__
, (u64
)size
, (u64
)align
, nid
, (u64
)min_addr
,
1437 * __memblock_free_early - free boot memory block
1438 * @base: phys starting address of the boot memory block
1439 * @size: size of the boot memory block in bytes
1441 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1442 * The freeing memory will not be released to the buddy allocator.
1444 void __init
__memblock_free_early(phys_addr_t base
, phys_addr_t size
)
1446 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1447 __func__
, (u64
)base
, (u64
)base
+ size
- 1,
1449 kmemleak_free_part_phys(base
, size
);
1450 memblock_remove_range(&memblock
.reserved
, base
, size
);
1454 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1455 * @addr: phys starting address of the boot memory block
1456 * @size: size of the boot memory block in bytes
1458 * This is only useful when the bootmem allocator has already been torn
1459 * down, but we are still initializing the system. Pages are released directly
1460 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1462 void __init
__memblock_free_late(phys_addr_t base
, phys_addr_t size
)
1466 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1467 __func__
, (u64
)base
, (u64
)base
+ size
- 1,
1469 kmemleak_free_part_phys(base
, size
);
1470 cursor
= PFN_UP(base
);
1471 end
= PFN_DOWN(base
+ size
);
1473 for (; cursor
< end
; cursor
++) {
1474 __free_pages_bootmem(pfn_to_page(cursor
), cursor
, 0);
1480 * Remaining API functions
1483 phys_addr_t __init_memblock
memblock_phys_mem_size(void)
1485 return memblock
.memory
.total_size
;
1488 phys_addr_t __init_memblock
memblock_reserved_size(void)
1490 return memblock
.reserved
.total_size
;
1493 phys_addr_t __init
memblock_mem_size(unsigned long limit_pfn
)
1495 unsigned long pages
= 0;
1496 struct memblock_region
*r
;
1497 unsigned long start_pfn
, end_pfn
;
1499 for_each_memblock(memory
, r
) {
1500 start_pfn
= memblock_region_memory_base_pfn(r
);
1501 end_pfn
= memblock_region_memory_end_pfn(r
);
1502 start_pfn
= min_t(unsigned long, start_pfn
, limit_pfn
);
1503 end_pfn
= min_t(unsigned long, end_pfn
, limit_pfn
);
1504 pages
+= end_pfn
- start_pfn
;
1507 return PFN_PHYS(pages
);
1510 /* lowest address */
1511 phys_addr_t __init_memblock
memblock_start_of_DRAM(void)
1513 return memblock
.memory
.regions
[0].base
;
1516 phys_addr_t __init_memblock
memblock_end_of_DRAM(void)
1518 int idx
= memblock
.memory
.cnt
- 1;
1520 return (memblock
.memory
.regions
[idx
].base
+ memblock
.memory
.regions
[idx
].size
);
1523 static phys_addr_t __init_memblock
__find_max_addr(phys_addr_t limit
)
1525 phys_addr_t max_addr
= PHYS_ADDR_MAX
;
1526 struct memblock_region
*r
;
1529 * translate the memory @limit size into the max address within one of
1530 * the memory memblock regions, if the @limit exceeds the total size
1531 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1533 for_each_memblock(memory
, r
) {
1534 if (limit
<= r
->size
) {
1535 max_addr
= r
->base
+ limit
;
1544 void __init
memblock_enforce_memory_limit(phys_addr_t limit
)
1546 phys_addr_t max_addr
= PHYS_ADDR_MAX
;
1551 max_addr
= __find_max_addr(limit
);
1553 /* @limit exceeds the total size of the memory, do nothing */
1554 if (max_addr
== PHYS_ADDR_MAX
)
1557 /* truncate both memory and reserved regions */
1558 memblock_remove_range(&memblock
.memory
, max_addr
,
1560 memblock_remove_range(&memblock
.reserved
, max_addr
,
1564 void __init
memblock_cap_memory_range(phys_addr_t base
, phys_addr_t size
)
1566 int start_rgn
, end_rgn
;
1572 ret
= memblock_isolate_range(&memblock
.memory
, base
, size
,
1573 &start_rgn
, &end_rgn
);
1577 /* remove all the MAP regions */
1578 for (i
= memblock
.memory
.cnt
- 1; i
>= end_rgn
; i
--)
1579 if (!memblock_is_nomap(&memblock
.memory
.regions
[i
]))
1580 memblock_remove_region(&memblock
.memory
, i
);
1582 for (i
= start_rgn
- 1; i
>= 0; i
--)
1583 if (!memblock_is_nomap(&memblock
.memory
.regions
[i
]))
1584 memblock_remove_region(&memblock
.memory
, i
);
1586 /* truncate the reserved regions */
1587 memblock_remove_range(&memblock
.reserved
, 0, base
);
1588 memblock_remove_range(&memblock
.reserved
,
1589 base
+ size
, PHYS_ADDR_MAX
);
1592 void __init
memblock_mem_limit_remove_map(phys_addr_t limit
)
1594 phys_addr_t max_addr
;
1599 max_addr
= __find_max_addr(limit
);
1601 /* @limit exceeds the total size of the memory, do nothing */
1602 if (max_addr
== PHYS_ADDR_MAX
)
1605 memblock_cap_memory_range(0, max_addr
);
1608 static int __init_memblock
memblock_search(struct memblock_type
*type
, phys_addr_t addr
)
1610 unsigned int left
= 0, right
= type
->cnt
;
1613 unsigned int mid
= (right
+ left
) / 2;
1615 if (addr
< type
->regions
[mid
].base
)
1617 else if (addr
>= (type
->regions
[mid
].base
+
1618 type
->regions
[mid
].size
))
1622 } while (left
< right
);
1626 bool __init
memblock_is_reserved(phys_addr_t addr
)
1628 return memblock_search(&memblock
.reserved
, addr
) != -1;
1631 bool __init_memblock
memblock_is_memory(phys_addr_t addr
)
1633 return memblock_search(&memblock
.memory
, addr
) != -1;
1636 bool __init_memblock
memblock_is_map_memory(phys_addr_t addr
)
1638 int i
= memblock_search(&memblock
.memory
, addr
);
1642 return !memblock_is_nomap(&memblock
.memory
.regions
[i
]);
1645 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1646 int __init_memblock
memblock_search_pfn_nid(unsigned long pfn
,
1647 unsigned long *start_pfn
, unsigned long *end_pfn
)
1649 struct memblock_type
*type
= &memblock
.memory
;
1650 int mid
= memblock_search(type
, PFN_PHYS(pfn
));
1655 *start_pfn
= PFN_DOWN(type
->regions
[mid
].base
);
1656 *end_pfn
= PFN_DOWN(type
->regions
[mid
].base
+ type
->regions
[mid
].size
);
1658 return type
->regions
[mid
].nid
;
1663 * memblock_is_region_memory - check if a region is a subset of memory
1664 * @base: base of region to check
1665 * @size: size of region to check
1667 * Check if the region [@base, @base+@size) is a subset of a memory block.
1670 * 0 if false, non-zero if true
1672 bool __init_memblock
memblock_is_region_memory(phys_addr_t base
, phys_addr_t size
)
1674 int idx
= memblock_search(&memblock
.memory
, base
);
1675 phys_addr_t end
= base
+ memblock_cap_size(base
, &size
);
1679 return (memblock
.memory
.regions
[idx
].base
+
1680 memblock
.memory
.regions
[idx
].size
) >= end
;
1684 * memblock_is_region_reserved - check if a region intersects reserved memory
1685 * @base: base of region to check
1686 * @size: size of region to check
1688 * Check if the region [@base, @base+@size) intersects a reserved memory block.
1691 * True if they intersect, false if not.
1693 bool __init_memblock
memblock_is_region_reserved(phys_addr_t base
, phys_addr_t size
)
1695 memblock_cap_size(base
, &size
);
1696 return memblock_overlaps_region(&memblock
.reserved
, base
, size
);
1699 void __init_memblock
memblock_trim_memory(phys_addr_t align
)
1701 phys_addr_t start
, end
, orig_start
, orig_end
;
1702 struct memblock_region
*r
;
1704 for_each_memblock(memory
, r
) {
1705 orig_start
= r
->base
;
1706 orig_end
= r
->base
+ r
->size
;
1707 start
= round_up(orig_start
, align
);
1708 end
= round_down(orig_end
, align
);
1710 if (start
== orig_start
&& end
== orig_end
)
1715 r
->size
= end
- start
;
1717 memblock_remove_region(&memblock
.memory
,
1718 r
- memblock
.memory
.regions
);
1724 void __init_memblock
memblock_set_current_limit(phys_addr_t limit
)
1726 memblock
.current_limit
= limit
;
1729 phys_addr_t __init_memblock
memblock_get_current_limit(void)
1731 return memblock
.current_limit
;
1734 static void __init_memblock
memblock_dump(struct memblock_type
*type
)
1736 phys_addr_t base
, end
, size
;
1737 unsigned long flags
;
1739 struct memblock_region
*rgn
;
1741 pr_info(" %s.cnt = 0x%lx\n", type
->name
, type
->cnt
);
1743 for_each_memblock_type(idx
, type
, rgn
) {
1744 char nid_buf
[32] = "";
1748 end
= base
+ size
- 1;
1750 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1751 if (memblock_get_region_node(rgn
) != MAX_NUMNODES
)
1752 snprintf(nid_buf
, sizeof(nid_buf
), " on node %d",
1753 memblock_get_region_node(rgn
));
1755 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#lx\n",
1756 type
->name
, idx
, &base
, &end
, &size
, nid_buf
, flags
);
1760 void __init_memblock
__memblock_dump_all(void)
1762 pr_info("MEMBLOCK configuration:\n");
1763 pr_info(" memory size = %pa reserved size = %pa\n",
1764 &memblock
.memory
.total_size
,
1765 &memblock
.reserved
.total_size
);
1767 memblock_dump(&memblock
.memory
);
1768 memblock_dump(&memblock
.reserved
);
1769 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1770 memblock_dump(&memblock
.physmem
);
1774 void __init
memblock_allow_resize(void)
1776 memblock_can_resize
= 1;
1779 static int __init
early_memblock(char *p
)
1781 if (p
&& strstr(p
, "debug"))
1785 early_param("memblock", early_memblock
);
1787 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1789 static int memblock_debug_show(struct seq_file
*m
, void *private)
1791 struct memblock_type
*type
= m
->private;
1792 struct memblock_region
*reg
;
1796 for (i
= 0; i
< type
->cnt
; i
++) {
1797 reg
= &type
->regions
[i
];
1798 end
= reg
->base
+ reg
->size
- 1;
1800 seq_printf(m
, "%4d: ", i
);
1801 seq_printf(m
, "%pa..%pa\n", ®
->base
, &end
);
1805 DEFINE_SHOW_ATTRIBUTE(memblock_debug
);
1807 static int __init
memblock_init_debugfs(void)
1809 struct dentry
*root
= debugfs_create_dir("memblock", NULL
);
1812 debugfs_create_file("memory", 0444, root
,
1813 &memblock
.memory
, &memblock_debug_fops
);
1814 debugfs_create_file("reserved", 0444, root
,
1815 &memblock
.reserved
, &memblock_debug_fops
);
1816 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1817 debugfs_create_file("physmem", 0444, root
,
1818 &memblock
.physmem
, &memblock_debug_fops
);
1823 __initcall(memblock_init_debugfs
);
1825 #endif /* CONFIG_DEBUG_FS */