ASoC: arizona: Correct handling of FLL theta in synchroniser mode
[linux/fpc-iii.git] / drivers / dma / qcom / hidma_ll.c
blobad20dfb64c71cb32d3b392c0fcb0dcd0002a5787
1 /*
2 * Qualcomm Technologies HIDMA DMA engine low level code
4 * Copyright (c) 2015-2016, The Linux Foundation. All rights reserved.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 and
8 * only version 2 as published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
16 #include <linux/dmaengine.h>
17 #include <linux/slab.h>
18 #include <linux/interrupt.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/delay.h>
23 #include <linux/atomic.h>
24 #include <linux/iopoll.h>
25 #include <linux/kfifo.h>
26 #include <linux/bitops.h>
28 #include "hidma.h"
30 #define HIDMA_EVRE_SIZE 16 /* each EVRE is 16 bytes */
32 #define HIDMA_TRCA_CTRLSTS_REG 0x000
33 #define HIDMA_TRCA_RING_LOW_REG 0x008
34 #define HIDMA_TRCA_RING_HIGH_REG 0x00C
35 #define HIDMA_TRCA_RING_LEN_REG 0x010
36 #define HIDMA_TRCA_DOORBELL_REG 0x400
38 #define HIDMA_EVCA_CTRLSTS_REG 0x000
39 #define HIDMA_EVCA_INTCTRL_REG 0x004
40 #define HIDMA_EVCA_RING_LOW_REG 0x008
41 #define HIDMA_EVCA_RING_HIGH_REG 0x00C
42 #define HIDMA_EVCA_RING_LEN_REG 0x010
43 #define HIDMA_EVCA_WRITE_PTR_REG 0x020
44 #define HIDMA_EVCA_DOORBELL_REG 0x400
46 #define HIDMA_EVCA_IRQ_STAT_REG 0x100
47 #define HIDMA_EVCA_IRQ_CLR_REG 0x108
48 #define HIDMA_EVCA_IRQ_EN_REG 0x110
50 #define HIDMA_EVRE_CFG_IDX 0
52 #define HIDMA_EVRE_ERRINFO_BIT_POS 24
53 #define HIDMA_EVRE_CODE_BIT_POS 28
55 #define HIDMA_EVRE_ERRINFO_MASK GENMASK(3, 0)
56 #define HIDMA_EVRE_CODE_MASK GENMASK(3, 0)
58 #define HIDMA_CH_CONTROL_MASK GENMASK(7, 0)
59 #define HIDMA_CH_STATE_MASK GENMASK(7, 0)
60 #define HIDMA_CH_STATE_BIT_POS 0x8
62 #define HIDMA_IRQ_EV_CH_EOB_IRQ_BIT_POS 0
63 #define HIDMA_IRQ_EV_CH_WR_RESP_BIT_POS 1
64 #define HIDMA_IRQ_TR_CH_TRE_RD_RSP_ER_BIT_POS 9
65 #define HIDMA_IRQ_TR_CH_DATA_RD_ER_BIT_POS 10
66 #define HIDMA_IRQ_TR_CH_DATA_WR_ER_BIT_POS 11
67 #define HIDMA_IRQ_TR_CH_INVALID_TRE_BIT_POS 14
69 #define ENABLE_IRQS (BIT(HIDMA_IRQ_EV_CH_EOB_IRQ_BIT_POS) | \
70 BIT(HIDMA_IRQ_EV_CH_WR_RESP_BIT_POS) | \
71 BIT(HIDMA_IRQ_TR_CH_TRE_RD_RSP_ER_BIT_POS) | \
72 BIT(HIDMA_IRQ_TR_CH_DATA_RD_ER_BIT_POS) | \
73 BIT(HIDMA_IRQ_TR_CH_DATA_WR_ER_BIT_POS) | \
74 BIT(HIDMA_IRQ_TR_CH_INVALID_TRE_BIT_POS))
76 #define HIDMA_INCREMENT_ITERATOR(iter, size, ring_size) \
77 do { \
78 iter += size; \
79 if (iter >= ring_size) \
80 iter -= ring_size; \
81 } while (0)
83 #define HIDMA_CH_STATE(val) \
84 ((val >> HIDMA_CH_STATE_BIT_POS) & HIDMA_CH_STATE_MASK)
86 #define HIDMA_ERR_INT_MASK \
87 (BIT(HIDMA_IRQ_TR_CH_INVALID_TRE_BIT_POS) | \
88 BIT(HIDMA_IRQ_TR_CH_TRE_RD_RSP_ER_BIT_POS) | \
89 BIT(HIDMA_IRQ_EV_CH_WR_RESP_BIT_POS) | \
90 BIT(HIDMA_IRQ_TR_CH_DATA_RD_ER_BIT_POS) | \
91 BIT(HIDMA_IRQ_TR_CH_DATA_WR_ER_BIT_POS))
93 enum ch_command {
94 HIDMA_CH_DISABLE = 0,
95 HIDMA_CH_ENABLE = 1,
96 HIDMA_CH_SUSPEND = 2,
97 HIDMA_CH_RESET = 9,
100 enum ch_state {
101 HIDMA_CH_DISABLED = 0,
102 HIDMA_CH_ENABLED = 1,
103 HIDMA_CH_RUNNING = 2,
104 HIDMA_CH_SUSPENDED = 3,
105 HIDMA_CH_STOPPED = 4,
108 enum tre_type {
109 HIDMA_TRE_MEMCPY = 3,
112 enum err_code {
113 HIDMA_EVRE_STATUS_COMPLETE = 1,
114 HIDMA_EVRE_STATUS_ERROR = 4,
117 static int hidma_is_chan_enabled(int state)
119 switch (state) {
120 case HIDMA_CH_ENABLED:
121 case HIDMA_CH_RUNNING:
122 return true;
123 default:
124 return false;
128 void hidma_ll_free(struct hidma_lldev *lldev, u32 tre_ch)
130 struct hidma_tre *tre;
132 if (tre_ch >= lldev->nr_tres) {
133 dev_err(lldev->dev, "invalid TRE number in free:%d", tre_ch);
134 return;
137 tre = &lldev->trepool[tre_ch];
138 if (atomic_read(&tre->allocated) != true) {
139 dev_err(lldev->dev, "trying to free an unused TRE:%d", tre_ch);
140 return;
143 atomic_set(&tre->allocated, 0);
146 int hidma_ll_request(struct hidma_lldev *lldev, u32 sig, const char *dev_name,
147 void (*callback)(void *data), void *data, u32 *tre_ch)
149 unsigned int i;
150 struct hidma_tre *tre;
151 u32 *tre_local;
153 if (!tre_ch || !lldev)
154 return -EINVAL;
156 /* need to have at least one empty spot in the queue */
157 for (i = 0; i < lldev->nr_tres - 1; i++) {
158 if (atomic_add_unless(&lldev->trepool[i].allocated, 1, 1))
159 break;
162 if (i == (lldev->nr_tres - 1))
163 return -ENOMEM;
165 tre = &lldev->trepool[i];
166 tre->dma_sig = sig;
167 tre->dev_name = dev_name;
168 tre->callback = callback;
169 tre->data = data;
170 tre->idx = i;
171 tre->status = 0;
172 tre->queued = 0;
173 tre->err_code = 0;
174 tre->err_info = 0;
175 tre->lldev = lldev;
176 tre_local = &tre->tre_local[0];
177 tre_local[HIDMA_TRE_CFG_IDX] = HIDMA_TRE_MEMCPY;
178 tre_local[HIDMA_TRE_CFG_IDX] |= (lldev->chidx & 0xFF) << 8;
179 tre_local[HIDMA_TRE_CFG_IDX] |= BIT(16); /* set IEOB */
180 *tre_ch = i;
181 if (callback)
182 callback(data);
183 return 0;
187 * Multiple TREs may be queued and waiting in the pending queue.
189 static void hidma_ll_tre_complete(unsigned long arg)
191 struct hidma_lldev *lldev = (struct hidma_lldev *)arg;
192 struct hidma_tre *tre;
194 while (kfifo_out(&lldev->handoff_fifo, &tre, 1)) {
195 /* call the user if it has been read by the hardware */
196 if (tre->callback)
197 tre->callback(tre->data);
201 static int hidma_post_completed(struct hidma_lldev *lldev, int tre_iterator,
202 u8 err_info, u8 err_code)
204 struct hidma_tre *tre;
205 unsigned long flags;
207 spin_lock_irqsave(&lldev->lock, flags);
208 tre = lldev->pending_tre_list[tre_iterator / HIDMA_TRE_SIZE];
209 if (!tre) {
210 spin_unlock_irqrestore(&lldev->lock, flags);
211 dev_warn(lldev->dev, "tre_index [%d] and tre out of sync\n",
212 tre_iterator / HIDMA_TRE_SIZE);
213 return -EINVAL;
215 lldev->pending_tre_list[tre->tre_index] = NULL;
218 * Keep track of pending TREs that SW is expecting to receive
219 * from HW. We got one now. Decrement our counter.
221 lldev->pending_tre_count--;
222 if (lldev->pending_tre_count < 0) {
223 dev_warn(lldev->dev, "tre count mismatch on completion");
224 lldev->pending_tre_count = 0;
227 spin_unlock_irqrestore(&lldev->lock, flags);
229 tre->err_info = err_info;
230 tre->err_code = err_code;
231 tre->queued = 0;
233 kfifo_put(&lldev->handoff_fifo, tre);
234 tasklet_schedule(&lldev->task);
236 return 0;
240 * Called to handle the interrupt for the channel.
241 * Return a positive number if TRE or EVRE were consumed on this run.
242 * Return a positive number if there are pending TREs or EVREs.
243 * Return 0 if there is nothing to consume or no pending TREs/EVREs found.
245 static int hidma_handle_tre_completion(struct hidma_lldev *lldev)
247 u32 evre_ring_size = lldev->evre_ring_size;
248 u32 tre_ring_size = lldev->tre_ring_size;
249 u32 err_info, err_code, evre_write_off;
250 u32 tre_iterator, evre_iterator;
251 u32 num_completed = 0;
253 evre_write_off = readl_relaxed(lldev->evca + HIDMA_EVCA_WRITE_PTR_REG);
254 tre_iterator = lldev->tre_processed_off;
255 evre_iterator = lldev->evre_processed_off;
257 if ((evre_write_off > evre_ring_size) ||
258 (evre_write_off % HIDMA_EVRE_SIZE)) {
259 dev_err(lldev->dev, "HW reports invalid EVRE write offset\n");
260 return 0;
264 * By the time control reaches here the number of EVREs and TREs
265 * may not match. Only consume the ones that hardware told us.
267 while ((evre_iterator != evre_write_off)) {
268 u32 *current_evre = lldev->evre_ring + evre_iterator;
269 u32 cfg;
271 cfg = current_evre[HIDMA_EVRE_CFG_IDX];
272 err_info = cfg >> HIDMA_EVRE_ERRINFO_BIT_POS;
273 err_info &= HIDMA_EVRE_ERRINFO_MASK;
274 err_code =
275 (cfg >> HIDMA_EVRE_CODE_BIT_POS) & HIDMA_EVRE_CODE_MASK;
277 if (hidma_post_completed(lldev, tre_iterator, err_info,
278 err_code))
279 break;
281 HIDMA_INCREMENT_ITERATOR(tre_iterator, HIDMA_TRE_SIZE,
282 tre_ring_size);
283 HIDMA_INCREMENT_ITERATOR(evre_iterator, HIDMA_EVRE_SIZE,
284 evre_ring_size);
287 * Read the new event descriptor written by the HW.
288 * As we are processing the delivered events, other events
289 * get queued to the SW for processing.
291 evre_write_off =
292 readl_relaxed(lldev->evca + HIDMA_EVCA_WRITE_PTR_REG);
293 num_completed++;
296 if (num_completed) {
297 u32 evre_read_off = (lldev->evre_processed_off +
298 HIDMA_EVRE_SIZE * num_completed);
299 u32 tre_read_off = (lldev->tre_processed_off +
300 HIDMA_TRE_SIZE * num_completed);
302 evre_read_off = evre_read_off % evre_ring_size;
303 tre_read_off = tre_read_off % tre_ring_size;
305 writel(evre_read_off, lldev->evca + HIDMA_EVCA_DOORBELL_REG);
307 /* record the last processed tre offset */
308 lldev->tre_processed_off = tre_read_off;
309 lldev->evre_processed_off = evre_read_off;
312 return num_completed;
315 void hidma_cleanup_pending_tre(struct hidma_lldev *lldev, u8 err_info,
316 u8 err_code)
318 u32 tre_iterator;
319 u32 tre_ring_size = lldev->tre_ring_size;
320 int num_completed = 0;
321 u32 tre_read_off;
323 tre_iterator = lldev->tre_processed_off;
324 while (lldev->pending_tre_count) {
325 if (hidma_post_completed(lldev, tre_iterator, err_info,
326 err_code))
327 break;
328 HIDMA_INCREMENT_ITERATOR(tre_iterator, HIDMA_TRE_SIZE,
329 tre_ring_size);
330 num_completed++;
332 tre_read_off = (lldev->tre_processed_off +
333 HIDMA_TRE_SIZE * num_completed);
335 tre_read_off = tre_read_off % tre_ring_size;
337 /* record the last processed tre offset */
338 lldev->tre_processed_off = tre_read_off;
341 static int hidma_ll_reset(struct hidma_lldev *lldev)
343 u32 val;
344 int ret;
346 val = readl(lldev->trca + HIDMA_TRCA_CTRLSTS_REG);
347 val &= ~(HIDMA_CH_CONTROL_MASK << 16);
348 val |= HIDMA_CH_RESET << 16;
349 writel(val, lldev->trca + HIDMA_TRCA_CTRLSTS_REG);
352 * Delay 10ms after reset to allow DMA logic to quiesce.
353 * Do a polled read up to 1ms and 10ms maximum.
355 ret = readl_poll_timeout(lldev->trca + HIDMA_TRCA_CTRLSTS_REG, val,
356 HIDMA_CH_STATE(val) == HIDMA_CH_DISABLED,
357 1000, 10000);
358 if (ret) {
359 dev_err(lldev->dev, "transfer channel did not reset\n");
360 return ret;
363 val = readl(lldev->evca + HIDMA_EVCA_CTRLSTS_REG);
364 val &= ~(HIDMA_CH_CONTROL_MASK << 16);
365 val |= HIDMA_CH_RESET << 16;
366 writel(val, lldev->evca + HIDMA_EVCA_CTRLSTS_REG);
369 * Delay 10ms after reset to allow DMA logic to quiesce.
370 * Do a polled read up to 1ms and 10ms maximum.
372 ret = readl_poll_timeout(lldev->evca + HIDMA_EVCA_CTRLSTS_REG, val,
373 HIDMA_CH_STATE(val) == HIDMA_CH_DISABLED,
374 1000, 10000);
375 if (ret)
376 return ret;
378 lldev->trch_state = HIDMA_CH_DISABLED;
379 lldev->evch_state = HIDMA_CH_DISABLED;
380 return 0;
384 * Abort all transactions and perform a reset.
386 static void hidma_ll_abort(unsigned long arg)
388 struct hidma_lldev *lldev = (struct hidma_lldev *)arg;
389 u8 err_code = HIDMA_EVRE_STATUS_ERROR;
390 u8 err_info = 0xFF;
391 int rc;
393 hidma_cleanup_pending_tre(lldev, err_info, err_code);
395 /* reset the channel for recovery */
396 rc = hidma_ll_setup(lldev);
397 if (rc) {
398 dev_err(lldev->dev, "channel reinitialize failed after error\n");
399 return;
401 writel(ENABLE_IRQS, lldev->evca + HIDMA_EVCA_IRQ_EN_REG);
405 * The interrupt handler for HIDMA will try to consume as many pending
406 * EVRE from the event queue as possible. Each EVRE has an associated
407 * TRE that holds the user interface parameters. EVRE reports the
408 * result of the transaction. Hardware guarantees ordering between EVREs
409 * and TREs. We use last processed offset to figure out which TRE is
410 * associated with which EVRE. If two TREs are consumed by HW, the EVREs
411 * are in order in the event ring.
413 * This handler will do a one pass for consuming EVREs. Other EVREs may
414 * be delivered while we are working. It will try to consume incoming
415 * EVREs one more time and return.
417 * For unprocessed EVREs, hardware will trigger another interrupt until
418 * all the interrupt bits are cleared.
420 * Hardware guarantees that by the time interrupt is observed, all data
421 * transactions in flight are delivered to their respective places and
422 * are visible to the CPU.
424 * On demand paging for IOMMU is only supported for PCIe via PRI
425 * (Page Request Interface) not for HIDMA. All other hardware instances
426 * including HIDMA work on pinned DMA addresses.
428 * HIDMA is not aware of IOMMU presence since it follows the DMA API. All
429 * IOMMU latency will be built into the data movement time. By the time
430 * interrupt happens, IOMMU lookups + data movement has already taken place.
432 * While the first read in a typical PCI endpoint ISR flushes all outstanding
433 * requests traditionally to the destination, this concept does not apply
434 * here for this HW.
436 irqreturn_t hidma_ll_inthandler(int chirq, void *arg)
438 struct hidma_lldev *lldev = arg;
439 u32 status;
440 u32 enable;
441 u32 cause;
444 * Fine tuned for this HW...
446 * This ISR has been designed for this particular hardware. Relaxed
447 * read and write accessors are used for performance reasons due to
448 * interrupt delivery guarantees. Do not copy this code blindly and
449 * expect that to work.
451 status = readl_relaxed(lldev->evca + HIDMA_EVCA_IRQ_STAT_REG);
452 enable = readl_relaxed(lldev->evca + HIDMA_EVCA_IRQ_EN_REG);
453 cause = status & enable;
455 while (cause) {
456 if (cause & HIDMA_ERR_INT_MASK) {
457 dev_err(lldev->dev, "error 0x%x, resetting...\n",
458 cause);
460 /* Clear out pending interrupts */
461 writel(cause, lldev->evca + HIDMA_EVCA_IRQ_CLR_REG);
463 tasklet_schedule(&lldev->rst_task);
464 goto out;
468 * Try to consume as many EVREs as possible.
470 hidma_handle_tre_completion(lldev);
472 /* We consumed TREs or there are pending TREs or EVREs. */
473 writel_relaxed(cause, lldev->evca + HIDMA_EVCA_IRQ_CLR_REG);
476 * Another interrupt might have arrived while we are
477 * processing this one. Read the new cause.
479 status = readl_relaxed(lldev->evca + HIDMA_EVCA_IRQ_STAT_REG);
480 enable = readl_relaxed(lldev->evca + HIDMA_EVCA_IRQ_EN_REG);
481 cause = status & enable;
484 out:
485 return IRQ_HANDLED;
488 int hidma_ll_enable(struct hidma_lldev *lldev)
490 u32 val;
491 int ret;
493 val = readl(lldev->evca + HIDMA_EVCA_CTRLSTS_REG);
494 val &= ~(HIDMA_CH_CONTROL_MASK << 16);
495 val |= HIDMA_CH_ENABLE << 16;
496 writel(val, lldev->evca + HIDMA_EVCA_CTRLSTS_REG);
498 ret = readl_poll_timeout(lldev->evca + HIDMA_EVCA_CTRLSTS_REG, val,
499 hidma_is_chan_enabled(HIDMA_CH_STATE(val)),
500 1000, 10000);
501 if (ret) {
502 dev_err(lldev->dev, "event channel did not get enabled\n");
503 return ret;
506 val = readl(lldev->trca + HIDMA_TRCA_CTRLSTS_REG);
507 val &= ~(HIDMA_CH_CONTROL_MASK << 16);
508 val |= HIDMA_CH_ENABLE << 16;
509 writel(val, lldev->trca + HIDMA_TRCA_CTRLSTS_REG);
511 ret = readl_poll_timeout(lldev->trca + HIDMA_TRCA_CTRLSTS_REG, val,
512 hidma_is_chan_enabled(HIDMA_CH_STATE(val)),
513 1000, 10000);
514 if (ret) {
515 dev_err(lldev->dev, "transfer channel did not get enabled\n");
516 return ret;
519 lldev->trch_state = HIDMA_CH_ENABLED;
520 lldev->evch_state = HIDMA_CH_ENABLED;
522 return 0;
525 void hidma_ll_start(struct hidma_lldev *lldev)
527 unsigned long irqflags;
529 spin_lock_irqsave(&lldev->lock, irqflags);
530 writel(lldev->tre_write_offset, lldev->trca + HIDMA_TRCA_DOORBELL_REG);
531 spin_unlock_irqrestore(&lldev->lock, irqflags);
534 bool hidma_ll_isenabled(struct hidma_lldev *lldev)
536 u32 val;
538 val = readl(lldev->trca + HIDMA_TRCA_CTRLSTS_REG);
539 lldev->trch_state = HIDMA_CH_STATE(val);
540 val = readl(lldev->evca + HIDMA_EVCA_CTRLSTS_REG);
541 lldev->evch_state = HIDMA_CH_STATE(val);
543 /* both channels have to be enabled before calling this function */
544 if (hidma_is_chan_enabled(lldev->trch_state) &&
545 hidma_is_chan_enabled(lldev->evch_state))
546 return true;
548 return false;
551 void hidma_ll_queue_request(struct hidma_lldev *lldev, u32 tre_ch)
553 struct hidma_tre *tre;
554 unsigned long flags;
556 tre = &lldev->trepool[tre_ch];
558 /* copy the TRE into its location in the TRE ring */
559 spin_lock_irqsave(&lldev->lock, flags);
560 tre->tre_index = lldev->tre_write_offset / HIDMA_TRE_SIZE;
561 lldev->pending_tre_list[tre->tre_index] = tre;
562 memcpy(lldev->tre_ring + lldev->tre_write_offset,
563 &tre->tre_local[0], HIDMA_TRE_SIZE);
564 tre->err_code = 0;
565 tre->err_info = 0;
566 tre->queued = 1;
567 lldev->pending_tre_count++;
568 lldev->tre_write_offset = (lldev->tre_write_offset + HIDMA_TRE_SIZE)
569 % lldev->tre_ring_size;
570 spin_unlock_irqrestore(&lldev->lock, flags);
574 * Note that even though we stop this channel if there is a pending transaction
575 * in flight it will complete and follow the callback. This request will
576 * prevent further requests to be made.
578 int hidma_ll_disable(struct hidma_lldev *lldev)
580 u32 val;
581 int ret;
583 val = readl(lldev->evca + HIDMA_EVCA_CTRLSTS_REG);
584 lldev->evch_state = HIDMA_CH_STATE(val);
585 val = readl(lldev->trca + HIDMA_TRCA_CTRLSTS_REG);
586 lldev->trch_state = HIDMA_CH_STATE(val);
588 /* already suspended by this OS */
589 if ((lldev->trch_state == HIDMA_CH_SUSPENDED) ||
590 (lldev->evch_state == HIDMA_CH_SUSPENDED))
591 return 0;
593 /* already stopped by the manager */
594 if ((lldev->trch_state == HIDMA_CH_STOPPED) ||
595 (lldev->evch_state == HIDMA_CH_STOPPED))
596 return 0;
598 val = readl(lldev->trca + HIDMA_TRCA_CTRLSTS_REG);
599 val &= ~(HIDMA_CH_CONTROL_MASK << 16);
600 val |= HIDMA_CH_SUSPEND << 16;
601 writel(val, lldev->trca + HIDMA_TRCA_CTRLSTS_REG);
604 * Start the wait right after the suspend is confirmed.
605 * Do a polled read up to 1ms and 10ms maximum.
607 ret = readl_poll_timeout(lldev->trca + HIDMA_TRCA_CTRLSTS_REG, val,
608 HIDMA_CH_STATE(val) == HIDMA_CH_SUSPENDED,
609 1000, 10000);
610 if (ret)
611 return ret;
613 val = readl(lldev->evca + HIDMA_EVCA_CTRLSTS_REG);
614 val &= ~(HIDMA_CH_CONTROL_MASK << 16);
615 val |= HIDMA_CH_SUSPEND << 16;
616 writel(val, lldev->evca + HIDMA_EVCA_CTRLSTS_REG);
619 * Start the wait right after the suspend is confirmed
620 * Delay up to 10ms after reset to allow DMA logic to quiesce.
622 ret = readl_poll_timeout(lldev->evca + HIDMA_EVCA_CTRLSTS_REG, val,
623 HIDMA_CH_STATE(val) == HIDMA_CH_SUSPENDED,
624 1000, 10000);
625 if (ret)
626 return ret;
628 lldev->trch_state = HIDMA_CH_SUSPENDED;
629 lldev->evch_state = HIDMA_CH_SUSPENDED;
630 return 0;
633 void hidma_ll_set_transfer_params(struct hidma_lldev *lldev, u32 tre_ch,
634 dma_addr_t src, dma_addr_t dest, u32 len,
635 u32 flags)
637 struct hidma_tre *tre;
638 u32 *tre_local;
640 if (tre_ch >= lldev->nr_tres) {
641 dev_err(lldev->dev, "invalid TRE number in transfer params:%d",
642 tre_ch);
643 return;
646 tre = &lldev->trepool[tre_ch];
647 if (atomic_read(&tre->allocated) != true) {
648 dev_err(lldev->dev, "trying to set params on an unused TRE:%d",
649 tre_ch);
650 return;
653 tre_local = &tre->tre_local[0];
654 tre_local[HIDMA_TRE_LEN_IDX] = len;
655 tre_local[HIDMA_TRE_SRC_LOW_IDX] = lower_32_bits(src);
656 tre_local[HIDMA_TRE_SRC_HI_IDX] = upper_32_bits(src);
657 tre_local[HIDMA_TRE_DEST_LOW_IDX] = lower_32_bits(dest);
658 tre_local[HIDMA_TRE_DEST_HI_IDX] = upper_32_bits(dest);
659 tre->int_flags = flags;
663 * Called during initialization and after an error condition
664 * to restore hardware state.
666 int hidma_ll_setup(struct hidma_lldev *lldev)
668 int rc;
669 u64 addr;
670 u32 val;
671 u32 nr_tres = lldev->nr_tres;
673 lldev->pending_tre_count = 0;
674 lldev->tre_processed_off = 0;
675 lldev->evre_processed_off = 0;
676 lldev->tre_write_offset = 0;
678 /* disable interrupts */
679 writel(0, lldev->evca + HIDMA_EVCA_IRQ_EN_REG);
681 /* clear all pending interrupts */
682 val = readl(lldev->evca + HIDMA_EVCA_IRQ_STAT_REG);
683 writel(val, lldev->evca + HIDMA_EVCA_IRQ_CLR_REG);
685 rc = hidma_ll_reset(lldev);
686 if (rc)
687 return rc;
690 * Clear all pending interrupts again.
691 * Otherwise, we observe reset complete interrupts.
693 val = readl(lldev->evca + HIDMA_EVCA_IRQ_STAT_REG);
694 writel(val, lldev->evca + HIDMA_EVCA_IRQ_CLR_REG);
696 /* disable interrupts again after reset */
697 writel(0, lldev->evca + HIDMA_EVCA_IRQ_EN_REG);
699 addr = lldev->tre_dma;
700 writel(lower_32_bits(addr), lldev->trca + HIDMA_TRCA_RING_LOW_REG);
701 writel(upper_32_bits(addr), lldev->trca + HIDMA_TRCA_RING_HIGH_REG);
702 writel(lldev->tre_ring_size, lldev->trca + HIDMA_TRCA_RING_LEN_REG);
704 addr = lldev->evre_dma;
705 writel(lower_32_bits(addr), lldev->evca + HIDMA_EVCA_RING_LOW_REG);
706 writel(upper_32_bits(addr), lldev->evca + HIDMA_EVCA_RING_HIGH_REG);
707 writel(HIDMA_EVRE_SIZE * nr_tres,
708 lldev->evca + HIDMA_EVCA_RING_LEN_REG);
710 /* support IRQ only for now */
711 val = readl(lldev->evca + HIDMA_EVCA_INTCTRL_REG);
712 val &= ~0xF;
713 val |= 0x1;
714 writel(val, lldev->evca + HIDMA_EVCA_INTCTRL_REG);
716 /* clear all pending interrupts and enable them */
717 writel(ENABLE_IRQS, lldev->evca + HIDMA_EVCA_IRQ_CLR_REG);
718 writel(ENABLE_IRQS, lldev->evca + HIDMA_EVCA_IRQ_EN_REG);
720 return hidma_ll_enable(lldev);
723 struct hidma_lldev *hidma_ll_init(struct device *dev, u32 nr_tres,
724 void __iomem *trca, void __iomem *evca,
725 u8 chidx)
727 u32 required_bytes;
728 struct hidma_lldev *lldev;
729 int rc;
730 size_t sz;
732 if (!trca || !evca || !dev || !nr_tres)
733 return NULL;
735 /* need at least four TREs */
736 if (nr_tres < 4)
737 return NULL;
739 /* need an extra space */
740 nr_tres += 1;
742 lldev = devm_kzalloc(dev, sizeof(struct hidma_lldev), GFP_KERNEL);
743 if (!lldev)
744 return NULL;
746 lldev->evca = evca;
747 lldev->trca = trca;
748 lldev->dev = dev;
749 sz = sizeof(struct hidma_tre);
750 lldev->trepool = devm_kcalloc(lldev->dev, nr_tres, sz, GFP_KERNEL);
751 if (!lldev->trepool)
752 return NULL;
754 required_bytes = sizeof(lldev->pending_tre_list[0]);
755 lldev->pending_tre_list = devm_kcalloc(dev, nr_tres, required_bytes,
756 GFP_KERNEL);
757 if (!lldev->pending_tre_list)
758 return NULL;
760 sz = (HIDMA_TRE_SIZE + 1) * nr_tres;
761 lldev->tre_ring = dmam_alloc_coherent(dev, sz, &lldev->tre_dma,
762 GFP_KERNEL);
763 if (!lldev->tre_ring)
764 return NULL;
766 memset(lldev->tre_ring, 0, (HIDMA_TRE_SIZE + 1) * nr_tres);
767 lldev->tre_ring_size = HIDMA_TRE_SIZE * nr_tres;
768 lldev->nr_tres = nr_tres;
770 /* the TRE ring has to be TRE_SIZE aligned */
771 if (!IS_ALIGNED(lldev->tre_dma, HIDMA_TRE_SIZE)) {
772 u8 tre_ring_shift;
774 tre_ring_shift = lldev->tre_dma % HIDMA_TRE_SIZE;
775 tre_ring_shift = HIDMA_TRE_SIZE - tre_ring_shift;
776 lldev->tre_dma += tre_ring_shift;
777 lldev->tre_ring += tre_ring_shift;
780 sz = (HIDMA_EVRE_SIZE + 1) * nr_tres;
781 lldev->evre_ring = dmam_alloc_coherent(dev, sz, &lldev->evre_dma,
782 GFP_KERNEL);
783 if (!lldev->evre_ring)
784 return NULL;
786 memset(lldev->evre_ring, 0, (HIDMA_EVRE_SIZE + 1) * nr_tres);
787 lldev->evre_ring_size = HIDMA_EVRE_SIZE * nr_tres;
789 /* the EVRE ring has to be EVRE_SIZE aligned */
790 if (!IS_ALIGNED(lldev->evre_dma, HIDMA_EVRE_SIZE)) {
791 u8 evre_ring_shift;
793 evre_ring_shift = lldev->evre_dma % HIDMA_EVRE_SIZE;
794 evre_ring_shift = HIDMA_EVRE_SIZE - evre_ring_shift;
795 lldev->evre_dma += evre_ring_shift;
796 lldev->evre_ring += evre_ring_shift;
798 lldev->nr_tres = nr_tres;
799 lldev->chidx = chidx;
801 sz = nr_tres * sizeof(struct hidma_tre *);
802 rc = kfifo_alloc(&lldev->handoff_fifo, sz, GFP_KERNEL);
803 if (rc)
804 return NULL;
806 rc = hidma_ll_setup(lldev);
807 if (rc)
808 return NULL;
810 spin_lock_init(&lldev->lock);
811 tasklet_init(&lldev->rst_task, hidma_ll_abort, (unsigned long)lldev);
812 tasklet_init(&lldev->task, hidma_ll_tre_complete, (unsigned long)lldev);
813 lldev->initialized = 1;
814 writel(ENABLE_IRQS, lldev->evca + HIDMA_EVCA_IRQ_EN_REG);
815 return lldev;
818 int hidma_ll_uninit(struct hidma_lldev *lldev)
820 u32 required_bytes;
821 int rc = 0;
822 u32 val;
824 if (!lldev)
825 return -ENODEV;
827 if (!lldev->initialized)
828 return 0;
830 lldev->initialized = 0;
832 required_bytes = sizeof(struct hidma_tre) * lldev->nr_tres;
833 tasklet_kill(&lldev->task);
834 tasklet_kill(&lldev->rst_task);
835 memset(lldev->trepool, 0, required_bytes);
836 lldev->trepool = NULL;
837 lldev->pending_tre_count = 0;
838 lldev->tre_write_offset = 0;
840 rc = hidma_ll_reset(lldev);
843 * Clear all pending interrupts again.
844 * Otherwise, we observe reset complete interrupts.
846 val = readl(lldev->evca + HIDMA_EVCA_IRQ_STAT_REG);
847 writel(val, lldev->evca + HIDMA_EVCA_IRQ_CLR_REG);
848 writel(0, lldev->evca + HIDMA_EVCA_IRQ_EN_REG);
849 return rc;
852 enum dma_status hidma_ll_status(struct hidma_lldev *lldev, u32 tre_ch)
854 enum dma_status ret = DMA_ERROR;
855 struct hidma_tre *tre;
856 unsigned long flags;
857 u8 err_code;
859 spin_lock_irqsave(&lldev->lock, flags);
861 tre = &lldev->trepool[tre_ch];
862 err_code = tre->err_code;
864 if (err_code & HIDMA_EVRE_STATUS_COMPLETE)
865 ret = DMA_COMPLETE;
866 else if (err_code & HIDMA_EVRE_STATUS_ERROR)
867 ret = DMA_ERROR;
868 else
869 ret = DMA_IN_PROGRESS;
870 spin_unlock_irqrestore(&lldev->lock, flags);
872 return ret;