2 * Copyright (C) 2012 Alexander Block. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/bsearch.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/vmalloc.h>
28 #include <linux/string.h>
35 #include "btrfs_inode.h"
36 #include "transaction.h"
37 #include "compression.h"
40 * A fs_path is a helper to dynamically build path names with unknown size.
41 * It reallocates the internal buffer on demand.
42 * It allows fast adding of path elements on the right side (normal path) and
43 * fast adding to the left side (reversed path). A reversed path can also be
44 * unreversed if needed.
53 unsigned short buf_len
:15;
54 unsigned short reversed
:1;
58 * Average path length does not exceed 200 bytes, we'll have
59 * better packing in the slab and higher chance to satisfy
60 * a allocation later during send.
65 #define FS_PATH_INLINE_SIZE \
66 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
69 /* reused for each extent */
71 struct btrfs_root
*root
;
78 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
79 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
82 struct file
*send_filp
;
88 u64 cmd_send_size
[BTRFS_SEND_C_MAX
+ 1];
89 u64 flags
; /* 'flags' member of btrfs_ioctl_send_args is u64 */
91 struct btrfs_root
*send_root
;
92 struct btrfs_root
*parent_root
;
93 struct clone_root
*clone_roots
;
96 /* current state of the compare_tree call */
97 struct btrfs_path
*left_path
;
98 struct btrfs_path
*right_path
;
99 struct btrfs_key
*cmp_key
;
102 * infos of the currently processed inode. In case of deleted inodes,
103 * these are the values from the deleted inode.
108 int cur_inode_new_gen
;
109 int cur_inode_deleted
;
113 u64 cur_inode_last_extent
;
117 struct list_head new_refs
;
118 struct list_head deleted_refs
;
120 struct radix_tree_root name_cache
;
121 struct list_head name_cache_list
;
124 struct file_ra_state ra
;
129 * We process inodes by their increasing order, so if before an
130 * incremental send we reverse the parent/child relationship of
131 * directories such that a directory with a lower inode number was
132 * the parent of a directory with a higher inode number, and the one
133 * becoming the new parent got renamed too, we can't rename/move the
134 * directory with lower inode number when we finish processing it - we
135 * must process the directory with higher inode number first, then
136 * rename/move it and then rename/move the directory with lower inode
137 * number. Example follows.
139 * Tree state when the first send was performed:
151 * Tree state when the second (incremental) send is performed:
160 * The sequence of steps that lead to the second state was:
162 * mv /a/b/c/d /a/b/c2/d2
163 * mv /a/b/c /a/b/c2/d2/cc
165 * "c" has lower inode number, but we can't move it (2nd mv operation)
166 * before we move "d", which has higher inode number.
168 * So we just memorize which move/rename operations must be performed
169 * later when their respective parent is processed and moved/renamed.
172 /* Indexed by parent directory inode number. */
173 struct rb_root pending_dir_moves
;
176 * Reverse index, indexed by the inode number of a directory that
177 * is waiting for the move/rename of its immediate parent before its
178 * own move/rename can be performed.
180 struct rb_root waiting_dir_moves
;
183 * A directory that is going to be rm'ed might have a child directory
184 * which is in the pending directory moves index above. In this case,
185 * the directory can only be removed after the move/rename of its child
186 * is performed. Example:
206 * Sequence of steps that lead to the send snapshot:
207 * rm -f /a/b/c/foo.txt
209 * mv /a/b/c/x /a/b/YY
212 * When the child is processed, its move/rename is delayed until its
213 * parent is processed (as explained above), but all other operations
214 * like update utimes, chown, chgrp, etc, are performed and the paths
215 * that it uses for those operations must use the orphanized name of
216 * its parent (the directory we're going to rm later), so we need to
217 * memorize that name.
219 * Indexed by the inode number of the directory to be deleted.
221 struct rb_root orphan_dirs
;
224 struct pending_dir_move
{
226 struct list_head list
;
230 struct list_head update_refs
;
233 struct waiting_dir_move
{
237 * There might be some directory that could not be removed because it
238 * was waiting for this directory inode to be moved first. Therefore
239 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
245 struct orphan_dir_info
{
251 struct name_cache_entry
{
252 struct list_head list
;
254 * radix_tree has only 32bit entries but we need to handle 64bit inums.
255 * We use the lower 32bit of the 64bit inum to store it in the tree. If
256 * more then one inum would fall into the same entry, we use radix_list
257 * to store the additional entries. radix_list is also used to store
258 * entries where two entries have the same inum but different
261 struct list_head radix_list
;
267 int need_later_update
;
272 static void inconsistent_snapshot_error(struct send_ctx
*sctx
,
273 enum btrfs_compare_tree_result result
,
276 const char *result_string
;
279 case BTRFS_COMPARE_TREE_NEW
:
280 result_string
= "new";
282 case BTRFS_COMPARE_TREE_DELETED
:
283 result_string
= "deleted";
285 case BTRFS_COMPARE_TREE_CHANGED
:
286 result_string
= "updated";
288 case BTRFS_COMPARE_TREE_SAME
:
290 result_string
= "unchanged";
294 result_string
= "unexpected";
297 btrfs_err(sctx
->send_root
->fs_info
,
298 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
299 result_string
, what
, sctx
->cmp_key
->objectid
,
300 sctx
->send_root
->root_key
.objectid
,
302 sctx
->parent_root
->root_key
.objectid
: 0));
305 static int is_waiting_for_move(struct send_ctx
*sctx
, u64 ino
);
307 static struct waiting_dir_move
*
308 get_waiting_dir_move(struct send_ctx
*sctx
, u64 ino
);
310 static int is_waiting_for_rm(struct send_ctx
*sctx
, u64 dir_ino
);
312 static int need_send_hole(struct send_ctx
*sctx
)
314 return (sctx
->parent_root
&& !sctx
->cur_inode_new
&&
315 !sctx
->cur_inode_new_gen
&& !sctx
->cur_inode_deleted
&&
316 S_ISREG(sctx
->cur_inode_mode
));
319 static void fs_path_reset(struct fs_path
*p
)
322 p
->start
= p
->buf
+ p
->buf_len
- 1;
332 static struct fs_path
*fs_path_alloc(void)
336 p
= kmalloc(sizeof(*p
), GFP_KERNEL
);
340 p
->buf
= p
->inline_buf
;
341 p
->buf_len
= FS_PATH_INLINE_SIZE
;
346 static struct fs_path
*fs_path_alloc_reversed(void)
358 static void fs_path_free(struct fs_path
*p
)
362 if (p
->buf
!= p
->inline_buf
)
367 static int fs_path_len(struct fs_path
*p
)
369 return p
->end
- p
->start
;
372 static int fs_path_ensure_buf(struct fs_path
*p
, int len
)
380 if (p
->buf_len
>= len
)
383 if (len
> PATH_MAX
) {
388 path_len
= p
->end
- p
->start
;
389 old_buf_len
= p
->buf_len
;
392 * First time the inline_buf does not suffice
394 if (p
->buf
== p
->inline_buf
) {
395 tmp_buf
= kmalloc(len
, GFP_KERNEL
);
397 memcpy(tmp_buf
, p
->buf
, old_buf_len
);
399 tmp_buf
= krealloc(p
->buf
, len
, GFP_KERNEL
);
405 * The real size of the buffer is bigger, this will let the fast path
406 * happen most of the time
408 p
->buf_len
= ksize(p
->buf
);
411 tmp_buf
= p
->buf
+ old_buf_len
- path_len
- 1;
412 p
->end
= p
->buf
+ p
->buf_len
- 1;
413 p
->start
= p
->end
- path_len
;
414 memmove(p
->start
, tmp_buf
, path_len
+ 1);
417 p
->end
= p
->start
+ path_len
;
422 static int fs_path_prepare_for_add(struct fs_path
*p
, int name_len
,
428 new_len
= p
->end
- p
->start
+ name_len
;
429 if (p
->start
!= p
->end
)
431 ret
= fs_path_ensure_buf(p
, new_len
);
436 if (p
->start
!= p
->end
)
438 p
->start
-= name_len
;
439 *prepared
= p
->start
;
441 if (p
->start
!= p
->end
)
452 static int fs_path_add(struct fs_path
*p
, const char *name
, int name_len
)
457 ret
= fs_path_prepare_for_add(p
, name_len
, &prepared
);
460 memcpy(prepared
, name
, name_len
);
466 static int fs_path_add_path(struct fs_path
*p
, struct fs_path
*p2
)
471 ret
= fs_path_prepare_for_add(p
, p2
->end
- p2
->start
, &prepared
);
474 memcpy(prepared
, p2
->start
, p2
->end
- p2
->start
);
480 static int fs_path_add_from_extent_buffer(struct fs_path
*p
,
481 struct extent_buffer
*eb
,
482 unsigned long off
, int len
)
487 ret
= fs_path_prepare_for_add(p
, len
, &prepared
);
491 read_extent_buffer(eb
, prepared
, off
, len
);
497 static int fs_path_copy(struct fs_path
*p
, struct fs_path
*from
)
501 p
->reversed
= from
->reversed
;
504 ret
= fs_path_add_path(p
, from
);
510 static void fs_path_unreverse(struct fs_path
*p
)
519 len
= p
->end
- p
->start
;
521 p
->end
= p
->start
+ len
;
522 memmove(p
->start
, tmp
, len
+ 1);
526 static struct btrfs_path
*alloc_path_for_send(void)
528 struct btrfs_path
*path
;
530 path
= btrfs_alloc_path();
533 path
->search_commit_root
= 1;
534 path
->skip_locking
= 1;
535 path
->need_commit_sem
= 1;
539 static int write_buf(struct file
*filp
, const void *buf
, u32 len
, loff_t
*off
)
549 ret
= vfs_write(filp
, (__force
const char __user
*)buf
+ pos
,
551 /* TODO handle that correctly */
552 /*if (ret == -ERESTARTSYS) {
571 static int tlv_put(struct send_ctx
*sctx
, u16 attr
, const void *data
, int len
)
573 struct btrfs_tlv_header
*hdr
;
574 int total_len
= sizeof(*hdr
) + len
;
575 int left
= sctx
->send_max_size
- sctx
->send_size
;
577 if (unlikely(left
< total_len
))
580 hdr
= (struct btrfs_tlv_header
*) (sctx
->send_buf
+ sctx
->send_size
);
581 hdr
->tlv_type
= cpu_to_le16(attr
);
582 hdr
->tlv_len
= cpu_to_le16(len
);
583 memcpy(hdr
+ 1, data
, len
);
584 sctx
->send_size
+= total_len
;
589 #define TLV_PUT_DEFINE_INT(bits) \
590 static int tlv_put_u##bits(struct send_ctx *sctx, \
591 u##bits attr, u##bits value) \
593 __le##bits __tmp = cpu_to_le##bits(value); \
594 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
597 TLV_PUT_DEFINE_INT(64)
599 static int tlv_put_string(struct send_ctx
*sctx
, u16 attr
,
600 const char *str
, int len
)
604 return tlv_put(sctx
, attr
, str
, len
);
607 static int tlv_put_uuid(struct send_ctx
*sctx
, u16 attr
,
610 return tlv_put(sctx
, attr
, uuid
, BTRFS_UUID_SIZE
);
613 static int tlv_put_btrfs_timespec(struct send_ctx
*sctx
, u16 attr
,
614 struct extent_buffer
*eb
,
615 struct btrfs_timespec
*ts
)
617 struct btrfs_timespec bts
;
618 read_extent_buffer(eb
, &bts
, (unsigned long)ts
, sizeof(bts
));
619 return tlv_put(sctx
, attr
, &bts
, sizeof(bts
));
623 #define TLV_PUT(sctx, attrtype, attrlen, data) \
625 ret = tlv_put(sctx, attrtype, attrlen, data); \
627 goto tlv_put_failure; \
630 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
632 ret = tlv_put_u##bits(sctx, attrtype, value); \
634 goto tlv_put_failure; \
637 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
638 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
639 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
640 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
641 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
643 ret = tlv_put_string(sctx, attrtype, str, len); \
645 goto tlv_put_failure; \
647 #define TLV_PUT_PATH(sctx, attrtype, p) \
649 ret = tlv_put_string(sctx, attrtype, p->start, \
650 p->end - p->start); \
652 goto tlv_put_failure; \
654 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
656 ret = tlv_put_uuid(sctx, attrtype, uuid); \
658 goto tlv_put_failure; \
660 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
662 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
664 goto tlv_put_failure; \
667 static int send_header(struct send_ctx
*sctx
)
669 struct btrfs_stream_header hdr
;
671 strcpy(hdr
.magic
, BTRFS_SEND_STREAM_MAGIC
);
672 hdr
.version
= cpu_to_le32(BTRFS_SEND_STREAM_VERSION
);
674 return write_buf(sctx
->send_filp
, &hdr
, sizeof(hdr
),
679 * For each command/item we want to send to userspace, we call this function.
681 static int begin_cmd(struct send_ctx
*sctx
, int cmd
)
683 struct btrfs_cmd_header
*hdr
;
685 if (WARN_ON(!sctx
->send_buf
))
688 BUG_ON(sctx
->send_size
);
690 sctx
->send_size
+= sizeof(*hdr
);
691 hdr
= (struct btrfs_cmd_header
*)sctx
->send_buf
;
692 hdr
->cmd
= cpu_to_le16(cmd
);
697 static int send_cmd(struct send_ctx
*sctx
)
700 struct btrfs_cmd_header
*hdr
;
703 hdr
= (struct btrfs_cmd_header
*)sctx
->send_buf
;
704 hdr
->len
= cpu_to_le32(sctx
->send_size
- sizeof(*hdr
));
707 crc
= btrfs_crc32c(0, (unsigned char *)sctx
->send_buf
, sctx
->send_size
);
708 hdr
->crc
= cpu_to_le32(crc
);
710 ret
= write_buf(sctx
->send_filp
, sctx
->send_buf
, sctx
->send_size
,
713 sctx
->total_send_size
+= sctx
->send_size
;
714 sctx
->cmd_send_size
[le16_to_cpu(hdr
->cmd
)] += sctx
->send_size
;
721 * Sends a move instruction to user space
723 static int send_rename(struct send_ctx
*sctx
,
724 struct fs_path
*from
, struct fs_path
*to
)
726 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
729 btrfs_debug(fs_info
, "send_rename %s -> %s", from
->start
, to
->start
);
731 ret
= begin_cmd(sctx
, BTRFS_SEND_C_RENAME
);
735 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, from
);
736 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH_TO
, to
);
738 ret
= send_cmd(sctx
);
746 * Sends a link instruction to user space
748 static int send_link(struct send_ctx
*sctx
,
749 struct fs_path
*path
, struct fs_path
*lnk
)
751 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
754 btrfs_debug(fs_info
, "send_link %s -> %s", path
->start
, lnk
->start
);
756 ret
= begin_cmd(sctx
, BTRFS_SEND_C_LINK
);
760 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
761 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH_LINK
, lnk
);
763 ret
= send_cmd(sctx
);
771 * Sends an unlink instruction to user space
773 static int send_unlink(struct send_ctx
*sctx
, struct fs_path
*path
)
775 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
778 btrfs_debug(fs_info
, "send_unlink %s", path
->start
);
780 ret
= begin_cmd(sctx
, BTRFS_SEND_C_UNLINK
);
784 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
786 ret
= send_cmd(sctx
);
794 * Sends a rmdir instruction to user space
796 static int send_rmdir(struct send_ctx
*sctx
, struct fs_path
*path
)
798 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
801 btrfs_debug(fs_info
, "send_rmdir %s", path
->start
);
803 ret
= begin_cmd(sctx
, BTRFS_SEND_C_RMDIR
);
807 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
809 ret
= send_cmd(sctx
);
817 * Helper function to retrieve some fields from an inode item.
819 static int __get_inode_info(struct btrfs_root
*root
, struct btrfs_path
*path
,
820 u64 ino
, u64
*size
, u64
*gen
, u64
*mode
, u64
*uid
,
824 struct btrfs_inode_item
*ii
;
825 struct btrfs_key key
;
828 key
.type
= BTRFS_INODE_ITEM_KEY
;
830 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
837 ii
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
838 struct btrfs_inode_item
);
840 *size
= btrfs_inode_size(path
->nodes
[0], ii
);
842 *gen
= btrfs_inode_generation(path
->nodes
[0], ii
);
844 *mode
= btrfs_inode_mode(path
->nodes
[0], ii
);
846 *uid
= btrfs_inode_uid(path
->nodes
[0], ii
);
848 *gid
= btrfs_inode_gid(path
->nodes
[0], ii
);
850 *rdev
= btrfs_inode_rdev(path
->nodes
[0], ii
);
855 static int get_inode_info(struct btrfs_root
*root
,
856 u64 ino
, u64
*size
, u64
*gen
,
857 u64
*mode
, u64
*uid
, u64
*gid
,
860 struct btrfs_path
*path
;
863 path
= alloc_path_for_send();
866 ret
= __get_inode_info(root
, path
, ino
, size
, gen
, mode
, uid
, gid
,
868 btrfs_free_path(path
);
872 typedef int (*iterate_inode_ref_t
)(int num
, u64 dir
, int index
,
877 * Helper function to iterate the entries in ONE btrfs_inode_ref or
878 * btrfs_inode_extref.
879 * The iterate callback may return a non zero value to stop iteration. This can
880 * be a negative value for error codes or 1 to simply stop it.
882 * path must point to the INODE_REF or INODE_EXTREF when called.
884 static int iterate_inode_ref(struct btrfs_root
*root
, struct btrfs_path
*path
,
885 struct btrfs_key
*found_key
, int resolve
,
886 iterate_inode_ref_t iterate
, void *ctx
)
888 struct extent_buffer
*eb
= path
->nodes
[0];
889 struct btrfs_item
*item
;
890 struct btrfs_inode_ref
*iref
;
891 struct btrfs_inode_extref
*extref
;
892 struct btrfs_path
*tmp_path
;
896 int slot
= path
->slots
[0];
903 unsigned long name_off
;
904 unsigned long elem_size
;
907 p
= fs_path_alloc_reversed();
911 tmp_path
= alloc_path_for_send();
918 if (found_key
->type
== BTRFS_INODE_REF_KEY
) {
919 ptr
= (unsigned long)btrfs_item_ptr(eb
, slot
,
920 struct btrfs_inode_ref
);
921 item
= btrfs_item_nr(slot
);
922 total
= btrfs_item_size(eb
, item
);
923 elem_size
= sizeof(*iref
);
925 ptr
= btrfs_item_ptr_offset(eb
, slot
);
926 total
= btrfs_item_size_nr(eb
, slot
);
927 elem_size
= sizeof(*extref
);
930 while (cur
< total
) {
933 if (found_key
->type
== BTRFS_INODE_REF_KEY
) {
934 iref
= (struct btrfs_inode_ref
*)(ptr
+ cur
);
935 name_len
= btrfs_inode_ref_name_len(eb
, iref
);
936 name_off
= (unsigned long)(iref
+ 1);
937 index
= btrfs_inode_ref_index(eb
, iref
);
938 dir
= found_key
->offset
;
940 extref
= (struct btrfs_inode_extref
*)(ptr
+ cur
);
941 name_len
= btrfs_inode_extref_name_len(eb
, extref
);
942 name_off
= (unsigned long)&extref
->name
;
943 index
= btrfs_inode_extref_index(eb
, extref
);
944 dir
= btrfs_inode_extref_parent(eb
, extref
);
948 start
= btrfs_ref_to_path(root
, tmp_path
, name_len
,
952 ret
= PTR_ERR(start
);
955 if (start
< p
->buf
) {
956 /* overflow , try again with larger buffer */
957 ret
= fs_path_ensure_buf(p
,
958 p
->buf_len
+ p
->buf
- start
);
961 start
= btrfs_ref_to_path(root
, tmp_path
,
966 ret
= PTR_ERR(start
);
969 BUG_ON(start
< p
->buf
);
973 ret
= fs_path_add_from_extent_buffer(p
, eb
, name_off
,
979 cur
+= elem_size
+ name_len
;
980 ret
= iterate(num
, dir
, index
, p
, ctx
);
987 btrfs_free_path(tmp_path
);
992 typedef int (*iterate_dir_item_t
)(int num
, struct btrfs_key
*di_key
,
993 const char *name
, int name_len
,
994 const char *data
, int data_len
,
998 * Helper function to iterate the entries in ONE btrfs_dir_item.
999 * The iterate callback may return a non zero value to stop iteration. This can
1000 * be a negative value for error codes or 1 to simply stop it.
1002 * path must point to the dir item when called.
1004 static int iterate_dir_item(struct btrfs_root
*root
, struct btrfs_path
*path
,
1005 struct btrfs_key
*found_key
,
1006 iterate_dir_item_t iterate
, void *ctx
)
1009 struct extent_buffer
*eb
;
1010 struct btrfs_item
*item
;
1011 struct btrfs_dir_item
*di
;
1012 struct btrfs_key di_key
;
1025 * Start with a small buffer (1 page). If later we end up needing more
1026 * space, which can happen for xattrs on a fs with a leaf size greater
1027 * then the page size, attempt to increase the buffer. Typically xattr
1031 buf
= kmalloc(buf_len
, GFP_KERNEL
);
1037 eb
= path
->nodes
[0];
1038 slot
= path
->slots
[0];
1039 item
= btrfs_item_nr(slot
);
1040 di
= btrfs_item_ptr(eb
, slot
, struct btrfs_dir_item
);
1043 total
= btrfs_item_size(eb
, item
);
1046 while (cur
< total
) {
1047 name_len
= btrfs_dir_name_len(eb
, di
);
1048 data_len
= btrfs_dir_data_len(eb
, di
);
1049 type
= btrfs_dir_type(eb
, di
);
1050 btrfs_dir_item_key_to_cpu(eb
, di
, &di_key
);
1052 if (type
== BTRFS_FT_XATTR
) {
1053 if (name_len
> XATTR_NAME_MAX
) {
1054 ret
= -ENAMETOOLONG
;
1057 if (name_len
+ data_len
> BTRFS_MAX_XATTR_SIZE(root
)) {
1065 if (name_len
+ data_len
> PATH_MAX
) {
1066 ret
= -ENAMETOOLONG
;
1071 if (name_len
+ data_len
> buf_len
) {
1072 buf_len
= name_len
+ data_len
;
1073 if (is_vmalloc_addr(buf
)) {
1077 char *tmp
= krealloc(buf
, buf_len
,
1078 GFP_KERNEL
| __GFP_NOWARN
);
1085 buf
= vmalloc(buf_len
);
1093 read_extent_buffer(eb
, buf
, (unsigned long)(di
+ 1),
1094 name_len
+ data_len
);
1096 len
= sizeof(*di
) + name_len
+ data_len
;
1097 di
= (struct btrfs_dir_item
*)((char *)di
+ len
);
1100 ret
= iterate(num
, &di_key
, buf
, name_len
, buf
+ name_len
,
1101 data_len
, type
, ctx
);
1117 static int __copy_first_ref(int num
, u64 dir
, int index
,
1118 struct fs_path
*p
, void *ctx
)
1121 struct fs_path
*pt
= ctx
;
1123 ret
= fs_path_copy(pt
, p
);
1127 /* we want the first only */
1132 * Retrieve the first path of an inode. If an inode has more then one
1133 * ref/hardlink, this is ignored.
1135 static int get_inode_path(struct btrfs_root
*root
,
1136 u64 ino
, struct fs_path
*path
)
1139 struct btrfs_key key
, found_key
;
1140 struct btrfs_path
*p
;
1142 p
= alloc_path_for_send();
1146 fs_path_reset(path
);
1149 key
.type
= BTRFS_INODE_REF_KEY
;
1152 ret
= btrfs_search_slot_for_read(root
, &key
, p
, 1, 0);
1159 btrfs_item_key_to_cpu(p
->nodes
[0], &found_key
, p
->slots
[0]);
1160 if (found_key
.objectid
!= ino
||
1161 (found_key
.type
!= BTRFS_INODE_REF_KEY
&&
1162 found_key
.type
!= BTRFS_INODE_EXTREF_KEY
)) {
1167 ret
= iterate_inode_ref(root
, p
, &found_key
, 1,
1168 __copy_first_ref
, path
);
1178 struct backref_ctx
{
1179 struct send_ctx
*sctx
;
1181 struct btrfs_path
*path
;
1182 /* number of total found references */
1186 * used for clones found in send_root. clones found behind cur_objectid
1187 * and cur_offset are not considered as allowed clones.
1192 /* may be truncated in case it's the last extent in a file */
1195 /* data offset in the file extent item */
1198 /* Just to check for bugs in backref resolving */
1202 static int __clone_root_cmp_bsearch(const void *key
, const void *elt
)
1204 u64 root
= (u64
)(uintptr_t)key
;
1205 struct clone_root
*cr
= (struct clone_root
*)elt
;
1207 if (root
< cr
->root
->objectid
)
1209 if (root
> cr
->root
->objectid
)
1214 static int __clone_root_cmp_sort(const void *e1
, const void *e2
)
1216 struct clone_root
*cr1
= (struct clone_root
*)e1
;
1217 struct clone_root
*cr2
= (struct clone_root
*)e2
;
1219 if (cr1
->root
->objectid
< cr2
->root
->objectid
)
1221 if (cr1
->root
->objectid
> cr2
->root
->objectid
)
1227 * Called for every backref that is found for the current extent.
1228 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1230 static int __iterate_backrefs(u64 ino
, u64 offset
, u64 root
, void *ctx_
)
1232 struct backref_ctx
*bctx
= ctx_
;
1233 struct clone_root
*found
;
1237 /* First check if the root is in the list of accepted clone sources */
1238 found
= bsearch((void *)(uintptr_t)root
, bctx
->sctx
->clone_roots
,
1239 bctx
->sctx
->clone_roots_cnt
,
1240 sizeof(struct clone_root
),
1241 __clone_root_cmp_bsearch
);
1245 if (found
->root
== bctx
->sctx
->send_root
&&
1246 ino
== bctx
->cur_objectid
&&
1247 offset
== bctx
->cur_offset
) {
1248 bctx
->found_itself
= 1;
1252 * There are inodes that have extents that lie behind its i_size. Don't
1253 * accept clones from these extents.
1255 ret
= __get_inode_info(found
->root
, bctx
->path
, ino
, &i_size
, NULL
, NULL
,
1257 btrfs_release_path(bctx
->path
);
1261 if (offset
+ bctx
->data_offset
+ bctx
->extent_len
> i_size
)
1265 * Make sure we don't consider clones from send_root that are
1266 * behind the current inode/offset.
1268 if (found
->root
== bctx
->sctx
->send_root
) {
1270 * TODO for the moment we don't accept clones from the inode
1271 * that is currently send. We may change this when
1272 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1275 if (ino
>= bctx
->cur_objectid
)
1278 if (ino
> bctx
->cur_objectid
)
1280 if (offset
+ bctx
->extent_len
> bctx
->cur_offset
)
1286 found
->found_refs
++;
1287 if (ino
< found
->ino
) {
1289 found
->offset
= offset
;
1290 } else if (found
->ino
== ino
) {
1292 * same extent found more then once in the same file.
1294 if (found
->offset
> offset
+ bctx
->extent_len
)
1295 found
->offset
= offset
;
1302 * Given an inode, offset and extent item, it finds a good clone for a clone
1303 * instruction. Returns -ENOENT when none could be found. The function makes
1304 * sure that the returned clone is usable at the point where sending is at the
1305 * moment. This means, that no clones are accepted which lie behind the current
1308 * path must point to the extent item when called.
1310 static int find_extent_clone(struct send_ctx
*sctx
,
1311 struct btrfs_path
*path
,
1312 u64 ino
, u64 data_offset
,
1314 struct clone_root
**found
)
1316 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
1322 u64 extent_item_pos
;
1324 struct btrfs_file_extent_item
*fi
;
1325 struct extent_buffer
*eb
= path
->nodes
[0];
1326 struct backref_ctx
*backref_ctx
= NULL
;
1327 struct clone_root
*cur_clone_root
;
1328 struct btrfs_key found_key
;
1329 struct btrfs_path
*tmp_path
;
1333 tmp_path
= alloc_path_for_send();
1337 /* We only use this path under the commit sem */
1338 tmp_path
->need_commit_sem
= 0;
1340 backref_ctx
= kmalloc(sizeof(*backref_ctx
), GFP_KERNEL
);
1346 backref_ctx
->path
= tmp_path
;
1348 if (data_offset
>= ino_size
) {
1350 * There may be extents that lie behind the file's size.
1351 * I at least had this in combination with snapshotting while
1352 * writing large files.
1358 fi
= btrfs_item_ptr(eb
, path
->slots
[0],
1359 struct btrfs_file_extent_item
);
1360 extent_type
= btrfs_file_extent_type(eb
, fi
);
1361 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1365 compressed
= btrfs_file_extent_compression(eb
, fi
);
1367 num_bytes
= btrfs_file_extent_num_bytes(eb
, fi
);
1368 disk_byte
= btrfs_file_extent_disk_bytenr(eb
, fi
);
1369 if (disk_byte
== 0) {
1373 logical
= disk_byte
+ btrfs_file_extent_offset(eb
, fi
);
1375 down_read(&fs_info
->commit_root_sem
);
1376 ret
= extent_from_logical(fs_info
, disk_byte
, tmp_path
,
1377 &found_key
, &flags
);
1378 up_read(&fs_info
->commit_root_sem
);
1379 btrfs_release_path(tmp_path
);
1383 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
1389 * Setup the clone roots.
1391 for (i
= 0; i
< sctx
->clone_roots_cnt
; i
++) {
1392 cur_clone_root
= sctx
->clone_roots
+ i
;
1393 cur_clone_root
->ino
= (u64
)-1;
1394 cur_clone_root
->offset
= 0;
1395 cur_clone_root
->found_refs
= 0;
1398 backref_ctx
->sctx
= sctx
;
1399 backref_ctx
->found
= 0;
1400 backref_ctx
->cur_objectid
= ino
;
1401 backref_ctx
->cur_offset
= data_offset
;
1402 backref_ctx
->found_itself
= 0;
1403 backref_ctx
->extent_len
= num_bytes
;
1405 * For non-compressed extents iterate_extent_inodes() gives us extent
1406 * offsets that already take into account the data offset, but not for
1407 * compressed extents, since the offset is logical and not relative to
1408 * the physical extent locations. We must take this into account to
1409 * avoid sending clone offsets that go beyond the source file's size,
1410 * which would result in the clone ioctl failing with -EINVAL on the
1413 if (compressed
== BTRFS_COMPRESS_NONE
)
1414 backref_ctx
->data_offset
= 0;
1416 backref_ctx
->data_offset
= btrfs_file_extent_offset(eb
, fi
);
1419 * The last extent of a file may be too large due to page alignment.
1420 * We need to adjust extent_len in this case so that the checks in
1421 * __iterate_backrefs work.
1423 if (data_offset
+ num_bytes
>= ino_size
)
1424 backref_ctx
->extent_len
= ino_size
- data_offset
;
1427 * Now collect all backrefs.
1429 if (compressed
== BTRFS_COMPRESS_NONE
)
1430 extent_item_pos
= logical
- found_key
.objectid
;
1432 extent_item_pos
= 0;
1433 ret
= iterate_extent_inodes(fs_info
,
1434 found_key
.objectid
, extent_item_pos
, 1,
1435 __iterate_backrefs
, backref_ctx
);
1440 if (!backref_ctx
->found_itself
) {
1441 /* found a bug in backref code? */
1444 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1445 ino
, data_offset
, disk_byte
, found_key
.objectid
);
1449 btrfs_debug(fs_info
,
1450 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1451 data_offset
, ino
, num_bytes
, logical
);
1453 if (!backref_ctx
->found
)
1454 btrfs_debug(fs_info
, "no clones found");
1456 cur_clone_root
= NULL
;
1457 for (i
= 0; i
< sctx
->clone_roots_cnt
; i
++) {
1458 if (sctx
->clone_roots
[i
].found_refs
) {
1459 if (!cur_clone_root
)
1460 cur_clone_root
= sctx
->clone_roots
+ i
;
1461 else if (sctx
->clone_roots
[i
].root
== sctx
->send_root
)
1462 /* prefer clones from send_root over others */
1463 cur_clone_root
= sctx
->clone_roots
+ i
;
1468 if (cur_clone_root
) {
1469 *found
= cur_clone_root
;
1476 btrfs_free_path(tmp_path
);
1481 static int read_symlink(struct btrfs_root
*root
,
1483 struct fs_path
*dest
)
1486 struct btrfs_path
*path
;
1487 struct btrfs_key key
;
1488 struct btrfs_file_extent_item
*ei
;
1494 path
= alloc_path_for_send();
1499 key
.type
= BTRFS_EXTENT_DATA_KEY
;
1501 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1506 * An empty symlink inode. Can happen in rare error paths when
1507 * creating a symlink (transaction committed before the inode
1508 * eviction handler removed the symlink inode items and a crash
1509 * happened in between or the subvol was snapshoted in between).
1510 * Print an informative message to dmesg/syslog so that the user
1511 * can delete the symlink.
1513 btrfs_err(root
->fs_info
,
1514 "Found empty symlink inode %llu at root %llu",
1515 ino
, root
->root_key
.objectid
);
1520 ei
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1521 struct btrfs_file_extent_item
);
1522 type
= btrfs_file_extent_type(path
->nodes
[0], ei
);
1523 compression
= btrfs_file_extent_compression(path
->nodes
[0], ei
);
1524 BUG_ON(type
!= BTRFS_FILE_EXTENT_INLINE
);
1525 BUG_ON(compression
);
1527 off
= btrfs_file_extent_inline_start(ei
);
1528 len
= btrfs_file_extent_inline_len(path
->nodes
[0], path
->slots
[0], ei
);
1530 ret
= fs_path_add_from_extent_buffer(dest
, path
->nodes
[0], off
, len
);
1533 btrfs_free_path(path
);
1538 * Helper function to generate a file name that is unique in the root of
1539 * send_root and parent_root. This is used to generate names for orphan inodes.
1541 static int gen_unique_name(struct send_ctx
*sctx
,
1543 struct fs_path
*dest
)
1546 struct btrfs_path
*path
;
1547 struct btrfs_dir_item
*di
;
1552 path
= alloc_path_for_send();
1557 len
= snprintf(tmp
, sizeof(tmp
), "o%llu-%llu-%llu",
1559 ASSERT(len
< sizeof(tmp
));
1561 di
= btrfs_lookup_dir_item(NULL
, sctx
->send_root
,
1562 path
, BTRFS_FIRST_FREE_OBJECTID
,
1563 tmp
, strlen(tmp
), 0);
1564 btrfs_release_path(path
);
1570 /* not unique, try again */
1575 if (!sctx
->parent_root
) {
1581 di
= btrfs_lookup_dir_item(NULL
, sctx
->parent_root
,
1582 path
, BTRFS_FIRST_FREE_OBJECTID
,
1583 tmp
, strlen(tmp
), 0);
1584 btrfs_release_path(path
);
1590 /* not unique, try again */
1598 ret
= fs_path_add(dest
, tmp
, strlen(tmp
));
1601 btrfs_free_path(path
);
1606 inode_state_no_change
,
1607 inode_state_will_create
,
1608 inode_state_did_create
,
1609 inode_state_will_delete
,
1610 inode_state_did_delete
,
1613 static int get_cur_inode_state(struct send_ctx
*sctx
, u64 ino
, u64 gen
)
1621 ret
= get_inode_info(sctx
->send_root
, ino
, NULL
, &left_gen
, NULL
, NULL
,
1623 if (ret
< 0 && ret
!= -ENOENT
)
1627 if (!sctx
->parent_root
) {
1628 right_ret
= -ENOENT
;
1630 ret
= get_inode_info(sctx
->parent_root
, ino
, NULL
, &right_gen
,
1631 NULL
, NULL
, NULL
, NULL
);
1632 if (ret
< 0 && ret
!= -ENOENT
)
1637 if (!left_ret
&& !right_ret
) {
1638 if (left_gen
== gen
&& right_gen
== gen
) {
1639 ret
= inode_state_no_change
;
1640 } else if (left_gen
== gen
) {
1641 if (ino
< sctx
->send_progress
)
1642 ret
= inode_state_did_create
;
1644 ret
= inode_state_will_create
;
1645 } else if (right_gen
== gen
) {
1646 if (ino
< sctx
->send_progress
)
1647 ret
= inode_state_did_delete
;
1649 ret
= inode_state_will_delete
;
1653 } else if (!left_ret
) {
1654 if (left_gen
== gen
) {
1655 if (ino
< sctx
->send_progress
)
1656 ret
= inode_state_did_create
;
1658 ret
= inode_state_will_create
;
1662 } else if (!right_ret
) {
1663 if (right_gen
== gen
) {
1664 if (ino
< sctx
->send_progress
)
1665 ret
= inode_state_did_delete
;
1667 ret
= inode_state_will_delete
;
1679 static int is_inode_existent(struct send_ctx
*sctx
, u64 ino
, u64 gen
)
1683 ret
= get_cur_inode_state(sctx
, ino
, gen
);
1687 if (ret
== inode_state_no_change
||
1688 ret
== inode_state_did_create
||
1689 ret
== inode_state_will_delete
)
1699 * Helper function to lookup a dir item in a dir.
1701 static int lookup_dir_item_inode(struct btrfs_root
*root
,
1702 u64 dir
, const char *name
, int name_len
,
1707 struct btrfs_dir_item
*di
;
1708 struct btrfs_key key
;
1709 struct btrfs_path
*path
;
1711 path
= alloc_path_for_send();
1715 di
= btrfs_lookup_dir_item(NULL
, root
, path
,
1716 dir
, name
, name_len
, 0);
1725 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &key
);
1726 if (key
.type
== BTRFS_ROOT_ITEM_KEY
) {
1730 *found_inode
= key
.objectid
;
1731 *found_type
= btrfs_dir_type(path
->nodes
[0], di
);
1734 btrfs_free_path(path
);
1739 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1740 * generation of the parent dir and the name of the dir entry.
1742 static int get_first_ref(struct btrfs_root
*root
, u64 ino
,
1743 u64
*dir
, u64
*dir_gen
, struct fs_path
*name
)
1746 struct btrfs_key key
;
1747 struct btrfs_key found_key
;
1748 struct btrfs_path
*path
;
1752 path
= alloc_path_for_send();
1757 key
.type
= BTRFS_INODE_REF_KEY
;
1760 ret
= btrfs_search_slot_for_read(root
, &key
, path
, 1, 0);
1764 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1766 if (ret
|| found_key
.objectid
!= ino
||
1767 (found_key
.type
!= BTRFS_INODE_REF_KEY
&&
1768 found_key
.type
!= BTRFS_INODE_EXTREF_KEY
)) {
1773 if (found_key
.type
== BTRFS_INODE_REF_KEY
) {
1774 struct btrfs_inode_ref
*iref
;
1775 iref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1776 struct btrfs_inode_ref
);
1777 len
= btrfs_inode_ref_name_len(path
->nodes
[0], iref
);
1778 ret
= fs_path_add_from_extent_buffer(name
, path
->nodes
[0],
1779 (unsigned long)(iref
+ 1),
1781 parent_dir
= found_key
.offset
;
1783 struct btrfs_inode_extref
*extref
;
1784 extref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1785 struct btrfs_inode_extref
);
1786 len
= btrfs_inode_extref_name_len(path
->nodes
[0], extref
);
1787 ret
= fs_path_add_from_extent_buffer(name
, path
->nodes
[0],
1788 (unsigned long)&extref
->name
, len
);
1789 parent_dir
= btrfs_inode_extref_parent(path
->nodes
[0], extref
);
1793 btrfs_release_path(path
);
1796 ret
= get_inode_info(root
, parent_dir
, NULL
, dir_gen
, NULL
,
1805 btrfs_free_path(path
);
1809 static int is_first_ref(struct btrfs_root
*root
,
1811 const char *name
, int name_len
)
1814 struct fs_path
*tmp_name
;
1817 tmp_name
= fs_path_alloc();
1821 ret
= get_first_ref(root
, ino
, &tmp_dir
, NULL
, tmp_name
);
1825 if (dir
!= tmp_dir
|| name_len
!= fs_path_len(tmp_name
)) {
1830 ret
= !memcmp(tmp_name
->start
, name
, name_len
);
1833 fs_path_free(tmp_name
);
1838 * Used by process_recorded_refs to determine if a new ref would overwrite an
1839 * already existing ref. In case it detects an overwrite, it returns the
1840 * inode/gen in who_ino/who_gen.
1841 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1842 * to make sure later references to the overwritten inode are possible.
1843 * Orphanizing is however only required for the first ref of an inode.
1844 * process_recorded_refs does an additional is_first_ref check to see if
1845 * orphanizing is really required.
1847 static int will_overwrite_ref(struct send_ctx
*sctx
, u64 dir
, u64 dir_gen
,
1848 const char *name
, int name_len
,
1849 u64
*who_ino
, u64
*who_gen
)
1853 u64 other_inode
= 0;
1856 if (!sctx
->parent_root
)
1859 ret
= is_inode_existent(sctx
, dir
, dir_gen
);
1864 * If we have a parent root we need to verify that the parent dir was
1865 * not deleted and then re-created, if it was then we have no overwrite
1866 * and we can just unlink this entry.
1868 if (sctx
->parent_root
) {
1869 ret
= get_inode_info(sctx
->parent_root
, dir
, NULL
, &gen
, NULL
,
1871 if (ret
< 0 && ret
!= -ENOENT
)
1881 ret
= lookup_dir_item_inode(sctx
->parent_root
, dir
, name
, name_len
,
1882 &other_inode
, &other_type
);
1883 if (ret
< 0 && ret
!= -ENOENT
)
1891 * Check if the overwritten ref was already processed. If yes, the ref
1892 * was already unlinked/moved, so we can safely assume that we will not
1893 * overwrite anything at this point in time.
1895 if (other_inode
> sctx
->send_progress
||
1896 is_waiting_for_move(sctx
, other_inode
)) {
1897 ret
= get_inode_info(sctx
->parent_root
, other_inode
, NULL
,
1898 who_gen
, NULL
, NULL
, NULL
, NULL
);
1903 *who_ino
= other_inode
;
1913 * Checks if the ref was overwritten by an already processed inode. This is
1914 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1915 * thus the orphan name needs be used.
1916 * process_recorded_refs also uses it to avoid unlinking of refs that were
1919 static int did_overwrite_ref(struct send_ctx
*sctx
,
1920 u64 dir
, u64 dir_gen
,
1921 u64 ino
, u64 ino_gen
,
1922 const char *name
, int name_len
)
1929 if (!sctx
->parent_root
)
1932 ret
= is_inode_existent(sctx
, dir
, dir_gen
);
1936 /* check if the ref was overwritten by another ref */
1937 ret
= lookup_dir_item_inode(sctx
->send_root
, dir
, name
, name_len
,
1938 &ow_inode
, &other_type
);
1939 if (ret
< 0 && ret
!= -ENOENT
)
1942 /* was never and will never be overwritten */
1947 ret
= get_inode_info(sctx
->send_root
, ow_inode
, NULL
, &gen
, NULL
, NULL
,
1952 if (ow_inode
== ino
&& gen
== ino_gen
) {
1958 * We know that it is or will be overwritten. Check this now.
1959 * The current inode being processed might have been the one that caused
1960 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1961 * the current inode being processed.
1963 if ((ow_inode
< sctx
->send_progress
) ||
1964 (ino
!= sctx
->cur_ino
&& ow_inode
== sctx
->cur_ino
&&
1965 gen
== sctx
->cur_inode_gen
))
1975 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1976 * that got overwritten. This is used by process_recorded_refs to determine
1977 * if it has to use the path as returned by get_cur_path or the orphan name.
1979 static int did_overwrite_first_ref(struct send_ctx
*sctx
, u64 ino
, u64 gen
)
1982 struct fs_path
*name
= NULL
;
1986 if (!sctx
->parent_root
)
1989 name
= fs_path_alloc();
1993 ret
= get_first_ref(sctx
->parent_root
, ino
, &dir
, &dir_gen
, name
);
1997 ret
= did_overwrite_ref(sctx
, dir
, dir_gen
, ino
, gen
,
1998 name
->start
, fs_path_len(name
));
2006 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2007 * so we need to do some special handling in case we have clashes. This function
2008 * takes care of this with the help of name_cache_entry::radix_list.
2009 * In case of error, nce is kfreed.
2011 static int name_cache_insert(struct send_ctx
*sctx
,
2012 struct name_cache_entry
*nce
)
2015 struct list_head
*nce_head
;
2017 nce_head
= radix_tree_lookup(&sctx
->name_cache
,
2018 (unsigned long)nce
->ino
);
2020 nce_head
= kmalloc(sizeof(*nce_head
), GFP_KERNEL
);
2025 INIT_LIST_HEAD(nce_head
);
2027 ret
= radix_tree_insert(&sctx
->name_cache
, nce
->ino
, nce_head
);
2034 list_add_tail(&nce
->radix_list
, nce_head
);
2035 list_add_tail(&nce
->list
, &sctx
->name_cache_list
);
2036 sctx
->name_cache_size
++;
2041 static void name_cache_delete(struct send_ctx
*sctx
,
2042 struct name_cache_entry
*nce
)
2044 struct list_head
*nce_head
;
2046 nce_head
= radix_tree_lookup(&sctx
->name_cache
,
2047 (unsigned long)nce
->ino
);
2049 btrfs_err(sctx
->send_root
->fs_info
,
2050 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2051 nce
->ino
, sctx
->name_cache_size
);
2054 list_del(&nce
->radix_list
);
2055 list_del(&nce
->list
);
2056 sctx
->name_cache_size
--;
2059 * We may not get to the final release of nce_head if the lookup fails
2061 if (nce_head
&& list_empty(nce_head
)) {
2062 radix_tree_delete(&sctx
->name_cache
, (unsigned long)nce
->ino
);
2067 static struct name_cache_entry
*name_cache_search(struct send_ctx
*sctx
,
2070 struct list_head
*nce_head
;
2071 struct name_cache_entry
*cur
;
2073 nce_head
= radix_tree_lookup(&sctx
->name_cache
, (unsigned long)ino
);
2077 list_for_each_entry(cur
, nce_head
, radix_list
) {
2078 if (cur
->ino
== ino
&& cur
->gen
== gen
)
2085 * Removes the entry from the list and adds it back to the end. This marks the
2086 * entry as recently used so that name_cache_clean_unused does not remove it.
2088 static void name_cache_used(struct send_ctx
*sctx
, struct name_cache_entry
*nce
)
2090 list_del(&nce
->list
);
2091 list_add_tail(&nce
->list
, &sctx
->name_cache_list
);
2095 * Remove some entries from the beginning of name_cache_list.
2097 static void name_cache_clean_unused(struct send_ctx
*sctx
)
2099 struct name_cache_entry
*nce
;
2101 if (sctx
->name_cache_size
< SEND_CTX_NAME_CACHE_CLEAN_SIZE
)
2104 while (sctx
->name_cache_size
> SEND_CTX_MAX_NAME_CACHE_SIZE
) {
2105 nce
= list_entry(sctx
->name_cache_list
.next
,
2106 struct name_cache_entry
, list
);
2107 name_cache_delete(sctx
, nce
);
2112 static void name_cache_free(struct send_ctx
*sctx
)
2114 struct name_cache_entry
*nce
;
2116 while (!list_empty(&sctx
->name_cache_list
)) {
2117 nce
= list_entry(sctx
->name_cache_list
.next
,
2118 struct name_cache_entry
, list
);
2119 name_cache_delete(sctx
, nce
);
2125 * Used by get_cur_path for each ref up to the root.
2126 * Returns 0 if it succeeded.
2127 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2128 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2129 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2130 * Returns <0 in case of error.
2132 static int __get_cur_name_and_parent(struct send_ctx
*sctx
,
2136 struct fs_path
*dest
)
2140 struct name_cache_entry
*nce
= NULL
;
2143 * First check if we already did a call to this function with the same
2144 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2145 * return the cached result.
2147 nce
= name_cache_search(sctx
, ino
, gen
);
2149 if (ino
< sctx
->send_progress
&& nce
->need_later_update
) {
2150 name_cache_delete(sctx
, nce
);
2154 name_cache_used(sctx
, nce
);
2155 *parent_ino
= nce
->parent_ino
;
2156 *parent_gen
= nce
->parent_gen
;
2157 ret
= fs_path_add(dest
, nce
->name
, nce
->name_len
);
2166 * If the inode is not existent yet, add the orphan name and return 1.
2167 * This should only happen for the parent dir that we determine in
2170 ret
= is_inode_existent(sctx
, ino
, gen
);
2175 ret
= gen_unique_name(sctx
, ino
, gen
, dest
);
2183 * Depending on whether the inode was already processed or not, use
2184 * send_root or parent_root for ref lookup.
2186 if (ino
< sctx
->send_progress
)
2187 ret
= get_first_ref(sctx
->send_root
, ino
,
2188 parent_ino
, parent_gen
, dest
);
2190 ret
= get_first_ref(sctx
->parent_root
, ino
,
2191 parent_ino
, parent_gen
, dest
);
2196 * Check if the ref was overwritten by an inode's ref that was processed
2197 * earlier. If yes, treat as orphan and return 1.
2199 ret
= did_overwrite_ref(sctx
, *parent_ino
, *parent_gen
, ino
, gen
,
2200 dest
->start
, dest
->end
- dest
->start
);
2204 fs_path_reset(dest
);
2205 ret
= gen_unique_name(sctx
, ino
, gen
, dest
);
2213 * Store the result of the lookup in the name cache.
2215 nce
= kmalloc(sizeof(*nce
) + fs_path_len(dest
) + 1, GFP_KERNEL
);
2223 nce
->parent_ino
= *parent_ino
;
2224 nce
->parent_gen
= *parent_gen
;
2225 nce
->name_len
= fs_path_len(dest
);
2227 strcpy(nce
->name
, dest
->start
);
2229 if (ino
< sctx
->send_progress
)
2230 nce
->need_later_update
= 0;
2232 nce
->need_later_update
= 1;
2234 nce_ret
= name_cache_insert(sctx
, nce
);
2237 name_cache_clean_unused(sctx
);
2244 * Magic happens here. This function returns the first ref to an inode as it
2245 * would look like while receiving the stream at this point in time.
2246 * We walk the path up to the root. For every inode in between, we check if it
2247 * was already processed/sent. If yes, we continue with the parent as found
2248 * in send_root. If not, we continue with the parent as found in parent_root.
2249 * If we encounter an inode that was deleted at this point in time, we use the
2250 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2251 * that were not created yet and overwritten inodes/refs.
2253 * When do we have have orphan inodes:
2254 * 1. When an inode is freshly created and thus no valid refs are available yet
2255 * 2. When a directory lost all it's refs (deleted) but still has dir items
2256 * inside which were not processed yet (pending for move/delete). If anyone
2257 * tried to get the path to the dir items, it would get a path inside that
2259 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2260 * of an unprocessed inode. If in that case the first ref would be
2261 * overwritten, the overwritten inode gets "orphanized". Later when we
2262 * process this overwritten inode, it is restored at a new place by moving
2265 * sctx->send_progress tells this function at which point in time receiving
2268 static int get_cur_path(struct send_ctx
*sctx
, u64 ino
, u64 gen
,
2269 struct fs_path
*dest
)
2272 struct fs_path
*name
= NULL
;
2273 u64 parent_inode
= 0;
2277 name
= fs_path_alloc();
2284 fs_path_reset(dest
);
2286 while (!stop
&& ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
2287 struct waiting_dir_move
*wdm
;
2289 fs_path_reset(name
);
2291 if (is_waiting_for_rm(sctx
, ino
)) {
2292 ret
= gen_unique_name(sctx
, ino
, gen
, name
);
2295 ret
= fs_path_add_path(dest
, name
);
2299 wdm
= get_waiting_dir_move(sctx
, ino
);
2300 if (wdm
&& wdm
->orphanized
) {
2301 ret
= gen_unique_name(sctx
, ino
, gen
, name
);
2304 ret
= get_first_ref(sctx
->parent_root
, ino
,
2305 &parent_inode
, &parent_gen
, name
);
2307 ret
= __get_cur_name_and_parent(sctx
, ino
, gen
,
2317 ret
= fs_path_add_path(dest
, name
);
2328 fs_path_unreverse(dest
);
2333 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2335 static int send_subvol_begin(struct send_ctx
*sctx
)
2338 struct btrfs_root
*send_root
= sctx
->send_root
;
2339 struct btrfs_root
*parent_root
= sctx
->parent_root
;
2340 struct btrfs_path
*path
;
2341 struct btrfs_key key
;
2342 struct btrfs_root_ref
*ref
;
2343 struct extent_buffer
*leaf
;
2347 path
= btrfs_alloc_path();
2351 name
= kmalloc(BTRFS_PATH_NAME_MAX
, GFP_KERNEL
);
2353 btrfs_free_path(path
);
2357 key
.objectid
= send_root
->objectid
;
2358 key
.type
= BTRFS_ROOT_BACKREF_KEY
;
2361 ret
= btrfs_search_slot_for_read(send_root
->fs_info
->tree_root
,
2370 leaf
= path
->nodes
[0];
2371 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2372 if (key
.type
!= BTRFS_ROOT_BACKREF_KEY
||
2373 key
.objectid
!= send_root
->objectid
) {
2377 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
2378 namelen
= btrfs_root_ref_name_len(leaf
, ref
);
2379 read_extent_buffer(leaf
, name
, (unsigned long)(ref
+ 1), namelen
);
2380 btrfs_release_path(path
);
2383 ret
= begin_cmd(sctx
, BTRFS_SEND_C_SNAPSHOT
);
2387 ret
= begin_cmd(sctx
, BTRFS_SEND_C_SUBVOL
);
2392 TLV_PUT_STRING(sctx
, BTRFS_SEND_A_PATH
, name
, namelen
);
2394 if (!btrfs_is_empty_uuid(sctx
->send_root
->root_item
.received_uuid
))
2395 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_UUID
,
2396 sctx
->send_root
->root_item
.received_uuid
);
2398 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_UUID
,
2399 sctx
->send_root
->root_item
.uuid
);
2401 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CTRANSID
,
2402 le64_to_cpu(sctx
->send_root
->root_item
.ctransid
));
2404 if (!btrfs_is_empty_uuid(parent_root
->root_item
.received_uuid
))
2405 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_CLONE_UUID
,
2406 parent_root
->root_item
.received_uuid
);
2408 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_CLONE_UUID
,
2409 parent_root
->root_item
.uuid
);
2410 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CLONE_CTRANSID
,
2411 le64_to_cpu(sctx
->parent_root
->root_item
.ctransid
));
2414 ret
= send_cmd(sctx
);
2418 btrfs_free_path(path
);
2423 static int send_truncate(struct send_ctx
*sctx
, u64 ino
, u64 gen
, u64 size
)
2425 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
2429 btrfs_debug(fs_info
, "send_truncate %llu size=%llu", ino
, size
);
2431 p
= fs_path_alloc();
2435 ret
= begin_cmd(sctx
, BTRFS_SEND_C_TRUNCATE
);
2439 ret
= get_cur_path(sctx
, ino
, gen
, p
);
2442 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2443 TLV_PUT_U64(sctx
, BTRFS_SEND_A_SIZE
, size
);
2445 ret
= send_cmd(sctx
);
2453 static int send_chmod(struct send_ctx
*sctx
, u64 ino
, u64 gen
, u64 mode
)
2455 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
2459 btrfs_debug(fs_info
, "send_chmod %llu mode=%llu", ino
, mode
);
2461 p
= fs_path_alloc();
2465 ret
= begin_cmd(sctx
, BTRFS_SEND_C_CHMOD
);
2469 ret
= get_cur_path(sctx
, ino
, gen
, p
);
2472 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2473 TLV_PUT_U64(sctx
, BTRFS_SEND_A_MODE
, mode
& 07777);
2475 ret
= send_cmd(sctx
);
2483 static int send_chown(struct send_ctx
*sctx
, u64 ino
, u64 gen
, u64 uid
, u64 gid
)
2485 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
2489 btrfs_debug(fs_info
, "send_chown %llu uid=%llu, gid=%llu",
2492 p
= fs_path_alloc();
2496 ret
= begin_cmd(sctx
, BTRFS_SEND_C_CHOWN
);
2500 ret
= get_cur_path(sctx
, ino
, gen
, p
);
2503 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2504 TLV_PUT_U64(sctx
, BTRFS_SEND_A_UID
, uid
);
2505 TLV_PUT_U64(sctx
, BTRFS_SEND_A_GID
, gid
);
2507 ret
= send_cmd(sctx
);
2515 static int send_utimes(struct send_ctx
*sctx
, u64 ino
, u64 gen
)
2517 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
2519 struct fs_path
*p
= NULL
;
2520 struct btrfs_inode_item
*ii
;
2521 struct btrfs_path
*path
= NULL
;
2522 struct extent_buffer
*eb
;
2523 struct btrfs_key key
;
2526 btrfs_debug(fs_info
, "send_utimes %llu", ino
);
2528 p
= fs_path_alloc();
2532 path
= alloc_path_for_send();
2539 key
.type
= BTRFS_INODE_ITEM_KEY
;
2541 ret
= btrfs_search_slot(NULL
, sctx
->send_root
, &key
, path
, 0, 0);
2547 eb
= path
->nodes
[0];
2548 slot
= path
->slots
[0];
2549 ii
= btrfs_item_ptr(eb
, slot
, struct btrfs_inode_item
);
2551 ret
= begin_cmd(sctx
, BTRFS_SEND_C_UTIMES
);
2555 ret
= get_cur_path(sctx
, ino
, gen
, p
);
2558 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2559 TLV_PUT_BTRFS_TIMESPEC(sctx
, BTRFS_SEND_A_ATIME
, eb
, &ii
->atime
);
2560 TLV_PUT_BTRFS_TIMESPEC(sctx
, BTRFS_SEND_A_MTIME
, eb
, &ii
->mtime
);
2561 TLV_PUT_BTRFS_TIMESPEC(sctx
, BTRFS_SEND_A_CTIME
, eb
, &ii
->ctime
);
2562 /* TODO Add otime support when the otime patches get into upstream */
2564 ret
= send_cmd(sctx
);
2569 btrfs_free_path(path
);
2574 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2575 * a valid path yet because we did not process the refs yet. So, the inode
2576 * is created as orphan.
2578 static int send_create_inode(struct send_ctx
*sctx
, u64 ino
)
2580 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
2588 btrfs_debug(fs_info
, "send_create_inode %llu", ino
);
2590 p
= fs_path_alloc();
2594 if (ino
!= sctx
->cur_ino
) {
2595 ret
= get_inode_info(sctx
->send_root
, ino
, NULL
, &gen
, &mode
,
2600 gen
= sctx
->cur_inode_gen
;
2601 mode
= sctx
->cur_inode_mode
;
2602 rdev
= sctx
->cur_inode_rdev
;
2605 if (S_ISREG(mode
)) {
2606 cmd
= BTRFS_SEND_C_MKFILE
;
2607 } else if (S_ISDIR(mode
)) {
2608 cmd
= BTRFS_SEND_C_MKDIR
;
2609 } else if (S_ISLNK(mode
)) {
2610 cmd
= BTRFS_SEND_C_SYMLINK
;
2611 } else if (S_ISCHR(mode
) || S_ISBLK(mode
)) {
2612 cmd
= BTRFS_SEND_C_MKNOD
;
2613 } else if (S_ISFIFO(mode
)) {
2614 cmd
= BTRFS_SEND_C_MKFIFO
;
2615 } else if (S_ISSOCK(mode
)) {
2616 cmd
= BTRFS_SEND_C_MKSOCK
;
2618 btrfs_warn(sctx
->send_root
->fs_info
, "unexpected inode type %o",
2619 (int)(mode
& S_IFMT
));
2624 ret
= begin_cmd(sctx
, cmd
);
2628 ret
= gen_unique_name(sctx
, ino
, gen
, p
);
2632 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2633 TLV_PUT_U64(sctx
, BTRFS_SEND_A_INO
, ino
);
2635 if (S_ISLNK(mode
)) {
2637 ret
= read_symlink(sctx
->send_root
, ino
, p
);
2640 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH_LINK
, p
);
2641 } else if (S_ISCHR(mode
) || S_ISBLK(mode
) ||
2642 S_ISFIFO(mode
) || S_ISSOCK(mode
)) {
2643 TLV_PUT_U64(sctx
, BTRFS_SEND_A_RDEV
, new_encode_dev(rdev
));
2644 TLV_PUT_U64(sctx
, BTRFS_SEND_A_MODE
, mode
);
2647 ret
= send_cmd(sctx
);
2659 * We need some special handling for inodes that get processed before the parent
2660 * directory got created. See process_recorded_refs for details.
2661 * This function does the check if we already created the dir out of order.
2663 static int did_create_dir(struct send_ctx
*sctx
, u64 dir
)
2666 struct btrfs_path
*path
= NULL
;
2667 struct btrfs_key key
;
2668 struct btrfs_key found_key
;
2669 struct btrfs_key di_key
;
2670 struct extent_buffer
*eb
;
2671 struct btrfs_dir_item
*di
;
2674 path
= alloc_path_for_send();
2681 key
.type
= BTRFS_DIR_INDEX_KEY
;
2683 ret
= btrfs_search_slot(NULL
, sctx
->send_root
, &key
, path
, 0, 0);
2688 eb
= path
->nodes
[0];
2689 slot
= path
->slots
[0];
2690 if (slot
>= btrfs_header_nritems(eb
)) {
2691 ret
= btrfs_next_leaf(sctx
->send_root
, path
);
2694 } else if (ret
> 0) {
2701 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
2702 if (found_key
.objectid
!= key
.objectid
||
2703 found_key
.type
!= key
.type
) {
2708 di
= btrfs_item_ptr(eb
, slot
, struct btrfs_dir_item
);
2709 btrfs_dir_item_key_to_cpu(eb
, di
, &di_key
);
2711 if (di_key
.type
!= BTRFS_ROOT_ITEM_KEY
&&
2712 di_key
.objectid
< sctx
->send_progress
) {
2721 btrfs_free_path(path
);
2726 * Only creates the inode if it is:
2727 * 1. Not a directory
2728 * 2. Or a directory which was not created already due to out of order
2729 * directories. See did_create_dir and process_recorded_refs for details.
2731 static int send_create_inode_if_needed(struct send_ctx
*sctx
)
2735 if (S_ISDIR(sctx
->cur_inode_mode
)) {
2736 ret
= did_create_dir(sctx
, sctx
->cur_ino
);
2745 ret
= send_create_inode(sctx
, sctx
->cur_ino
);
2753 struct recorded_ref
{
2754 struct list_head list
;
2757 struct fs_path
*full_path
;
2765 * We need to process new refs before deleted refs, but compare_tree gives us
2766 * everything mixed. So we first record all refs and later process them.
2767 * This function is a helper to record one ref.
2769 static int __record_ref(struct list_head
*head
, u64 dir
,
2770 u64 dir_gen
, struct fs_path
*path
)
2772 struct recorded_ref
*ref
;
2774 ref
= kmalloc(sizeof(*ref
), GFP_KERNEL
);
2779 ref
->dir_gen
= dir_gen
;
2780 ref
->full_path
= path
;
2782 ref
->name
= (char *)kbasename(ref
->full_path
->start
);
2783 ref
->name_len
= ref
->full_path
->end
- ref
->name
;
2784 ref
->dir_path
= ref
->full_path
->start
;
2785 if (ref
->name
== ref
->full_path
->start
)
2786 ref
->dir_path_len
= 0;
2788 ref
->dir_path_len
= ref
->full_path
->end
-
2789 ref
->full_path
->start
- 1 - ref
->name_len
;
2791 list_add_tail(&ref
->list
, head
);
2795 static int dup_ref(struct recorded_ref
*ref
, struct list_head
*list
)
2797 struct recorded_ref
*new;
2799 new = kmalloc(sizeof(*ref
), GFP_KERNEL
);
2803 new->dir
= ref
->dir
;
2804 new->dir_gen
= ref
->dir_gen
;
2805 new->full_path
= NULL
;
2806 INIT_LIST_HEAD(&new->list
);
2807 list_add_tail(&new->list
, list
);
2811 static void __free_recorded_refs(struct list_head
*head
)
2813 struct recorded_ref
*cur
;
2815 while (!list_empty(head
)) {
2816 cur
= list_entry(head
->next
, struct recorded_ref
, list
);
2817 fs_path_free(cur
->full_path
);
2818 list_del(&cur
->list
);
2823 static void free_recorded_refs(struct send_ctx
*sctx
)
2825 __free_recorded_refs(&sctx
->new_refs
);
2826 __free_recorded_refs(&sctx
->deleted_refs
);
2830 * Renames/moves a file/dir to its orphan name. Used when the first
2831 * ref of an unprocessed inode gets overwritten and for all non empty
2834 static int orphanize_inode(struct send_ctx
*sctx
, u64 ino
, u64 gen
,
2835 struct fs_path
*path
)
2838 struct fs_path
*orphan
;
2840 orphan
= fs_path_alloc();
2844 ret
= gen_unique_name(sctx
, ino
, gen
, orphan
);
2848 ret
= send_rename(sctx
, path
, orphan
);
2851 fs_path_free(orphan
);
2855 static struct orphan_dir_info
*
2856 add_orphan_dir_info(struct send_ctx
*sctx
, u64 dir_ino
)
2858 struct rb_node
**p
= &sctx
->orphan_dirs
.rb_node
;
2859 struct rb_node
*parent
= NULL
;
2860 struct orphan_dir_info
*entry
, *odi
;
2862 odi
= kmalloc(sizeof(*odi
), GFP_KERNEL
);
2864 return ERR_PTR(-ENOMEM
);
2870 entry
= rb_entry(parent
, struct orphan_dir_info
, node
);
2871 if (dir_ino
< entry
->ino
) {
2873 } else if (dir_ino
> entry
->ino
) {
2874 p
= &(*p
)->rb_right
;
2881 rb_link_node(&odi
->node
, parent
, p
);
2882 rb_insert_color(&odi
->node
, &sctx
->orphan_dirs
);
2886 static struct orphan_dir_info
*
2887 get_orphan_dir_info(struct send_ctx
*sctx
, u64 dir_ino
)
2889 struct rb_node
*n
= sctx
->orphan_dirs
.rb_node
;
2890 struct orphan_dir_info
*entry
;
2893 entry
= rb_entry(n
, struct orphan_dir_info
, node
);
2894 if (dir_ino
< entry
->ino
)
2896 else if (dir_ino
> entry
->ino
)
2904 static int is_waiting_for_rm(struct send_ctx
*sctx
, u64 dir_ino
)
2906 struct orphan_dir_info
*odi
= get_orphan_dir_info(sctx
, dir_ino
);
2911 static void free_orphan_dir_info(struct send_ctx
*sctx
,
2912 struct orphan_dir_info
*odi
)
2916 rb_erase(&odi
->node
, &sctx
->orphan_dirs
);
2921 * Returns 1 if a directory can be removed at this point in time.
2922 * We check this by iterating all dir items and checking if the inode behind
2923 * the dir item was already processed.
2925 static int can_rmdir(struct send_ctx
*sctx
, u64 dir
, u64 dir_gen
,
2929 struct btrfs_root
*root
= sctx
->parent_root
;
2930 struct btrfs_path
*path
;
2931 struct btrfs_key key
;
2932 struct btrfs_key found_key
;
2933 struct btrfs_key loc
;
2934 struct btrfs_dir_item
*di
;
2937 * Don't try to rmdir the top/root subvolume dir.
2939 if (dir
== BTRFS_FIRST_FREE_OBJECTID
)
2942 path
= alloc_path_for_send();
2947 key
.type
= BTRFS_DIR_INDEX_KEY
;
2949 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2954 struct waiting_dir_move
*dm
;
2956 if (path
->slots
[0] >= btrfs_header_nritems(path
->nodes
[0])) {
2957 ret
= btrfs_next_leaf(root
, path
);
2964 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
2966 if (found_key
.objectid
!= key
.objectid
||
2967 found_key
.type
!= key
.type
)
2970 di
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2971 struct btrfs_dir_item
);
2972 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &loc
);
2974 dm
= get_waiting_dir_move(sctx
, loc
.objectid
);
2976 struct orphan_dir_info
*odi
;
2978 odi
= add_orphan_dir_info(sctx
, dir
);
2984 dm
->rmdir_ino
= dir
;
2989 if (loc
.objectid
> send_progress
) {
2990 struct orphan_dir_info
*odi
;
2992 odi
= get_orphan_dir_info(sctx
, dir
);
2993 free_orphan_dir_info(sctx
, odi
);
3004 btrfs_free_path(path
);
3008 static int is_waiting_for_move(struct send_ctx
*sctx
, u64 ino
)
3010 struct waiting_dir_move
*entry
= get_waiting_dir_move(sctx
, ino
);
3012 return entry
!= NULL
;
3015 static int add_waiting_dir_move(struct send_ctx
*sctx
, u64 ino
, bool orphanized
)
3017 struct rb_node
**p
= &sctx
->waiting_dir_moves
.rb_node
;
3018 struct rb_node
*parent
= NULL
;
3019 struct waiting_dir_move
*entry
, *dm
;
3021 dm
= kmalloc(sizeof(*dm
), GFP_KERNEL
);
3026 dm
->orphanized
= orphanized
;
3030 entry
= rb_entry(parent
, struct waiting_dir_move
, node
);
3031 if (ino
< entry
->ino
) {
3033 } else if (ino
> entry
->ino
) {
3034 p
= &(*p
)->rb_right
;
3041 rb_link_node(&dm
->node
, parent
, p
);
3042 rb_insert_color(&dm
->node
, &sctx
->waiting_dir_moves
);
3046 static struct waiting_dir_move
*
3047 get_waiting_dir_move(struct send_ctx
*sctx
, u64 ino
)
3049 struct rb_node
*n
= sctx
->waiting_dir_moves
.rb_node
;
3050 struct waiting_dir_move
*entry
;
3053 entry
= rb_entry(n
, struct waiting_dir_move
, node
);
3054 if (ino
< entry
->ino
)
3056 else if (ino
> entry
->ino
)
3064 static void free_waiting_dir_move(struct send_ctx
*sctx
,
3065 struct waiting_dir_move
*dm
)
3069 rb_erase(&dm
->node
, &sctx
->waiting_dir_moves
);
3073 static int add_pending_dir_move(struct send_ctx
*sctx
,
3077 struct list_head
*new_refs
,
3078 struct list_head
*deleted_refs
,
3079 const bool is_orphan
)
3081 struct rb_node
**p
= &sctx
->pending_dir_moves
.rb_node
;
3082 struct rb_node
*parent
= NULL
;
3083 struct pending_dir_move
*entry
= NULL
, *pm
;
3084 struct recorded_ref
*cur
;
3088 pm
= kmalloc(sizeof(*pm
), GFP_KERNEL
);
3091 pm
->parent_ino
= parent_ino
;
3094 INIT_LIST_HEAD(&pm
->list
);
3095 INIT_LIST_HEAD(&pm
->update_refs
);
3096 RB_CLEAR_NODE(&pm
->node
);
3100 entry
= rb_entry(parent
, struct pending_dir_move
, node
);
3101 if (parent_ino
< entry
->parent_ino
) {
3103 } else if (parent_ino
> entry
->parent_ino
) {
3104 p
= &(*p
)->rb_right
;
3111 list_for_each_entry(cur
, deleted_refs
, list
) {
3112 ret
= dup_ref(cur
, &pm
->update_refs
);
3116 list_for_each_entry(cur
, new_refs
, list
) {
3117 ret
= dup_ref(cur
, &pm
->update_refs
);
3122 ret
= add_waiting_dir_move(sctx
, pm
->ino
, is_orphan
);
3127 list_add_tail(&pm
->list
, &entry
->list
);
3129 rb_link_node(&pm
->node
, parent
, p
);
3130 rb_insert_color(&pm
->node
, &sctx
->pending_dir_moves
);
3135 __free_recorded_refs(&pm
->update_refs
);
3141 static struct pending_dir_move
*get_pending_dir_moves(struct send_ctx
*sctx
,
3144 struct rb_node
*n
= sctx
->pending_dir_moves
.rb_node
;
3145 struct pending_dir_move
*entry
;
3148 entry
= rb_entry(n
, struct pending_dir_move
, node
);
3149 if (parent_ino
< entry
->parent_ino
)
3151 else if (parent_ino
> entry
->parent_ino
)
3159 static int path_loop(struct send_ctx
*sctx
, struct fs_path
*name
,
3160 u64 ino
, u64 gen
, u64
*ancestor_ino
)
3163 u64 parent_inode
= 0;
3165 u64 start_ino
= ino
;
3168 while (ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
3169 fs_path_reset(name
);
3171 if (is_waiting_for_rm(sctx
, ino
))
3173 if (is_waiting_for_move(sctx
, ino
)) {
3174 if (*ancestor_ino
== 0)
3175 *ancestor_ino
= ino
;
3176 ret
= get_first_ref(sctx
->parent_root
, ino
,
3177 &parent_inode
, &parent_gen
, name
);
3179 ret
= __get_cur_name_and_parent(sctx
, ino
, gen
,
3189 if (parent_inode
== start_ino
) {
3191 if (*ancestor_ino
== 0)
3192 *ancestor_ino
= ino
;
3201 static int apply_dir_move(struct send_ctx
*sctx
, struct pending_dir_move
*pm
)
3203 struct fs_path
*from_path
= NULL
;
3204 struct fs_path
*to_path
= NULL
;
3205 struct fs_path
*name
= NULL
;
3206 u64 orig_progress
= sctx
->send_progress
;
3207 struct recorded_ref
*cur
;
3208 u64 parent_ino
, parent_gen
;
3209 struct waiting_dir_move
*dm
= NULL
;
3215 name
= fs_path_alloc();
3216 from_path
= fs_path_alloc();
3217 if (!name
|| !from_path
) {
3222 dm
= get_waiting_dir_move(sctx
, pm
->ino
);
3224 rmdir_ino
= dm
->rmdir_ino
;
3225 is_orphan
= dm
->orphanized
;
3226 free_waiting_dir_move(sctx
, dm
);
3229 ret
= gen_unique_name(sctx
, pm
->ino
,
3230 pm
->gen
, from_path
);
3232 ret
= get_first_ref(sctx
->parent_root
, pm
->ino
,
3233 &parent_ino
, &parent_gen
, name
);
3236 ret
= get_cur_path(sctx
, parent_ino
, parent_gen
,
3240 ret
= fs_path_add_path(from_path
, name
);
3245 sctx
->send_progress
= sctx
->cur_ino
+ 1;
3246 ret
= path_loop(sctx
, name
, pm
->ino
, pm
->gen
, &ancestor
);
3250 LIST_HEAD(deleted_refs
);
3251 ASSERT(ancestor
> BTRFS_FIRST_FREE_OBJECTID
);
3252 ret
= add_pending_dir_move(sctx
, pm
->ino
, pm
->gen
, ancestor
,
3253 &pm
->update_refs
, &deleted_refs
,
3258 dm
= get_waiting_dir_move(sctx
, pm
->ino
);
3260 dm
->rmdir_ino
= rmdir_ino
;
3264 fs_path_reset(name
);
3267 ret
= get_cur_path(sctx
, pm
->ino
, pm
->gen
, to_path
);
3271 ret
= send_rename(sctx
, from_path
, to_path
);
3276 struct orphan_dir_info
*odi
;
3278 odi
= get_orphan_dir_info(sctx
, rmdir_ino
);
3280 /* already deleted */
3283 ret
= can_rmdir(sctx
, rmdir_ino
, odi
->gen
, sctx
->cur_ino
);
3289 name
= fs_path_alloc();
3294 ret
= get_cur_path(sctx
, rmdir_ino
, odi
->gen
, name
);
3297 ret
= send_rmdir(sctx
, name
);
3300 free_orphan_dir_info(sctx
, odi
);
3304 ret
= send_utimes(sctx
, pm
->ino
, pm
->gen
);
3309 * After rename/move, need to update the utimes of both new parent(s)
3310 * and old parent(s).
3312 list_for_each_entry(cur
, &pm
->update_refs
, list
) {
3314 * The parent inode might have been deleted in the send snapshot
3316 ret
= get_inode_info(sctx
->send_root
, cur
->dir
, NULL
,
3317 NULL
, NULL
, NULL
, NULL
, NULL
);
3318 if (ret
== -ENOENT
) {
3325 ret
= send_utimes(sctx
, cur
->dir
, cur
->dir_gen
);
3332 fs_path_free(from_path
);
3333 fs_path_free(to_path
);
3334 sctx
->send_progress
= orig_progress
;
3339 static void free_pending_move(struct send_ctx
*sctx
, struct pending_dir_move
*m
)
3341 if (!list_empty(&m
->list
))
3343 if (!RB_EMPTY_NODE(&m
->node
))
3344 rb_erase(&m
->node
, &sctx
->pending_dir_moves
);
3345 __free_recorded_refs(&m
->update_refs
);
3349 static void tail_append_pending_moves(struct pending_dir_move
*moves
,
3350 struct list_head
*stack
)
3352 if (list_empty(&moves
->list
)) {
3353 list_add_tail(&moves
->list
, stack
);
3356 list_splice_init(&moves
->list
, &list
);
3357 list_add_tail(&moves
->list
, stack
);
3358 list_splice_tail(&list
, stack
);
3362 static int apply_children_dir_moves(struct send_ctx
*sctx
)
3364 struct pending_dir_move
*pm
;
3365 struct list_head stack
;
3366 u64 parent_ino
= sctx
->cur_ino
;
3369 pm
= get_pending_dir_moves(sctx
, parent_ino
);
3373 INIT_LIST_HEAD(&stack
);
3374 tail_append_pending_moves(pm
, &stack
);
3376 while (!list_empty(&stack
)) {
3377 pm
= list_first_entry(&stack
, struct pending_dir_move
, list
);
3378 parent_ino
= pm
->ino
;
3379 ret
= apply_dir_move(sctx
, pm
);
3380 free_pending_move(sctx
, pm
);
3383 pm
= get_pending_dir_moves(sctx
, parent_ino
);
3385 tail_append_pending_moves(pm
, &stack
);
3390 while (!list_empty(&stack
)) {
3391 pm
= list_first_entry(&stack
, struct pending_dir_move
, list
);
3392 free_pending_move(sctx
, pm
);
3398 * We might need to delay a directory rename even when no ancestor directory
3399 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3400 * renamed. This happens when we rename a directory to the old name (the name
3401 * in the parent root) of some other unrelated directory that got its rename
3402 * delayed due to some ancestor with higher number that got renamed.
3408 * |---- a/ (ino 257)
3409 * | |---- file (ino 260)
3411 * |---- b/ (ino 258)
3412 * |---- c/ (ino 259)
3416 * |---- a/ (ino 258)
3417 * |---- x/ (ino 259)
3418 * |---- y/ (ino 257)
3419 * |----- file (ino 260)
3421 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3422 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3423 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3426 * 1 - rename 259 from 'c' to 'x'
3427 * 2 - rename 257 from 'a' to 'x/y'
3428 * 3 - rename 258 from 'b' to 'a'
3430 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3431 * be done right away and < 0 on error.
3433 static int wait_for_dest_dir_move(struct send_ctx
*sctx
,
3434 struct recorded_ref
*parent_ref
,
3435 const bool is_orphan
)
3437 struct btrfs_path
*path
;
3438 struct btrfs_key key
;
3439 struct btrfs_key di_key
;
3440 struct btrfs_dir_item
*di
;
3444 struct waiting_dir_move
*wdm
;
3446 if (RB_EMPTY_ROOT(&sctx
->waiting_dir_moves
))
3449 path
= alloc_path_for_send();
3453 key
.objectid
= parent_ref
->dir
;
3454 key
.type
= BTRFS_DIR_ITEM_KEY
;
3455 key
.offset
= btrfs_name_hash(parent_ref
->name
, parent_ref
->name_len
);
3457 ret
= btrfs_search_slot(NULL
, sctx
->parent_root
, &key
, path
, 0, 0);
3460 } else if (ret
> 0) {
3465 di
= btrfs_match_dir_item_name(sctx
->parent_root
, path
,
3466 parent_ref
->name
, parent_ref
->name_len
);
3472 * di_key.objectid has the number of the inode that has a dentry in the
3473 * parent directory with the same name that sctx->cur_ino is being
3474 * renamed to. We need to check if that inode is in the send root as
3475 * well and if it is currently marked as an inode with a pending rename,
3476 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3477 * that it happens after that other inode is renamed.
3479 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &di_key
);
3480 if (di_key
.type
!= BTRFS_INODE_ITEM_KEY
) {
3485 ret
= get_inode_info(sctx
->parent_root
, di_key
.objectid
, NULL
,
3486 &left_gen
, NULL
, NULL
, NULL
, NULL
);
3489 ret
= get_inode_info(sctx
->send_root
, di_key
.objectid
, NULL
,
3490 &right_gen
, NULL
, NULL
, NULL
, NULL
);
3497 /* Different inode, no need to delay the rename of sctx->cur_ino */
3498 if (right_gen
!= left_gen
) {
3503 wdm
= get_waiting_dir_move(sctx
, di_key
.objectid
);
3504 if (wdm
&& !wdm
->orphanized
) {
3505 ret
= add_pending_dir_move(sctx
,
3507 sctx
->cur_inode_gen
,
3510 &sctx
->deleted_refs
,
3516 btrfs_free_path(path
);
3521 * Check if ino ino1 is an ancestor of inode ino2 in the given root.
3522 * Return 1 if true, 0 if false and < 0 on error.
3524 static int is_ancestor(struct btrfs_root
*root
,
3528 struct fs_path
*fs_path
)
3532 while (ino
> BTRFS_FIRST_FREE_OBJECTID
) {
3537 fs_path_reset(fs_path
);
3538 ret
= get_first_ref(root
, ino
, &parent
, &parent_gen
, fs_path
);
3540 if (ret
== -ENOENT
&& ino
== ino2
)
3545 return parent_gen
== ino1_gen
? 1 : 0;
3551 static int wait_for_parent_move(struct send_ctx
*sctx
,
3552 struct recorded_ref
*parent_ref
,
3553 const bool is_orphan
)
3556 u64 ino
= parent_ref
->dir
;
3557 u64 parent_ino_before
, parent_ino_after
;
3558 struct fs_path
*path_before
= NULL
;
3559 struct fs_path
*path_after
= NULL
;
3562 path_after
= fs_path_alloc();
3563 path_before
= fs_path_alloc();
3564 if (!path_after
|| !path_before
) {
3570 * Our current directory inode may not yet be renamed/moved because some
3571 * ancestor (immediate or not) has to be renamed/moved first. So find if
3572 * such ancestor exists and make sure our own rename/move happens after
3573 * that ancestor is processed to avoid path build infinite loops (done
3574 * at get_cur_path()).
3576 while (ino
> BTRFS_FIRST_FREE_OBJECTID
) {
3577 if (is_waiting_for_move(sctx
, ino
)) {
3579 * If the current inode is an ancestor of ino in the
3580 * parent root, we need to delay the rename of the
3581 * current inode, otherwise don't delayed the rename
3582 * because we can end up with a circular dependency
3583 * of renames, resulting in some directories never
3584 * getting the respective rename operations issued in
3585 * the send stream or getting into infinite path build
3588 ret
= is_ancestor(sctx
->parent_root
,
3589 sctx
->cur_ino
, sctx
->cur_inode_gen
,
3595 fs_path_reset(path_before
);
3596 fs_path_reset(path_after
);
3598 ret
= get_first_ref(sctx
->send_root
, ino
, &parent_ino_after
,
3602 ret
= get_first_ref(sctx
->parent_root
, ino
, &parent_ino_before
,
3604 if (ret
< 0 && ret
!= -ENOENT
) {
3606 } else if (ret
== -ENOENT
) {
3611 len1
= fs_path_len(path_before
);
3612 len2
= fs_path_len(path_after
);
3613 if (ino
> sctx
->cur_ino
&&
3614 (parent_ino_before
!= parent_ino_after
|| len1
!= len2
||
3615 memcmp(path_before
->start
, path_after
->start
, len1
))) {
3619 ino
= parent_ino_after
;
3623 fs_path_free(path_before
);
3624 fs_path_free(path_after
);
3627 ret
= add_pending_dir_move(sctx
,
3629 sctx
->cur_inode_gen
,
3632 &sctx
->deleted_refs
,
3642 * This does all the move/link/unlink/rmdir magic.
3644 static int process_recorded_refs(struct send_ctx
*sctx
, int *pending_move
)
3646 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
3648 struct recorded_ref
*cur
;
3649 struct recorded_ref
*cur2
;
3650 struct list_head check_dirs
;
3651 struct fs_path
*valid_path
= NULL
;
3654 int did_overwrite
= 0;
3656 u64 last_dir_ino_rm
= 0;
3657 bool can_rename
= true;
3659 btrfs_debug(fs_info
, "process_recorded_refs %llu", sctx
->cur_ino
);
3662 * This should never happen as the root dir always has the same ref
3663 * which is always '..'
3665 BUG_ON(sctx
->cur_ino
<= BTRFS_FIRST_FREE_OBJECTID
);
3666 INIT_LIST_HEAD(&check_dirs
);
3668 valid_path
= fs_path_alloc();
3675 * First, check if the first ref of the current inode was overwritten
3676 * before. If yes, we know that the current inode was already orphanized
3677 * and thus use the orphan name. If not, we can use get_cur_path to
3678 * get the path of the first ref as it would like while receiving at
3679 * this point in time.
3680 * New inodes are always orphan at the beginning, so force to use the
3681 * orphan name in this case.
3682 * The first ref is stored in valid_path and will be updated if it
3683 * gets moved around.
3685 if (!sctx
->cur_inode_new
) {
3686 ret
= did_overwrite_first_ref(sctx
, sctx
->cur_ino
,
3687 sctx
->cur_inode_gen
);
3693 if (sctx
->cur_inode_new
|| did_overwrite
) {
3694 ret
= gen_unique_name(sctx
, sctx
->cur_ino
,
3695 sctx
->cur_inode_gen
, valid_path
);
3700 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
3706 list_for_each_entry(cur
, &sctx
->new_refs
, list
) {
3708 * We may have refs where the parent directory does not exist
3709 * yet. This happens if the parent directories inum is higher
3710 * the the current inum. To handle this case, we create the
3711 * parent directory out of order. But we need to check if this
3712 * did already happen before due to other refs in the same dir.
3714 ret
= get_cur_inode_state(sctx
, cur
->dir
, cur
->dir_gen
);
3717 if (ret
== inode_state_will_create
) {
3720 * First check if any of the current inodes refs did
3721 * already create the dir.
3723 list_for_each_entry(cur2
, &sctx
->new_refs
, list
) {
3726 if (cur2
->dir
== cur
->dir
) {
3733 * If that did not happen, check if a previous inode
3734 * did already create the dir.
3737 ret
= did_create_dir(sctx
, cur
->dir
);
3741 ret
= send_create_inode(sctx
, cur
->dir
);
3748 * Check if this new ref would overwrite the first ref of
3749 * another unprocessed inode. If yes, orphanize the
3750 * overwritten inode. If we find an overwritten ref that is
3751 * not the first ref, simply unlink it.
3753 ret
= will_overwrite_ref(sctx
, cur
->dir
, cur
->dir_gen
,
3754 cur
->name
, cur
->name_len
,
3755 &ow_inode
, &ow_gen
);
3759 ret
= is_first_ref(sctx
->parent_root
,
3760 ow_inode
, cur
->dir
, cur
->name
,
3765 struct name_cache_entry
*nce
;
3766 struct waiting_dir_move
*wdm
;
3768 ret
= orphanize_inode(sctx
, ow_inode
, ow_gen
,
3774 * If ow_inode has its rename operation delayed
3775 * make sure that its orphanized name is used in
3776 * the source path when performing its rename
3779 if (is_waiting_for_move(sctx
, ow_inode
)) {
3780 wdm
= get_waiting_dir_move(sctx
,
3783 wdm
->orphanized
= true;
3787 * Make sure we clear our orphanized inode's
3788 * name from the name cache. This is because the
3789 * inode ow_inode might be an ancestor of some
3790 * other inode that will be orphanized as well
3791 * later and has an inode number greater than
3792 * sctx->send_progress. We need to prevent
3793 * future name lookups from using the old name
3794 * and get instead the orphan name.
3796 nce
= name_cache_search(sctx
, ow_inode
, ow_gen
);
3798 name_cache_delete(sctx
, nce
);
3803 * ow_inode might currently be an ancestor of
3804 * cur_ino, therefore compute valid_path (the
3805 * current path of cur_ino) again because it
3806 * might contain the pre-orphanization name of
3807 * ow_inode, which is no longer valid.
3809 fs_path_reset(valid_path
);
3810 ret
= get_cur_path(sctx
, sctx
->cur_ino
,
3811 sctx
->cur_inode_gen
, valid_path
);
3815 ret
= send_unlink(sctx
, cur
->full_path
);
3821 if (S_ISDIR(sctx
->cur_inode_mode
) && sctx
->parent_root
) {
3822 ret
= wait_for_dest_dir_move(sctx
, cur
, is_orphan
);
3831 if (S_ISDIR(sctx
->cur_inode_mode
) && sctx
->parent_root
&&
3833 ret
= wait_for_parent_move(sctx
, cur
, is_orphan
);
3843 * link/move the ref to the new place. If we have an orphan
3844 * inode, move it and update valid_path. If not, link or move
3845 * it depending on the inode mode.
3847 if (is_orphan
&& can_rename
) {
3848 ret
= send_rename(sctx
, valid_path
, cur
->full_path
);
3852 ret
= fs_path_copy(valid_path
, cur
->full_path
);
3855 } else if (can_rename
) {
3856 if (S_ISDIR(sctx
->cur_inode_mode
)) {
3858 * Dirs can't be linked, so move it. For moved
3859 * dirs, we always have one new and one deleted
3860 * ref. The deleted ref is ignored later.
3862 ret
= send_rename(sctx
, valid_path
,
3865 ret
= fs_path_copy(valid_path
,
3870 ret
= send_link(sctx
, cur
->full_path
,
3876 ret
= dup_ref(cur
, &check_dirs
);
3881 if (S_ISDIR(sctx
->cur_inode_mode
) && sctx
->cur_inode_deleted
) {
3883 * Check if we can already rmdir the directory. If not,
3884 * orphanize it. For every dir item inside that gets deleted
3885 * later, we do this check again and rmdir it then if possible.
3886 * See the use of check_dirs for more details.
3888 ret
= can_rmdir(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
3893 ret
= send_rmdir(sctx
, valid_path
);
3896 } else if (!is_orphan
) {
3897 ret
= orphanize_inode(sctx
, sctx
->cur_ino
,
3898 sctx
->cur_inode_gen
, valid_path
);
3904 list_for_each_entry(cur
, &sctx
->deleted_refs
, list
) {
3905 ret
= dup_ref(cur
, &check_dirs
);
3909 } else if (S_ISDIR(sctx
->cur_inode_mode
) &&
3910 !list_empty(&sctx
->deleted_refs
)) {
3912 * We have a moved dir. Add the old parent to check_dirs
3914 cur
= list_entry(sctx
->deleted_refs
.next
, struct recorded_ref
,
3916 ret
= dup_ref(cur
, &check_dirs
);
3919 } else if (!S_ISDIR(sctx
->cur_inode_mode
)) {
3921 * We have a non dir inode. Go through all deleted refs and
3922 * unlink them if they were not already overwritten by other
3925 list_for_each_entry(cur
, &sctx
->deleted_refs
, list
) {
3926 ret
= did_overwrite_ref(sctx
, cur
->dir
, cur
->dir_gen
,
3927 sctx
->cur_ino
, sctx
->cur_inode_gen
,
3928 cur
->name
, cur
->name_len
);
3932 ret
= send_unlink(sctx
, cur
->full_path
);
3936 ret
= dup_ref(cur
, &check_dirs
);
3941 * If the inode is still orphan, unlink the orphan. This may
3942 * happen when a previous inode did overwrite the first ref
3943 * of this inode and no new refs were added for the current
3944 * inode. Unlinking does not mean that the inode is deleted in
3945 * all cases. There may still be links to this inode in other
3949 ret
= send_unlink(sctx
, valid_path
);
3956 * We did collect all parent dirs where cur_inode was once located. We
3957 * now go through all these dirs and check if they are pending for
3958 * deletion and if it's finally possible to perform the rmdir now.
3959 * We also update the inode stats of the parent dirs here.
3961 list_for_each_entry(cur
, &check_dirs
, list
) {
3963 * In case we had refs into dirs that were not processed yet,
3964 * we don't need to do the utime and rmdir logic for these dirs.
3965 * The dir will be processed later.
3967 if (cur
->dir
> sctx
->cur_ino
)
3970 ret
= get_cur_inode_state(sctx
, cur
->dir
, cur
->dir_gen
);
3974 if (ret
== inode_state_did_create
||
3975 ret
== inode_state_no_change
) {
3976 /* TODO delayed utimes */
3977 ret
= send_utimes(sctx
, cur
->dir
, cur
->dir_gen
);
3980 } else if (ret
== inode_state_did_delete
&&
3981 cur
->dir
!= last_dir_ino_rm
) {
3982 ret
= can_rmdir(sctx
, cur
->dir
, cur
->dir_gen
,
3987 ret
= get_cur_path(sctx
, cur
->dir
,
3988 cur
->dir_gen
, valid_path
);
3991 ret
= send_rmdir(sctx
, valid_path
);
3994 last_dir_ino_rm
= cur
->dir
;
4002 __free_recorded_refs(&check_dirs
);
4003 free_recorded_refs(sctx
);
4004 fs_path_free(valid_path
);
4008 static int record_ref(struct btrfs_root
*root
, int num
, u64 dir
, int index
,
4009 struct fs_path
*name
, void *ctx
, struct list_head
*refs
)
4012 struct send_ctx
*sctx
= ctx
;
4016 p
= fs_path_alloc();
4020 ret
= get_inode_info(root
, dir
, NULL
, &gen
, NULL
, NULL
,
4025 ret
= get_cur_path(sctx
, dir
, gen
, p
);
4028 ret
= fs_path_add_path(p
, name
);
4032 ret
= __record_ref(refs
, dir
, gen
, p
);
4040 static int __record_new_ref(int num
, u64 dir
, int index
,
4041 struct fs_path
*name
,
4044 struct send_ctx
*sctx
= ctx
;
4045 return record_ref(sctx
->send_root
, num
, dir
, index
, name
,
4046 ctx
, &sctx
->new_refs
);
4050 static int __record_deleted_ref(int num
, u64 dir
, int index
,
4051 struct fs_path
*name
,
4054 struct send_ctx
*sctx
= ctx
;
4055 return record_ref(sctx
->parent_root
, num
, dir
, index
, name
,
4056 ctx
, &sctx
->deleted_refs
);
4059 static int record_new_ref(struct send_ctx
*sctx
)
4063 ret
= iterate_inode_ref(sctx
->send_root
, sctx
->left_path
,
4064 sctx
->cmp_key
, 0, __record_new_ref
, sctx
);
4073 static int record_deleted_ref(struct send_ctx
*sctx
)
4077 ret
= iterate_inode_ref(sctx
->parent_root
, sctx
->right_path
,
4078 sctx
->cmp_key
, 0, __record_deleted_ref
, sctx
);
4087 struct find_ref_ctx
{
4090 struct btrfs_root
*root
;
4091 struct fs_path
*name
;
4095 static int __find_iref(int num
, u64 dir
, int index
,
4096 struct fs_path
*name
,
4099 struct find_ref_ctx
*ctx
= ctx_
;
4103 if (dir
== ctx
->dir
&& fs_path_len(name
) == fs_path_len(ctx
->name
) &&
4104 strncmp(name
->start
, ctx
->name
->start
, fs_path_len(name
)) == 0) {
4106 * To avoid doing extra lookups we'll only do this if everything
4109 ret
= get_inode_info(ctx
->root
, dir
, NULL
, &dir_gen
, NULL
,
4113 if (dir_gen
!= ctx
->dir_gen
)
4115 ctx
->found_idx
= num
;
4121 static int find_iref(struct btrfs_root
*root
,
4122 struct btrfs_path
*path
,
4123 struct btrfs_key
*key
,
4124 u64 dir
, u64 dir_gen
, struct fs_path
*name
)
4127 struct find_ref_ctx ctx
;
4131 ctx
.dir_gen
= dir_gen
;
4135 ret
= iterate_inode_ref(root
, path
, key
, 0, __find_iref
, &ctx
);
4139 if (ctx
.found_idx
== -1)
4142 return ctx
.found_idx
;
4145 static int __record_changed_new_ref(int num
, u64 dir
, int index
,
4146 struct fs_path
*name
,
4151 struct send_ctx
*sctx
= ctx
;
4153 ret
= get_inode_info(sctx
->send_root
, dir
, NULL
, &dir_gen
, NULL
,
4158 ret
= find_iref(sctx
->parent_root
, sctx
->right_path
,
4159 sctx
->cmp_key
, dir
, dir_gen
, name
);
4161 ret
= __record_new_ref(num
, dir
, index
, name
, sctx
);
4168 static int __record_changed_deleted_ref(int num
, u64 dir
, int index
,
4169 struct fs_path
*name
,
4174 struct send_ctx
*sctx
= ctx
;
4176 ret
= get_inode_info(sctx
->parent_root
, dir
, NULL
, &dir_gen
, NULL
,
4181 ret
= find_iref(sctx
->send_root
, sctx
->left_path
, sctx
->cmp_key
,
4182 dir
, dir_gen
, name
);
4184 ret
= __record_deleted_ref(num
, dir
, index
, name
, sctx
);
4191 static int record_changed_ref(struct send_ctx
*sctx
)
4195 ret
= iterate_inode_ref(sctx
->send_root
, sctx
->left_path
,
4196 sctx
->cmp_key
, 0, __record_changed_new_ref
, sctx
);
4199 ret
= iterate_inode_ref(sctx
->parent_root
, sctx
->right_path
,
4200 sctx
->cmp_key
, 0, __record_changed_deleted_ref
, sctx
);
4210 * Record and process all refs at once. Needed when an inode changes the
4211 * generation number, which means that it was deleted and recreated.
4213 static int process_all_refs(struct send_ctx
*sctx
,
4214 enum btrfs_compare_tree_result cmd
)
4217 struct btrfs_root
*root
;
4218 struct btrfs_path
*path
;
4219 struct btrfs_key key
;
4220 struct btrfs_key found_key
;
4221 struct extent_buffer
*eb
;
4223 iterate_inode_ref_t cb
;
4224 int pending_move
= 0;
4226 path
= alloc_path_for_send();
4230 if (cmd
== BTRFS_COMPARE_TREE_NEW
) {
4231 root
= sctx
->send_root
;
4232 cb
= __record_new_ref
;
4233 } else if (cmd
== BTRFS_COMPARE_TREE_DELETED
) {
4234 root
= sctx
->parent_root
;
4235 cb
= __record_deleted_ref
;
4237 btrfs_err(sctx
->send_root
->fs_info
,
4238 "Wrong command %d in process_all_refs", cmd
);
4243 key
.objectid
= sctx
->cmp_key
->objectid
;
4244 key
.type
= BTRFS_INODE_REF_KEY
;
4246 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4251 eb
= path
->nodes
[0];
4252 slot
= path
->slots
[0];
4253 if (slot
>= btrfs_header_nritems(eb
)) {
4254 ret
= btrfs_next_leaf(root
, path
);
4262 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
4264 if (found_key
.objectid
!= key
.objectid
||
4265 (found_key
.type
!= BTRFS_INODE_REF_KEY
&&
4266 found_key
.type
!= BTRFS_INODE_EXTREF_KEY
))
4269 ret
= iterate_inode_ref(root
, path
, &found_key
, 0, cb
, sctx
);
4275 btrfs_release_path(path
);
4278 * We don't actually care about pending_move as we are simply
4279 * re-creating this inode and will be rename'ing it into place once we
4280 * rename the parent directory.
4282 ret
= process_recorded_refs(sctx
, &pending_move
);
4284 btrfs_free_path(path
);
4288 static int send_set_xattr(struct send_ctx
*sctx
,
4289 struct fs_path
*path
,
4290 const char *name
, int name_len
,
4291 const char *data
, int data_len
)
4295 ret
= begin_cmd(sctx
, BTRFS_SEND_C_SET_XATTR
);
4299 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
4300 TLV_PUT_STRING(sctx
, BTRFS_SEND_A_XATTR_NAME
, name
, name_len
);
4301 TLV_PUT(sctx
, BTRFS_SEND_A_XATTR_DATA
, data
, data_len
);
4303 ret
= send_cmd(sctx
);
4310 static int send_remove_xattr(struct send_ctx
*sctx
,
4311 struct fs_path
*path
,
4312 const char *name
, int name_len
)
4316 ret
= begin_cmd(sctx
, BTRFS_SEND_C_REMOVE_XATTR
);
4320 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
4321 TLV_PUT_STRING(sctx
, BTRFS_SEND_A_XATTR_NAME
, name
, name_len
);
4323 ret
= send_cmd(sctx
);
4330 static int __process_new_xattr(int num
, struct btrfs_key
*di_key
,
4331 const char *name
, int name_len
,
4332 const char *data
, int data_len
,
4336 struct send_ctx
*sctx
= ctx
;
4338 struct posix_acl_xattr_header dummy_acl
;
4340 p
= fs_path_alloc();
4345 * This hack is needed because empty acls are stored as zero byte
4346 * data in xattrs. Problem with that is, that receiving these zero byte
4347 * acls will fail later. To fix this, we send a dummy acl list that
4348 * only contains the version number and no entries.
4350 if (!strncmp(name
, XATTR_NAME_POSIX_ACL_ACCESS
, name_len
) ||
4351 !strncmp(name
, XATTR_NAME_POSIX_ACL_DEFAULT
, name_len
)) {
4352 if (data_len
== 0) {
4353 dummy_acl
.a_version
=
4354 cpu_to_le32(POSIX_ACL_XATTR_VERSION
);
4355 data
= (char *)&dummy_acl
;
4356 data_len
= sizeof(dummy_acl
);
4360 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
4364 ret
= send_set_xattr(sctx
, p
, name
, name_len
, data
, data_len
);
4371 static int __process_deleted_xattr(int num
, struct btrfs_key
*di_key
,
4372 const char *name
, int name_len
,
4373 const char *data
, int data_len
,
4377 struct send_ctx
*sctx
= ctx
;
4380 p
= fs_path_alloc();
4384 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
4388 ret
= send_remove_xattr(sctx
, p
, name
, name_len
);
4395 static int process_new_xattr(struct send_ctx
*sctx
)
4399 ret
= iterate_dir_item(sctx
->send_root
, sctx
->left_path
,
4400 sctx
->cmp_key
, __process_new_xattr
, sctx
);
4405 static int process_deleted_xattr(struct send_ctx
*sctx
)
4407 return iterate_dir_item(sctx
->parent_root
, sctx
->right_path
,
4408 sctx
->cmp_key
, __process_deleted_xattr
, sctx
);
4411 struct find_xattr_ctx
{
4419 static int __find_xattr(int num
, struct btrfs_key
*di_key
,
4420 const char *name
, int name_len
,
4421 const char *data
, int data_len
,
4422 u8 type
, void *vctx
)
4424 struct find_xattr_ctx
*ctx
= vctx
;
4426 if (name_len
== ctx
->name_len
&&
4427 strncmp(name
, ctx
->name
, name_len
) == 0) {
4428 ctx
->found_idx
= num
;
4429 ctx
->found_data_len
= data_len
;
4430 ctx
->found_data
= kmemdup(data
, data_len
, GFP_KERNEL
);
4431 if (!ctx
->found_data
)
4438 static int find_xattr(struct btrfs_root
*root
,
4439 struct btrfs_path
*path
,
4440 struct btrfs_key
*key
,
4441 const char *name
, int name_len
,
4442 char **data
, int *data_len
)
4445 struct find_xattr_ctx ctx
;
4448 ctx
.name_len
= name_len
;
4450 ctx
.found_data
= NULL
;
4451 ctx
.found_data_len
= 0;
4453 ret
= iterate_dir_item(root
, path
, key
, __find_xattr
, &ctx
);
4457 if (ctx
.found_idx
== -1)
4460 *data
= ctx
.found_data
;
4461 *data_len
= ctx
.found_data_len
;
4463 kfree(ctx
.found_data
);
4465 return ctx
.found_idx
;
4469 static int __process_changed_new_xattr(int num
, struct btrfs_key
*di_key
,
4470 const char *name
, int name_len
,
4471 const char *data
, int data_len
,
4475 struct send_ctx
*sctx
= ctx
;
4476 char *found_data
= NULL
;
4477 int found_data_len
= 0;
4479 ret
= find_xattr(sctx
->parent_root
, sctx
->right_path
,
4480 sctx
->cmp_key
, name
, name_len
, &found_data
,
4482 if (ret
== -ENOENT
) {
4483 ret
= __process_new_xattr(num
, di_key
, name
, name_len
, data
,
4484 data_len
, type
, ctx
);
4485 } else if (ret
>= 0) {
4486 if (data_len
!= found_data_len
||
4487 memcmp(data
, found_data
, data_len
)) {
4488 ret
= __process_new_xattr(num
, di_key
, name
, name_len
,
4489 data
, data_len
, type
, ctx
);
4499 static int __process_changed_deleted_xattr(int num
, struct btrfs_key
*di_key
,
4500 const char *name
, int name_len
,
4501 const char *data
, int data_len
,
4505 struct send_ctx
*sctx
= ctx
;
4507 ret
= find_xattr(sctx
->send_root
, sctx
->left_path
, sctx
->cmp_key
,
4508 name
, name_len
, NULL
, NULL
);
4510 ret
= __process_deleted_xattr(num
, di_key
, name
, name_len
, data
,
4511 data_len
, type
, ctx
);
4518 static int process_changed_xattr(struct send_ctx
*sctx
)
4522 ret
= iterate_dir_item(sctx
->send_root
, sctx
->left_path
,
4523 sctx
->cmp_key
, __process_changed_new_xattr
, sctx
);
4526 ret
= iterate_dir_item(sctx
->parent_root
, sctx
->right_path
,
4527 sctx
->cmp_key
, __process_changed_deleted_xattr
, sctx
);
4533 static int process_all_new_xattrs(struct send_ctx
*sctx
)
4536 struct btrfs_root
*root
;
4537 struct btrfs_path
*path
;
4538 struct btrfs_key key
;
4539 struct btrfs_key found_key
;
4540 struct extent_buffer
*eb
;
4543 path
= alloc_path_for_send();
4547 root
= sctx
->send_root
;
4549 key
.objectid
= sctx
->cmp_key
->objectid
;
4550 key
.type
= BTRFS_XATTR_ITEM_KEY
;
4552 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4557 eb
= path
->nodes
[0];
4558 slot
= path
->slots
[0];
4559 if (slot
>= btrfs_header_nritems(eb
)) {
4560 ret
= btrfs_next_leaf(root
, path
);
4563 } else if (ret
> 0) {
4570 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
4571 if (found_key
.objectid
!= key
.objectid
||
4572 found_key
.type
!= key
.type
) {
4577 ret
= iterate_dir_item(root
, path
, &found_key
,
4578 __process_new_xattr
, sctx
);
4586 btrfs_free_path(path
);
4590 static ssize_t
fill_read_buf(struct send_ctx
*sctx
, u64 offset
, u32 len
)
4592 struct btrfs_root
*root
= sctx
->send_root
;
4593 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4594 struct inode
*inode
;
4597 struct btrfs_key key
;
4598 pgoff_t index
= offset
>> PAGE_SHIFT
;
4600 unsigned pg_offset
= offset
& ~PAGE_MASK
;
4603 key
.objectid
= sctx
->cur_ino
;
4604 key
.type
= BTRFS_INODE_ITEM_KEY
;
4607 inode
= btrfs_iget(fs_info
->sb
, &key
, root
, NULL
);
4609 return PTR_ERR(inode
);
4611 if (offset
+ len
> i_size_read(inode
)) {
4612 if (offset
> i_size_read(inode
))
4615 len
= offset
- i_size_read(inode
);
4620 last_index
= (offset
+ len
- 1) >> PAGE_SHIFT
;
4622 /* initial readahead */
4623 memset(&sctx
->ra
, 0, sizeof(struct file_ra_state
));
4624 file_ra_state_init(&sctx
->ra
, inode
->i_mapping
);
4625 btrfs_force_ra(inode
->i_mapping
, &sctx
->ra
, NULL
, index
,
4626 last_index
- index
+ 1);
4628 while (index
<= last_index
) {
4629 unsigned cur_len
= min_t(unsigned, len
,
4630 PAGE_SIZE
- pg_offset
);
4631 page
= find_or_create_page(inode
->i_mapping
, index
, GFP_KERNEL
);
4637 if (!PageUptodate(page
)) {
4638 btrfs_readpage(NULL
, page
);
4640 if (!PageUptodate(page
)) {
4649 memcpy(sctx
->read_buf
+ ret
, addr
+ pg_offset
, cur_len
);
4664 * Read some bytes from the current inode/file and send a write command to
4667 static int send_write(struct send_ctx
*sctx
, u64 offset
, u32 len
)
4669 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
4672 ssize_t num_read
= 0;
4674 p
= fs_path_alloc();
4678 btrfs_debug(fs_info
, "send_write offset=%llu, len=%d", offset
, len
);
4680 num_read
= fill_read_buf(sctx
, offset
, len
);
4681 if (num_read
<= 0) {
4687 ret
= begin_cmd(sctx
, BTRFS_SEND_C_WRITE
);
4691 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
4695 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
4696 TLV_PUT_U64(sctx
, BTRFS_SEND_A_FILE_OFFSET
, offset
);
4697 TLV_PUT(sctx
, BTRFS_SEND_A_DATA
, sctx
->read_buf
, num_read
);
4699 ret
= send_cmd(sctx
);
4710 * Send a clone command to user space.
4712 static int send_clone(struct send_ctx
*sctx
,
4713 u64 offset
, u32 len
,
4714 struct clone_root
*clone_root
)
4720 btrfs_debug(sctx
->send_root
->fs_info
,
4721 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
4722 offset
, len
, clone_root
->root
->objectid
, clone_root
->ino
,
4723 clone_root
->offset
);
4725 p
= fs_path_alloc();
4729 ret
= begin_cmd(sctx
, BTRFS_SEND_C_CLONE
);
4733 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
4737 TLV_PUT_U64(sctx
, BTRFS_SEND_A_FILE_OFFSET
, offset
);
4738 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CLONE_LEN
, len
);
4739 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
4741 if (clone_root
->root
== sctx
->send_root
) {
4742 ret
= get_inode_info(sctx
->send_root
, clone_root
->ino
, NULL
,
4743 &gen
, NULL
, NULL
, NULL
, NULL
);
4746 ret
= get_cur_path(sctx
, clone_root
->ino
, gen
, p
);
4748 ret
= get_inode_path(clone_root
->root
, clone_root
->ino
, p
);
4754 * If the parent we're using has a received_uuid set then use that as
4755 * our clone source as that is what we will look for when doing a
4758 * This covers the case that we create a snapshot off of a received
4759 * subvolume and then use that as the parent and try to receive on a
4762 if (!btrfs_is_empty_uuid(clone_root
->root
->root_item
.received_uuid
))
4763 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_CLONE_UUID
,
4764 clone_root
->root
->root_item
.received_uuid
);
4766 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_CLONE_UUID
,
4767 clone_root
->root
->root_item
.uuid
);
4768 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CLONE_CTRANSID
,
4769 le64_to_cpu(clone_root
->root
->root_item
.ctransid
));
4770 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_CLONE_PATH
, p
);
4771 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CLONE_OFFSET
,
4772 clone_root
->offset
);
4774 ret
= send_cmd(sctx
);
4783 * Send an update extent command to user space.
4785 static int send_update_extent(struct send_ctx
*sctx
,
4786 u64 offset
, u32 len
)
4791 p
= fs_path_alloc();
4795 ret
= begin_cmd(sctx
, BTRFS_SEND_C_UPDATE_EXTENT
);
4799 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
4803 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
4804 TLV_PUT_U64(sctx
, BTRFS_SEND_A_FILE_OFFSET
, offset
);
4805 TLV_PUT_U64(sctx
, BTRFS_SEND_A_SIZE
, len
);
4807 ret
= send_cmd(sctx
);
4815 static int send_hole(struct send_ctx
*sctx
, u64 end
)
4817 struct fs_path
*p
= NULL
;
4818 u64 offset
= sctx
->cur_inode_last_extent
;
4822 p
= fs_path_alloc();
4825 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
4827 goto tlv_put_failure
;
4828 memset(sctx
->read_buf
, 0, BTRFS_SEND_READ_SIZE
);
4829 while (offset
< end
) {
4830 len
= min_t(u64
, end
- offset
, BTRFS_SEND_READ_SIZE
);
4832 ret
= begin_cmd(sctx
, BTRFS_SEND_C_WRITE
);
4835 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
4836 TLV_PUT_U64(sctx
, BTRFS_SEND_A_FILE_OFFSET
, offset
);
4837 TLV_PUT(sctx
, BTRFS_SEND_A_DATA
, sctx
->read_buf
, len
);
4838 ret
= send_cmd(sctx
);
4848 static int send_extent_data(struct send_ctx
*sctx
,
4854 if (sctx
->flags
& BTRFS_SEND_FLAG_NO_FILE_DATA
)
4855 return send_update_extent(sctx
, offset
, len
);
4857 while (sent
< len
) {
4858 u64 size
= len
- sent
;
4861 if (size
> BTRFS_SEND_READ_SIZE
)
4862 size
= BTRFS_SEND_READ_SIZE
;
4863 ret
= send_write(sctx
, offset
+ sent
, size
);
4873 static int clone_range(struct send_ctx
*sctx
,
4874 struct clone_root
*clone_root
,
4875 const u64 disk_byte
,
4880 struct btrfs_path
*path
;
4881 struct btrfs_key key
;
4884 path
= alloc_path_for_send();
4889 * We can't send a clone operation for the entire range if we find
4890 * extent items in the respective range in the source file that
4891 * refer to different extents or if we find holes.
4892 * So check for that and do a mix of clone and regular write/copy
4893 * operations if needed.
4897 * mkfs.btrfs -f /dev/sda
4898 * mount /dev/sda /mnt
4899 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
4900 * cp --reflink=always /mnt/foo /mnt/bar
4901 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
4902 * btrfs subvolume snapshot -r /mnt /mnt/snap
4904 * If when we send the snapshot and we are processing file bar (which
4905 * has a higher inode number than foo) we blindly send a clone operation
4906 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
4907 * a file bar that matches the content of file foo - iow, doesn't match
4908 * the content from bar in the original filesystem.
4910 key
.objectid
= clone_root
->ino
;
4911 key
.type
= BTRFS_EXTENT_DATA_KEY
;
4912 key
.offset
= clone_root
->offset
;
4913 ret
= btrfs_search_slot(NULL
, clone_root
->root
, &key
, path
, 0, 0);
4916 if (ret
> 0 && path
->slots
[0] > 0) {
4917 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0] - 1);
4918 if (key
.objectid
== clone_root
->ino
&&
4919 key
.type
== BTRFS_EXTENT_DATA_KEY
)
4924 struct extent_buffer
*leaf
= path
->nodes
[0];
4925 int slot
= path
->slots
[0];
4926 struct btrfs_file_extent_item
*ei
;
4931 if (slot
>= btrfs_header_nritems(leaf
)) {
4932 ret
= btrfs_next_leaf(clone_root
->root
, path
);
4940 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
4943 * We might have an implicit trailing hole (NO_HOLES feature
4944 * enabled). We deal with it after leaving this loop.
4946 if (key
.objectid
!= clone_root
->ino
||
4947 key
.type
!= BTRFS_EXTENT_DATA_KEY
)
4950 ei
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
4951 type
= btrfs_file_extent_type(leaf
, ei
);
4952 if (type
== BTRFS_FILE_EXTENT_INLINE
) {
4953 ext_len
= btrfs_file_extent_inline_len(leaf
, slot
, ei
);
4954 ext_len
= PAGE_ALIGN(ext_len
);
4956 ext_len
= btrfs_file_extent_num_bytes(leaf
, ei
);
4959 if (key
.offset
+ ext_len
<= clone_root
->offset
)
4962 if (key
.offset
> clone_root
->offset
) {
4963 /* Implicit hole, NO_HOLES feature enabled. */
4964 u64 hole_len
= key
.offset
- clone_root
->offset
;
4968 ret
= send_extent_data(sctx
, offset
, hole_len
);
4976 clone_root
->offset
+= hole_len
;
4977 data_offset
+= hole_len
;
4980 if (key
.offset
>= clone_root
->offset
+ len
)
4983 clone_len
= min_t(u64
, ext_len
, len
);
4985 if (btrfs_file_extent_disk_bytenr(leaf
, ei
) == disk_byte
&&
4986 btrfs_file_extent_offset(leaf
, ei
) == data_offset
)
4987 ret
= send_clone(sctx
, offset
, clone_len
, clone_root
);
4989 ret
= send_extent_data(sctx
, offset
, clone_len
);
4997 offset
+= clone_len
;
4998 clone_root
->offset
+= clone_len
;
4999 data_offset
+= clone_len
;
5005 ret
= send_extent_data(sctx
, offset
, len
);
5009 btrfs_free_path(path
);
5013 static int send_write_or_clone(struct send_ctx
*sctx
,
5014 struct btrfs_path
*path
,
5015 struct btrfs_key
*key
,
5016 struct clone_root
*clone_root
)
5019 struct btrfs_file_extent_item
*ei
;
5020 u64 offset
= key
->offset
;
5023 u64 bs
= sctx
->send_root
->fs_info
->sb
->s_blocksize
;
5025 ei
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
5026 struct btrfs_file_extent_item
);
5027 type
= btrfs_file_extent_type(path
->nodes
[0], ei
);
5028 if (type
== BTRFS_FILE_EXTENT_INLINE
) {
5029 len
= btrfs_file_extent_inline_len(path
->nodes
[0],
5030 path
->slots
[0], ei
);
5032 * it is possible the inline item won't cover the whole page,
5033 * but there may be items after this page. Make
5034 * sure to send the whole thing
5036 len
= PAGE_ALIGN(len
);
5038 len
= btrfs_file_extent_num_bytes(path
->nodes
[0], ei
);
5041 if (offset
+ len
> sctx
->cur_inode_size
)
5042 len
= sctx
->cur_inode_size
- offset
;
5048 if (clone_root
&& IS_ALIGNED(offset
+ len
, bs
)) {
5052 disk_byte
= btrfs_file_extent_disk_bytenr(path
->nodes
[0], ei
);
5053 data_offset
= btrfs_file_extent_offset(path
->nodes
[0], ei
);
5054 ret
= clone_range(sctx
, clone_root
, disk_byte
, data_offset
,
5057 ret
= send_extent_data(sctx
, offset
, len
);
5063 static int is_extent_unchanged(struct send_ctx
*sctx
,
5064 struct btrfs_path
*left_path
,
5065 struct btrfs_key
*ekey
)
5068 struct btrfs_key key
;
5069 struct btrfs_path
*path
= NULL
;
5070 struct extent_buffer
*eb
;
5072 struct btrfs_key found_key
;
5073 struct btrfs_file_extent_item
*ei
;
5078 u64 left_offset_fixed
;
5086 path
= alloc_path_for_send();
5090 eb
= left_path
->nodes
[0];
5091 slot
= left_path
->slots
[0];
5092 ei
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
5093 left_type
= btrfs_file_extent_type(eb
, ei
);
5095 if (left_type
!= BTRFS_FILE_EXTENT_REG
) {
5099 left_disknr
= btrfs_file_extent_disk_bytenr(eb
, ei
);
5100 left_len
= btrfs_file_extent_num_bytes(eb
, ei
);
5101 left_offset
= btrfs_file_extent_offset(eb
, ei
);
5102 left_gen
= btrfs_file_extent_generation(eb
, ei
);
5105 * Following comments will refer to these graphics. L is the left
5106 * extents which we are checking at the moment. 1-8 are the right
5107 * extents that we iterate.
5110 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5113 * |--1--|-2b-|...(same as above)
5115 * Alternative situation. Happens on files where extents got split.
5117 * |-----------7-----------|-6-|
5119 * Alternative situation. Happens on files which got larger.
5122 * Nothing follows after 8.
5125 key
.objectid
= ekey
->objectid
;
5126 key
.type
= BTRFS_EXTENT_DATA_KEY
;
5127 key
.offset
= ekey
->offset
;
5128 ret
= btrfs_search_slot_for_read(sctx
->parent_root
, &key
, path
, 0, 0);
5137 * Handle special case where the right side has no extents at all.
5139 eb
= path
->nodes
[0];
5140 slot
= path
->slots
[0];
5141 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
5142 if (found_key
.objectid
!= key
.objectid
||
5143 found_key
.type
!= key
.type
) {
5144 /* If we're a hole then just pretend nothing changed */
5145 ret
= (left_disknr
) ? 0 : 1;
5150 * We're now on 2a, 2b or 7.
5153 while (key
.offset
< ekey
->offset
+ left_len
) {
5154 ei
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
5155 right_type
= btrfs_file_extent_type(eb
, ei
);
5156 if (right_type
!= BTRFS_FILE_EXTENT_REG
) {
5161 right_disknr
= btrfs_file_extent_disk_bytenr(eb
, ei
);
5162 right_len
= btrfs_file_extent_num_bytes(eb
, ei
);
5163 right_offset
= btrfs_file_extent_offset(eb
, ei
);
5164 right_gen
= btrfs_file_extent_generation(eb
, ei
);
5167 * Are we at extent 8? If yes, we know the extent is changed.
5168 * This may only happen on the first iteration.
5170 if (found_key
.offset
+ right_len
<= ekey
->offset
) {
5171 /* If we're a hole just pretend nothing changed */
5172 ret
= (left_disknr
) ? 0 : 1;
5176 left_offset_fixed
= left_offset
;
5177 if (key
.offset
< ekey
->offset
) {
5178 /* Fix the right offset for 2a and 7. */
5179 right_offset
+= ekey
->offset
- key
.offset
;
5181 /* Fix the left offset for all behind 2a and 2b */
5182 left_offset_fixed
+= key
.offset
- ekey
->offset
;
5186 * Check if we have the same extent.
5188 if (left_disknr
!= right_disknr
||
5189 left_offset_fixed
!= right_offset
||
5190 left_gen
!= right_gen
) {
5196 * Go to the next extent.
5198 ret
= btrfs_next_item(sctx
->parent_root
, path
);
5202 eb
= path
->nodes
[0];
5203 slot
= path
->slots
[0];
5204 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
5206 if (ret
|| found_key
.objectid
!= key
.objectid
||
5207 found_key
.type
!= key
.type
) {
5208 key
.offset
+= right_len
;
5211 if (found_key
.offset
!= key
.offset
+ right_len
) {
5219 * We're now behind the left extent (treat as unchanged) or at the end
5220 * of the right side (treat as changed).
5222 if (key
.offset
>= ekey
->offset
+ left_len
)
5229 btrfs_free_path(path
);
5233 static int get_last_extent(struct send_ctx
*sctx
, u64 offset
)
5235 struct btrfs_path
*path
;
5236 struct btrfs_root
*root
= sctx
->send_root
;
5237 struct btrfs_file_extent_item
*fi
;
5238 struct btrfs_key key
;
5243 path
= alloc_path_for_send();
5247 sctx
->cur_inode_last_extent
= 0;
5249 key
.objectid
= sctx
->cur_ino
;
5250 key
.type
= BTRFS_EXTENT_DATA_KEY
;
5251 key
.offset
= offset
;
5252 ret
= btrfs_search_slot_for_read(root
, &key
, path
, 0, 1);
5256 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
5257 if (key
.objectid
!= sctx
->cur_ino
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
)
5260 fi
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
5261 struct btrfs_file_extent_item
);
5262 type
= btrfs_file_extent_type(path
->nodes
[0], fi
);
5263 if (type
== BTRFS_FILE_EXTENT_INLINE
) {
5264 u64 size
= btrfs_file_extent_inline_len(path
->nodes
[0],
5265 path
->slots
[0], fi
);
5266 extent_end
= ALIGN(key
.offset
+ size
,
5267 sctx
->send_root
->sectorsize
);
5269 extent_end
= key
.offset
+
5270 btrfs_file_extent_num_bytes(path
->nodes
[0], fi
);
5272 sctx
->cur_inode_last_extent
= extent_end
;
5274 btrfs_free_path(path
);
5278 static int maybe_send_hole(struct send_ctx
*sctx
, struct btrfs_path
*path
,
5279 struct btrfs_key
*key
)
5281 struct btrfs_file_extent_item
*fi
;
5286 if (sctx
->cur_ino
!= key
->objectid
|| !need_send_hole(sctx
))
5289 if (sctx
->cur_inode_last_extent
== (u64
)-1) {
5290 ret
= get_last_extent(sctx
, key
->offset
- 1);
5295 fi
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
5296 struct btrfs_file_extent_item
);
5297 type
= btrfs_file_extent_type(path
->nodes
[0], fi
);
5298 if (type
== BTRFS_FILE_EXTENT_INLINE
) {
5299 u64 size
= btrfs_file_extent_inline_len(path
->nodes
[0],
5300 path
->slots
[0], fi
);
5301 extent_end
= ALIGN(key
->offset
+ size
,
5302 sctx
->send_root
->sectorsize
);
5304 extent_end
= key
->offset
+
5305 btrfs_file_extent_num_bytes(path
->nodes
[0], fi
);
5308 if (path
->slots
[0] == 0 &&
5309 sctx
->cur_inode_last_extent
< key
->offset
) {
5311 * We might have skipped entire leafs that contained only
5312 * file extent items for our current inode. These leafs have
5313 * a generation number smaller (older) than the one in the
5314 * current leaf and the leaf our last extent came from, and
5315 * are located between these 2 leafs.
5317 ret
= get_last_extent(sctx
, key
->offset
- 1);
5322 if (sctx
->cur_inode_last_extent
< key
->offset
)
5323 ret
= send_hole(sctx
, key
->offset
);
5324 sctx
->cur_inode_last_extent
= extent_end
;
5328 static int process_extent(struct send_ctx
*sctx
,
5329 struct btrfs_path
*path
,
5330 struct btrfs_key
*key
)
5332 struct clone_root
*found_clone
= NULL
;
5335 if (S_ISLNK(sctx
->cur_inode_mode
))
5338 if (sctx
->parent_root
&& !sctx
->cur_inode_new
) {
5339 ret
= is_extent_unchanged(sctx
, path
, key
);
5347 struct btrfs_file_extent_item
*ei
;
5350 ei
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
5351 struct btrfs_file_extent_item
);
5352 type
= btrfs_file_extent_type(path
->nodes
[0], ei
);
5353 if (type
== BTRFS_FILE_EXTENT_PREALLOC
||
5354 type
== BTRFS_FILE_EXTENT_REG
) {
5356 * The send spec does not have a prealloc command yet,
5357 * so just leave a hole for prealloc'ed extents until
5358 * we have enough commands queued up to justify rev'ing
5361 if (type
== BTRFS_FILE_EXTENT_PREALLOC
) {
5366 /* Have a hole, just skip it. */
5367 if (btrfs_file_extent_disk_bytenr(path
->nodes
[0], ei
) == 0) {
5374 ret
= find_extent_clone(sctx
, path
, key
->objectid
, key
->offset
,
5375 sctx
->cur_inode_size
, &found_clone
);
5376 if (ret
!= -ENOENT
&& ret
< 0)
5379 ret
= send_write_or_clone(sctx
, path
, key
, found_clone
);
5383 ret
= maybe_send_hole(sctx
, path
, key
);
5388 static int process_all_extents(struct send_ctx
*sctx
)
5391 struct btrfs_root
*root
;
5392 struct btrfs_path
*path
;
5393 struct btrfs_key key
;
5394 struct btrfs_key found_key
;
5395 struct extent_buffer
*eb
;
5398 root
= sctx
->send_root
;
5399 path
= alloc_path_for_send();
5403 key
.objectid
= sctx
->cmp_key
->objectid
;
5404 key
.type
= BTRFS_EXTENT_DATA_KEY
;
5406 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5411 eb
= path
->nodes
[0];
5412 slot
= path
->slots
[0];
5414 if (slot
>= btrfs_header_nritems(eb
)) {
5415 ret
= btrfs_next_leaf(root
, path
);
5418 } else if (ret
> 0) {
5425 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
5427 if (found_key
.objectid
!= key
.objectid
||
5428 found_key
.type
!= key
.type
) {
5433 ret
= process_extent(sctx
, path
, &found_key
);
5441 btrfs_free_path(path
);
5445 static int process_recorded_refs_if_needed(struct send_ctx
*sctx
, int at_end
,
5447 int *refs_processed
)
5451 if (sctx
->cur_ino
== 0)
5453 if (!at_end
&& sctx
->cur_ino
== sctx
->cmp_key
->objectid
&&
5454 sctx
->cmp_key
->type
<= BTRFS_INODE_EXTREF_KEY
)
5456 if (list_empty(&sctx
->new_refs
) && list_empty(&sctx
->deleted_refs
))
5459 ret
= process_recorded_refs(sctx
, pending_move
);
5463 *refs_processed
= 1;
5468 static int finish_inode_if_needed(struct send_ctx
*sctx
, int at_end
)
5479 int pending_move
= 0;
5480 int refs_processed
= 0;
5482 ret
= process_recorded_refs_if_needed(sctx
, at_end
, &pending_move
,
5488 * We have processed the refs and thus need to advance send_progress.
5489 * Now, calls to get_cur_xxx will take the updated refs of the current
5490 * inode into account.
5492 * On the other hand, if our current inode is a directory and couldn't
5493 * be moved/renamed because its parent was renamed/moved too and it has
5494 * a higher inode number, we can only move/rename our current inode
5495 * after we moved/renamed its parent. Therefore in this case operate on
5496 * the old path (pre move/rename) of our current inode, and the
5497 * move/rename will be performed later.
5499 if (refs_processed
&& !pending_move
)
5500 sctx
->send_progress
= sctx
->cur_ino
+ 1;
5502 if (sctx
->cur_ino
== 0 || sctx
->cur_inode_deleted
)
5504 if (!at_end
&& sctx
->cmp_key
->objectid
== sctx
->cur_ino
)
5507 ret
= get_inode_info(sctx
->send_root
, sctx
->cur_ino
, NULL
, NULL
,
5508 &left_mode
, &left_uid
, &left_gid
, NULL
);
5512 if (!sctx
->parent_root
|| sctx
->cur_inode_new
) {
5514 if (!S_ISLNK(sctx
->cur_inode_mode
))
5517 ret
= get_inode_info(sctx
->parent_root
, sctx
->cur_ino
,
5518 NULL
, NULL
, &right_mode
, &right_uid
,
5523 if (left_uid
!= right_uid
|| left_gid
!= right_gid
)
5525 if (!S_ISLNK(sctx
->cur_inode_mode
) && left_mode
!= right_mode
)
5529 if (S_ISREG(sctx
->cur_inode_mode
)) {
5530 if (need_send_hole(sctx
)) {
5531 if (sctx
->cur_inode_last_extent
== (u64
)-1 ||
5532 sctx
->cur_inode_last_extent
<
5533 sctx
->cur_inode_size
) {
5534 ret
= get_last_extent(sctx
, (u64
)-1);
5538 if (sctx
->cur_inode_last_extent
<
5539 sctx
->cur_inode_size
) {
5540 ret
= send_hole(sctx
, sctx
->cur_inode_size
);
5545 ret
= send_truncate(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
5546 sctx
->cur_inode_size
);
5552 ret
= send_chown(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
5553 left_uid
, left_gid
);
5558 ret
= send_chmod(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
5565 * If other directory inodes depended on our current directory
5566 * inode's move/rename, now do their move/rename operations.
5568 if (!is_waiting_for_move(sctx
, sctx
->cur_ino
)) {
5569 ret
= apply_children_dir_moves(sctx
);
5573 * Need to send that every time, no matter if it actually
5574 * changed between the two trees as we have done changes to
5575 * the inode before. If our inode is a directory and it's
5576 * waiting to be moved/renamed, we will send its utimes when
5577 * it's moved/renamed, therefore we don't need to do it here.
5579 sctx
->send_progress
= sctx
->cur_ino
+ 1;
5580 ret
= send_utimes(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
);
5589 static int changed_inode(struct send_ctx
*sctx
,
5590 enum btrfs_compare_tree_result result
)
5593 struct btrfs_key
*key
= sctx
->cmp_key
;
5594 struct btrfs_inode_item
*left_ii
= NULL
;
5595 struct btrfs_inode_item
*right_ii
= NULL
;
5599 sctx
->cur_ino
= key
->objectid
;
5600 sctx
->cur_inode_new_gen
= 0;
5601 sctx
->cur_inode_last_extent
= (u64
)-1;
5604 * Set send_progress to current inode. This will tell all get_cur_xxx
5605 * functions that the current inode's refs are not updated yet. Later,
5606 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5608 sctx
->send_progress
= sctx
->cur_ino
;
5610 if (result
== BTRFS_COMPARE_TREE_NEW
||
5611 result
== BTRFS_COMPARE_TREE_CHANGED
) {
5612 left_ii
= btrfs_item_ptr(sctx
->left_path
->nodes
[0],
5613 sctx
->left_path
->slots
[0],
5614 struct btrfs_inode_item
);
5615 left_gen
= btrfs_inode_generation(sctx
->left_path
->nodes
[0],
5618 right_ii
= btrfs_item_ptr(sctx
->right_path
->nodes
[0],
5619 sctx
->right_path
->slots
[0],
5620 struct btrfs_inode_item
);
5621 right_gen
= btrfs_inode_generation(sctx
->right_path
->nodes
[0],
5624 if (result
== BTRFS_COMPARE_TREE_CHANGED
) {
5625 right_ii
= btrfs_item_ptr(sctx
->right_path
->nodes
[0],
5626 sctx
->right_path
->slots
[0],
5627 struct btrfs_inode_item
);
5629 right_gen
= btrfs_inode_generation(sctx
->right_path
->nodes
[0],
5633 * The cur_ino = root dir case is special here. We can't treat
5634 * the inode as deleted+reused because it would generate a
5635 * stream that tries to delete/mkdir the root dir.
5637 if (left_gen
!= right_gen
&&
5638 sctx
->cur_ino
!= BTRFS_FIRST_FREE_OBJECTID
)
5639 sctx
->cur_inode_new_gen
= 1;
5642 if (result
== BTRFS_COMPARE_TREE_NEW
) {
5643 sctx
->cur_inode_gen
= left_gen
;
5644 sctx
->cur_inode_new
= 1;
5645 sctx
->cur_inode_deleted
= 0;
5646 sctx
->cur_inode_size
= btrfs_inode_size(
5647 sctx
->left_path
->nodes
[0], left_ii
);
5648 sctx
->cur_inode_mode
= btrfs_inode_mode(
5649 sctx
->left_path
->nodes
[0], left_ii
);
5650 sctx
->cur_inode_rdev
= btrfs_inode_rdev(
5651 sctx
->left_path
->nodes
[0], left_ii
);
5652 if (sctx
->cur_ino
!= BTRFS_FIRST_FREE_OBJECTID
)
5653 ret
= send_create_inode_if_needed(sctx
);
5654 } else if (result
== BTRFS_COMPARE_TREE_DELETED
) {
5655 sctx
->cur_inode_gen
= right_gen
;
5656 sctx
->cur_inode_new
= 0;
5657 sctx
->cur_inode_deleted
= 1;
5658 sctx
->cur_inode_size
= btrfs_inode_size(
5659 sctx
->right_path
->nodes
[0], right_ii
);
5660 sctx
->cur_inode_mode
= btrfs_inode_mode(
5661 sctx
->right_path
->nodes
[0], right_ii
);
5662 } else if (result
== BTRFS_COMPARE_TREE_CHANGED
) {
5664 * We need to do some special handling in case the inode was
5665 * reported as changed with a changed generation number. This
5666 * means that the original inode was deleted and new inode
5667 * reused the same inum. So we have to treat the old inode as
5668 * deleted and the new one as new.
5670 if (sctx
->cur_inode_new_gen
) {
5672 * First, process the inode as if it was deleted.
5674 sctx
->cur_inode_gen
= right_gen
;
5675 sctx
->cur_inode_new
= 0;
5676 sctx
->cur_inode_deleted
= 1;
5677 sctx
->cur_inode_size
= btrfs_inode_size(
5678 sctx
->right_path
->nodes
[0], right_ii
);
5679 sctx
->cur_inode_mode
= btrfs_inode_mode(
5680 sctx
->right_path
->nodes
[0], right_ii
);
5681 ret
= process_all_refs(sctx
,
5682 BTRFS_COMPARE_TREE_DELETED
);
5687 * Now process the inode as if it was new.
5689 sctx
->cur_inode_gen
= left_gen
;
5690 sctx
->cur_inode_new
= 1;
5691 sctx
->cur_inode_deleted
= 0;
5692 sctx
->cur_inode_size
= btrfs_inode_size(
5693 sctx
->left_path
->nodes
[0], left_ii
);
5694 sctx
->cur_inode_mode
= btrfs_inode_mode(
5695 sctx
->left_path
->nodes
[0], left_ii
);
5696 sctx
->cur_inode_rdev
= btrfs_inode_rdev(
5697 sctx
->left_path
->nodes
[0], left_ii
);
5698 ret
= send_create_inode_if_needed(sctx
);
5702 ret
= process_all_refs(sctx
, BTRFS_COMPARE_TREE_NEW
);
5706 * Advance send_progress now as we did not get into
5707 * process_recorded_refs_if_needed in the new_gen case.
5709 sctx
->send_progress
= sctx
->cur_ino
+ 1;
5712 * Now process all extents and xattrs of the inode as if
5713 * they were all new.
5715 ret
= process_all_extents(sctx
);
5718 ret
= process_all_new_xattrs(sctx
);
5722 sctx
->cur_inode_gen
= left_gen
;
5723 sctx
->cur_inode_new
= 0;
5724 sctx
->cur_inode_new_gen
= 0;
5725 sctx
->cur_inode_deleted
= 0;
5726 sctx
->cur_inode_size
= btrfs_inode_size(
5727 sctx
->left_path
->nodes
[0], left_ii
);
5728 sctx
->cur_inode_mode
= btrfs_inode_mode(
5729 sctx
->left_path
->nodes
[0], left_ii
);
5738 * We have to process new refs before deleted refs, but compare_trees gives us
5739 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
5740 * first and later process them in process_recorded_refs.
5741 * For the cur_inode_new_gen case, we skip recording completely because
5742 * changed_inode did already initiate processing of refs. The reason for this is
5743 * that in this case, compare_tree actually compares the refs of 2 different
5744 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
5745 * refs of the right tree as deleted and all refs of the left tree as new.
5747 static int changed_ref(struct send_ctx
*sctx
,
5748 enum btrfs_compare_tree_result result
)
5752 if (sctx
->cur_ino
!= sctx
->cmp_key
->objectid
) {
5753 inconsistent_snapshot_error(sctx
, result
, "reference");
5757 if (!sctx
->cur_inode_new_gen
&&
5758 sctx
->cur_ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
5759 if (result
== BTRFS_COMPARE_TREE_NEW
)
5760 ret
= record_new_ref(sctx
);
5761 else if (result
== BTRFS_COMPARE_TREE_DELETED
)
5762 ret
= record_deleted_ref(sctx
);
5763 else if (result
== BTRFS_COMPARE_TREE_CHANGED
)
5764 ret
= record_changed_ref(sctx
);
5771 * Process new/deleted/changed xattrs. We skip processing in the
5772 * cur_inode_new_gen case because changed_inode did already initiate processing
5773 * of xattrs. The reason is the same as in changed_ref
5775 static int changed_xattr(struct send_ctx
*sctx
,
5776 enum btrfs_compare_tree_result result
)
5780 if (sctx
->cur_ino
!= sctx
->cmp_key
->objectid
) {
5781 inconsistent_snapshot_error(sctx
, result
, "xattr");
5785 if (!sctx
->cur_inode_new_gen
&& !sctx
->cur_inode_deleted
) {
5786 if (result
== BTRFS_COMPARE_TREE_NEW
)
5787 ret
= process_new_xattr(sctx
);
5788 else if (result
== BTRFS_COMPARE_TREE_DELETED
)
5789 ret
= process_deleted_xattr(sctx
);
5790 else if (result
== BTRFS_COMPARE_TREE_CHANGED
)
5791 ret
= process_changed_xattr(sctx
);
5798 * Process new/deleted/changed extents. We skip processing in the
5799 * cur_inode_new_gen case because changed_inode did already initiate processing
5800 * of extents. The reason is the same as in changed_ref
5802 static int changed_extent(struct send_ctx
*sctx
,
5803 enum btrfs_compare_tree_result result
)
5807 if (sctx
->cur_ino
!= sctx
->cmp_key
->objectid
) {
5809 if (result
== BTRFS_COMPARE_TREE_CHANGED
) {
5810 struct extent_buffer
*leaf_l
;
5811 struct extent_buffer
*leaf_r
;
5812 struct btrfs_file_extent_item
*ei_l
;
5813 struct btrfs_file_extent_item
*ei_r
;
5815 leaf_l
= sctx
->left_path
->nodes
[0];
5816 leaf_r
= sctx
->right_path
->nodes
[0];
5817 ei_l
= btrfs_item_ptr(leaf_l
,
5818 sctx
->left_path
->slots
[0],
5819 struct btrfs_file_extent_item
);
5820 ei_r
= btrfs_item_ptr(leaf_r
,
5821 sctx
->right_path
->slots
[0],
5822 struct btrfs_file_extent_item
);
5825 * We may have found an extent item that has changed
5826 * only its disk_bytenr field and the corresponding
5827 * inode item was not updated. This case happens due to
5828 * very specific timings during relocation when a leaf
5829 * that contains file extent items is COWed while
5830 * relocation is ongoing and its in the stage where it
5831 * updates data pointers. So when this happens we can
5832 * safely ignore it since we know it's the same extent,
5833 * but just at different logical and physical locations
5834 * (when an extent is fully replaced with a new one, we
5835 * know the generation number must have changed too,
5836 * since snapshot creation implies committing the current
5837 * transaction, and the inode item must have been updated
5839 * This replacement of the disk_bytenr happens at
5840 * relocation.c:replace_file_extents() through
5841 * relocation.c:btrfs_reloc_cow_block().
5843 if (btrfs_file_extent_generation(leaf_l
, ei_l
) ==
5844 btrfs_file_extent_generation(leaf_r
, ei_r
) &&
5845 btrfs_file_extent_ram_bytes(leaf_l
, ei_l
) ==
5846 btrfs_file_extent_ram_bytes(leaf_r
, ei_r
) &&
5847 btrfs_file_extent_compression(leaf_l
, ei_l
) ==
5848 btrfs_file_extent_compression(leaf_r
, ei_r
) &&
5849 btrfs_file_extent_encryption(leaf_l
, ei_l
) ==
5850 btrfs_file_extent_encryption(leaf_r
, ei_r
) &&
5851 btrfs_file_extent_other_encoding(leaf_l
, ei_l
) ==
5852 btrfs_file_extent_other_encoding(leaf_r
, ei_r
) &&
5853 btrfs_file_extent_type(leaf_l
, ei_l
) ==
5854 btrfs_file_extent_type(leaf_r
, ei_r
) &&
5855 btrfs_file_extent_disk_bytenr(leaf_l
, ei_l
) !=
5856 btrfs_file_extent_disk_bytenr(leaf_r
, ei_r
) &&
5857 btrfs_file_extent_disk_num_bytes(leaf_l
, ei_l
) ==
5858 btrfs_file_extent_disk_num_bytes(leaf_r
, ei_r
) &&
5859 btrfs_file_extent_offset(leaf_l
, ei_l
) ==
5860 btrfs_file_extent_offset(leaf_r
, ei_r
) &&
5861 btrfs_file_extent_num_bytes(leaf_l
, ei_l
) ==
5862 btrfs_file_extent_num_bytes(leaf_r
, ei_r
))
5866 inconsistent_snapshot_error(sctx
, result
, "extent");
5870 if (!sctx
->cur_inode_new_gen
&& !sctx
->cur_inode_deleted
) {
5871 if (result
!= BTRFS_COMPARE_TREE_DELETED
)
5872 ret
= process_extent(sctx
, sctx
->left_path
,
5879 static int dir_changed(struct send_ctx
*sctx
, u64 dir
)
5881 u64 orig_gen
, new_gen
;
5884 ret
= get_inode_info(sctx
->send_root
, dir
, NULL
, &new_gen
, NULL
, NULL
,
5889 ret
= get_inode_info(sctx
->parent_root
, dir
, NULL
, &orig_gen
, NULL
,
5894 return (orig_gen
!= new_gen
) ? 1 : 0;
5897 static int compare_refs(struct send_ctx
*sctx
, struct btrfs_path
*path
,
5898 struct btrfs_key
*key
)
5900 struct btrfs_inode_extref
*extref
;
5901 struct extent_buffer
*leaf
;
5902 u64 dirid
= 0, last_dirid
= 0;
5909 /* Easy case, just check this one dirid */
5910 if (key
->type
== BTRFS_INODE_REF_KEY
) {
5911 dirid
= key
->offset
;
5913 ret
= dir_changed(sctx
, dirid
);
5917 leaf
= path
->nodes
[0];
5918 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
5919 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
5920 while (cur_offset
< item_size
) {
5921 extref
= (struct btrfs_inode_extref
*)(ptr
+
5923 dirid
= btrfs_inode_extref_parent(leaf
, extref
);
5924 ref_name_len
= btrfs_inode_extref_name_len(leaf
, extref
);
5925 cur_offset
+= ref_name_len
+ sizeof(*extref
);
5926 if (dirid
== last_dirid
)
5928 ret
= dir_changed(sctx
, dirid
);
5938 * Updates compare related fields in sctx and simply forwards to the actual
5939 * changed_xxx functions.
5941 static int changed_cb(struct btrfs_root
*left_root
,
5942 struct btrfs_root
*right_root
,
5943 struct btrfs_path
*left_path
,
5944 struct btrfs_path
*right_path
,
5945 struct btrfs_key
*key
,
5946 enum btrfs_compare_tree_result result
,
5950 struct send_ctx
*sctx
= ctx
;
5952 if (result
== BTRFS_COMPARE_TREE_SAME
) {
5953 if (key
->type
== BTRFS_INODE_REF_KEY
||
5954 key
->type
== BTRFS_INODE_EXTREF_KEY
) {
5955 ret
= compare_refs(sctx
, left_path
, key
);
5960 } else if (key
->type
== BTRFS_EXTENT_DATA_KEY
) {
5961 return maybe_send_hole(sctx
, left_path
, key
);
5965 result
= BTRFS_COMPARE_TREE_CHANGED
;
5969 sctx
->left_path
= left_path
;
5970 sctx
->right_path
= right_path
;
5971 sctx
->cmp_key
= key
;
5973 ret
= finish_inode_if_needed(sctx
, 0);
5977 /* Ignore non-FS objects */
5978 if (key
->objectid
== BTRFS_FREE_INO_OBJECTID
||
5979 key
->objectid
== BTRFS_FREE_SPACE_OBJECTID
)
5982 if (key
->type
== BTRFS_INODE_ITEM_KEY
)
5983 ret
= changed_inode(sctx
, result
);
5984 else if (key
->type
== BTRFS_INODE_REF_KEY
||
5985 key
->type
== BTRFS_INODE_EXTREF_KEY
)
5986 ret
= changed_ref(sctx
, result
);
5987 else if (key
->type
== BTRFS_XATTR_ITEM_KEY
)
5988 ret
= changed_xattr(sctx
, result
);
5989 else if (key
->type
== BTRFS_EXTENT_DATA_KEY
)
5990 ret
= changed_extent(sctx
, result
);
5996 static int full_send_tree(struct send_ctx
*sctx
)
5999 struct btrfs_root
*send_root
= sctx
->send_root
;
6000 struct btrfs_key key
;
6001 struct btrfs_key found_key
;
6002 struct btrfs_path
*path
;
6003 struct extent_buffer
*eb
;
6006 path
= alloc_path_for_send();
6010 key
.objectid
= BTRFS_FIRST_FREE_OBJECTID
;
6011 key
.type
= BTRFS_INODE_ITEM_KEY
;
6014 ret
= btrfs_search_slot_for_read(send_root
, &key
, path
, 1, 0);
6021 eb
= path
->nodes
[0];
6022 slot
= path
->slots
[0];
6023 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
6025 ret
= changed_cb(send_root
, NULL
, path
, NULL
,
6026 &found_key
, BTRFS_COMPARE_TREE_NEW
, sctx
);
6030 key
.objectid
= found_key
.objectid
;
6031 key
.type
= found_key
.type
;
6032 key
.offset
= found_key
.offset
+ 1;
6034 ret
= btrfs_next_item(send_root
, path
);
6044 ret
= finish_inode_if_needed(sctx
, 1);
6047 btrfs_free_path(path
);
6051 static int send_subvol(struct send_ctx
*sctx
)
6055 if (!(sctx
->flags
& BTRFS_SEND_FLAG_OMIT_STREAM_HEADER
)) {
6056 ret
= send_header(sctx
);
6061 ret
= send_subvol_begin(sctx
);
6065 if (sctx
->parent_root
) {
6066 ret
= btrfs_compare_trees(sctx
->send_root
, sctx
->parent_root
,
6070 ret
= finish_inode_if_needed(sctx
, 1);
6074 ret
= full_send_tree(sctx
);
6080 free_recorded_refs(sctx
);
6085 * If orphan cleanup did remove any orphans from a root, it means the tree
6086 * was modified and therefore the commit root is not the same as the current
6087 * root anymore. This is a problem, because send uses the commit root and
6088 * therefore can see inode items that don't exist in the current root anymore,
6089 * and for example make calls to btrfs_iget, which will do tree lookups based
6090 * on the current root and not on the commit root. Those lookups will fail,
6091 * returning a -ESTALE error, and making send fail with that error. So make
6092 * sure a send does not see any orphans we have just removed, and that it will
6093 * see the same inodes regardless of whether a transaction commit happened
6094 * before it started (meaning that the commit root will be the same as the
6095 * current root) or not.
6097 static int ensure_commit_roots_uptodate(struct send_ctx
*sctx
)
6100 struct btrfs_trans_handle
*trans
= NULL
;
6103 if (sctx
->parent_root
&&
6104 sctx
->parent_root
->node
!= sctx
->parent_root
->commit_root
)
6107 for (i
= 0; i
< sctx
->clone_roots_cnt
; i
++)
6108 if (sctx
->clone_roots
[i
].root
->node
!=
6109 sctx
->clone_roots
[i
].root
->commit_root
)
6113 return btrfs_end_transaction(trans
, sctx
->send_root
);
6118 /* Use any root, all fs roots will get their commit roots updated. */
6120 trans
= btrfs_join_transaction(sctx
->send_root
);
6122 return PTR_ERR(trans
);
6126 return btrfs_commit_transaction(trans
, sctx
->send_root
);
6129 static void btrfs_root_dec_send_in_progress(struct btrfs_root
* root
)
6131 spin_lock(&root
->root_item_lock
);
6132 root
->send_in_progress
--;
6134 * Not much left to do, we don't know why it's unbalanced and
6135 * can't blindly reset it to 0.
6137 if (root
->send_in_progress
< 0)
6138 btrfs_err(root
->fs_info
,
6139 "send_in_progres unbalanced %d root %llu",
6140 root
->send_in_progress
, root
->root_key
.objectid
);
6141 spin_unlock(&root
->root_item_lock
);
6144 long btrfs_ioctl_send(struct file
*mnt_file
, void __user
*arg_
)
6147 struct btrfs_root
*send_root
;
6148 struct btrfs_root
*clone_root
;
6149 struct btrfs_fs_info
*fs_info
;
6150 struct btrfs_ioctl_send_args
*arg
= NULL
;
6151 struct btrfs_key key
;
6152 struct send_ctx
*sctx
= NULL
;
6154 u64
*clone_sources_tmp
= NULL
;
6155 int clone_sources_to_rollback
= 0;
6156 unsigned alloc_size
;
6157 int sort_clone_roots
= 0;
6160 if (!capable(CAP_SYS_ADMIN
))
6163 send_root
= BTRFS_I(file_inode(mnt_file
))->root
;
6164 fs_info
= send_root
->fs_info
;
6167 * The subvolume must remain read-only during send, protect against
6168 * making it RW. This also protects against deletion.
6170 spin_lock(&send_root
->root_item_lock
);
6171 send_root
->send_in_progress
++;
6172 spin_unlock(&send_root
->root_item_lock
);
6175 * This is done when we lookup the root, it should already be complete
6176 * by the time we get here.
6178 WARN_ON(send_root
->orphan_cleanup_state
!= ORPHAN_CLEANUP_DONE
);
6181 * Userspace tools do the checks and warn the user if it's
6184 if (!btrfs_root_readonly(send_root
)) {
6189 arg
= memdup_user(arg_
, sizeof(*arg
));
6196 if (arg
->clone_sources_count
>
6197 ULLONG_MAX
/ sizeof(*arg
->clone_sources
)) {
6202 if (!access_ok(VERIFY_READ
, arg
->clone_sources
,
6203 sizeof(*arg
->clone_sources
) *
6204 arg
->clone_sources_count
)) {
6209 if (arg
->flags
& ~BTRFS_SEND_FLAG_MASK
) {
6214 sctx
= kzalloc(sizeof(struct send_ctx
), GFP_KERNEL
);
6220 INIT_LIST_HEAD(&sctx
->new_refs
);
6221 INIT_LIST_HEAD(&sctx
->deleted_refs
);
6222 INIT_RADIX_TREE(&sctx
->name_cache
, GFP_KERNEL
);
6223 INIT_LIST_HEAD(&sctx
->name_cache_list
);
6225 sctx
->flags
= arg
->flags
;
6227 sctx
->send_filp
= fget(arg
->send_fd
);
6228 if (!sctx
->send_filp
) {
6233 sctx
->send_root
= send_root
;
6235 * Unlikely but possible, if the subvolume is marked for deletion but
6236 * is slow to remove the directory entry, send can still be started
6238 if (btrfs_root_dead(sctx
->send_root
)) {
6243 sctx
->clone_roots_cnt
= arg
->clone_sources_count
;
6245 sctx
->send_max_size
= BTRFS_SEND_BUF_SIZE
;
6246 sctx
->send_buf
= kmalloc(sctx
->send_max_size
, GFP_KERNEL
| __GFP_NOWARN
);
6247 if (!sctx
->send_buf
) {
6248 sctx
->send_buf
= vmalloc(sctx
->send_max_size
);
6249 if (!sctx
->send_buf
) {
6255 sctx
->read_buf
= kmalloc(BTRFS_SEND_READ_SIZE
, GFP_KERNEL
| __GFP_NOWARN
);
6256 if (!sctx
->read_buf
) {
6257 sctx
->read_buf
= vmalloc(BTRFS_SEND_READ_SIZE
);
6258 if (!sctx
->read_buf
) {
6264 sctx
->pending_dir_moves
= RB_ROOT
;
6265 sctx
->waiting_dir_moves
= RB_ROOT
;
6266 sctx
->orphan_dirs
= RB_ROOT
;
6268 alloc_size
= sizeof(struct clone_root
) * (arg
->clone_sources_count
+ 1);
6270 sctx
->clone_roots
= kzalloc(alloc_size
, GFP_KERNEL
| __GFP_NOWARN
);
6271 if (!sctx
->clone_roots
) {
6272 sctx
->clone_roots
= vzalloc(alloc_size
);
6273 if (!sctx
->clone_roots
) {
6279 alloc_size
= arg
->clone_sources_count
* sizeof(*arg
->clone_sources
);
6281 if (arg
->clone_sources_count
) {
6282 clone_sources_tmp
= kmalloc(alloc_size
, GFP_KERNEL
| __GFP_NOWARN
);
6283 if (!clone_sources_tmp
) {
6284 clone_sources_tmp
= vmalloc(alloc_size
);
6285 if (!clone_sources_tmp
) {
6291 ret
= copy_from_user(clone_sources_tmp
, arg
->clone_sources
,
6298 for (i
= 0; i
< arg
->clone_sources_count
; i
++) {
6299 key
.objectid
= clone_sources_tmp
[i
];
6300 key
.type
= BTRFS_ROOT_ITEM_KEY
;
6301 key
.offset
= (u64
)-1;
6303 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
6305 clone_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
6306 if (IS_ERR(clone_root
)) {
6307 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
6308 ret
= PTR_ERR(clone_root
);
6311 spin_lock(&clone_root
->root_item_lock
);
6312 if (!btrfs_root_readonly(clone_root
) ||
6313 btrfs_root_dead(clone_root
)) {
6314 spin_unlock(&clone_root
->root_item_lock
);
6315 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
6319 clone_root
->send_in_progress
++;
6320 spin_unlock(&clone_root
->root_item_lock
);
6321 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
6323 sctx
->clone_roots
[i
].root
= clone_root
;
6324 clone_sources_to_rollback
= i
+ 1;
6326 kvfree(clone_sources_tmp
);
6327 clone_sources_tmp
= NULL
;
6330 if (arg
->parent_root
) {
6331 key
.objectid
= arg
->parent_root
;
6332 key
.type
= BTRFS_ROOT_ITEM_KEY
;
6333 key
.offset
= (u64
)-1;
6335 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
6337 sctx
->parent_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
6338 if (IS_ERR(sctx
->parent_root
)) {
6339 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
6340 ret
= PTR_ERR(sctx
->parent_root
);
6344 spin_lock(&sctx
->parent_root
->root_item_lock
);
6345 sctx
->parent_root
->send_in_progress
++;
6346 if (!btrfs_root_readonly(sctx
->parent_root
) ||
6347 btrfs_root_dead(sctx
->parent_root
)) {
6348 spin_unlock(&sctx
->parent_root
->root_item_lock
);
6349 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
6353 spin_unlock(&sctx
->parent_root
->root_item_lock
);
6355 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
6359 * Clones from send_root are allowed, but only if the clone source
6360 * is behind the current send position. This is checked while searching
6361 * for possible clone sources.
6363 sctx
->clone_roots
[sctx
->clone_roots_cnt
++].root
= sctx
->send_root
;
6365 /* We do a bsearch later */
6366 sort(sctx
->clone_roots
, sctx
->clone_roots_cnt
,
6367 sizeof(*sctx
->clone_roots
), __clone_root_cmp_sort
,
6369 sort_clone_roots
= 1;
6371 ret
= ensure_commit_roots_uptodate(sctx
);
6375 current
->journal_info
= BTRFS_SEND_TRANS_STUB
;
6376 ret
= send_subvol(sctx
);
6377 current
->journal_info
= NULL
;
6381 if (!(sctx
->flags
& BTRFS_SEND_FLAG_OMIT_END_CMD
)) {
6382 ret
= begin_cmd(sctx
, BTRFS_SEND_C_END
);
6385 ret
= send_cmd(sctx
);
6391 WARN_ON(sctx
&& !ret
&& !RB_EMPTY_ROOT(&sctx
->pending_dir_moves
));
6392 while (sctx
&& !RB_EMPTY_ROOT(&sctx
->pending_dir_moves
)) {
6394 struct pending_dir_move
*pm
;
6396 n
= rb_first(&sctx
->pending_dir_moves
);
6397 pm
= rb_entry(n
, struct pending_dir_move
, node
);
6398 while (!list_empty(&pm
->list
)) {
6399 struct pending_dir_move
*pm2
;
6401 pm2
= list_first_entry(&pm
->list
,
6402 struct pending_dir_move
, list
);
6403 free_pending_move(sctx
, pm2
);
6405 free_pending_move(sctx
, pm
);
6408 WARN_ON(sctx
&& !ret
&& !RB_EMPTY_ROOT(&sctx
->waiting_dir_moves
));
6409 while (sctx
&& !RB_EMPTY_ROOT(&sctx
->waiting_dir_moves
)) {
6411 struct waiting_dir_move
*dm
;
6413 n
= rb_first(&sctx
->waiting_dir_moves
);
6414 dm
= rb_entry(n
, struct waiting_dir_move
, node
);
6415 rb_erase(&dm
->node
, &sctx
->waiting_dir_moves
);
6419 WARN_ON(sctx
&& !ret
&& !RB_EMPTY_ROOT(&sctx
->orphan_dirs
));
6420 while (sctx
&& !RB_EMPTY_ROOT(&sctx
->orphan_dirs
)) {
6422 struct orphan_dir_info
*odi
;
6424 n
= rb_first(&sctx
->orphan_dirs
);
6425 odi
= rb_entry(n
, struct orphan_dir_info
, node
);
6426 free_orphan_dir_info(sctx
, odi
);
6429 if (sort_clone_roots
) {
6430 for (i
= 0; i
< sctx
->clone_roots_cnt
; i
++)
6431 btrfs_root_dec_send_in_progress(
6432 sctx
->clone_roots
[i
].root
);
6434 for (i
= 0; sctx
&& i
< clone_sources_to_rollback
; i
++)
6435 btrfs_root_dec_send_in_progress(
6436 sctx
->clone_roots
[i
].root
);
6438 btrfs_root_dec_send_in_progress(send_root
);
6440 if (sctx
&& !IS_ERR_OR_NULL(sctx
->parent_root
))
6441 btrfs_root_dec_send_in_progress(sctx
->parent_root
);
6444 kvfree(clone_sources_tmp
);
6447 if (sctx
->send_filp
)
6448 fput(sctx
->send_filp
);
6450 kvfree(sctx
->clone_roots
);
6451 kvfree(sctx
->send_buf
);
6452 kvfree(sctx
->read_buf
);
6454 name_cache_free(sctx
);