2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
15 * This work is based on the LPC-trie which is originally described in:
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
26 * Code from fib_hash has been reused which includes the following header:
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
33 * IPv4 FIB: lookup engine and maintenance routines.
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
43 * Substantial contributions to this work comes from:
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
51 #define VERSION "0.409"
53 #include <asm/uaccess.h>
54 #include <linux/bitops.h>
55 #include <linux/types.h>
56 #include <linux/kernel.h>
58 #include <linux/string.h>
59 #include <linux/socket.h>
60 #include <linux/sockios.h>
61 #include <linux/errno.h>
63 #include <linux/inet.h>
64 #include <linux/inetdevice.h>
65 #include <linux/netdevice.h>
66 #include <linux/if_arp.h>
67 #include <linux/proc_fs.h>
68 #include <linux/rcupdate.h>
69 #include <linux/skbuff.h>
70 #include <linux/netlink.h>
71 #include <linux/init.h>
72 #include <linux/list.h>
73 #include <linux/slab.h>
74 #include <linux/export.h>
75 #include <linux/vmalloc.h>
76 #include <linux/notifier.h>
77 #include <net/net_namespace.h>
79 #include <net/protocol.h>
80 #include <net/route.h>
83 #include <net/ip_fib.h>
84 #include <trace/events/fib.h>
85 #include "fib_lookup.h"
87 static BLOCKING_NOTIFIER_HEAD(fib_chain
);
89 int register_fib_notifier(struct notifier_block
*nb
)
91 return blocking_notifier_chain_register(&fib_chain
, nb
);
93 EXPORT_SYMBOL(register_fib_notifier
);
95 int unregister_fib_notifier(struct notifier_block
*nb
)
97 return blocking_notifier_chain_unregister(&fib_chain
, nb
);
99 EXPORT_SYMBOL(unregister_fib_notifier
);
101 int call_fib_notifiers(struct net
*net
, enum fib_event_type event_type
,
102 struct fib_notifier_info
*info
)
105 return blocking_notifier_call_chain(&fib_chain
, event_type
, info
);
108 static int call_fib_entry_notifiers(struct net
*net
,
109 enum fib_event_type event_type
, u32 dst
,
110 int dst_len
, struct fib_info
*fi
,
111 u8 tos
, u8 type
, u32 tb_id
, u32 nlflags
)
113 struct fib_entry_notifier_info info
= {
122 return call_fib_notifiers(net
, event_type
, &info
.info
);
125 #define MAX_STAT_DEPTH 32
127 #define KEYLENGTH (8*sizeof(t_key))
128 #define KEY_MAX ((t_key)~0)
130 typedef unsigned int t_key
;
132 #define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
133 #define IS_TNODE(n) ((n)->bits)
134 #define IS_LEAF(n) (!(n)->bits)
138 unsigned char pos
; /* 2log(KEYLENGTH) bits needed */
139 unsigned char bits
; /* 2log(KEYLENGTH) bits needed */
142 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
143 struct hlist_head leaf
;
144 /* This array is valid if (pos | bits) > 0 (TNODE) */
145 struct key_vector __rcu
*tnode
[0];
151 t_key empty_children
; /* KEYLENGTH bits needed */
152 t_key full_children
; /* KEYLENGTH bits needed */
153 struct key_vector __rcu
*parent
;
154 struct key_vector kv
[1];
155 #define tn_bits kv[0].bits
158 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
159 #define LEAF_SIZE TNODE_SIZE(1)
161 #ifdef CONFIG_IP_FIB_TRIE_STATS
162 struct trie_use_stats
{
164 unsigned int backtrack
;
165 unsigned int semantic_match_passed
;
166 unsigned int semantic_match_miss
;
167 unsigned int null_node_hit
;
168 unsigned int resize_node_skipped
;
173 unsigned int totdepth
;
174 unsigned int maxdepth
;
177 unsigned int nullpointers
;
178 unsigned int prefixes
;
179 unsigned int nodesizes
[MAX_STAT_DEPTH
];
183 struct key_vector kv
[1];
184 #ifdef CONFIG_IP_FIB_TRIE_STATS
185 struct trie_use_stats __percpu
*stats
;
189 static struct key_vector
*resize(struct trie
*t
, struct key_vector
*tn
);
190 static size_t tnode_free_size
;
193 * synchronize_rcu after call_rcu for that many pages; it should be especially
194 * useful before resizing the root node with PREEMPT_NONE configs; the value was
195 * obtained experimentally, aiming to avoid visible slowdown.
197 static const int sync_pages
= 128;
199 static struct kmem_cache
*fn_alias_kmem __read_mostly
;
200 static struct kmem_cache
*trie_leaf_kmem __read_mostly
;
202 static inline struct tnode
*tn_info(struct key_vector
*kv
)
204 return container_of(kv
, struct tnode
, kv
[0]);
207 /* caller must hold RTNL */
208 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
209 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
211 /* caller must hold RCU read lock or RTNL */
212 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
213 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
215 /* wrapper for rcu_assign_pointer */
216 static inline void node_set_parent(struct key_vector
*n
, struct key_vector
*tp
)
219 rcu_assign_pointer(tn_info(n
)->parent
, tp
);
222 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
224 /* This provides us with the number of children in this node, in the case of a
225 * leaf this will return 0 meaning none of the children are accessible.
227 static inline unsigned long child_length(const struct key_vector
*tn
)
229 return (1ul << tn
->bits
) & ~(1ul);
232 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
234 static inline unsigned long get_index(t_key key
, struct key_vector
*kv
)
236 unsigned long index
= key
^ kv
->key
;
238 if ((BITS_PER_LONG
<= KEYLENGTH
) && (KEYLENGTH
== kv
->pos
))
241 return index
>> kv
->pos
;
244 /* To understand this stuff, an understanding of keys and all their bits is
245 * necessary. Every node in the trie has a key associated with it, but not
246 * all of the bits in that key are significant.
248 * Consider a node 'n' and its parent 'tp'.
250 * If n is a leaf, every bit in its key is significant. Its presence is
251 * necessitated by path compression, since during a tree traversal (when
252 * searching for a leaf - unless we are doing an insertion) we will completely
253 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
254 * a potentially successful search, that we have indeed been walking the
257 * Note that we can never "miss" the correct key in the tree if present by
258 * following the wrong path. Path compression ensures that segments of the key
259 * that are the same for all keys with a given prefix are skipped, but the
260 * skipped part *is* identical for each node in the subtrie below the skipped
261 * bit! trie_insert() in this implementation takes care of that.
263 * if n is an internal node - a 'tnode' here, the various parts of its key
264 * have many different meanings.
267 * _________________________________________________________________
268 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
269 * -----------------------------------------------------------------
270 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
272 * _________________________________________________________________
273 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
274 * -----------------------------------------------------------------
275 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
282 * First, let's just ignore the bits that come before the parent tp, that is
283 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
284 * point we do not use them for anything.
286 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
287 * index into the parent's child array. That is, they will be used to find
288 * 'n' among tp's children.
290 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
293 * All the bits we have seen so far are significant to the node n. The rest
294 * of the bits are really not needed or indeed known in n->key.
296 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
297 * n's child array, and will of course be different for each child.
299 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
303 static const int halve_threshold
= 25;
304 static const int inflate_threshold
= 50;
305 static const int halve_threshold_root
= 15;
306 static const int inflate_threshold_root
= 30;
308 static void __alias_free_mem(struct rcu_head
*head
)
310 struct fib_alias
*fa
= container_of(head
, struct fib_alias
, rcu
);
311 kmem_cache_free(fn_alias_kmem
, fa
);
314 static inline void alias_free_mem_rcu(struct fib_alias
*fa
)
316 call_rcu(&fa
->rcu
, __alias_free_mem
);
319 #define TNODE_KMALLOC_MAX \
320 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
321 #define TNODE_VMALLOC_MAX \
322 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
324 static void __node_free_rcu(struct rcu_head
*head
)
326 struct tnode
*n
= container_of(head
, struct tnode
, rcu
);
329 kmem_cache_free(trie_leaf_kmem
, n
);
334 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
336 static struct tnode
*tnode_alloc(int bits
)
340 /* verify bits is within bounds */
341 if (bits
> TNODE_VMALLOC_MAX
)
344 /* determine size and verify it is non-zero and didn't overflow */
345 size
= TNODE_SIZE(1ul << bits
);
347 if (size
<= PAGE_SIZE
)
348 return kzalloc(size
, GFP_KERNEL
);
350 return vzalloc(size
);
353 static inline void empty_child_inc(struct key_vector
*n
)
355 ++tn_info(n
)->empty_children
? : ++tn_info(n
)->full_children
;
358 static inline void empty_child_dec(struct key_vector
*n
)
360 tn_info(n
)->empty_children
-- ? : tn_info(n
)->full_children
--;
363 static struct key_vector
*leaf_new(t_key key
, struct fib_alias
*fa
)
365 struct key_vector
*l
;
368 kv
= kmem_cache_alloc(trie_leaf_kmem
, GFP_KERNEL
);
372 /* initialize key vector */
377 l
->slen
= fa
->fa_slen
;
379 /* link leaf to fib alias */
380 INIT_HLIST_HEAD(&l
->leaf
);
381 hlist_add_head(&fa
->fa_list
, &l
->leaf
);
386 static struct key_vector
*tnode_new(t_key key
, int pos
, int bits
)
388 unsigned int shift
= pos
+ bits
;
389 struct key_vector
*tn
;
392 /* verify bits and pos their msb bits clear and values are valid */
393 BUG_ON(!bits
|| (shift
> KEYLENGTH
));
395 tnode
= tnode_alloc(bits
);
399 pr_debug("AT %p s=%zu %zu\n", tnode
, TNODE_SIZE(0),
400 sizeof(struct key_vector
*) << bits
);
402 if (bits
== KEYLENGTH
)
403 tnode
->full_children
= 1;
405 tnode
->empty_children
= 1ul << bits
;
408 tn
->key
= (shift
< KEYLENGTH
) ? (key
>> shift
) << shift
: 0;
416 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
417 * and no bits are skipped. See discussion in dyntree paper p. 6
419 static inline int tnode_full(struct key_vector
*tn
, struct key_vector
*n
)
421 return n
&& ((n
->pos
+ n
->bits
) == tn
->pos
) && IS_TNODE(n
);
424 /* Add a child at position i overwriting the old value.
425 * Update the value of full_children and empty_children.
427 static void put_child(struct key_vector
*tn
, unsigned long i
,
428 struct key_vector
*n
)
430 struct key_vector
*chi
= get_child(tn
, i
);
433 BUG_ON(i
>= child_length(tn
));
435 /* update emptyChildren, overflow into fullChildren */
441 /* update fullChildren */
442 wasfull
= tnode_full(tn
, chi
);
443 isfull
= tnode_full(tn
, n
);
445 if (wasfull
&& !isfull
)
446 tn_info(tn
)->full_children
--;
447 else if (!wasfull
&& isfull
)
448 tn_info(tn
)->full_children
++;
450 if (n
&& (tn
->slen
< n
->slen
))
453 rcu_assign_pointer(tn
->tnode
[i
], n
);
456 static void update_children(struct key_vector
*tn
)
460 /* update all of the child parent pointers */
461 for (i
= child_length(tn
); i
;) {
462 struct key_vector
*inode
= get_child(tn
, --i
);
467 /* Either update the children of a tnode that
468 * already belongs to us or update the child
469 * to point to ourselves.
471 if (node_parent(inode
) == tn
)
472 update_children(inode
);
474 node_set_parent(inode
, tn
);
478 static inline void put_child_root(struct key_vector
*tp
, t_key key
,
479 struct key_vector
*n
)
482 rcu_assign_pointer(tp
->tnode
[0], n
);
484 put_child(tp
, get_index(key
, tp
), n
);
487 static inline void tnode_free_init(struct key_vector
*tn
)
489 tn_info(tn
)->rcu
.next
= NULL
;
492 static inline void tnode_free_append(struct key_vector
*tn
,
493 struct key_vector
*n
)
495 tn_info(n
)->rcu
.next
= tn_info(tn
)->rcu
.next
;
496 tn_info(tn
)->rcu
.next
= &tn_info(n
)->rcu
;
499 static void tnode_free(struct key_vector
*tn
)
501 struct callback_head
*head
= &tn_info(tn
)->rcu
;
505 tnode_free_size
+= TNODE_SIZE(1ul << tn
->bits
);
508 tn
= container_of(head
, struct tnode
, rcu
)->kv
;
511 if (tnode_free_size
>= PAGE_SIZE
* sync_pages
) {
517 static struct key_vector
*replace(struct trie
*t
,
518 struct key_vector
*oldtnode
,
519 struct key_vector
*tn
)
521 struct key_vector
*tp
= node_parent(oldtnode
);
524 /* setup the parent pointer out of and back into this node */
525 NODE_INIT_PARENT(tn
, tp
);
526 put_child_root(tp
, tn
->key
, tn
);
528 /* update all of the child parent pointers */
531 /* all pointers should be clean so we are done */
532 tnode_free(oldtnode
);
534 /* resize children now that oldtnode is freed */
535 for (i
= child_length(tn
); i
;) {
536 struct key_vector
*inode
= get_child(tn
, --i
);
538 /* resize child node */
539 if (tnode_full(tn
, inode
))
540 tn
= resize(t
, inode
);
546 static struct key_vector
*inflate(struct trie
*t
,
547 struct key_vector
*oldtnode
)
549 struct key_vector
*tn
;
553 pr_debug("In inflate\n");
555 tn
= tnode_new(oldtnode
->key
, oldtnode
->pos
- 1, oldtnode
->bits
+ 1);
559 /* prepare oldtnode to be freed */
560 tnode_free_init(oldtnode
);
562 /* Assemble all of the pointers in our cluster, in this case that
563 * represents all of the pointers out of our allocated nodes that
564 * point to existing tnodes and the links between our allocated
567 for (i
= child_length(oldtnode
), m
= 1u << tn
->pos
; i
;) {
568 struct key_vector
*inode
= get_child(oldtnode
, --i
);
569 struct key_vector
*node0
, *node1
;
576 /* A leaf or an internal node with skipped bits */
577 if (!tnode_full(oldtnode
, inode
)) {
578 put_child(tn
, get_index(inode
->key
, tn
), inode
);
582 /* drop the node in the old tnode free list */
583 tnode_free_append(oldtnode
, inode
);
585 /* An internal node with two children */
586 if (inode
->bits
== 1) {
587 put_child(tn
, 2 * i
+ 1, get_child(inode
, 1));
588 put_child(tn
, 2 * i
, get_child(inode
, 0));
592 /* We will replace this node 'inode' with two new
593 * ones, 'node0' and 'node1', each with half of the
594 * original children. The two new nodes will have
595 * a position one bit further down the key and this
596 * means that the "significant" part of their keys
597 * (see the discussion near the top of this file)
598 * will differ by one bit, which will be "0" in
599 * node0's key and "1" in node1's key. Since we are
600 * moving the key position by one step, the bit that
601 * we are moving away from - the bit at position
602 * (tn->pos) - is the one that will differ between
603 * node0 and node1. So... we synthesize that bit in the
606 node1
= tnode_new(inode
->key
| m
, inode
->pos
, inode
->bits
- 1);
609 node0
= tnode_new(inode
->key
, inode
->pos
, inode
->bits
- 1);
611 tnode_free_append(tn
, node1
);
614 tnode_free_append(tn
, node0
);
616 /* populate child pointers in new nodes */
617 for (k
= child_length(inode
), j
= k
/ 2; j
;) {
618 put_child(node1
, --j
, get_child(inode
, --k
));
619 put_child(node0
, j
, get_child(inode
, j
));
620 put_child(node1
, --j
, get_child(inode
, --k
));
621 put_child(node0
, j
, get_child(inode
, j
));
624 /* link new nodes to parent */
625 NODE_INIT_PARENT(node1
, tn
);
626 NODE_INIT_PARENT(node0
, tn
);
628 /* link parent to nodes */
629 put_child(tn
, 2 * i
+ 1, node1
);
630 put_child(tn
, 2 * i
, node0
);
633 /* setup the parent pointers into and out of this node */
634 return replace(t
, oldtnode
, tn
);
636 /* all pointers should be clean so we are done */
642 static struct key_vector
*halve(struct trie
*t
,
643 struct key_vector
*oldtnode
)
645 struct key_vector
*tn
;
648 pr_debug("In halve\n");
650 tn
= tnode_new(oldtnode
->key
, oldtnode
->pos
+ 1, oldtnode
->bits
- 1);
654 /* prepare oldtnode to be freed */
655 tnode_free_init(oldtnode
);
657 /* Assemble all of the pointers in our cluster, in this case that
658 * represents all of the pointers out of our allocated nodes that
659 * point to existing tnodes and the links between our allocated
662 for (i
= child_length(oldtnode
); i
;) {
663 struct key_vector
*node1
= get_child(oldtnode
, --i
);
664 struct key_vector
*node0
= get_child(oldtnode
, --i
);
665 struct key_vector
*inode
;
667 /* At least one of the children is empty */
668 if (!node1
|| !node0
) {
669 put_child(tn
, i
/ 2, node1
? : node0
);
673 /* Two nonempty children */
674 inode
= tnode_new(node0
->key
, oldtnode
->pos
, 1);
677 tnode_free_append(tn
, inode
);
679 /* initialize pointers out of node */
680 put_child(inode
, 1, node1
);
681 put_child(inode
, 0, node0
);
682 NODE_INIT_PARENT(inode
, tn
);
684 /* link parent to node */
685 put_child(tn
, i
/ 2, inode
);
688 /* setup the parent pointers into and out of this node */
689 return replace(t
, oldtnode
, tn
);
691 /* all pointers should be clean so we are done */
697 static struct key_vector
*collapse(struct trie
*t
,
698 struct key_vector
*oldtnode
)
700 struct key_vector
*n
, *tp
;
703 /* scan the tnode looking for that one child that might still exist */
704 for (n
= NULL
, i
= child_length(oldtnode
); !n
&& i
;)
705 n
= get_child(oldtnode
, --i
);
707 /* compress one level */
708 tp
= node_parent(oldtnode
);
709 put_child_root(tp
, oldtnode
->key
, n
);
710 node_set_parent(n
, tp
);
718 static unsigned char update_suffix(struct key_vector
*tn
)
720 unsigned char slen
= tn
->pos
;
721 unsigned long stride
, i
;
722 unsigned char slen_max
;
724 /* only vector 0 can have a suffix length greater than or equal to
725 * tn->pos + tn->bits, the second highest node will have a suffix
726 * length at most of tn->pos + tn->bits - 1
728 slen_max
= min_t(unsigned char, tn
->pos
+ tn
->bits
- 1, tn
->slen
);
730 /* search though the list of children looking for nodes that might
731 * have a suffix greater than the one we currently have. This is
732 * why we start with a stride of 2 since a stride of 1 would
733 * represent the nodes with suffix length equal to tn->pos
735 for (i
= 0, stride
= 0x2ul
; i
< child_length(tn
); i
+= stride
) {
736 struct key_vector
*n
= get_child(tn
, i
);
738 if (!n
|| (n
->slen
<= slen
))
741 /* update stride and slen based on new value */
742 stride
<<= (n
->slen
- slen
);
746 /* stop searching if we have hit the maximum possible value */
747 if (slen
>= slen_max
)
756 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
757 * the Helsinki University of Technology and Matti Tikkanen of Nokia
758 * Telecommunications, page 6:
759 * "A node is doubled if the ratio of non-empty children to all
760 * children in the *doubled* node is at least 'high'."
762 * 'high' in this instance is the variable 'inflate_threshold'. It
763 * is expressed as a percentage, so we multiply it with
764 * child_length() and instead of multiplying by 2 (since the
765 * child array will be doubled by inflate()) and multiplying
766 * the left-hand side by 100 (to handle the percentage thing) we
767 * multiply the left-hand side by 50.
769 * The left-hand side may look a bit weird: child_length(tn)
770 * - tn->empty_children is of course the number of non-null children
771 * in the current node. tn->full_children is the number of "full"
772 * children, that is non-null tnodes with a skip value of 0.
773 * All of those will be doubled in the resulting inflated tnode, so
774 * we just count them one extra time here.
776 * A clearer way to write this would be:
778 * to_be_doubled = tn->full_children;
779 * not_to_be_doubled = child_length(tn) - tn->empty_children -
782 * new_child_length = child_length(tn) * 2;
784 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
786 * if (new_fill_factor >= inflate_threshold)
788 * ...and so on, tho it would mess up the while () loop.
791 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
795 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
796 * inflate_threshold * new_child_length
798 * expand not_to_be_doubled and to_be_doubled, and shorten:
799 * 100 * (child_length(tn) - tn->empty_children +
800 * tn->full_children) >= inflate_threshold * new_child_length
802 * expand new_child_length:
803 * 100 * (child_length(tn) - tn->empty_children +
804 * tn->full_children) >=
805 * inflate_threshold * child_length(tn) * 2
808 * 50 * (tn->full_children + child_length(tn) -
809 * tn->empty_children) >= inflate_threshold *
813 static inline bool should_inflate(struct key_vector
*tp
, struct key_vector
*tn
)
815 unsigned long used
= child_length(tn
);
816 unsigned long threshold
= used
;
818 /* Keep root node larger */
819 threshold
*= IS_TRIE(tp
) ? inflate_threshold_root
: inflate_threshold
;
820 used
-= tn_info(tn
)->empty_children
;
821 used
+= tn_info(tn
)->full_children
;
823 /* if bits == KEYLENGTH then pos = 0, and will fail below */
825 return (used
> 1) && tn
->pos
&& ((50 * used
) >= threshold
);
828 static inline bool should_halve(struct key_vector
*tp
, struct key_vector
*tn
)
830 unsigned long used
= child_length(tn
);
831 unsigned long threshold
= used
;
833 /* Keep root node larger */
834 threshold
*= IS_TRIE(tp
) ? halve_threshold_root
: halve_threshold
;
835 used
-= tn_info(tn
)->empty_children
;
837 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
839 return (used
> 1) && (tn
->bits
> 1) && ((100 * used
) < threshold
);
842 static inline bool should_collapse(struct key_vector
*tn
)
844 unsigned long used
= child_length(tn
);
846 used
-= tn_info(tn
)->empty_children
;
848 /* account for bits == KEYLENGTH case */
849 if ((tn
->bits
== KEYLENGTH
) && tn_info(tn
)->full_children
)
852 /* One child or none, time to drop us from the trie */
857 static struct key_vector
*resize(struct trie
*t
, struct key_vector
*tn
)
859 #ifdef CONFIG_IP_FIB_TRIE_STATS
860 struct trie_use_stats __percpu
*stats
= t
->stats
;
862 struct key_vector
*tp
= node_parent(tn
);
863 unsigned long cindex
= get_index(tn
->key
, tp
);
864 int max_work
= MAX_WORK
;
866 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
867 tn
, inflate_threshold
, halve_threshold
);
869 /* track the tnode via the pointer from the parent instead of
870 * doing it ourselves. This way we can let RCU fully do its
871 * thing without us interfering
873 BUG_ON(tn
!= get_child(tp
, cindex
));
875 /* Double as long as the resulting node has a number of
876 * nonempty nodes that are above the threshold.
878 while (should_inflate(tp
, tn
) && max_work
) {
881 #ifdef CONFIG_IP_FIB_TRIE_STATS
882 this_cpu_inc(stats
->resize_node_skipped
);
888 tn
= get_child(tp
, cindex
);
891 /* update parent in case inflate failed */
892 tp
= node_parent(tn
);
894 /* Return if at least one inflate is run */
895 if (max_work
!= MAX_WORK
)
898 /* Halve as long as the number of empty children in this
899 * node is above threshold.
901 while (should_halve(tp
, tn
) && max_work
) {
904 #ifdef CONFIG_IP_FIB_TRIE_STATS
905 this_cpu_inc(stats
->resize_node_skipped
);
911 tn
= get_child(tp
, cindex
);
914 /* Only one child remains */
915 if (should_collapse(tn
))
916 return collapse(t
, tn
);
918 /* update parent in case halve failed */
919 return node_parent(tn
);
922 static void node_pull_suffix(struct key_vector
*tn
, unsigned char slen
)
924 unsigned char node_slen
= tn
->slen
;
926 while ((node_slen
> tn
->pos
) && (node_slen
> slen
)) {
927 slen
= update_suffix(tn
);
928 if (node_slen
== slen
)
931 tn
= node_parent(tn
);
932 node_slen
= tn
->slen
;
936 static void node_push_suffix(struct key_vector
*tn
, unsigned char slen
)
938 while (tn
->slen
< slen
) {
940 tn
= node_parent(tn
);
944 /* rcu_read_lock needs to be hold by caller from readside */
945 static struct key_vector
*fib_find_node(struct trie
*t
,
946 struct key_vector
**tp
, u32 key
)
948 struct key_vector
*pn
, *n
= t
->kv
;
949 unsigned long index
= 0;
953 n
= get_child_rcu(n
, index
);
958 index
= get_cindex(key
, n
);
960 /* This bit of code is a bit tricky but it combines multiple
961 * checks into a single check. The prefix consists of the
962 * prefix plus zeros for the bits in the cindex. The index
963 * is the difference between the key and this value. From
964 * this we can actually derive several pieces of data.
965 * if (index >= (1ul << bits))
966 * we have a mismatch in skip bits and failed
968 * we know the value is cindex
970 * This check is safe even if bits == KEYLENGTH due to the
971 * fact that we can only allocate a node with 32 bits if a
972 * long is greater than 32 bits.
974 if (index
>= (1ul << n
->bits
)) {
979 /* keep searching until we find a perfect match leaf or NULL */
980 } while (IS_TNODE(n
));
987 /* Return the first fib alias matching TOS with
988 * priority less than or equal to PRIO.
990 static struct fib_alias
*fib_find_alias(struct hlist_head
*fah
, u8 slen
,
991 u8 tos
, u32 prio
, u32 tb_id
)
993 struct fib_alias
*fa
;
998 hlist_for_each_entry(fa
, fah
, fa_list
) {
999 if (fa
->fa_slen
< slen
)
1001 if (fa
->fa_slen
!= slen
)
1003 if (fa
->tb_id
> tb_id
)
1005 if (fa
->tb_id
!= tb_id
)
1007 if (fa
->fa_tos
> tos
)
1009 if (fa
->fa_info
->fib_priority
>= prio
|| fa
->fa_tos
< tos
)
1016 static void trie_rebalance(struct trie
*t
, struct key_vector
*tn
)
1018 while (!IS_TRIE(tn
))
1022 static int fib_insert_node(struct trie
*t
, struct key_vector
*tp
,
1023 struct fib_alias
*new, t_key key
)
1025 struct key_vector
*n
, *l
;
1027 l
= leaf_new(key
, new);
1031 /* retrieve child from parent node */
1032 n
= get_child(tp
, get_index(key
, tp
));
1034 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1036 * Add a new tnode here
1037 * first tnode need some special handling
1038 * leaves us in position for handling as case 3
1041 struct key_vector
*tn
;
1043 tn
= tnode_new(key
, __fls(key
^ n
->key
), 1);
1047 /* initialize routes out of node */
1048 NODE_INIT_PARENT(tn
, tp
);
1049 put_child(tn
, get_index(key
, tn
) ^ 1, n
);
1051 /* start adding routes into the node */
1052 put_child_root(tp
, key
, tn
);
1053 node_set_parent(n
, tn
);
1055 /* parent now has a NULL spot where the leaf can go */
1059 /* Case 3: n is NULL, and will just insert a new leaf */
1060 node_push_suffix(tp
, new->fa_slen
);
1061 NODE_INIT_PARENT(l
, tp
);
1062 put_child_root(tp
, key
, l
);
1063 trie_rebalance(t
, tp
);
1072 static int fib_insert_alias(struct trie
*t
, struct key_vector
*tp
,
1073 struct key_vector
*l
, struct fib_alias
*new,
1074 struct fib_alias
*fa
, t_key key
)
1077 return fib_insert_node(t
, tp
, new, key
);
1080 hlist_add_before_rcu(&new->fa_list
, &fa
->fa_list
);
1082 struct fib_alias
*last
;
1084 hlist_for_each_entry(last
, &l
->leaf
, fa_list
) {
1085 if (new->fa_slen
< last
->fa_slen
)
1087 if ((new->fa_slen
== last
->fa_slen
) &&
1088 (new->tb_id
> last
->tb_id
))
1094 hlist_add_behind_rcu(&new->fa_list
, &fa
->fa_list
);
1096 hlist_add_head_rcu(&new->fa_list
, &l
->leaf
);
1099 /* if we added to the tail node then we need to update slen */
1100 if (l
->slen
< new->fa_slen
) {
1101 l
->slen
= new->fa_slen
;
1102 node_push_suffix(tp
, new->fa_slen
);
1108 /* Caller must hold RTNL. */
1109 int fib_table_insert(struct net
*net
, struct fib_table
*tb
,
1110 struct fib_config
*cfg
)
1112 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1113 struct fib_alias
*fa
, *new_fa
;
1114 struct key_vector
*l
, *tp
;
1115 u16 nlflags
= NLM_F_EXCL
;
1116 struct fib_info
*fi
;
1117 u8 plen
= cfg
->fc_dst_len
;
1118 u8 slen
= KEYLENGTH
- plen
;
1119 u8 tos
= cfg
->fc_tos
;
1123 if (plen
> KEYLENGTH
)
1126 key
= ntohl(cfg
->fc_dst
);
1128 pr_debug("Insert table=%u %08x/%d\n", tb
->tb_id
, key
, plen
);
1130 if ((plen
< KEYLENGTH
) && (key
<< plen
))
1133 fi
= fib_create_info(cfg
);
1139 l
= fib_find_node(t
, &tp
, key
);
1140 fa
= l
? fib_find_alias(&l
->leaf
, slen
, tos
, fi
->fib_priority
,
1143 /* Now fa, if non-NULL, points to the first fib alias
1144 * with the same keys [prefix,tos,priority], if such key already
1145 * exists or to the node before which we will insert new one.
1147 * If fa is NULL, we will need to allocate a new one and
1148 * insert to the tail of the section matching the suffix length
1152 if (fa
&& fa
->fa_tos
== tos
&&
1153 fa
->fa_info
->fib_priority
== fi
->fib_priority
) {
1154 struct fib_alias
*fa_first
, *fa_match
;
1157 if (cfg
->fc_nlflags
& NLM_F_EXCL
)
1160 nlflags
&= ~NLM_F_EXCL
;
1163 * 1. Find exact match for type, scope, fib_info to avoid
1165 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1169 hlist_for_each_entry_from(fa
, fa_list
) {
1170 if ((fa
->fa_slen
!= slen
) ||
1171 (fa
->tb_id
!= tb
->tb_id
) ||
1172 (fa
->fa_tos
!= tos
))
1174 if (fa
->fa_info
->fib_priority
!= fi
->fib_priority
)
1176 if (fa
->fa_type
== cfg
->fc_type
&&
1177 fa
->fa_info
== fi
) {
1183 if (cfg
->fc_nlflags
& NLM_F_REPLACE
) {
1184 struct fib_info
*fi_drop
;
1187 nlflags
|= NLM_F_REPLACE
;
1195 new_fa
= kmem_cache_alloc(fn_alias_kmem
, GFP_KERNEL
);
1199 fi_drop
= fa
->fa_info
;
1200 new_fa
->fa_tos
= fa
->fa_tos
;
1201 new_fa
->fa_info
= fi
;
1202 new_fa
->fa_type
= cfg
->fc_type
;
1203 state
= fa
->fa_state
;
1204 new_fa
->fa_state
= state
& ~FA_S_ACCESSED
;
1205 new_fa
->fa_slen
= fa
->fa_slen
;
1206 new_fa
->tb_id
= tb
->tb_id
;
1207 new_fa
->fa_default
= -1;
1209 hlist_replace_rcu(&fa
->fa_list
, &new_fa
->fa_list
);
1211 alias_free_mem_rcu(fa
);
1213 fib_release_info(fi_drop
);
1214 if (state
& FA_S_ACCESSED
)
1215 rt_cache_flush(cfg
->fc_nlinfo
.nl_net
);
1217 call_fib_entry_notifiers(net
, FIB_EVENT_ENTRY_ADD
,
1219 new_fa
->fa_tos
, cfg
->fc_type
,
1220 tb
->tb_id
, cfg
->fc_nlflags
);
1221 rtmsg_fib(RTM_NEWROUTE
, htonl(key
), new_fa
, plen
,
1222 tb
->tb_id
, &cfg
->fc_nlinfo
, nlflags
);
1226 /* Error if we find a perfect match which
1227 * uses the same scope, type, and nexthop
1233 if (cfg
->fc_nlflags
& NLM_F_APPEND
)
1234 nlflags
|= NLM_F_APPEND
;
1239 if (!(cfg
->fc_nlflags
& NLM_F_CREATE
))
1242 nlflags
|= NLM_F_CREATE
;
1244 new_fa
= kmem_cache_alloc(fn_alias_kmem
, GFP_KERNEL
);
1248 new_fa
->fa_info
= fi
;
1249 new_fa
->fa_tos
= tos
;
1250 new_fa
->fa_type
= cfg
->fc_type
;
1251 new_fa
->fa_state
= 0;
1252 new_fa
->fa_slen
= slen
;
1253 new_fa
->tb_id
= tb
->tb_id
;
1254 new_fa
->fa_default
= -1;
1256 /* Insert new entry to the list. */
1257 err
= fib_insert_alias(t
, tp
, l
, new_fa
, fa
, key
);
1259 goto out_free_new_fa
;
1262 tb
->tb_num_default
++;
1264 rt_cache_flush(cfg
->fc_nlinfo
.nl_net
);
1265 call_fib_entry_notifiers(net
, FIB_EVENT_ENTRY_ADD
, key
, plen
, fi
, tos
,
1266 cfg
->fc_type
, tb
->tb_id
, cfg
->fc_nlflags
);
1267 rtmsg_fib(RTM_NEWROUTE
, htonl(key
), new_fa
, plen
, new_fa
->tb_id
,
1268 &cfg
->fc_nlinfo
, nlflags
);
1273 kmem_cache_free(fn_alias_kmem
, new_fa
);
1275 fib_release_info(fi
);
1280 static inline t_key
prefix_mismatch(t_key key
, struct key_vector
*n
)
1282 t_key prefix
= n
->key
;
1284 return (key
^ prefix
) & (prefix
| -prefix
);
1287 /* should be called with rcu_read_lock */
1288 int fib_table_lookup(struct fib_table
*tb
, const struct flowi4
*flp
,
1289 struct fib_result
*res
, int fib_flags
)
1291 struct trie
*t
= (struct trie
*) tb
->tb_data
;
1292 #ifdef CONFIG_IP_FIB_TRIE_STATS
1293 struct trie_use_stats __percpu
*stats
= t
->stats
;
1295 const t_key key
= ntohl(flp
->daddr
);
1296 struct key_vector
*n
, *pn
;
1297 struct fib_alias
*fa
;
1298 unsigned long index
;
1301 trace_fib_table_lookup(tb
->tb_id
, flp
);
1306 n
= get_child_rcu(pn
, cindex
);
1310 #ifdef CONFIG_IP_FIB_TRIE_STATS
1311 this_cpu_inc(stats
->gets
);
1314 /* Step 1: Travel to the longest prefix match in the trie */
1316 index
= get_cindex(key
, n
);
1318 /* This bit of code is a bit tricky but it combines multiple
1319 * checks into a single check. The prefix consists of the
1320 * prefix plus zeros for the "bits" in the prefix. The index
1321 * is the difference between the key and this value. From
1322 * this we can actually derive several pieces of data.
1323 * if (index >= (1ul << bits))
1324 * we have a mismatch in skip bits and failed
1326 * we know the value is cindex
1328 * This check is safe even if bits == KEYLENGTH due to the
1329 * fact that we can only allocate a node with 32 bits if a
1330 * long is greater than 32 bits.
1332 if (index
>= (1ul << n
->bits
))
1335 /* we have found a leaf. Prefixes have already been compared */
1339 /* only record pn and cindex if we are going to be chopping
1340 * bits later. Otherwise we are just wasting cycles.
1342 if (n
->slen
> n
->pos
) {
1347 n
= get_child_rcu(n
, index
);
1352 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1354 /* record the pointer where our next node pointer is stored */
1355 struct key_vector __rcu
**cptr
= n
->tnode
;
1357 /* This test verifies that none of the bits that differ
1358 * between the key and the prefix exist in the region of
1359 * the lsb and higher in the prefix.
1361 if (unlikely(prefix_mismatch(key
, n
)) || (n
->slen
== n
->pos
))
1364 /* exit out and process leaf */
1365 if (unlikely(IS_LEAF(n
)))
1368 /* Don't bother recording parent info. Since we are in
1369 * prefix match mode we will have to come back to wherever
1370 * we started this traversal anyway
1373 while ((n
= rcu_dereference(*cptr
)) == NULL
) {
1375 #ifdef CONFIG_IP_FIB_TRIE_STATS
1377 this_cpu_inc(stats
->null_node_hit
);
1379 /* If we are at cindex 0 there are no more bits for
1380 * us to strip at this level so we must ascend back
1381 * up one level to see if there are any more bits to
1382 * be stripped there.
1385 t_key pkey
= pn
->key
;
1387 /* If we don't have a parent then there is
1388 * nothing for us to do as we do not have any
1389 * further nodes to parse.
1393 #ifdef CONFIG_IP_FIB_TRIE_STATS
1394 this_cpu_inc(stats
->backtrack
);
1396 /* Get Child's index */
1397 pn
= node_parent_rcu(pn
);
1398 cindex
= get_index(pkey
, pn
);
1401 /* strip the least significant bit from the cindex */
1402 cindex
&= cindex
- 1;
1404 /* grab pointer for next child node */
1405 cptr
= &pn
->tnode
[cindex
];
1410 /* this line carries forward the xor from earlier in the function */
1411 index
= key
^ n
->key
;
1413 /* Step 3: Process the leaf, if that fails fall back to backtracing */
1414 hlist_for_each_entry_rcu(fa
, &n
->leaf
, fa_list
) {
1415 struct fib_info
*fi
= fa
->fa_info
;
1418 if ((BITS_PER_LONG
> KEYLENGTH
) || (fa
->fa_slen
< KEYLENGTH
)) {
1419 if (index
>= (1ul << fa
->fa_slen
))
1422 if (fa
->fa_tos
&& fa
->fa_tos
!= flp
->flowi4_tos
)
1426 if (fa
->fa_info
->fib_scope
< flp
->flowi4_scope
)
1428 fib_alias_accessed(fa
);
1429 err
= fib_props
[fa
->fa_type
].error
;
1430 if (unlikely(err
< 0)) {
1431 #ifdef CONFIG_IP_FIB_TRIE_STATS
1432 this_cpu_inc(stats
->semantic_match_passed
);
1436 if (fi
->fib_flags
& RTNH_F_DEAD
)
1438 for (nhsel
= 0; nhsel
< fi
->fib_nhs
; nhsel
++) {
1439 const struct fib_nh
*nh
= &fi
->fib_nh
[nhsel
];
1440 struct in_device
*in_dev
= __in_dev_get_rcu(nh
->nh_dev
);
1442 if (nh
->nh_flags
& RTNH_F_DEAD
)
1445 IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev
) &&
1446 nh
->nh_flags
& RTNH_F_LINKDOWN
&&
1447 !(fib_flags
& FIB_LOOKUP_IGNORE_LINKSTATE
))
1449 if (!(flp
->flowi4_flags
& FLOWI_FLAG_SKIP_NH_OIF
)) {
1450 if (flp
->flowi4_oif
&&
1451 flp
->flowi4_oif
!= nh
->nh_oif
)
1455 if (!(fib_flags
& FIB_LOOKUP_NOREF
))
1456 atomic_inc(&fi
->fib_clntref
);
1458 res
->prefixlen
= KEYLENGTH
- fa
->fa_slen
;
1459 res
->nh_sel
= nhsel
;
1460 res
->type
= fa
->fa_type
;
1461 res
->scope
= fi
->fib_scope
;
1464 res
->fa_head
= &n
->leaf
;
1465 #ifdef CONFIG_IP_FIB_TRIE_STATS
1466 this_cpu_inc(stats
->semantic_match_passed
);
1468 trace_fib_table_lookup_nh(nh
);
1473 #ifdef CONFIG_IP_FIB_TRIE_STATS
1474 this_cpu_inc(stats
->semantic_match_miss
);
1478 EXPORT_SYMBOL_GPL(fib_table_lookup
);
1480 static void fib_remove_alias(struct trie
*t
, struct key_vector
*tp
,
1481 struct key_vector
*l
, struct fib_alias
*old
)
1483 /* record the location of the previous list_info entry */
1484 struct hlist_node
**pprev
= old
->fa_list
.pprev
;
1485 struct fib_alias
*fa
= hlist_entry(pprev
, typeof(*fa
), fa_list
.next
);
1487 /* remove the fib_alias from the list */
1488 hlist_del_rcu(&old
->fa_list
);
1490 /* if we emptied the list this leaf will be freed and we can sort
1491 * out parent suffix lengths as a part of trie_rebalance
1493 if (hlist_empty(&l
->leaf
)) {
1494 if (tp
->slen
== l
->slen
)
1495 node_pull_suffix(tp
, tp
->pos
);
1496 put_child_root(tp
, l
->key
, NULL
);
1498 trie_rebalance(t
, tp
);
1502 /* only access fa if it is pointing at the last valid hlist_node */
1506 /* update the trie with the latest suffix length */
1507 l
->slen
= fa
->fa_slen
;
1508 node_pull_suffix(tp
, fa
->fa_slen
);
1511 /* Caller must hold RTNL. */
1512 int fib_table_delete(struct net
*net
, struct fib_table
*tb
,
1513 struct fib_config
*cfg
)
1515 struct trie
*t
= (struct trie
*) tb
->tb_data
;
1516 struct fib_alias
*fa
, *fa_to_delete
;
1517 struct key_vector
*l
, *tp
;
1518 u8 plen
= cfg
->fc_dst_len
;
1519 u8 slen
= KEYLENGTH
- plen
;
1520 u8 tos
= cfg
->fc_tos
;
1523 if (plen
> KEYLENGTH
)
1526 key
= ntohl(cfg
->fc_dst
);
1528 if ((plen
< KEYLENGTH
) && (key
<< plen
))
1531 l
= fib_find_node(t
, &tp
, key
);
1535 fa
= fib_find_alias(&l
->leaf
, slen
, tos
, 0, tb
->tb_id
);
1539 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key
, plen
, tos
, t
);
1541 fa_to_delete
= NULL
;
1542 hlist_for_each_entry_from(fa
, fa_list
) {
1543 struct fib_info
*fi
= fa
->fa_info
;
1545 if ((fa
->fa_slen
!= slen
) ||
1546 (fa
->tb_id
!= tb
->tb_id
) ||
1547 (fa
->fa_tos
!= tos
))
1550 if ((!cfg
->fc_type
|| fa
->fa_type
== cfg
->fc_type
) &&
1551 (cfg
->fc_scope
== RT_SCOPE_NOWHERE
||
1552 fa
->fa_info
->fib_scope
== cfg
->fc_scope
) &&
1553 (!cfg
->fc_prefsrc
||
1554 fi
->fib_prefsrc
== cfg
->fc_prefsrc
) &&
1555 (!cfg
->fc_protocol
||
1556 fi
->fib_protocol
== cfg
->fc_protocol
) &&
1557 fib_nh_match(cfg
, fi
) == 0) {
1566 call_fib_entry_notifiers(net
, FIB_EVENT_ENTRY_DEL
, key
, plen
,
1567 fa_to_delete
->fa_info
, tos
, cfg
->fc_type
,
1569 rtmsg_fib(RTM_DELROUTE
, htonl(key
), fa_to_delete
, plen
, tb
->tb_id
,
1570 &cfg
->fc_nlinfo
, 0);
1573 tb
->tb_num_default
--;
1575 fib_remove_alias(t
, tp
, l
, fa_to_delete
);
1577 if (fa_to_delete
->fa_state
& FA_S_ACCESSED
)
1578 rt_cache_flush(cfg
->fc_nlinfo
.nl_net
);
1580 fib_release_info(fa_to_delete
->fa_info
);
1581 alias_free_mem_rcu(fa_to_delete
);
1585 /* Scan for the next leaf starting at the provided key value */
1586 static struct key_vector
*leaf_walk_rcu(struct key_vector
**tn
, t_key key
)
1588 struct key_vector
*pn
, *n
= *tn
;
1589 unsigned long cindex
;
1591 /* this loop is meant to try and find the key in the trie */
1593 /* record parent and next child index */
1595 cindex
= (key
> pn
->key
) ? get_index(key
, pn
) : 0;
1597 if (cindex
>> pn
->bits
)
1600 /* descend into the next child */
1601 n
= get_child_rcu(pn
, cindex
++);
1605 /* guarantee forward progress on the keys */
1606 if (IS_LEAF(n
) && (n
->key
>= key
))
1608 } while (IS_TNODE(n
));
1610 /* this loop will search for the next leaf with a greater key */
1611 while (!IS_TRIE(pn
)) {
1612 /* if we exhausted the parent node we will need to climb */
1613 if (cindex
>= (1ul << pn
->bits
)) {
1614 t_key pkey
= pn
->key
;
1616 pn
= node_parent_rcu(pn
);
1617 cindex
= get_index(pkey
, pn
) + 1;
1621 /* grab the next available node */
1622 n
= get_child_rcu(pn
, cindex
++);
1626 /* no need to compare keys since we bumped the index */
1630 /* Rescan start scanning in new node */
1636 return NULL
; /* Root of trie */
1638 /* if we are at the limit for keys just return NULL for the tnode */
1643 static void fib_trie_free(struct fib_table
*tb
)
1645 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1646 struct key_vector
*pn
= t
->kv
;
1647 unsigned long cindex
= 1;
1648 struct hlist_node
*tmp
;
1649 struct fib_alias
*fa
;
1651 /* walk trie in reverse order and free everything */
1653 struct key_vector
*n
;
1656 t_key pkey
= pn
->key
;
1662 pn
= node_parent(pn
);
1664 /* drop emptied tnode */
1665 put_child_root(pn
, n
->key
, NULL
);
1668 cindex
= get_index(pkey
, pn
);
1673 /* grab the next available node */
1674 n
= get_child(pn
, cindex
);
1679 /* record pn and cindex for leaf walking */
1681 cindex
= 1ul << n
->bits
;
1686 hlist_for_each_entry_safe(fa
, tmp
, &n
->leaf
, fa_list
) {
1687 hlist_del_rcu(&fa
->fa_list
);
1688 alias_free_mem_rcu(fa
);
1691 put_child_root(pn
, n
->key
, NULL
);
1695 #ifdef CONFIG_IP_FIB_TRIE_STATS
1696 free_percpu(t
->stats
);
1701 struct fib_table
*fib_trie_unmerge(struct fib_table
*oldtb
)
1703 struct trie
*ot
= (struct trie
*)oldtb
->tb_data
;
1704 struct key_vector
*l
, *tp
= ot
->kv
;
1705 struct fib_table
*local_tb
;
1706 struct fib_alias
*fa
;
1710 if (oldtb
->tb_data
== oldtb
->__data
)
1713 local_tb
= fib_trie_table(RT_TABLE_LOCAL
, NULL
);
1717 lt
= (struct trie
*)local_tb
->tb_data
;
1719 while ((l
= leaf_walk_rcu(&tp
, key
)) != NULL
) {
1720 struct key_vector
*local_l
= NULL
, *local_tp
;
1722 hlist_for_each_entry_rcu(fa
, &l
->leaf
, fa_list
) {
1723 struct fib_alias
*new_fa
;
1725 if (local_tb
->tb_id
!= fa
->tb_id
)
1728 /* clone fa for new local table */
1729 new_fa
= kmem_cache_alloc(fn_alias_kmem
, GFP_KERNEL
);
1733 memcpy(new_fa
, fa
, sizeof(*fa
));
1735 /* insert clone into table */
1737 local_l
= fib_find_node(lt
, &local_tp
, l
->key
);
1739 if (fib_insert_alias(lt
, local_tp
, local_l
, new_fa
,
1741 kmem_cache_free(fn_alias_kmem
, new_fa
);
1746 /* stop loop if key wrapped back to 0 */
1754 fib_trie_free(local_tb
);
1759 /* Caller must hold RTNL */
1760 void fib_table_flush_external(struct fib_table
*tb
)
1762 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1763 struct key_vector
*pn
= t
->kv
;
1764 unsigned long cindex
= 1;
1765 struct hlist_node
*tmp
;
1766 struct fib_alias
*fa
;
1768 /* walk trie in reverse order */
1770 unsigned char slen
= 0;
1771 struct key_vector
*n
;
1774 t_key pkey
= pn
->key
;
1776 /* cannot resize the trie vector */
1780 /* update the suffix to address pulled leaves */
1781 if (pn
->slen
> pn
->pos
)
1784 /* resize completed node */
1786 cindex
= get_index(pkey
, pn
);
1791 /* grab the next available node */
1792 n
= get_child(pn
, cindex
);
1797 /* record pn and cindex for leaf walking */
1799 cindex
= 1ul << n
->bits
;
1804 hlist_for_each_entry_safe(fa
, tmp
, &n
->leaf
, fa_list
) {
1805 /* if alias was cloned to local then we just
1806 * need to remove the local copy from main
1808 if (tb
->tb_id
!= fa
->tb_id
) {
1809 hlist_del_rcu(&fa
->fa_list
);
1810 alias_free_mem_rcu(fa
);
1814 /* record local slen */
1818 /* update leaf slen */
1821 if (hlist_empty(&n
->leaf
)) {
1822 put_child_root(pn
, n
->key
, NULL
);
1828 /* Caller must hold RTNL. */
1829 int fib_table_flush(struct net
*net
, struct fib_table
*tb
)
1831 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1832 struct key_vector
*pn
= t
->kv
;
1833 unsigned long cindex
= 1;
1834 struct hlist_node
*tmp
;
1835 struct fib_alias
*fa
;
1838 /* walk trie in reverse order */
1840 unsigned char slen
= 0;
1841 struct key_vector
*n
;
1844 t_key pkey
= pn
->key
;
1846 /* cannot resize the trie vector */
1850 /* update the suffix to address pulled leaves */
1851 if (pn
->slen
> pn
->pos
)
1854 /* resize completed node */
1856 cindex
= get_index(pkey
, pn
);
1861 /* grab the next available node */
1862 n
= get_child(pn
, cindex
);
1867 /* record pn and cindex for leaf walking */
1869 cindex
= 1ul << n
->bits
;
1874 hlist_for_each_entry_safe(fa
, tmp
, &n
->leaf
, fa_list
) {
1875 struct fib_info
*fi
= fa
->fa_info
;
1877 if (!fi
|| !(fi
->fib_flags
& RTNH_F_DEAD
)) {
1882 call_fib_entry_notifiers(net
, FIB_EVENT_ENTRY_DEL
,
1884 KEYLENGTH
- fa
->fa_slen
,
1885 fi
, fa
->fa_tos
, fa
->fa_type
,
1887 hlist_del_rcu(&fa
->fa_list
);
1888 fib_release_info(fa
->fa_info
);
1889 alias_free_mem_rcu(fa
);
1893 /* update leaf slen */
1896 if (hlist_empty(&n
->leaf
)) {
1897 put_child_root(pn
, n
->key
, NULL
);
1902 pr_debug("trie_flush found=%d\n", found
);
1906 static void __trie_free_rcu(struct rcu_head
*head
)
1908 struct fib_table
*tb
= container_of(head
, struct fib_table
, rcu
);
1909 #ifdef CONFIG_IP_FIB_TRIE_STATS
1910 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1912 if (tb
->tb_data
== tb
->__data
)
1913 free_percpu(t
->stats
);
1914 #endif /* CONFIG_IP_FIB_TRIE_STATS */
1918 void fib_free_table(struct fib_table
*tb
)
1920 call_rcu(&tb
->rcu
, __trie_free_rcu
);
1923 static int fn_trie_dump_leaf(struct key_vector
*l
, struct fib_table
*tb
,
1924 struct sk_buff
*skb
, struct netlink_callback
*cb
)
1926 __be32 xkey
= htonl(l
->key
);
1927 struct fib_alias
*fa
;
1933 /* rcu_read_lock is hold by caller */
1934 hlist_for_each_entry_rcu(fa
, &l
->leaf
, fa_list
) {
1940 if (tb
->tb_id
!= fa
->tb_id
) {
1945 if (fib_dump_info(skb
, NETLINK_CB(cb
->skb
).portid
,
1951 KEYLENGTH
- fa
->fa_slen
,
1953 fa
->fa_info
, NLM_F_MULTI
) < 0) {
1964 /* rcu_read_lock needs to be hold by caller from readside */
1965 int fib_table_dump(struct fib_table
*tb
, struct sk_buff
*skb
,
1966 struct netlink_callback
*cb
)
1968 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1969 struct key_vector
*l
, *tp
= t
->kv
;
1970 /* Dump starting at last key.
1971 * Note: 0.0.0.0/0 (ie default) is first key.
1973 int count
= cb
->args
[2];
1974 t_key key
= cb
->args
[3];
1976 while ((l
= leaf_walk_rcu(&tp
, key
)) != NULL
) {
1977 if (fn_trie_dump_leaf(l
, tb
, skb
, cb
) < 0) {
1979 cb
->args
[2] = count
;
1986 memset(&cb
->args
[4], 0,
1987 sizeof(cb
->args
) - 4*sizeof(cb
->args
[0]));
1989 /* stop loop if key wrapped back to 0 */
1995 cb
->args
[2] = count
;
2000 void __init
fib_trie_init(void)
2002 fn_alias_kmem
= kmem_cache_create("ip_fib_alias",
2003 sizeof(struct fib_alias
),
2004 0, SLAB_PANIC
, NULL
);
2006 trie_leaf_kmem
= kmem_cache_create("ip_fib_trie",
2008 0, SLAB_PANIC
, NULL
);
2011 struct fib_table
*fib_trie_table(u32 id
, struct fib_table
*alias
)
2013 struct fib_table
*tb
;
2015 size_t sz
= sizeof(*tb
);
2018 sz
+= sizeof(struct trie
);
2020 tb
= kzalloc(sz
, GFP_KERNEL
);
2025 tb
->tb_num_default
= 0;
2026 tb
->tb_data
= (alias
? alias
->__data
: tb
->__data
);
2031 t
= (struct trie
*) tb
->tb_data
;
2032 t
->kv
[0].pos
= KEYLENGTH
;
2033 t
->kv
[0].slen
= KEYLENGTH
;
2034 #ifdef CONFIG_IP_FIB_TRIE_STATS
2035 t
->stats
= alloc_percpu(struct trie_use_stats
);
2045 #ifdef CONFIG_PROC_FS
2046 /* Depth first Trie walk iterator */
2047 struct fib_trie_iter
{
2048 struct seq_net_private p
;
2049 struct fib_table
*tb
;
2050 struct key_vector
*tnode
;
2055 static struct key_vector
*fib_trie_get_next(struct fib_trie_iter
*iter
)
2057 unsigned long cindex
= iter
->index
;
2058 struct key_vector
*pn
= iter
->tnode
;
2061 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2062 iter
->tnode
, iter
->index
, iter
->depth
);
2064 while (!IS_TRIE(pn
)) {
2065 while (cindex
< child_length(pn
)) {
2066 struct key_vector
*n
= get_child_rcu(pn
, cindex
++);
2073 iter
->index
= cindex
;
2075 /* push down one level */
2084 /* Current node exhausted, pop back up */
2086 pn
= node_parent_rcu(pn
);
2087 cindex
= get_index(pkey
, pn
) + 1;
2091 /* record root node so further searches know we are done */
2098 static struct key_vector
*fib_trie_get_first(struct fib_trie_iter
*iter
,
2101 struct key_vector
*n
, *pn
;
2107 n
= rcu_dereference(pn
->tnode
[0]);
2124 static void trie_collect_stats(struct trie
*t
, struct trie_stat
*s
)
2126 struct key_vector
*n
;
2127 struct fib_trie_iter iter
;
2129 memset(s
, 0, sizeof(*s
));
2132 for (n
= fib_trie_get_first(&iter
, t
); n
; n
= fib_trie_get_next(&iter
)) {
2134 struct fib_alias
*fa
;
2137 s
->totdepth
+= iter
.depth
;
2138 if (iter
.depth
> s
->maxdepth
)
2139 s
->maxdepth
= iter
.depth
;
2141 hlist_for_each_entry_rcu(fa
, &n
->leaf
, fa_list
)
2145 if (n
->bits
< MAX_STAT_DEPTH
)
2146 s
->nodesizes
[n
->bits
]++;
2147 s
->nullpointers
+= tn_info(n
)->empty_children
;
2154 * This outputs /proc/net/fib_triestats
2156 static void trie_show_stats(struct seq_file
*seq
, struct trie_stat
*stat
)
2158 unsigned int i
, max
, pointers
, bytes
, avdepth
;
2161 avdepth
= stat
->totdepth
*100 / stat
->leaves
;
2165 seq_printf(seq
, "\tAver depth: %u.%02d\n",
2166 avdepth
/ 100, avdepth
% 100);
2167 seq_printf(seq
, "\tMax depth: %u\n", stat
->maxdepth
);
2169 seq_printf(seq
, "\tLeaves: %u\n", stat
->leaves
);
2170 bytes
= LEAF_SIZE
* stat
->leaves
;
2172 seq_printf(seq
, "\tPrefixes: %u\n", stat
->prefixes
);
2173 bytes
+= sizeof(struct fib_alias
) * stat
->prefixes
;
2175 seq_printf(seq
, "\tInternal nodes: %u\n\t", stat
->tnodes
);
2176 bytes
+= TNODE_SIZE(0) * stat
->tnodes
;
2178 max
= MAX_STAT_DEPTH
;
2179 while (max
> 0 && stat
->nodesizes
[max
-1] == 0)
2183 for (i
= 1; i
< max
; i
++)
2184 if (stat
->nodesizes
[i
] != 0) {
2185 seq_printf(seq
, " %u: %u", i
, stat
->nodesizes
[i
]);
2186 pointers
+= (1<<i
) * stat
->nodesizes
[i
];
2188 seq_putc(seq
, '\n');
2189 seq_printf(seq
, "\tPointers: %u\n", pointers
);
2191 bytes
+= sizeof(struct key_vector
*) * pointers
;
2192 seq_printf(seq
, "Null ptrs: %u\n", stat
->nullpointers
);
2193 seq_printf(seq
, "Total size: %u kB\n", (bytes
+ 1023) / 1024);
2196 #ifdef CONFIG_IP_FIB_TRIE_STATS
2197 static void trie_show_usage(struct seq_file
*seq
,
2198 const struct trie_use_stats __percpu
*stats
)
2200 struct trie_use_stats s
= { 0 };
2203 /* loop through all of the CPUs and gather up the stats */
2204 for_each_possible_cpu(cpu
) {
2205 const struct trie_use_stats
*pcpu
= per_cpu_ptr(stats
, cpu
);
2207 s
.gets
+= pcpu
->gets
;
2208 s
.backtrack
+= pcpu
->backtrack
;
2209 s
.semantic_match_passed
+= pcpu
->semantic_match_passed
;
2210 s
.semantic_match_miss
+= pcpu
->semantic_match_miss
;
2211 s
.null_node_hit
+= pcpu
->null_node_hit
;
2212 s
.resize_node_skipped
+= pcpu
->resize_node_skipped
;
2215 seq_printf(seq
, "\nCounters:\n---------\n");
2216 seq_printf(seq
, "gets = %u\n", s
.gets
);
2217 seq_printf(seq
, "backtracks = %u\n", s
.backtrack
);
2218 seq_printf(seq
, "semantic match passed = %u\n",
2219 s
.semantic_match_passed
);
2220 seq_printf(seq
, "semantic match miss = %u\n", s
.semantic_match_miss
);
2221 seq_printf(seq
, "null node hit= %u\n", s
.null_node_hit
);
2222 seq_printf(seq
, "skipped node resize = %u\n\n", s
.resize_node_skipped
);
2224 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2226 static void fib_table_print(struct seq_file
*seq
, struct fib_table
*tb
)
2228 if (tb
->tb_id
== RT_TABLE_LOCAL
)
2229 seq_puts(seq
, "Local:\n");
2230 else if (tb
->tb_id
== RT_TABLE_MAIN
)
2231 seq_puts(seq
, "Main:\n");
2233 seq_printf(seq
, "Id %d:\n", tb
->tb_id
);
2237 static int fib_triestat_seq_show(struct seq_file
*seq
, void *v
)
2239 struct net
*net
= (struct net
*)seq
->private;
2243 "Basic info: size of leaf:"
2244 " %Zd bytes, size of tnode: %Zd bytes.\n",
2245 LEAF_SIZE
, TNODE_SIZE(0));
2247 for (h
= 0; h
< FIB_TABLE_HASHSZ
; h
++) {
2248 struct hlist_head
*head
= &net
->ipv4
.fib_table_hash
[h
];
2249 struct fib_table
*tb
;
2251 hlist_for_each_entry_rcu(tb
, head
, tb_hlist
) {
2252 struct trie
*t
= (struct trie
*) tb
->tb_data
;
2253 struct trie_stat stat
;
2258 fib_table_print(seq
, tb
);
2260 trie_collect_stats(t
, &stat
);
2261 trie_show_stats(seq
, &stat
);
2262 #ifdef CONFIG_IP_FIB_TRIE_STATS
2263 trie_show_usage(seq
, t
->stats
);
2271 static int fib_triestat_seq_open(struct inode
*inode
, struct file
*file
)
2273 return single_open_net(inode
, file
, fib_triestat_seq_show
);
2276 static const struct file_operations fib_triestat_fops
= {
2277 .owner
= THIS_MODULE
,
2278 .open
= fib_triestat_seq_open
,
2280 .llseek
= seq_lseek
,
2281 .release
= single_release_net
,
2284 static struct key_vector
*fib_trie_get_idx(struct seq_file
*seq
, loff_t pos
)
2286 struct fib_trie_iter
*iter
= seq
->private;
2287 struct net
*net
= seq_file_net(seq
);
2291 for (h
= 0; h
< FIB_TABLE_HASHSZ
; h
++) {
2292 struct hlist_head
*head
= &net
->ipv4
.fib_table_hash
[h
];
2293 struct fib_table
*tb
;
2295 hlist_for_each_entry_rcu(tb
, head
, tb_hlist
) {
2296 struct key_vector
*n
;
2298 for (n
= fib_trie_get_first(iter
,
2299 (struct trie
*) tb
->tb_data
);
2300 n
; n
= fib_trie_get_next(iter
))
2311 static void *fib_trie_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2315 return fib_trie_get_idx(seq
, *pos
);
2318 static void *fib_trie_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2320 struct fib_trie_iter
*iter
= seq
->private;
2321 struct net
*net
= seq_file_net(seq
);
2322 struct fib_table
*tb
= iter
->tb
;
2323 struct hlist_node
*tb_node
;
2325 struct key_vector
*n
;
2328 /* next node in same table */
2329 n
= fib_trie_get_next(iter
);
2333 /* walk rest of this hash chain */
2334 h
= tb
->tb_id
& (FIB_TABLE_HASHSZ
- 1);
2335 while ((tb_node
= rcu_dereference(hlist_next_rcu(&tb
->tb_hlist
)))) {
2336 tb
= hlist_entry(tb_node
, struct fib_table
, tb_hlist
);
2337 n
= fib_trie_get_first(iter
, (struct trie
*) tb
->tb_data
);
2342 /* new hash chain */
2343 while (++h
< FIB_TABLE_HASHSZ
) {
2344 struct hlist_head
*head
= &net
->ipv4
.fib_table_hash
[h
];
2345 hlist_for_each_entry_rcu(tb
, head
, tb_hlist
) {
2346 n
= fib_trie_get_first(iter
, (struct trie
*) tb
->tb_data
);
2358 static void fib_trie_seq_stop(struct seq_file
*seq
, void *v
)
2364 static void seq_indent(struct seq_file
*seq
, int n
)
2370 static inline const char *rtn_scope(char *buf
, size_t len
, enum rt_scope_t s
)
2373 case RT_SCOPE_UNIVERSE
: return "universe";
2374 case RT_SCOPE_SITE
: return "site";
2375 case RT_SCOPE_LINK
: return "link";
2376 case RT_SCOPE_HOST
: return "host";
2377 case RT_SCOPE_NOWHERE
: return "nowhere";
2379 snprintf(buf
, len
, "scope=%d", s
);
2384 static const char *const rtn_type_names
[__RTN_MAX
] = {
2385 [RTN_UNSPEC
] = "UNSPEC",
2386 [RTN_UNICAST
] = "UNICAST",
2387 [RTN_LOCAL
] = "LOCAL",
2388 [RTN_BROADCAST
] = "BROADCAST",
2389 [RTN_ANYCAST
] = "ANYCAST",
2390 [RTN_MULTICAST
] = "MULTICAST",
2391 [RTN_BLACKHOLE
] = "BLACKHOLE",
2392 [RTN_UNREACHABLE
] = "UNREACHABLE",
2393 [RTN_PROHIBIT
] = "PROHIBIT",
2394 [RTN_THROW
] = "THROW",
2396 [RTN_XRESOLVE
] = "XRESOLVE",
2399 static inline const char *rtn_type(char *buf
, size_t len
, unsigned int t
)
2401 if (t
< __RTN_MAX
&& rtn_type_names
[t
])
2402 return rtn_type_names
[t
];
2403 snprintf(buf
, len
, "type %u", t
);
2407 /* Pretty print the trie */
2408 static int fib_trie_seq_show(struct seq_file
*seq
, void *v
)
2410 const struct fib_trie_iter
*iter
= seq
->private;
2411 struct key_vector
*n
= v
;
2413 if (IS_TRIE(node_parent_rcu(n
)))
2414 fib_table_print(seq
, iter
->tb
);
2417 __be32 prf
= htonl(n
->key
);
2419 seq_indent(seq
, iter
->depth
-1);
2420 seq_printf(seq
, " +-- %pI4/%zu %u %u %u\n",
2421 &prf
, KEYLENGTH
- n
->pos
- n
->bits
, n
->bits
,
2422 tn_info(n
)->full_children
,
2423 tn_info(n
)->empty_children
);
2425 __be32 val
= htonl(n
->key
);
2426 struct fib_alias
*fa
;
2428 seq_indent(seq
, iter
->depth
);
2429 seq_printf(seq
, " |-- %pI4\n", &val
);
2431 hlist_for_each_entry_rcu(fa
, &n
->leaf
, fa_list
) {
2432 char buf1
[32], buf2
[32];
2434 seq_indent(seq
, iter
->depth
+ 1);
2435 seq_printf(seq
, " /%zu %s %s",
2436 KEYLENGTH
- fa
->fa_slen
,
2437 rtn_scope(buf1
, sizeof(buf1
),
2438 fa
->fa_info
->fib_scope
),
2439 rtn_type(buf2
, sizeof(buf2
),
2442 seq_printf(seq
, " tos=%d", fa
->fa_tos
);
2443 seq_putc(seq
, '\n');
2450 static const struct seq_operations fib_trie_seq_ops
= {
2451 .start
= fib_trie_seq_start
,
2452 .next
= fib_trie_seq_next
,
2453 .stop
= fib_trie_seq_stop
,
2454 .show
= fib_trie_seq_show
,
2457 static int fib_trie_seq_open(struct inode
*inode
, struct file
*file
)
2459 return seq_open_net(inode
, file
, &fib_trie_seq_ops
,
2460 sizeof(struct fib_trie_iter
));
2463 static const struct file_operations fib_trie_fops
= {
2464 .owner
= THIS_MODULE
,
2465 .open
= fib_trie_seq_open
,
2467 .llseek
= seq_lseek
,
2468 .release
= seq_release_net
,
2471 struct fib_route_iter
{
2472 struct seq_net_private p
;
2473 struct fib_table
*main_tb
;
2474 struct key_vector
*tnode
;
2479 static struct key_vector
*fib_route_get_idx(struct fib_route_iter
*iter
,
2482 struct key_vector
*l
, **tp
= &iter
->tnode
;
2485 /* use cached location of previously found key */
2486 if (iter
->pos
> 0 && pos
>= iter
->pos
) {
2495 while ((l
= leaf_walk_rcu(tp
, key
)) && (pos
-- > 0)) {
2500 /* handle unlikely case of a key wrap */
2506 iter
->key
= l
->key
; /* remember it */
2508 iter
->pos
= 0; /* forget it */
2513 static void *fib_route_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2516 struct fib_route_iter
*iter
= seq
->private;
2517 struct fib_table
*tb
;
2522 tb
= fib_get_table(seq_file_net(seq
), RT_TABLE_MAIN
);
2527 t
= (struct trie
*)tb
->tb_data
;
2528 iter
->tnode
= t
->kv
;
2531 return fib_route_get_idx(iter
, *pos
);
2534 iter
->key
= KEY_MAX
;
2536 return SEQ_START_TOKEN
;
2539 static void *fib_route_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2541 struct fib_route_iter
*iter
= seq
->private;
2542 struct key_vector
*l
= NULL
;
2543 t_key key
= iter
->key
+ 1;
2547 /* only allow key of 0 for start of sequence */
2548 if ((v
== SEQ_START_TOKEN
) || key
)
2549 l
= leaf_walk_rcu(&iter
->tnode
, key
);
2561 static void fib_route_seq_stop(struct seq_file
*seq
, void *v
)
2567 static unsigned int fib_flag_trans(int type
, __be32 mask
, const struct fib_info
*fi
)
2569 unsigned int flags
= 0;
2571 if (type
== RTN_UNREACHABLE
|| type
== RTN_PROHIBIT
)
2573 if (fi
&& fi
->fib_nh
->nh_gw
)
2574 flags
|= RTF_GATEWAY
;
2575 if (mask
== htonl(0xFFFFFFFF))
2582 * This outputs /proc/net/route.
2583 * The format of the file is not supposed to be changed
2584 * and needs to be same as fib_hash output to avoid breaking
2587 static int fib_route_seq_show(struct seq_file
*seq
, void *v
)
2589 struct fib_route_iter
*iter
= seq
->private;
2590 struct fib_table
*tb
= iter
->main_tb
;
2591 struct fib_alias
*fa
;
2592 struct key_vector
*l
= v
;
2595 if (v
== SEQ_START_TOKEN
) {
2596 seq_printf(seq
, "%-127s\n", "Iface\tDestination\tGateway "
2597 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2602 prefix
= htonl(l
->key
);
2604 hlist_for_each_entry_rcu(fa
, &l
->leaf
, fa_list
) {
2605 const struct fib_info
*fi
= fa
->fa_info
;
2606 __be32 mask
= inet_make_mask(KEYLENGTH
- fa
->fa_slen
);
2607 unsigned int flags
= fib_flag_trans(fa
->fa_type
, mask
, fi
);
2609 if ((fa
->fa_type
== RTN_BROADCAST
) ||
2610 (fa
->fa_type
== RTN_MULTICAST
))
2613 if (fa
->tb_id
!= tb
->tb_id
)
2616 seq_setwidth(seq
, 127);
2620 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2621 "%d\t%08X\t%d\t%u\t%u",
2622 fi
->fib_dev
? fi
->fib_dev
->name
: "*",
2624 fi
->fib_nh
->nh_gw
, flags
, 0, 0,
2628 fi
->fib_advmss
+ 40 : 0),
2633 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2634 "%d\t%08X\t%d\t%u\t%u",
2635 prefix
, 0, flags
, 0, 0, 0,
2644 static const struct seq_operations fib_route_seq_ops
= {
2645 .start
= fib_route_seq_start
,
2646 .next
= fib_route_seq_next
,
2647 .stop
= fib_route_seq_stop
,
2648 .show
= fib_route_seq_show
,
2651 static int fib_route_seq_open(struct inode
*inode
, struct file
*file
)
2653 return seq_open_net(inode
, file
, &fib_route_seq_ops
,
2654 sizeof(struct fib_route_iter
));
2657 static const struct file_operations fib_route_fops
= {
2658 .owner
= THIS_MODULE
,
2659 .open
= fib_route_seq_open
,
2661 .llseek
= seq_lseek
,
2662 .release
= seq_release_net
,
2665 int __net_init
fib_proc_init(struct net
*net
)
2667 if (!proc_create("fib_trie", S_IRUGO
, net
->proc_net
, &fib_trie_fops
))
2670 if (!proc_create("fib_triestat", S_IRUGO
, net
->proc_net
,
2671 &fib_triestat_fops
))
2674 if (!proc_create("route", S_IRUGO
, net
->proc_net
, &fib_route_fops
))
2680 remove_proc_entry("fib_triestat", net
->proc_net
);
2682 remove_proc_entry("fib_trie", net
->proc_net
);
2687 void __net_exit
fib_proc_exit(struct net
*net
)
2689 remove_proc_entry("fib_trie", net
->proc_net
);
2690 remove_proc_entry("fib_triestat", net
->proc_net
);
2691 remove_proc_entry("route", net
->proc_net
);
2694 #endif /* CONFIG_PROC_FS */