ping: implement proper locking
[linux/fpc-iii.git] / net / ipv4 / tcp.c
blob6a90a0e130dca903950f74650744b8a84c7e8a4d
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
20 * Fixes:
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
25 * (tcp_err()).
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
36 * unknown sockets.
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
39 * syn rule wrong]
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
45 * escape still
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
49 * facilities
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
54 * bit to skb ops.
55 * Alan Cox : Tidied tcp_data to avoid a potential
56 * nasty.
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
68 * sockets.
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
72 * state ack error.
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
77 * fixes
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
83 * completely
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
91 * (not yet usable)
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
104 * all cases.
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
109 * works now.
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
111 * BSD api.
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
119 * fixed ports.
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
125 * socket close.
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
130 * accept.
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
141 * close.
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
147 * comments.
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
155 * resemble the RFC.
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
160 * generates them.
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
173 * but it's a start!
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
194 * improvement.
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
213 * Description of States:
215 * TCP_SYN_SENT sent a connection request, waiting for ack
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
220 * TCP_ESTABLISHED connection established
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226 * to shutdown
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
245 * TCP_CLOSE socket is finished
248 #define pr_fmt(fmt) "TCP: " fmt
250 #include <crypto/hash.h>
251 #include <linux/kernel.h>
252 #include <linux/module.h>
253 #include <linux/types.h>
254 #include <linux/fcntl.h>
255 #include <linux/poll.h>
256 #include <linux/inet_diag.h>
257 #include <linux/init.h>
258 #include <linux/fs.h>
259 #include <linux/skbuff.h>
260 #include <linux/scatterlist.h>
261 #include <linux/splice.h>
262 #include <linux/net.h>
263 #include <linux/socket.h>
264 #include <linux/random.h>
265 #include <linux/bootmem.h>
266 #include <linux/highmem.h>
267 #include <linux/swap.h>
268 #include <linux/cache.h>
269 #include <linux/err.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
273 #include <net/icmp.h>
274 #include <net/inet_common.h>
275 #include <net/tcp.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
280 #include <asm/uaccess.h>
281 #include <asm/ioctls.h>
282 #include <asm/unaligned.h>
283 #include <net/busy_poll.h>
285 int sysctl_tcp_min_tso_segs __read_mostly = 2;
287 int sysctl_tcp_autocorking __read_mostly = 1;
289 struct percpu_counter tcp_orphan_count;
290 EXPORT_SYMBOL_GPL(tcp_orphan_count);
292 long sysctl_tcp_mem[3] __read_mostly;
293 int sysctl_tcp_wmem[3] __read_mostly;
294 int sysctl_tcp_rmem[3] __read_mostly;
296 EXPORT_SYMBOL(sysctl_tcp_mem);
297 EXPORT_SYMBOL(sysctl_tcp_rmem);
298 EXPORT_SYMBOL(sysctl_tcp_wmem);
300 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
301 EXPORT_SYMBOL(tcp_memory_allocated);
304 * Current number of TCP sockets.
306 struct percpu_counter tcp_sockets_allocated;
307 EXPORT_SYMBOL(tcp_sockets_allocated);
310 * TCP splice context
312 struct tcp_splice_state {
313 struct pipe_inode_info *pipe;
314 size_t len;
315 unsigned int flags;
319 * Pressure flag: try to collapse.
320 * Technical note: it is used by multiple contexts non atomically.
321 * All the __sk_mem_schedule() is of this nature: accounting
322 * is strict, actions are advisory and have some latency.
324 int tcp_memory_pressure __read_mostly;
325 EXPORT_SYMBOL(tcp_memory_pressure);
327 void tcp_enter_memory_pressure(struct sock *sk)
329 if (!tcp_memory_pressure) {
330 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
331 tcp_memory_pressure = 1;
334 EXPORT_SYMBOL(tcp_enter_memory_pressure);
336 /* Convert seconds to retransmits based on initial and max timeout */
337 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
339 u8 res = 0;
341 if (seconds > 0) {
342 int period = timeout;
344 res = 1;
345 while (seconds > period && res < 255) {
346 res++;
347 timeout <<= 1;
348 if (timeout > rto_max)
349 timeout = rto_max;
350 period += timeout;
353 return res;
356 /* Convert retransmits to seconds based on initial and max timeout */
357 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
359 int period = 0;
361 if (retrans > 0) {
362 period = timeout;
363 while (--retrans) {
364 timeout <<= 1;
365 if (timeout > rto_max)
366 timeout = rto_max;
367 period += timeout;
370 return period;
373 /* Address-family independent initialization for a tcp_sock.
375 * NOTE: A lot of things set to zero explicitly by call to
376 * sk_alloc() so need not be done here.
378 void tcp_init_sock(struct sock *sk)
380 struct inet_connection_sock *icsk = inet_csk(sk);
381 struct tcp_sock *tp = tcp_sk(sk);
383 tp->out_of_order_queue = RB_ROOT;
384 tcp_init_xmit_timers(sk);
385 tcp_prequeue_init(tp);
386 INIT_LIST_HEAD(&tp->tsq_node);
388 icsk->icsk_rto = TCP_TIMEOUT_INIT;
389 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
390 minmax_reset(&tp->rtt_min, tcp_time_stamp, ~0U);
392 /* So many TCP implementations out there (incorrectly) count the
393 * initial SYN frame in their delayed-ACK and congestion control
394 * algorithms that we must have the following bandaid to talk
395 * efficiently to them. -DaveM
397 tp->snd_cwnd = TCP_INIT_CWND;
399 /* There's a bubble in the pipe until at least the first ACK. */
400 tp->app_limited = ~0U;
402 /* See draft-stevens-tcpca-spec-01 for discussion of the
403 * initialization of these values.
405 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
406 tp->snd_cwnd_clamp = ~0;
407 tp->mss_cache = TCP_MSS_DEFAULT;
408 u64_stats_init(&tp->syncp);
410 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
411 tcp_enable_early_retrans(tp);
412 tcp_assign_congestion_control(sk);
414 tp->tsoffset = 0;
416 sk->sk_state = TCP_CLOSE;
418 sk->sk_write_space = sk_stream_write_space;
419 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
421 icsk->icsk_sync_mss = tcp_sync_mss;
423 sk->sk_sndbuf = sysctl_tcp_wmem[1];
424 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
426 local_bh_disable();
427 sk_sockets_allocated_inc(sk);
428 local_bh_enable();
430 EXPORT_SYMBOL(tcp_init_sock);
432 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags, struct sk_buff *skb)
434 if (tsflags) {
435 struct skb_shared_info *shinfo = skb_shinfo(skb);
436 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
438 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
439 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
440 tcb->txstamp_ack = 1;
441 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
442 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
447 * Wait for a TCP event.
449 * Note that we don't need to lock the socket, as the upper poll layers
450 * take care of normal races (between the test and the event) and we don't
451 * go look at any of the socket buffers directly.
453 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
455 unsigned int mask;
456 struct sock *sk = sock->sk;
457 const struct tcp_sock *tp = tcp_sk(sk);
458 int state;
460 sock_rps_record_flow(sk);
462 sock_poll_wait(file, sk_sleep(sk), wait);
464 state = sk_state_load(sk);
465 if (state == TCP_LISTEN)
466 return inet_csk_listen_poll(sk);
468 /* Socket is not locked. We are protected from async events
469 * by poll logic and correct handling of state changes
470 * made by other threads is impossible in any case.
473 mask = 0;
476 * POLLHUP is certainly not done right. But poll() doesn't
477 * have a notion of HUP in just one direction, and for a
478 * socket the read side is more interesting.
480 * Some poll() documentation says that POLLHUP is incompatible
481 * with the POLLOUT/POLLWR flags, so somebody should check this
482 * all. But careful, it tends to be safer to return too many
483 * bits than too few, and you can easily break real applications
484 * if you don't tell them that something has hung up!
486 * Check-me.
488 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
489 * our fs/select.c). It means that after we received EOF,
490 * poll always returns immediately, making impossible poll() on write()
491 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
492 * if and only if shutdown has been made in both directions.
493 * Actually, it is interesting to look how Solaris and DUX
494 * solve this dilemma. I would prefer, if POLLHUP were maskable,
495 * then we could set it on SND_SHUTDOWN. BTW examples given
496 * in Stevens' books assume exactly this behaviour, it explains
497 * why POLLHUP is incompatible with POLLOUT. --ANK
499 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
500 * blocking on fresh not-connected or disconnected socket. --ANK
502 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
503 mask |= POLLHUP;
504 if (sk->sk_shutdown & RCV_SHUTDOWN)
505 mask |= POLLIN | POLLRDNORM | POLLRDHUP;
507 /* Connected or passive Fast Open socket? */
508 if (state != TCP_SYN_SENT &&
509 (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
510 int target = sock_rcvlowat(sk, 0, INT_MAX);
512 if (tp->urg_seq == tp->copied_seq &&
513 !sock_flag(sk, SOCK_URGINLINE) &&
514 tp->urg_data)
515 target++;
517 if (tp->rcv_nxt - tp->copied_seq >= target)
518 mask |= POLLIN | POLLRDNORM;
520 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
521 if (sk_stream_is_writeable(sk)) {
522 mask |= POLLOUT | POLLWRNORM;
523 } else { /* send SIGIO later */
524 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
525 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
527 /* Race breaker. If space is freed after
528 * wspace test but before the flags are set,
529 * IO signal will be lost. Memory barrier
530 * pairs with the input side.
532 smp_mb__after_atomic();
533 if (sk_stream_is_writeable(sk))
534 mask |= POLLOUT | POLLWRNORM;
536 } else
537 mask |= POLLOUT | POLLWRNORM;
539 if (tp->urg_data & TCP_URG_VALID)
540 mask |= POLLPRI;
542 /* This barrier is coupled with smp_wmb() in tcp_reset() */
543 smp_rmb();
544 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
545 mask |= POLLERR;
547 return mask;
549 EXPORT_SYMBOL(tcp_poll);
551 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
553 struct tcp_sock *tp = tcp_sk(sk);
554 int answ;
555 bool slow;
557 switch (cmd) {
558 case SIOCINQ:
559 if (sk->sk_state == TCP_LISTEN)
560 return -EINVAL;
562 slow = lock_sock_fast(sk);
563 answ = tcp_inq(sk);
564 unlock_sock_fast(sk, slow);
565 break;
566 case SIOCATMARK:
567 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
568 break;
569 case SIOCOUTQ:
570 if (sk->sk_state == TCP_LISTEN)
571 return -EINVAL;
573 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
574 answ = 0;
575 else
576 answ = tp->write_seq - tp->snd_una;
577 break;
578 case SIOCOUTQNSD:
579 if (sk->sk_state == TCP_LISTEN)
580 return -EINVAL;
582 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
583 answ = 0;
584 else
585 answ = tp->write_seq - tp->snd_nxt;
586 break;
587 default:
588 return -ENOIOCTLCMD;
591 return put_user(answ, (int __user *)arg);
593 EXPORT_SYMBOL(tcp_ioctl);
595 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
597 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
598 tp->pushed_seq = tp->write_seq;
601 static inline bool forced_push(const struct tcp_sock *tp)
603 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
606 static void skb_entail(struct sock *sk, struct sk_buff *skb)
608 struct tcp_sock *tp = tcp_sk(sk);
609 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
611 skb->csum = 0;
612 tcb->seq = tcb->end_seq = tp->write_seq;
613 tcb->tcp_flags = TCPHDR_ACK;
614 tcb->sacked = 0;
615 __skb_header_release(skb);
616 tcp_add_write_queue_tail(sk, skb);
617 sk->sk_wmem_queued += skb->truesize;
618 sk_mem_charge(sk, skb->truesize);
619 if (tp->nonagle & TCP_NAGLE_PUSH)
620 tp->nonagle &= ~TCP_NAGLE_PUSH;
622 tcp_slow_start_after_idle_check(sk);
625 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
627 if (flags & MSG_OOB)
628 tp->snd_up = tp->write_seq;
631 /* If a not yet filled skb is pushed, do not send it if
632 * we have data packets in Qdisc or NIC queues :
633 * Because TX completion will happen shortly, it gives a chance
634 * to coalesce future sendmsg() payload into this skb, without
635 * need for a timer, and with no latency trade off.
636 * As packets containing data payload have a bigger truesize
637 * than pure acks (dataless) packets, the last checks prevent
638 * autocorking if we only have an ACK in Qdisc/NIC queues,
639 * or if TX completion was delayed after we processed ACK packet.
641 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
642 int size_goal)
644 return skb->len < size_goal &&
645 sysctl_tcp_autocorking &&
646 skb != tcp_write_queue_head(sk) &&
647 atomic_read(&sk->sk_wmem_alloc) > skb->truesize;
650 static void tcp_push(struct sock *sk, int flags, int mss_now,
651 int nonagle, int size_goal)
653 struct tcp_sock *tp = tcp_sk(sk);
654 struct sk_buff *skb;
656 if (!tcp_send_head(sk))
657 return;
659 skb = tcp_write_queue_tail(sk);
660 if (!(flags & MSG_MORE) || forced_push(tp))
661 tcp_mark_push(tp, skb);
663 tcp_mark_urg(tp, flags);
665 if (tcp_should_autocork(sk, skb, size_goal)) {
667 /* avoid atomic op if TSQ_THROTTLED bit is already set */
668 if (!test_bit(TSQ_THROTTLED, &tp->tsq_flags)) {
669 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
670 set_bit(TSQ_THROTTLED, &tp->tsq_flags);
672 /* It is possible TX completion already happened
673 * before we set TSQ_THROTTLED.
675 if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize)
676 return;
679 if (flags & MSG_MORE)
680 nonagle = TCP_NAGLE_CORK;
682 __tcp_push_pending_frames(sk, mss_now, nonagle);
685 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
686 unsigned int offset, size_t len)
688 struct tcp_splice_state *tss = rd_desc->arg.data;
689 int ret;
691 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
692 min(rd_desc->count, len), tss->flags);
693 if (ret > 0)
694 rd_desc->count -= ret;
695 return ret;
698 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
700 /* Store TCP splice context information in read_descriptor_t. */
701 read_descriptor_t rd_desc = {
702 .arg.data = tss,
703 .count = tss->len,
706 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
710 * tcp_splice_read - splice data from TCP socket to a pipe
711 * @sock: socket to splice from
712 * @ppos: position (not valid)
713 * @pipe: pipe to splice to
714 * @len: number of bytes to splice
715 * @flags: splice modifier flags
717 * Description:
718 * Will read pages from given socket and fill them into a pipe.
721 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
722 struct pipe_inode_info *pipe, size_t len,
723 unsigned int flags)
725 struct sock *sk = sock->sk;
726 struct tcp_splice_state tss = {
727 .pipe = pipe,
728 .len = len,
729 .flags = flags,
731 long timeo;
732 ssize_t spliced;
733 int ret;
735 sock_rps_record_flow(sk);
737 * We can't seek on a socket input
739 if (unlikely(*ppos))
740 return -ESPIPE;
742 ret = spliced = 0;
744 lock_sock(sk);
746 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
747 while (tss.len) {
748 ret = __tcp_splice_read(sk, &tss);
749 if (ret < 0)
750 break;
751 else if (!ret) {
752 if (spliced)
753 break;
754 if (sock_flag(sk, SOCK_DONE))
755 break;
756 if (sk->sk_err) {
757 ret = sock_error(sk);
758 break;
760 if (sk->sk_shutdown & RCV_SHUTDOWN)
761 break;
762 if (sk->sk_state == TCP_CLOSE) {
764 * This occurs when user tries to read
765 * from never connected socket.
767 if (!sock_flag(sk, SOCK_DONE))
768 ret = -ENOTCONN;
769 break;
771 if (!timeo) {
772 ret = -EAGAIN;
773 break;
775 /* if __tcp_splice_read() got nothing while we have
776 * an skb in receive queue, we do not want to loop.
777 * This might happen with URG data.
779 if (!skb_queue_empty(&sk->sk_receive_queue))
780 break;
781 sk_wait_data(sk, &timeo, NULL);
782 if (signal_pending(current)) {
783 ret = sock_intr_errno(timeo);
784 break;
786 continue;
788 tss.len -= ret;
789 spliced += ret;
791 if (!timeo)
792 break;
793 release_sock(sk);
794 lock_sock(sk);
796 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
797 (sk->sk_shutdown & RCV_SHUTDOWN) ||
798 signal_pending(current))
799 break;
802 release_sock(sk);
804 if (spliced)
805 return spliced;
807 return ret;
809 EXPORT_SYMBOL(tcp_splice_read);
811 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
812 bool force_schedule)
814 struct sk_buff *skb;
816 /* The TCP header must be at least 32-bit aligned. */
817 size = ALIGN(size, 4);
819 if (unlikely(tcp_under_memory_pressure(sk)))
820 sk_mem_reclaim_partial(sk);
822 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
823 if (likely(skb)) {
824 bool mem_scheduled;
826 if (force_schedule) {
827 mem_scheduled = true;
828 sk_forced_mem_schedule(sk, skb->truesize);
829 } else {
830 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
832 if (likely(mem_scheduled)) {
833 skb_reserve(skb, sk->sk_prot->max_header);
835 * Make sure that we have exactly size bytes
836 * available to the caller, no more, no less.
838 skb->reserved_tailroom = skb->end - skb->tail - size;
839 return skb;
841 __kfree_skb(skb);
842 } else {
843 sk->sk_prot->enter_memory_pressure(sk);
844 sk_stream_moderate_sndbuf(sk);
846 return NULL;
849 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
850 int large_allowed)
852 struct tcp_sock *tp = tcp_sk(sk);
853 u32 new_size_goal, size_goal;
855 if (!large_allowed || !sk_can_gso(sk))
856 return mss_now;
858 /* Note : tcp_tso_autosize() will eventually split this later */
859 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
860 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
862 /* We try hard to avoid divides here */
863 size_goal = tp->gso_segs * mss_now;
864 if (unlikely(new_size_goal < size_goal ||
865 new_size_goal >= size_goal + mss_now)) {
866 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
867 sk->sk_gso_max_segs);
868 size_goal = tp->gso_segs * mss_now;
871 return max(size_goal, mss_now);
874 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
876 int mss_now;
878 mss_now = tcp_current_mss(sk);
879 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
881 return mss_now;
884 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
885 size_t size, int flags)
887 struct tcp_sock *tp = tcp_sk(sk);
888 int mss_now, size_goal;
889 int err;
890 ssize_t copied;
891 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
893 /* Wait for a connection to finish. One exception is TCP Fast Open
894 * (passive side) where data is allowed to be sent before a connection
895 * is fully established.
897 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
898 !tcp_passive_fastopen(sk)) {
899 err = sk_stream_wait_connect(sk, &timeo);
900 if (err != 0)
901 goto out_err;
904 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
906 mss_now = tcp_send_mss(sk, &size_goal, flags);
907 copied = 0;
909 err = -EPIPE;
910 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
911 goto out_err;
913 while (size > 0) {
914 struct sk_buff *skb = tcp_write_queue_tail(sk);
915 int copy, i;
916 bool can_coalesce;
918 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0 ||
919 !tcp_skb_can_collapse_to(skb)) {
920 new_segment:
921 if (!sk_stream_memory_free(sk))
922 goto wait_for_sndbuf;
924 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
925 skb_queue_empty(&sk->sk_write_queue));
926 if (!skb)
927 goto wait_for_memory;
929 skb_entail(sk, skb);
930 copy = size_goal;
933 if (copy > size)
934 copy = size;
936 i = skb_shinfo(skb)->nr_frags;
937 can_coalesce = skb_can_coalesce(skb, i, page, offset);
938 if (!can_coalesce && i >= sysctl_max_skb_frags) {
939 tcp_mark_push(tp, skb);
940 goto new_segment;
942 if (!sk_wmem_schedule(sk, copy))
943 goto wait_for_memory;
945 if (can_coalesce) {
946 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
947 } else {
948 get_page(page);
949 skb_fill_page_desc(skb, i, page, offset, copy);
951 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
953 skb->len += copy;
954 skb->data_len += copy;
955 skb->truesize += copy;
956 sk->sk_wmem_queued += copy;
957 sk_mem_charge(sk, copy);
958 skb->ip_summed = CHECKSUM_PARTIAL;
959 tp->write_seq += copy;
960 TCP_SKB_CB(skb)->end_seq += copy;
961 tcp_skb_pcount_set(skb, 0);
963 if (!copied)
964 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
966 copied += copy;
967 offset += copy;
968 size -= copy;
969 if (!size) {
970 tcp_tx_timestamp(sk, sk->sk_tsflags, skb);
971 goto out;
974 if (skb->len < size_goal || (flags & MSG_OOB))
975 continue;
977 if (forced_push(tp)) {
978 tcp_mark_push(tp, skb);
979 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
980 } else if (skb == tcp_send_head(sk))
981 tcp_push_one(sk, mss_now);
982 continue;
984 wait_for_sndbuf:
985 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
986 wait_for_memory:
987 tcp_push(sk, flags & ~MSG_MORE, mss_now,
988 TCP_NAGLE_PUSH, size_goal);
990 err = sk_stream_wait_memory(sk, &timeo);
991 if (err != 0)
992 goto do_error;
994 mss_now = tcp_send_mss(sk, &size_goal, flags);
997 out:
998 if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
999 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1000 return copied;
1002 do_error:
1003 if (copied)
1004 goto out;
1005 out_err:
1006 /* make sure we wake any epoll edge trigger waiter */
1007 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN))
1008 sk->sk_write_space(sk);
1009 return sk_stream_error(sk, flags, err);
1012 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1013 size_t size, int flags)
1015 ssize_t res;
1017 if (!(sk->sk_route_caps & NETIF_F_SG) ||
1018 !sk_check_csum_caps(sk))
1019 return sock_no_sendpage(sk->sk_socket, page, offset, size,
1020 flags);
1022 lock_sock(sk);
1024 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1026 res = do_tcp_sendpages(sk, page, offset, size, flags);
1027 release_sock(sk);
1028 return res;
1030 EXPORT_SYMBOL(tcp_sendpage);
1032 /* Do not bother using a page frag for very small frames.
1033 * But use this heuristic only for the first skb in write queue.
1035 * Having no payload in skb->head allows better SACK shifting
1036 * in tcp_shift_skb_data(), reducing sack/rack overhead, because
1037 * write queue has less skbs.
1038 * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB.
1039 * This also speeds up tso_fragment(), since it wont fallback
1040 * to tcp_fragment().
1042 static int linear_payload_sz(bool first_skb)
1044 if (first_skb)
1045 return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1046 return 0;
1049 static int select_size(const struct sock *sk, bool sg, bool first_skb)
1051 const struct tcp_sock *tp = tcp_sk(sk);
1052 int tmp = tp->mss_cache;
1054 if (sg) {
1055 if (sk_can_gso(sk)) {
1056 tmp = linear_payload_sz(first_skb);
1057 } else {
1058 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1060 if (tmp >= pgbreak &&
1061 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1062 tmp = pgbreak;
1066 return tmp;
1069 void tcp_free_fastopen_req(struct tcp_sock *tp)
1071 if (tp->fastopen_req) {
1072 kfree(tp->fastopen_req);
1073 tp->fastopen_req = NULL;
1077 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1078 int *copied, size_t size)
1080 struct tcp_sock *tp = tcp_sk(sk);
1081 int err, flags;
1083 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1084 return -EOPNOTSUPP;
1085 if (tp->fastopen_req)
1086 return -EALREADY; /* Another Fast Open is in progress */
1088 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1089 sk->sk_allocation);
1090 if (unlikely(!tp->fastopen_req))
1091 return -ENOBUFS;
1092 tp->fastopen_req->data = msg;
1093 tp->fastopen_req->size = size;
1095 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1096 err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1097 msg->msg_namelen, flags);
1098 *copied = tp->fastopen_req->copied;
1099 tcp_free_fastopen_req(tp);
1100 return err;
1103 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1105 struct tcp_sock *tp = tcp_sk(sk);
1106 struct sk_buff *skb;
1107 struct sockcm_cookie sockc;
1108 int flags, err, copied = 0;
1109 int mss_now = 0, size_goal, copied_syn = 0;
1110 bool process_backlog = false;
1111 bool sg;
1112 long timeo;
1114 lock_sock(sk);
1116 flags = msg->msg_flags;
1117 if (flags & MSG_FASTOPEN) {
1118 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1119 if (err == -EINPROGRESS && copied_syn > 0)
1120 goto out;
1121 else if (err)
1122 goto out_err;
1125 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1127 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1129 /* Wait for a connection to finish. One exception is TCP Fast Open
1130 * (passive side) where data is allowed to be sent before a connection
1131 * is fully established.
1133 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1134 !tcp_passive_fastopen(sk)) {
1135 err = sk_stream_wait_connect(sk, &timeo);
1136 if (err != 0)
1137 goto do_error;
1140 if (unlikely(tp->repair)) {
1141 if (tp->repair_queue == TCP_RECV_QUEUE) {
1142 copied = tcp_send_rcvq(sk, msg, size);
1143 goto out_nopush;
1146 err = -EINVAL;
1147 if (tp->repair_queue == TCP_NO_QUEUE)
1148 goto out_err;
1150 /* 'common' sending to sendq */
1153 sockc.tsflags = sk->sk_tsflags;
1154 if (msg->msg_controllen) {
1155 err = sock_cmsg_send(sk, msg, &sockc);
1156 if (unlikely(err)) {
1157 err = -EINVAL;
1158 goto out_err;
1162 /* This should be in poll */
1163 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1165 /* Ok commence sending. */
1166 copied = 0;
1168 restart:
1169 mss_now = tcp_send_mss(sk, &size_goal, flags);
1171 err = -EPIPE;
1172 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1173 goto do_error;
1175 sg = !!(sk->sk_route_caps & NETIF_F_SG);
1177 while (msg_data_left(msg)) {
1178 int copy = 0;
1179 int max = size_goal;
1181 skb = tcp_write_queue_tail(sk);
1182 if (tcp_send_head(sk)) {
1183 if (skb->ip_summed == CHECKSUM_NONE)
1184 max = mss_now;
1185 copy = max - skb->len;
1188 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1189 bool first_skb;
1191 new_segment:
1192 /* Allocate new segment. If the interface is SG,
1193 * allocate skb fitting to single page.
1195 if (!sk_stream_memory_free(sk))
1196 goto wait_for_sndbuf;
1198 if (process_backlog && sk_flush_backlog(sk)) {
1199 process_backlog = false;
1200 goto restart;
1202 first_skb = skb_queue_empty(&sk->sk_write_queue);
1203 skb = sk_stream_alloc_skb(sk,
1204 select_size(sk, sg, first_skb),
1205 sk->sk_allocation,
1206 first_skb);
1207 if (!skb)
1208 goto wait_for_memory;
1210 process_backlog = true;
1212 * Check whether we can use HW checksum.
1214 if (sk_check_csum_caps(sk))
1215 skb->ip_summed = CHECKSUM_PARTIAL;
1217 skb_entail(sk, skb);
1218 copy = size_goal;
1219 max = size_goal;
1221 /* All packets are restored as if they have
1222 * already been sent. skb_mstamp isn't set to
1223 * avoid wrong rtt estimation.
1225 if (tp->repair)
1226 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1229 /* Try to append data to the end of skb. */
1230 if (copy > msg_data_left(msg))
1231 copy = msg_data_left(msg);
1233 /* Where to copy to? */
1234 if (skb_availroom(skb) > 0) {
1235 /* We have some space in skb head. Superb! */
1236 copy = min_t(int, copy, skb_availroom(skb));
1237 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1238 if (err)
1239 goto do_fault;
1240 } else {
1241 bool merge = true;
1242 int i = skb_shinfo(skb)->nr_frags;
1243 struct page_frag *pfrag = sk_page_frag(sk);
1245 if (!sk_page_frag_refill(sk, pfrag))
1246 goto wait_for_memory;
1248 if (!skb_can_coalesce(skb, i, pfrag->page,
1249 pfrag->offset)) {
1250 if (i >= sysctl_max_skb_frags || !sg) {
1251 tcp_mark_push(tp, skb);
1252 goto new_segment;
1254 merge = false;
1257 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1259 if (!sk_wmem_schedule(sk, copy))
1260 goto wait_for_memory;
1262 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1263 pfrag->page,
1264 pfrag->offset,
1265 copy);
1266 if (err)
1267 goto do_error;
1269 /* Update the skb. */
1270 if (merge) {
1271 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1272 } else {
1273 skb_fill_page_desc(skb, i, pfrag->page,
1274 pfrag->offset, copy);
1275 get_page(pfrag->page);
1277 pfrag->offset += copy;
1280 if (!copied)
1281 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1283 tp->write_seq += copy;
1284 TCP_SKB_CB(skb)->end_seq += copy;
1285 tcp_skb_pcount_set(skb, 0);
1287 copied += copy;
1288 if (!msg_data_left(msg)) {
1289 tcp_tx_timestamp(sk, sockc.tsflags, skb);
1290 if (unlikely(flags & MSG_EOR))
1291 TCP_SKB_CB(skb)->eor = 1;
1292 goto out;
1295 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1296 continue;
1298 if (forced_push(tp)) {
1299 tcp_mark_push(tp, skb);
1300 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1301 } else if (skb == tcp_send_head(sk))
1302 tcp_push_one(sk, mss_now);
1303 continue;
1305 wait_for_sndbuf:
1306 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1307 wait_for_memory:
1308 if (copied)
1309 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1310 TCP_NAGLE_PUSH, size_goal);
1312 err = sk_stream_wait_memory(sk, &timeo);
1313 if (err != 0)
1314 goto do_error;
1316 mss_now = tcp_send_mss(sk, &size_goal, flags);
1319 out:
1320 if (copied)
1321 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1322 out_nopush:
1323 release_sock(sk);
1324 return copied + copied_syn;
1326 do_fault:
1327 if (!skb->len) {
1328 tcp_unlink_write_queue(skb, sk);
1329 /* It is the one place in all of TCP, except connection
1330 * reset, where we can be unlinking the send_head.
1332 tcp_check_send_head(sk, skb);
1333 sk_wmem_free_skb(sk, skb);
1336 do_error:
1337 if (copied + copied_syn)
1338 goto out;
1339 out_err:
1340 err = sk_stream_error(sk, flags, err);
1341 /* make sure we wake any epoll edge trigger waiter */
1342 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN))
1343 sk->sk_write_space(sk);
1344 release_sock(sk);
1345 return err;
1347 EXPORT_SYMBOL(tcp_sendmsg);
1350 * Handle reading urgent data. BSD has very simple semantics for
1351 * this, no blocking and very strange errors 8)
1354 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1356 struct tcp_sock *tp = tcp_sk(sk);
1358 /* No URG data to read. */
1359 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1360 tp->urg_data == TCP_URG_READ)
1361 return -EINVAL; /* Yes this is right ! */
1363 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1364 return -ENOTCONN;
1366 if (tp->urg_data & TCP_URG_VALID) {
1367 int err = 0;
1368 char c = tp->urg_data;
1370 if (!(flags & MSG_PEEK))
1371 tp->urg_data = TCP_URG_READ;
1373 /* Read urgent data. */
1374 msg->msg_flags |= MSG_OOB;
1376 if (len > 0) {
1377 if (!(flags & MSG_TRUNC))
1378 err = memcpy_to_msg(msg, &c, 1);
1379 len = 1;
1380 } else
1381 msg->msg_flags |= MSG_TRUNC;
1383 return err ? -EFAULT : len;
1386 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1387 return 0;
1389 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1390 * the available implementations agree in this case:
1391 * this call should never block, independent of the
1392 * blocking state of the socket.
1393 * Mike <pall@rz.uni-karlsruhe.de>
1395 return -EAGAIN;
1398 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1400 struct sk_buff *skb;
1401 int copied = 0, err = 0;
1403 /* XXX -- need to support SO_PEEK_OFF */
1405 skb_queue_walk(&sk->sk_write_queue, skb) {
1406 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1407 if (err)
1408 break;
1410 copied += skb->len;
1413 return err ?: copied;
1416 /* Clean up the receive buffer for full frames taken by the user,
1417 * then send an ACK if necessary. COPIED is the number of bytes
1418 * tcp_recvmsg has given to the user so far, it speeds up the
1419 * calculation of whether or not we must ACK for the sake of
1420 * a window update.
1422 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1424 struct tcp_sock *tp = tcp_sk(sk);
1425 bool time_to_ack = false;
1427 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1429 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1430 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1431 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1433 if (inet_csk_ack_scheduled(sk)) {
1434 const struct inet_connection_sock *icsk = inet_csk(sk);
1435 /* Delayed ACKs frequently hit locked sockets during bulk
1436 * receive. */
1437 if (icsk->icsk_ack.blocked ||
1438 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1439 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1441 * If this read emptied read buffer, we send ACK, if
1442 * connection is not bidirectional, user drained
1443 * receive buffer and there was a small segment
1444 * in queue.
1446 (copied > 0 &&
1447 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1448 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1449 !icsk->icsk_ack.pingpong)) &&
1450 !atomic_read(&sk->sk_rmem_alloc)))
1451 time_to_ack = true;
1454 /* We send an ACK if we can now advertise a non-zero window
1455 * which has been raised "significantly".
1457 * Even if window raised up to infinity, do not send window open ACK
1458 * in states, where we will not receive more. It is useless.
1460 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1461 __u32 rcv_window_now = tcp_receive_window(tp);
1463 /* Optimize, __tcp_select_window() is not cheap. */
1464 if (2*rcv_window_now <= tp->window_clamp) {
1465 __u32 new_window = __tcp_select_window(sk);
1467 /* Send ACK now, if this read freed lots of space
1468 * in our buffer. Certainly, new_window is new window.
1469 * We can advertise it now, if it is not less than current one.
1470 * "Lots" means "at least twice" here.
1472 if (new_window && new_window >= 2 * rcv_window_now)
1473 time_to_ack = true;
1476 if (time_to_ack)
1477 tcp_send_ack(sk);
1480 static void tcp_prequeue_process(struct sock *sk)
1482 struct sk_buff *skb;
1483 struct tcp_sock *tp = tcp_sk(sk);
1485 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1487 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1488 sk_backlog_rcv(sk, skb);
1490 /* Clear memory counter. */
1491 tp->ucopy.memory = 0;
1494 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1496 struct sk_buff *skb;
1497 u32 offset;
1499 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1500 offset = seq - TCP_SKB_CB(skb)->seq;
1501 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1502 pr_err_once("%s: found a SYN, please report !\n", __func__);
1503 offset--;
1505 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1506 *off = offset;
1507 return skb;
1509 /* This looks weird, but this can happen if TCP collapsing
1510 * splitted a fat GRO packet, while we released socket lock
1511 * in skb_splice_bits()
1513 sk_eat_skb(sk, skb);
1515 return NULL;
1519 * This routine provides an alternative to tcp_recvmsg() for routines
1520 * that would like to handle copying from skbuffs directly in 'sendfile'
1521 * fashion.
1522 * Note:
1523 * - It is assumed that the socket was locked by the caller.
1524 * - The routine does not block.
1525 * - At present, there is no support for reading OOB data
1526 * or for 'peeking' the socket using this routine
1527 * (although both would be easy to implement).
1529 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1530 sk_read_actor_t recv_actor)
1532 struct sk_buff *skb;
1533 struct tcp_sock *tp = tcp_sk(sk);
1534 u32 seq = tp->copied_seq;
1535 u32 offset;
1536 int copied = 0;
1538 if (sk->sk_state == TCP_LISTEN)
1539 return -ENOTCONN;
1540 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1541 if (offset < skb->len) {
1542 int used;
1543 size_t len;
1545 len = skb->len - offset;
1546 /* Stop reading if we hit a patch of urgent data */
1547 if (tp->urg_data) {
1548 u32 urg_offset = tp->urg_seq - seq;
1549 if (urg_offset < len)
1550 len = urg_offset;
1551 if (!len)
1552 break;
1554 used = recv_actor(desc, skb, offset, len);
1555 if (used <= 0) {
1556 if (!copied)
1557 copied = used;
1558 break;
1559 } else if (used <= len) {
1560 seq += used;
1561 copied += used;
1562 offset += used;
1564 /* If recv_actor drops the lock (e.g. TCP splice
1565 * receive) the skb pointer might be invalid when
1566 * getting here: tcp_collapse might have deleted it
1567 * while aggregating skbs from the socket queue.
1569 skb = tcp_recv_skb(sk, seq - 1, &offset);
1570 if (!skb)
1571 break;
1572 /* TCP coalescing might have appended data to the skb.
1573 * Try to splice more frags
1575 if (offset + 1 != skb->len)
1576 continue;
1578 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1579 sk_eat_skb(sk, skb);
1580 ++seq;
1581 break;
1583 sk_eat_skb(sk, skb);
1584 if (!desc->count)
1585 break;
1586 tp->copied_seq = seq;
1588 tp->copied_seq = seq;
1590 tcp_rcv_space_adjust(sk);
1592 /* Clean up data we have read: This will do ACK frames. */
1593 if (copied > 0) {
1594 tcp_recv_skb(sk, seq, &offset);
1595 tcp_cleanup_rbuf(sk, copied);
1597 return copied;
1599 EXPORT_SYMBOL(tcp_read_sock);
1601 int tcp_peek_len(struct socket *sock)
1603 return tcp_inq(sock->sk);
1605 EXPORT_SYMBOL(tcp_peek_len);
1608 * This routine copies from a sock struct into the user buffer.
1610 * Technical note: in 2.3 we work on _locked_ socket, so that
1611 * tricks with *seq access order and skb->users are not required.
1612 * Probably, code can be easily improved even more.
1615 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1616 int flags, int *addr_len)
1618 struct tcp_sock *tp = tcp_sk(sk);
1619 int copied = 0;
1620 u32 peek_seq;
1621 u32 *seq;
1622 unsigned long used;
1623 int err;
1624 int target; /* Read at least this many bytes */
1625 long timeo;
1626 struct task_struct *user_recv = NULL;
1627 struct sk_buff *skb, *last;
1628 u32 urg_hole = 0;
1630 if (unlikely(flags & MSG_ERRQUEUE))
1631 return inet_recv_error(sk, msg, len, addr_len);
1633 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1634 (sk->sk_state == TCP_ESTABLISHED))
1635 sk_busy_loop(sk, nonblock);
1637 lock_sock(sk);
1639 err = -ENOTCONN;
1640 if (sk->sk_state == TCP_LISTEN)
1641 goto out;
1643 timeo = sock_rcvtimeo(sk, nonblock);
1645 /* Urgent data needs to be handled specially. */
1646 if (flags & MSG_OOB)
1647 goto recv_urg;
1649 if (unlikely(tp->repair)) {
1650 err = -EPERM;
1651 if (!(flags & MSG_PEEK))
1652 goto out;
1654 if (tp->repair_queue == TCP_SEND_QUEUE)
1655 goto recv_sndq;
1657 err = -EINVAL;
1658 if (tp->repair_queue == TCP_NO_QUEUE)
1659 goto out;
1661 /* 'common' recv queue MSG_PEEK-ing */
1664 seq = &tp->copied_seq;
1665 if (flags & MSG_PEEK) {
1666 peek_seq = tp->copied_seq;
1667 seq = &peek_seq;
1670 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1672 do {
1673 u32 offset;
1675 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1676 if (tp->urg_data && tp->urg_seq == *seq) {
1677 if (copied)
1678 break;
1679 if (signal_pending(current)) {
1680 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1681 break;
1685 /* Next get a buffer. */
1687 last = skb_peek_tail(&sk->sk_receive_queue);
1688 skb_queue_walk(&sk->sk_receive_queue, skb) {
1689 last = skb;
1690 /* Now that we have two receive queues this
1691 * shouldn't happen.
1693 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1694 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1695 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1696 flags))
1697 break;
1699 offset = *seq - TCP_SKB_CB(skb)->seq;
1700 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1701 pr_err_once("%s: found a SYN, please report !\n", __func__);
1702 offset--;
1704 if (offset < skb->len)
1705 goto found_ok_skb;
1706 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1707 goto found_fin_ok;
1708 WARN(!(flags & MSG_PEEK),
1709 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1710 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1713 /* Well, if we have backlog, try to process it now yet. */
1715 if (copied >= target && !sk->sk_backlog.tail)
1716 break;
1718 if (copied) {
1719 if (sk->sk_err ||
1720 sk->sk_state == TCP_CLOSE ||
1721 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1722 !timeo ||
1723 signal_pending(current))
1724 break;
1725 } else {
1726 if (sock_flag(sk, SOCK_DONE))
1727 break;
1729 if (sk->sk_err) {
1730 copied = sock_error(sk);
1731 break;
1734 if (sk->sk_shutdown & RCV_SHUTDOWN)
1735 break;
1737 if (sk->sk_state == TCP_CLOSE) {
1738 if (!sock_flag(sk, SOCK_DONE)) {
1739 /* This occurs when user tries to read
1740 * from never connected socket.
1742 copied = -ENOTCONN;
1743 break;
1745 break;
1748 if (!timeo) {
1749 copied = -EAGAIN;
1750 break;
1753 if (signal_pending(current)) {
1754 copied = sock_intr_errno(timeo);
1755 break;
1759 tcp_cleanup_rbuf(sk, copied);
1761 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1762 /* Install new reader */
1763 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1764 user_recv = current;
1765 tp->ucopy.task = user_recv;
1766 tp->ucopy.msg = msg;
1769 tp->ucopy.len = len;
1771 WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1772 !(flags & (MSG_PEEK | MSG_TRUNC)));
1774 /* Ugly... If prequeue is not empty, we have to
1775 * process it before releasing socket, otherwise
1776 * order will be broken at second iteration.
1777 * More elegant solution is required!!!
1779 * Look: we have the following (pseudo)queues:
1781 * 1. packets in flight
1782 * 2. backlog
1783 * 3. prequeue
1784 * 4. receive_queue
1786 * Each queue can be processed only if the next ones
1787 * are empty. At this point we have empty receive_queue.
1788 * But prequeue _can_ be not empty after 2nd iteration,
1789 * when we jumped to start of loop because backlog
1790 * processing added something to receive_queue.
1791 * We cannot release_sock(), because backlog contains
1792 * packets arrived _after_ prequeued ones.
1794 * Shortly, algorithm is clear --- to process all
1795 * the queues in order. We could make it more directly,
1796 * requeueing packets from backlog to prequeue, if
1797 * is not empty. It is more elegant, but eats cycles,
1798 * unfortunately.
1800 if (!skb_queue_empty(&tp->ucopy.prequeue))
1801 goto do_prequeue;
1803 /* __ Set realtime policy in scheduler __ */
1806 if (copied >= target) {
1807 /* Do not sleep, just process backlog. */
1808 release_sock(sk);
1809 lock_sock(sk);
1810 } else {
1811 sk_wait_data(sk, &timeo, last);
1814 if (user_recv) {
1815 int chunk;
1817 /* __ Restore normal policy in scheduler __ */
1819 chunk = len - tp->ucopy.len;
1820 if (chunk != 0) {
1821 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1822 len -= chunk;
1823 copied += chunk;
1826 if (tp->rcv_nxt == tp->copied_seq &&
1827 !skb_queue_empty(&tp->ucopy.prequeue)) {
1828 do_prequeue:
1829 tcp_prequeue_process(sk);
1831 chunk = len - tp->ucopy.len;
1832 if (chunk != 0) {
1833 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1834 len -= chunk;
1835 copied += chunk;
1839 if ((flags & MSG_PEEK) &&
1840 (peek_seq - copied - urg_hole != tp->copied_seq)) {
1841 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1842 current->comm,
1843 task_pid_nr(current));
1844 peek_seq = tp->copied_seq;
1846 continue;
1848 found_ok_skb:
1849 /* Ok so how much can we use? */
1850 used = skb->len - offset;
1851 if (len < used)
1852 used = len;
1854 /* Do we have urgent data here? */
1855 if (tp->urg_data) {
1856 u32 urg_offset = tp->urg_seq - *seq;
1857 if (urg_offset < used) {
1858 if (!urg_offset) {
1859 if (!sock_flag(sk, SOCK_URGINLINE)) {
1860 ++*seq;
1861 urg_hole++;
1862 offset++;
1863 used--;
1864 if (!used)
1865 goto skip_copy;
1867 } else
1868 used = urg_offset;
1872 if (!(flags & MSG_TRUNC)) {
1873 err = skb_copy_datagram_msg(skb, offset, msg, used);
1874 if (err) {
1875 /* Exception. Bailout! */
1876 if (!copied)
1877 copied = -EFAULT;
1878 break;
1882 *seq += used;
1883 copied += used;
1884 len -= used;
1886 tcp_rcv_space_adjust(sk);
1888 skip_copy:
1889 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1890 tp->urg_data = 0;
1891 tcp_fast_path_check(sk);
1893 if (used + offset < skb->len)
1894 continue;
1896 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1897 goto found_fin_ok;
1898 if (!(flags & MSG_PEEK))
1899 sk_eat_skb(sk, skb);
1900 continue;
1902 found_fin_ok:
1903 /* Process the FIN. */
1904 ++*seq;
1905 if (!(flags & MSG_PEEK))
1906 sk_eat_skb(sk, skb);
1907 break;
1908 } while (len > 0);
1910 if (user_recv) {
1911 if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1912 int chunk;
1914 tp->ucopy.len = copied > 0 ? len : 0;
1916 tcp_prequeue_process(sk);
1918 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1919 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1920 len -= chunk;
1921 copied += chunk;
1925 tp->ucopy.task = NULL;
1926 tp->ucopy.len = 0;
1929 /* According to UNIX98, msg_name/msg_namelen are ignored
1930 * on connected socket. I was just happy when found this 8) --ANK
1933 /* Clean up data we have read: This will do ACK frames. */
1934 tcp_cleanup_rbuf(sk, copied);
1936 release_sock(sk);
1937 return copied;
1939 out:
1940 release_sock(sk);
1941 return err;
1943 recv_urg:
1944 err = tcp_recv_urg(sk, msg, len, flags);
1945 goto out;
1947 recv_sndq:
1948 err = tcp_peek_sndq(sk, msg, len);
1949 goto out;
1951 EXPORT_SYMBOL(tcp_recvmsg);
1953 void tcp_set_state(struct sock *sk, int state)
1955 int oldstate = sk->sk_state;
1957 switch (state) {
1958 case TCP_ESTABLISHED:
1959 if (oldstate != TCP_ESTABLISHED)
1960 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1961 break;
1963 case TCP_CLOSE:
1964 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1965 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1967 sk->sk_prot->unhash(sk);
1968 if (inet_csk(sk)->icsk_bind_hash &&
1969 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1970 inet_put_port(sk);
1971 /* fall through */
1972 default:
1973 if (oldstate == TCP_ESTABLISHED)
1974 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1977 /* Change state AFTER socket is unhashed to avoid closed
1978 * socket sitting in hash tables.
1980 sk_state_store(sk, state);
1982 #ifdef STATE_TRACE
1983 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1984 #endif
1986 EXPORT_SYMBOL_GPL(tcp_set_state);
1989 * State processing on a close. This implements the state shift for
1990 * sending our FIN frame. Note that we only send a FIN for some
1991 * states. A shutdown() may have already sent the FIN, or we may be
1992 * closed.
1995 static const unsigned char new_state[16] = {
1996 /* current state: new state: action: */
1997 [0 /* (Invalid) */] = TCP_CLOSE,
1998 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1999 [TCP_SYN_SENT] = TCP_CLOSE,
2000 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2001 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2002 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2003 [TCP_TIME_WAIT] = TCP_CLOSE,
2004 [TCP_CLOSE] = TCP_CLOSE,
2005 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2006 [TCP_LAST_ACK] = TCP_LAST_ACK,
2007 [TCP_LISTEN] = TCP_CLOSE,
2008 [TCP_CLOSING] = TCP_CLOSING,
2009 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2012 static int tcp_close_state(struct sock *sk)
2014 int next = (int)new_state[sk->sk_state];
2015 int ns = next & TCP_STATE_MASK;
2017 tcp_set_state(sk, ns);
2019 return next & TCP_ACTION_FIN;
2023 * Shutdown the sending side of a connection. Much like close except
2024 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2027 void tcp_shutdown(struct sock *sk, int how)
2029 /* We need to grab some memory, and put together a FIN,
2030 * and then put it into the queue to be sent.
2031 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2033 if (!(how & SEND_SHUTDOWN))
2034 return;
2036 /* If we've already sent a FIN, or it's a closed state, skip this. */
2037 if ((1 << sk->sk_state) &
2038 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2039 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2040 /* Clear out any half completed packets. FIN if needed. */
2041 if (tcp_close_state(sk))
2042 tcp_send_fin(sk);
2045 EXPORT_SYMBOL(tcp_shutdown);
2047 bool tcp_check_oom(struct sock *sk, int shift)
2049 bool too_many_orphans, out_of_socket_memory;
2051 too_many_orphans = tcp_too_many_orphans(sk, shift);
2052 out_of_socket_memory = tcp_out_of_memory(sk);
2054 if (too_many_orphans)
2055 net_info_ratelimited("too many orphaned sockets\n");
2056 if (out_of_socket_memory)
2057 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2058 return too_many_orphans || out_of_socket_memory;
2061 void tcp_close(struct sock *sk, long timeout)
2063 struct sk_buff *skb;
2064 int data_was_unread = 0;
2065 int state;
2067 lock_sock(sk);
2068 sk->sk_shutdown = SHUTDOWN_MASK;
2070 if (sk->sk_state == TCP_LISTEN) {
2071 tcp_set_state(sk, TCP_CLOSE);
2073 /* Special case. */
2074 inet_csk_listen_stop(sk);
2076 goto adjudge_to_death;
2079 /* We need to flush the recv. buffs. We do this only on the
2080 * descriptor close, not protocol-sourced closes, because the
2081 * reader process may not have drained the data yet!
2083 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2084 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2086 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2087 len--;
2088 data_was_unread += len;
2089 __kfree_skb(skb);
2092 sk_mem_reclaim(sk);
2094 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2095 if (sk->sk_state == TCP_CLOSE)
2096 goto adjudge_to_death;
2098 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2099 * data was lost. To witness the awful effects of the old behavior of
2100 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2101 * GET in an FTP client, suspend the process, wait for the client to
2102 * advertise a zero window, then kill -9 the FTP client, wheee...
2103 * Note: timeout is always zero in such a case.
2105 if (unlikely(tcp_sk(sk)->repair)) {
2106 sk->sk_prot->disconnect(sk, 0);
2107 } else if (data_was_unread) {
2108 /* Unread data was tossed, zap the connection. */
2109 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2110 tcp_set_state(sk, TCP_CLOSE);
2111 tcp_send_active_reset(sk, sk->sk_allocation);
2112 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2113 /* Check zero linger _after_ checking for unread data. */
2114 sk->sk_prot->disconnect(sk, 0);
2115 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2116 } else if (tcp_close_state(sk)) {
2117 /* We FIN if the application ate all the data before
2118 * zapping the connection.
2121 /* RED-PEN. Formally speaking, we have broken TCP state
2122 * machine. State transitions:
2124 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2125 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2126 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2128 * are legal only when FIN has been sent (i.e. in window),
2129 * rather than queued out of window. Purists blame.
2131 * F.e. "RFC state" is ESTABLISHED,
2132 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2134 * The visible declinations are that sometimes
2135 * we enter time-wait state, when it is not required really
2136 * (harmless), do not send active resets, when they are
2137 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2138 * they look as CLOSING or LAST_ACK for Linux)
2139 * Probably, I missed some more holelets.
2140 * --ANK
2141 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2142 * in a single packet! (May consider it later but will
2143 * probably need API support or TCP_CORK SYN-ACK until
2144 * data is written and socket is closed.)
2146 tcp_send_fin(sk);
2149 sk_stream_wait_close(sk, timeout);
2151 adjudge_to_death:
2152 state = sk->sk_state;
2153 sock_hold(sk);
2154 sock_orphan(sk);
2156 /* It is the last release_sock in its life. It will remove backlog. */
2157 release_sock(sk);
2160 /* Now socket is owned by kernel and we acquire BH lock
2161 to finish close. No need to check for user refs.
2163 local_bh_disable();
2164 bh_lock_sock(sk);
2165 WARN_ON(sock_owned_by_user(sk));
2167 percpu_counter_inc(sk->sk_prot->orphan_count);
2169 /* Have we already been destroyed by a softirq or backlog? */
2170 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2171 goto out;
2173 /* This is a (useful) BSD violating of the RFC. There is a
2174 * problem with TCP as specified in that the other end could
2175 * keep a socket open forever with no application left this end.
2176 * We use a 1 minute timeout (about the same as BSD) then kill
2177 * our end. If they send after that then tough - BUT: long enough
2178 * that we won't make the old 4*rto = almost no time - whoops
2179 * reset mistake.
2181 * Nope, it was not mistake. It is really desired behaviour
2182 * f.e. on http servers, when such sockets are useless, but
2183 * consume significant resources. Let's do it with special
2184 * linger2 option. --ANK
2187 if (sk->sk_state == TCP_FIN_WAIT2) {
2188 struct tcp_sock *tp = tcp_sk(sk);
2189 if (tp->linger2 < 0) {
2190 tcp_set_state(sk, TCP_CLOSE);
2191 tcp_send_active_reset(sk, GFP_ATOMIC);
2192 __NET_INC_STATS(sock_net(sk),
2193 LINUX_MIB_TCPABORTONLINGER);
2194 } else {
2195 const int tmo = tcp_fin_time(sk);
2197 if (tmo > TCP_TIMEWAIT_LEN) {
2198 inet_csk_reset_keepalive_timer(sk,
2199 tmo - TCP_TIMEWAIT_LEN);
2200 } else {
2201 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2202 goto out;
2206 if (sk->sk_state != TCP_CLOSE) {
2207 sk_mem_reclaim(sk);
2208 if (tcp_check_oom(sk, 0)) {
2209 tcp_set_state(sk, TCP_CLOSE);
2210 tcp_send_active_reset(sk, GFP_ATOMIC);
2211 __NET_INC_STATS(sock_net(sk),
2212 LINUX_MIB_TCPABORTONMEMORY);
2216 if (sk->sk_state == TCP_CLOSE) {
2217 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2218 /* We could get here with a non-NULL req if the socket is
2219 * aborted (e.g., closed with unread data) before 3WHS
2220 * finishes.
2222 if (req)
2223 reqsk_fastopen_remove(sk, req, false);
2224 inet_csk_destroy_sock(sk);
2226 /* Otherwise, socket is reprieved until protocol close. */
2228 out:
2229 bh_unlock_sock(sk);
2230 local_bh_enable();
2231 sock_put(sk);
2233 EXPORT_SYMBOL(tcp_close);
2235 /* These states need RST on ABORT according to RFC793 */
2237 static inline bool tcp_need_reset(int state)
2239 return (1 << state) &
2240 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2241 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2244 int tcp_disconnect(struct sock *sk, int flags)
2246 struct inet_sock *inet = inet_sk(sk);
2247 struct inet_connection_sock *icsk = inet_csk(sk);
2248 struct tcp_sock *tp = tcp_sk(sk);
2249 int err = 0;
2250 int old_state = sk->sk_state;
2252 if (old_state != TCP_CLOSE)
2253 tcp_set_state(sk, TCP_CLOSE);
2255 /* ABORT function of RFC793 */
2256 if (old_state == TCP_LISTEN) {
2257 inet_csk_listen_stop(sk);
2258 } else if (unlikely(tp->repair)) {
2259 sk->sk_err = ECONNABORTED;
2260 } else if (tcp_need_reset(old_state) ||
2261 (tp->snd_nxt != tp->write_seq &&
2262 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2263 /* The last check adjusts for discrepancy of Linux wrt. RFC
2264 * states
2266 tcp_send_active_reset(sk, gfp_any());
2267 sk->sk_err = ECONNRESET;
2268 } else if (old_state == TCP_SYN_SENT)
2269 sk->sk_err = ECONNRESET;
2271 tcp_clear_xmit_timers(sk);
2272 __skb_queue_purge(&sk->sk_receive_queue);
2273 tcp_write_queue_purge(sk);
2274 skb_rbtree_purge(&tp->out_of_order_queue);
2276 inet->inet_dport = 0;
2278 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2279 inet_reset_saddr(sk);
2281 sk->sk_shutdown = 0;
2282 sock_reset_flag(sk, SOCK_DONE);
2283 tp->srtt_us = 0;
2284 tp->write_seq += tp->max_window + 2;
2285 if (tp->write_seq == 0)
2286 tp->write_seq = 1;
2287 icsk->icsk_backoff = 0;
2288 tp->snd_cwnd = 2;
2289 icsk->icsk_probes_out = 0;
2290 tp->packets_out = 0;
2291 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2292 tp->snd_cwnd_cnt = 0;
2293 tp->window_clamp = 0;
2294 tcp_set_ca_state(sk, TCP_CA_Open);
2295 tcp_clear_retrans(tp);
2296 inet_csk_delack_init(sk);
2297 tcp_init_send_head(sk);
2298 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2299 __sk_dst_reset(sk);
2301 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2303 sk->sk_error_report(sk);
2304 return err;
2306 EXPORT_SYMBOL(tcp_disconnect);
2308 static inline bool tcp_can_repair_sock(const struct sock *sk)
2310 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2311 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2314 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2316 struct tcp_repair_window opt;
2318 if (!tp->repair)
2319 return -EPERM;
2321 if (len != sizeof(opt))
2322 return -EINVAL;
2324 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2325 return -EFAULT;
2327 if (opt.max_window < opt.snd_wnd)
2328 return -EINVAL;
2330 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2331 return -EINVAL;
2333 if (after(opt.rcv_wup, tp->rcv_nxt))
2334 return -EINVAL;
2336 tp->snd_wl1 = opt.snd_wl1;
2337 tp->snd_wnd = opt.snd_wnd;
2338 tp->max_window = opt.max_window;
2340 tp->rcv_wnd = opt.rcv_wnd;
2341 tp->rcv_wup = opt.rcv_wup;
2343 return 0;
2346 static int tcp_repair_options_est(struct tcp_sock *tp,
2347 struct tcp_repair_opt __user *optbuf, unsigned int len)
2349 struct tcp_repair_opt opt;
2351 while (len >= sizeof(opt)) {
2352 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2353 return -EFAULT;
2355 optbuf++;
2356 len -= sizeof(opt);
2358 switch (opt.opt_code) {
2359 case TCPOPT_MSS:
2360 tp->rx_opt.mss_clamp = opt.opt_val;
2361 break;
2362 case TCPOPT_WINDOW:
2364 u16 snd_wscale = opt.opt_val & 0xFFFF;
2365 u16 rcv_wscale = opt.opt_val >> 16;
2367 if (snd_wscale > 14 || rcv_wscale > 14)
2368 return -EFBIG;
2370 tp->rx_opt.snd_wscale = snd_wscale;
2371 tp->rx_opt.rcv_wscale = rcv_wscale;
2372 tp->rx_opt.wscale_ok = 1;
2374 break;
2375 case TCPOPT_SACK_PERM:
2376 if (opt.opt_val != 0)
2377 return -EINVAL;
2379 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2380 if (sysctl_tcp_fack)
2381 tcp_enable_fack(tp);
2382 break;
2383 case TCPOPT_TIMESTAMP:
2384 if (opt.opt_val != 0)
2385 return -EINVAL;
2387 tp->rx_opt.tstamp_ok = 1;
2388 break;
2392 return 0;
2396 * Socket option code for TCP.
2398 static int do_tcp_setsockopt(struct sock *sk, int level,
2399 int optname, char __user *optval, unsigned int optlen)
2401 struct tcp_sock *tp = tcp_sk(sk);
2402 struct inet_connection_sock *icsk = inet_csk(sk);
2403 struct net *net = sock_net(sk);
2404 int val;
2405 int err = 0;
2407 /* These are data/string values, all the others are ints */
2408 switch (optname) {
2409 case TCP_CONGESTION: {
2410 char name[TCP_CA_NAME_MAX];
2412 if (optlen < 1)
2413 return -EINVAL;
2415 val = strncpy_from_user(name, optval,
2416 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2417 if (val < 0)
2418 return -EFAULT;
2419 name[val] = 0;
2421 lock_sock(sk);
2422 err = tcp_set_congestion_control(sk, name);
2423 release_sock(sk);
2424 return err;
2426 default:
2427 /* fallthru */
2428 break;
2431 if (optlen < sizeof(int))
2432 return -EINVAL;
2434 if (get_user(val, (int __user *)optval))
2435 return -EFAULT;
2437 lock_sock(sk);
2439 switch (optname) {
2440 case TCP_MAXSEG:
2441 /* Values greater than interface MTU won't take effect. However
2442 * at the point when this call is done we typically don't yet
2443 * know which interface is going to be used */
2444 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2445 err = -EINVAL;
2446 break;
2448 tp->rx_opt.user_mss = val;
2449 break;
2451 case TCP_NODELAY:
2452 if (val) {
2453 /* TCP_NODELAY is weaker than TCP_CORK, so that
2454 * this option on corked socket is remembered, but
2455 * it is not activated until cork is cleared.
2457 * However, when TCP_NODELAY is set we make
2458 * an explicit push, which overrides even TCP_CORK
2459 * for currently queued segments.
2461 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2462 tcp_push_pending_frames(sk);
2463 } else {
2464 tp->nonagle &= ~TCP_NAGLE_OFF;
2466 break;
2468 case TCP_THIN_LINEAR_TIMEOUTS:
2469 if (val < 0 || val > 1)
2470 err = -EINVAL;
2471 else
2472 tp->thin_lto = val;
2473 break;
2475 case TCP_THIN_DUPACK:
2476 if (val < 0 || val > 1)
2477 err = -EINVAL;
2478 else {
2479 tp->thin_dupack = val;
2480 if (tp->thin_dupack)
2481 tcp_disable_early_retrans(tp);
2483 break;
2485 case TCP_REPAIR:
2486 if (!tcp_can_repair_sock(sk))
2487 err = -EPERM;
2488 else if (val == 1) {
2489 tp->repair = 1;
2490 sk->sk_reuse = SK_FORCE_REUSE;
2491 tp->repair_queue = TCP_NO_QUEUE;
2492 } else if (val == 0) {
2493 tp->repair = 0;
2494 sk->sk_reuse = SK_NO_REUSE;
2495 tcp_send_window_probe(sk);
2496 } else
2497 err = -EINVAL;
2499 break;
2501 case TCP_REPAIR_QUEUE:
2502 if (!tp->repair)
2503 err = -EPERM;
2504 else if (val < TCP_QUEUES_NR)
2505 tp->repair_queue = val;
2506 else
2507 err = -EINVAL;
2508 break;
2510 case TCP_QUEUE_SEQ:
2511 if (sk->sk_state != TCP_CLOSE)
2512 err = -EPERM;
2513 else if (tp->repair_queue == TCP_SEND_QUEUE)
2514 tp->write_seq = val;
2515 else if (tp->repair_queue == TCP_RECV_QUEUE)
2516 tp->rcv_nxt = val;
2517 else
2518 err = -EINVAL;
2519 break;
2521 case TCP_REPAIR_OPTIONS:
2522 if (!tp->repair)
2523 err = -EINVAL;
2524 else if (sk->sk_state == TCP_ESTABLISHED)
2525 err = tcp_repair_options_est(tp,
2526 (struct tcp_repair_opt __user *)optval,
2527 optlen);
2528 else
2529 err = -EPERM;
2530 break;
2532 case TCP_CORK:
2533 /* When set indicates to always queue non-full frames.
2534 * Later the user clears this option and we transmit
2535 * any pending partial frames in the queue. This is
2536 * meant to be used alongside sendfile() to get properly
2537 * filled frames when the user (for example) must write
2538 * out headers with a write() call first and then use
2539 * sendfile to send out the data parts.
2541 * TCP_CORK can be set together with TCP_NODELAY and it is
2542 * stronger than TCP_NODELAY.
2544 if (val) {
2545 tp->nonagle |= TCP_NAGLE_CORK;
2546 } else {
2547 tp->nonagle &= ~TCP_NAGLE_CORK;
2548 if (tp->nonagle&TCP_NAGLE_OFF)
2549 tp->nonagle |= TCP_NAGLE_PUSH;
2550 tcp_push_pending_frames(sk);
2552 break;
2554 case TCP_KEEPIDLE:
2555 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2556 err = -EINVAL;
2557 else {
2558 tp->keepalive_time = val * HZ;
2559 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2560 !((1 << sk->sk_state) &
2561 (TCPF_CLOSE | TCPF_LISTEN))) {
2562 u32 elapsed = keepalive_time_elapsed(tp);
2563 if (tp->keepalive_time > elapsed)
2564 elapsed = tp->keepalive_time - elapsed;
2565 else
2566 elapsed = 0;
2567 inet_csk_reset_keepalive_timer(sk, elapsed);
2570 break;
2571 case TCP_KEEPINTVL:
2572 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2573 err = -EINVAL;
2574 else
2575 tp->keepalive_intvl = val * HZ;
2576 break;
2577 case TCP_KEEPCNT:
2578 if (val < 1 || val > MAX_TCP_KEEPCNT)
2579 err = -EINVAL;
2580 else
2581 tp->keepalive_probes = val;
2582 break;
2583 case TCP_SYNCNT:
2584 if (val < 1 || val > MAX_TCP_SYNCNT)
2585 err = -EINVAL;
2586 else
2587 icsk->icsk_syn_retries = val;
2588 break;
2590 case TCP_SAVE_SYN:
2591 if (val < 0 || val > 1)
2592 err = -EINVAL;
2593 else
2594 tp->save_syn = val;
2595 break;
2597 case TCP_LINGER2:
2598 if (val < 0)
2599 tp->linger2 = -1;
2600 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2601 tp->linger2 = 0;
2602 else
2603 tp->linger2 = val * HZ;
2604 break;
2606 case TCP_DEFER_ACCEPT:
2607 /* Translate value in seconds to number of retransmits */
2608 icsk->icsk_accept_queue.rskq_defer_accept =
2609 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2610 TCP_RTO_MAX / HZ);
2611 break;
2613 case TCP_WINDOW_CLAMP:
2614 if (!val) {
2615 if (sk->sk_state != TCP_CLOSE) {
2616 err = -EINVAL;
2617 break;
2619 tp->window_clamp = 0;
2620 } else
2621 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2622 SOCK_MIN_RCVBUF / 2 : val;
2623 break;
2625 case TCP_QUICKACK:
2626 if (!val) {
2627 icsk->icsk_ack.pingpong = 1;
2628 } else {
2629 icsk->icsk_ack.pingpong = 0;
2630 if ((1 << sk->sk_state) &
2631 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2632 inet_csk_ack_scheduled(sk)) {
2633 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2634 tcp_cleanup_rbuf(sk, 1);
2635 if (!(val & 1))
2636 icsk->icsk_ack.pingpong = 1;
2639 break;
2641 #ifdef CONFIG_TCP_MD5SIG
2642 case TCP_MD5SIG:
2643 /* Read the IP->Key mappings from userspace */
2644 err = tp->af_specific->md5_parse(sk, optval, optlen);
2645 break;
2646 #endif
2647 case TCP_USER_TIMEOUT:
2648 /* Cap the max time in ms TCP will retry or probe the window
2649 * before giving up and aborting (ETIMEDOUT) a connection.
2651 if (val < 0)
2652 err = -EINVAL;
2653 else
2654 icsk->icsk_user_timeout = msecs_to_jiffies(val);
2655 break;
2657 case TCP_FASTOPEN:
2658 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2659 TCPF_LISTEN))) {
2660 tcp_fastopen_init_key_once(true);
2662 fastopen_queue_tune(sk, val);
2663 } else {
2664 err = -EINVAL;
2666 break;
2667 case TCP_TIMESTAMP:
2668 if (!tp->repair)
2669 err = -EPERM;
2670 else
2671 tp->tsoffset = val - tcp_time_stamp;
2672 break;
2673 case TCP_REPAIR_WINDOW:
2674 err = tcp_repair_set_window(tp, optval, optlen);
2675 break;
2676 case TCP_NOTSENT_LOWAT:
2677 tp->notsent_lowat = val;
2678 sk->sk_write_space(sk);
2679 break;
2680 default:
2681 err = -ENOPROTOOPT;
2682 break;
2685 release_sock(sk);
2686 return err;
2689 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2690 unsigned int optlen)
2692 const struct inet_connection_sock *icsk = inet_csk(sk);
2694 if (level != SOL_TCP)
2695 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2696 optval, optlen);
2697 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2699 EXPORT_SYMBOL(tcp_setsockopt);
2701 #ifdef CONFIG_COMPAT
2702 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2703 char __user *optval, unsigned int optlen)
2705 if (level != SOL_TCP)
2706 return inet_csk_compat_setsockopt(sk, level, optname,
2707 optval, optlen);
2708 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2710 EXPORT_SYMBOL(compat_tcp_setsockopt);
2711 #endif
2713 /* Return information about state of tcp endpoint in API format. */
2714 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2716 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
2717 const struct inet_connection_sock *icsk = inet_csk(sk);
2718 u32 now = tcp_time_stamp, intv;
2719 unsigned int start;
2720 int notsent_bytes;
2721 u64 rate64;
2722 u32 rate;
2724 memset(info, 0, sizeof(*info));
2725 if (sk->sk_type != SOCK_STREAM)
2726 return;
2728 info->tcpi_state = sk_state_load(sk);
2730 info->tcpi_ca_state = icsk->icsk_ca_state;
2731 info->tcpi_retransmits = icsk->icsk_retransmits;
2732 info->tcpi_probes = icsk->icsk_probes_out;
2733 info->tcpi_backoff = icsk->icsk_backoff;
2735 if (tp->rx_opt.tstamp_ok)
2736 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2737 if (tcp_is_sack(tp))
2738 info->tcpi_options |= TCPI_OPT_SACK;
2739 if (tp->rx_opt.wscale_ok) {
2740 info->tcpi_options |= TCPI_OPT_WSCALE;
2741 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2742 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2745 if (tp->ecn_flags & TCP_ECN_OK)
2746 info->tcpi_options |= TCPI_OPT_ECN;
2747 if (tp->ecn_flags & TCP_ECN_SEEN)
2748 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2749 if (tp->syn_data_acked)
2750 info->tcpi_options |= TCPI_OPT_SYN_DATA;
2752 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2753 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2754 info->tcpi_snd_mss = tp->mss_cache;
2755 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2757 if (info->tcpi_state == TCP_LISTEN) {
2758 info->tcpi_unacked = sk->sk_ack_backlog;
2759 info->tcpi_sacked = sk->sk_max_ack_backlog;
2760 } else {
2761 info->tcpi_unacked = tp->packets_out;
2762 info->tcpi_sacked = tp->sacked_out;
2764 info->tcpi_lost = tp->lost_out;
2765 info->tcpi_retrans = tp->retrans_out;
2766 info->tcpi_fackets = tp->fackets_out;
2768 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2769 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2770 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2772 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2773 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2774 info->tcpi_rtt = tp->srtt_us >> 3;
2775 info->tcpi_rttvar = tp->mdev_us >> 2;
2776 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2777 info->tcpi_snd_cwnd = tp->snd_cwnd;
2778 info->tcpi_advmss = tp->advmss;
2779 info->tcpi_reordering = tp->reordering;
2781 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2782 info->tcpi_rcv_space = tp->rcvq_space.space;
2784 info->tcpi_total_retrans = tp->total_retrans;
2786 rate = READ_ONCE(sk->sk_pacing_rate);
2787 rate64 = rate != ~0U ? rate : ~0ULL;
2788 put_unaligned(rate64, &info->tcpi_pacing_rate);
2790 rate = READ_ONCE(sk->sk_max_pacing_rate);
2791 rate64 = rate != ~0U ? rate : ~0ULL;
2792 put_unaligned(rate64, &info->tcpi_max_pacing_rate);
2794 do {
2795 start = u64_stats_fetch_begin_irq(&tp->syncp);
2796 put_unaligned(tp->bytes_acked, &info->tcpi_bytes_acked);
2797 put_unaligned(tp->bytes_received, &info->tcpi_bytes_received);
2798 } while (u64_stats_fetch_retry_irq(&tp->syncp, start));
2799 info->tcpi_segs_out = tp->segs_out;
2800 info->tcpi_segs_in = tp->segs_in;
2802 notsent_bytes = READ_ONCE(tp->write_seq) - READ_ONCE(tp->snd_nxt);
2803 info->tcpi_notsent_bytes = max(0, notsent_bytes);
2805 info->tcpi_min_rtt = tcp_min_rtt(tp);
2806 info->tcpi_data_segs_in = tp->data_segs_in;
2807 info->tcpi_data_segs_out = tp->data_segs_out;
2809 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
2810 rate = READ_ONCE(tp->rate_delivered);
2811 intv = READ_ONCE(tp->rate_interval_us);
2812 if (rate && intv) {
2813 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
2814 do_div(rate64, intv);
2815 put_unaligned(rate64, &info->tcpi_delivery_rate);
2818 EXPORT_SYMBOL_GPL(tcp_get_info);
2820 static int do_tcp_getsockopt(struct sock *sk, int level,
2821 int optname, char __user *optval, int __user *optlen)
2823 struct inet_connection_sock *icsk = inet_csk(sk);
2824 struct tcp_sock *tp = tcp_sk(sk);
2825 struct net *net = sock_net(sk);
2826 int val, len;
2828 if (get_user(len, optlen))
2829 return -EFAULT;
2831 len = min_t(unsigned int, len, sizeof(int));
2833 if (len < 0)
2834 return -EINVAL;
2836 switch (optname) {
2837 case TCP_MAXSEG:
2838 val = tp->mss_cache;
2839 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2840 val = tp->rx_opt.user_mss;
2841 if (tp->repair)
2842 val = tp->rx_opt.mss_clamp;
2843 break;
2844 case TCP_NODELAY:
2845 val = !!(tp->nonagle&TCP_NAGLE_OFF);
2846 break;
2847 case TCP_CORK:
2848 val = !!(tp->nonagle&TCP_NAGLE_CORK);
2849 break;
2850 case TCP_KEEPIDLE:
2851 val = keepalive_time_when(tp) / HZ;
2852 break;
2853 case TCP_KEEPINTVL:
2854 val = keepalive_intvl_when(tp) / HZ;
2855 break;
2856 case TCP_KEEPCNT:
2857 val = keepalive_probes(tp);
2858 break;
2859 case TCP_SYNCNT:
2860 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
2861 break;
2862 case TCP_LINGER2:
2863 val = tp->linger2;
2864 if (val >= 0)
2865 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
2866 break;
2867 case TCP_DEFER_ACCEPT:
2868 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2869 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2870 break;
2871 case TCP_WINDOW_CLAMP:
2872 val = tp->window_clamp;
2873 break;
2874 case TCP_INFO: {
2875 struct tcp_info info;
2877 if (get_user(len, optlen))
2878 return -EFAULT;
2880 tcp_get_info(sk, &info);
2882 len = min_t(unsigned int, len, sizeof(info));
2883 if (put_user(len, optlen))
2884 return -EFAULT;
2885 if (copy_to_user(optval, &info, len))
2886 return -EFAULT;
2887 return 0;
2889 case TCP_CC_INFO: {
2890 const struct tcp_congestion_ops *ca_ops;
2891 union tcp_cc_info info;
2892 size_t sz = 0;
2893 int attr;
2895 if (get_user(len, optlen))
2896 return -EFAULT;
2898 ca_ops = icsk->icsk_ca_ops;
2899 if (ca_ops && ca_ops->get_info)
2900 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
2902 len = min_t(unsigned int, len, sz);
2903 if (put_user(len, optlen))
2904 return -EFAULT;
2905 if (copy_to_user(optval, &info, len))
2906 return -EFAULT;
2907 return 0;
2909 case TCP_QUICKACK:
2910 val = !icsk->icsk_ack.pingpong;
2911 break;
2913 case TCP_CONGESTION:
2914 if (get_user(len, optlen))
2915 return -EFAULT;
2916 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2917 if (put_user(len, optlen))
2918 return -EFAULT;
2919 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2920 return -EFAULT;
2921 return 0;
2923 case TCP_THIN_LINEAR_TIMEOUTS:
2924 val = tp->thin_lto;
2925 break;
2926 case TCP_THIN_DUPACK:
2927 val = tp->thin_dupack;
2928 break;
2930 case TCP_REPAIR:
2931 val = tp->repair;
2932 break;
2934 case TCP_REPAIR_QUEUE:
2935 if (tp->repair)
2936 val = tp->repair_queue;
2937 else
2938 return -EINVAL;
2939 break;
2941 case TCP_REPAIR_WINDOW: {
2942 struct tcp_repair_window opt;
2944 if (get_user(len, optlen))
2945 return -EFAULT;
2947 if (len != sizeof(opt))
2948 return -EINVAL;
2950 if (!tp->repair)
2951 return -EPERM;
2953 opt.snd_wl1 = tp->snd_wl1;
2954 opt.snd_wnd = tp->snd_wnd;
2955 opt.max_window = tp->max_window;
2956 opt.rcv_wnd = tp->rcv_wnd;
2957 opt.rcv_wup = tp->rcv_wup;
2959 if (copy_to_user(optval, &opt, len))
2960 return -EFAULT;
2961 return 0;
2963 case TCP_QUEUE_SEQ:
2964 if (tp->repair_queue == TCP_SEND_QUEUE)
2965 val = tp->write_seq;
2966 else if (tp->repair_queue == TCP_RECV_QUEUE)
2967 val = tp->rcv_nxt;
2968 else
2969 return -EINVAL;
2970 break;
2972 case TCP_USER_TIMEOUT:
2973 val = jiffies_to_msecs(icsk->icsk_user_timeout);
2974 break;
2976 case TCP_FASTOPEN:
2977 val = icsk->icsk_accept_queue.fastopenq.max_qlen;
2978 break;
2980 case TCP_TIMESTAMP:
2981 val = tcp_time_stamp + tp->tsoffset;
2982 break;
2983 case TCP_NOTSENT_LOWAT:
2984 val = tp->notsent_lowat;
2985 break;
2986 case TCP_SAVE_SYN:
2987 val = tp->save_syn;
2988 break;
2989 case TCP_SAVED_SYN: {
2990 if (get_user(len, optlen))
2991 return -EFAULT;
2993 lock_sock(sk);
2994 if (tp->saved_syn) {
2995 if (len < tp->saved_syn[0]) {
2996 if (put_user(tp->saved_syn[0], optlen)) {
2997 release_sock(sk);
2998 return -EFAULT;
3000 release_sock(sk);
3001 return -EINVAL;
3003 len = tp->saved_syn[0];
3004 if (put_user(len, optlen)) {
3005 release_sock(sk);
3006 return -EFAULT;
3008 if (copy_to_user(optval, tp->saved_syn + 1, len)) {
3009 release_sock(sk);
3010 return -EFAULT;
3012 tcp_saved_syn_free(tp);
3013 release_sock(sk);
3014 } else {
3015 release_sock(sk);
3016 len = 0;
3017 if (put_user(len, optlen))
3018 return -EFAULT;
3020 return 0;
3022 default:
3023 return -ENOPROTOOPT;
3026 if (put_user(len, optlen))
3027 return -EFAULT;
3028 if (copy_to_user(optval, &val, len))
3029 return -EFAULT;
3030 return 0;
3033 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3034 int __user *optlen)
3036 struct inet_connection_sock *icsk = inet_csk(sk);
3038 if (level != SOL_TCP)
3039 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3040 optval, optlen);
3041 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3043 EXPORT_SYMBOL(tcp_getsockopt);
3045 #ifdef CONFIG_COMPAT
3046 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3047 char __user *optval, int __user *optlen)
3049 if (level != SOL_TCP)
3050 return inet_csk_compat_getsockopt(sk, level, optname,
3051 optval, optlen);
3052 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3054 EXPORT_SYMBOL(compat_tcp_getsockopt);
3055 #endif
3057 #ifdef CONFIG_TCP_MD5SIG
3058 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3059 static DEFINE_MUTEX(tcp_md5sig_mutex);
3060 static bool tcp_md5sig_pool_populated = false;
3062 static void __tcp_alloc_md5sig_pool(void)
3064 struct crypto_ahash *hash;
3065 int cpu;
3067 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3068 if (IS_ERR(hash))
3069 return;
3071 for_each_possible_cpu(cpu) {
3072 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3073 struct ahash_request *req;
3075 if (!scratch) {
3076 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3077 sizeof(struct tcphdr),
3078 GFP_KERNEL,
3079 cpu_to_node(cpu));
3080 if (!scratch)
3081 return;
3082 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3084 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3085 continue;
3087 req = ahash_request_alloc(hash, GFP_KERNEL);
3088 if (!req)
3089 return;
3091 ahash_request_set_callback(req, 0, NULL, NULL);
3093 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3095 /* before setting tcp_md5sig_pool_populated, we must commit all writes
3096 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3098 smp_wmb();
3099 tcp_md5sig_pool_populated = true;
3102 bool tcp_alloc_md5sig_pool(void)
3104 if (unlikely(!tcp_md5sig_pool_populated)) {
3105 mutex_lock(&tcp_md5sig_mutex);
3107 if (!tcp_md5sig_pool_populated)
3108 __tcp_alloc_md5sig_pool();
3110 mutex_unlock(&tcp_md5sig_mutex);
3112 return tcp_md5sig_pool_populated;
3114 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3118 * tcp_get_md5sig_pool - get md5sig_pool for this user
3120 * We use percpu structure, so if we succeed, we exit with preemption
3121 * and BH disabled, to make sure another thread or softirq handling
3122 * wont try to get same context.
3124 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3126 local_bh_disable();
3128 if (tcp_md5sig_pool_populated) {
3129 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3130 smp_rmb();
3131 return this_cpu_ptr(&tcp_md5sig_pool);
3133 local_bh_enable();
3134 return NULL;
3136 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3138 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3139 const struct sk_buff *skb, unsigned int header_len)
3141 struct scatterlist sg;
3142 const struct tcphdr *tp = tcp_hdr(skb);
3143 struct ahash_request *req = hp->md5_req;
3144 unsigned int i;
3145 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3146 skb_headlen(skb) - header_len : 0;
3147 const struct skb_shared_info *shi = skb_shinfo(skb);
3148 struct sk_buff *frag_iter;
3150 sg_init_table(&sg, 1);
3152 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3153 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3154 if (crypto_ahash_update(req))
3155 return 1;
3157 for (i = 0; i < shi->nr_frags; ++i) {
3158 const struct skb_frag_struct *f = &shi->frags[i];
3159 unsigned int offset = f->page_offset;
3160 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3162 sg_set_page(&sg, page, skb_frag_size(f),
3163 offset_in_page(offset));
3164 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3165 if (crypto_ahash_update(req))
3166 return 1;
3169 skb_walk_frags(skb, frag_iter)
3170 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3171 return 1;
3173 return 0;
3175 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3177 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3179 struct scatterlist sg;
3181 sg_init_one(&sg, key->key, key->keylen);
3182 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3183 return crypto_ahash_update(hp->md5_req);
3185 EXPORT_SYMBOL(tcp_md5_hash_key);
3187 #endif
3189 void tcp_done(struct sock *sk)
3191 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3193 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3194 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3196 tcp_set_state(sk, TCP_CLOSE);
3197 tcp_clear_xmit_timers(sk);
3198 if (req)
3199 reqsk_fastopen_remove(sk, req, false);
3201 sk->sk_shutdown = SHUTDOWN_MASK;
3203 if (!sock_flag(sk, SOCK_DEAD))
3204 sk->sk_state_change(sk);
3205 else
3206 inet_csk_destroy_sock(sk);
3208 EXPORT_SYMBOL_GPL(tcp_done);
3210 int tcp_abort(struct sock *sk, int err)
3212 if (!sk_fullsock(sk)) {
3213 if (sk->sk_state == TCP_NEW_SYN_RECV) {
3214 struct request_sock *req = inet_reqsk(sk);
3216 local_bh_disable();
3217 inet_csk_reqsk_queue_drop_and_put(req->rsk_listener,
3218 req);
3219 local_bh_enable();
3220 return 0;
3222 return -EOPNOTSUPP;
3225 /* Don't race with userspace socket closes such as tcp_close. */
3226 lock_sock(sk);
3228 if (sk->sk_state == TCP_LISTEN) {
3229 tcp_set_state(sk, TCP_CLOSE);
3230 inet_csk_listen_stop(sk);
3233 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
3234 local_bh_disable();
3235 bh_lock_sock(sk);
3237 if (!sock_flag(sk, SOCK_DEAD)) {
3238 sk->sk_err = err;
3239 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3240 smp_wmb();
3241 sk->sk_error_report(sk);
3242 if (tcp_need_reset(sk->sk_state))
3243 tcp_send_active_reset(sk, GFP_ATOMIC);
3244 tcp_done(sk);
3247 bh_unlock_sock(sk);
3248 local_bh_enable();
3249 release_sock(sk);
3250 return 0;
3252 EXPORT_SYMBOL_GPL(tcp_abort);
3254 extern struct tcp_congestion_ops tcp_reno;
3256 static __initdata unsigned long thash_entries;
3257 static int __init set_thash_entries(char *str)
3259 ssize_t ret;
3261 if (!str)
3262 return 0;
3264 ret = kstrtoul(str, 0, &thash_entries);
3265 if (ret)
3266 return 0;
3268 return 1;
3270 __setup("thash_entries=", set_thash_entries);
3272 static void __init tcp_init_mem(void)
3274 unsigned long limit = nr_free_buffer_pages() / 16;
3276 limit = max(limit, 128UL);
3277 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
3278 sysctl_tcp_mem[1] = limit; /* 6.25 % */
3279 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
3282 void __init tcp_init(void)
3284 int max_rshare, max_wshare, cnt;
3285 unsigned long limit;
3286 unsigned int i;
3288 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
3289 FIELD_SIZEOF(struct sk_buff, cb));
3291 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3292 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3293 tcp_hashinfo.bind_bucket_cachep =
3294 kmem_cache_create("tcp_bind_bucket",
3295 sizeof(struct inet_bind_bucket), 0,
3296 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3298 /* Size and allocate the main established and bind bucket
3299 * hash tables.
3301 * The methodology is similar to that of the buffer cache.
3303 tcp_hashinfo.ehash =
3304 alloc_large_system_hash("TCP established",
3305 sizeof(struct inet_ehash_bucket),
3306 thash_entries,
3307 17, /* one slot per 128 KB of memory */
3309 NULL,
3310 &tcp_hashinfo.ehash_mask,
3312 thash_entries ? 0 : 512 * 1024);
3313 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3314 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3316 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3317 panic("TCP: failed to alloc ehash_locks");
3318 tcp_hashinfo.bhash =
3319 alloc_large_system_hash("TCP bind",
3320 sizeof(struct inet_bind_hashbucket),
3321 tcp_hashinfo.ehash_mask + 1,
3322 17, /* one slot per 128 KB of memory */
3324 &tcp_hashinfo.bhash_size,
3325 NULL,
3327 64 * 1024);
3328 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3329 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3330 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3331 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3335 cnt = tcp_hashinfo.ehash_mask + 1;
3337 tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3338 sysctl_tcp_max_orphans = cnt / 2;
3339 sysctl_max_syn_backlog = max(128, cnt / 256);
3341 tcp_init_mem();
3342 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3343 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3344 max_wshare = min(4UL*1024*1024, limit);
3345 max_rshare = min(6UL*1024*1024, limit);
3347 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3348 sysctl_tcp_wmem[1] = 16*1024;
3349 sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3351 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3352 sysctl_tcp_rmem[1] = 87380;
3353 sysctl_tcp_rmem[2] = max(87380, max_rshare);
3355 pr_info("Hash tables configured (established %u bind %u)\n",
3356 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3358 tcp_metrics_init();
3359 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3360 tcp_tasklet_init();