net: Convert ipv4_net_ops
[linux/fpc-iii.git] / fs / direct-io.c
blob1357ef563893a1a8f0d2967eeb4b6e7b0ee6444a
1 /*
2 * fs/direct-io.c
4 * Copyright (C) 2002, Linus Torvalds.
6 * O_DIRECT
8 * 04Jul2002 Andrew Morton
9 * Initial version
10 * 11Sep2002 janetinc@us.ibm.com
11 * added readv/writev support.
12 * 29Oct2002 Andrew Morton
13 * rewrote bio_add_page() support.
14 * 30Oct2002 pbadari@us.ibm.com
15 * added support for non-aligned IO.
16 * 06Nov2002 pbadari@us.ibm.com
17 * added asynchronous IO support.
18 * 21Jul2003 nathans@sgi.com
19 * added IO completion notifier.
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <linux/atomic.h>
39 #include <linux/prefetch.h>
42 * How many user pages to map in one call to get_user_pages(). This determines
43 * the size of a structure in the slab cache
45 #define DIO_PAGES 64
48 * Flags for dio_complete()
50 #define DIO_COMPLETE_ASYNC 0x01 /* This is async IO */
51 #define DIO_COMPLETE_INVALIDATE 0x02 /* Can invalidate pages */
54 * This code generally works in units of "dio_blocks". A dio_block is
55 * somewhere between the hard sector size and the filesystem block size. it
56 * is determined on a per-invocation basis. When talking to the filesystem
57 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
58 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
59 * to bio_block quantities by shifting left by blkfactor.
61 * If blkfactor is zero then the user's request was aligned to the filesystem's
62 * blocksize.
65 /* dio_state only used in the submission path */
67 struct dio_submit {
68 struct bio *bio; /* bio under assembly */
69 unsigned blkbits; /* doesn't change */
70 unsigned blkfactor; /* When we're using an alignment which
71 is finer than the filesystem's soft
72 blocksize, this specifies how much
73 finer. blkfactor=2 means 1/4-block
74 alignment. Does not change */
75 unsigned start_zero_done; /* flag: sub-blocksize zeroing has
76 been performed at the start of a
77 write */
78 int pages_in_io; /* approximate total IO pages */
79 sector_t block_in_file; /* Current offset into the underlying
80 file in dio_block units. */
81 unsigned blocks_available; /* At block_in_file. changes */
82 int reap_counter; /* rate limit reaping */
83 sector_t final_block_in_request;/* doesn't change */
84 int boundary; /* prev block is at a boundary */
85 get_block_t *get_block; /* block mapping function */
86 dio_submit_t *submit_io; /* IO submition function */
88 loff_t logical_offset_in_bio; /* current first logical block in bio */
89 sector_t final_block_in_bio; /* current final block in bio + 1 */
90 sector_t next_block_for_io; /* next block to be put under IO,
91 in dio_blocks units */
94 * Deferred addition of a page to the dio. These variables are
95 * private to dio_send_cur_page(), submit_page_section() and
96 * dio_bio_add_page().
98 struct page *cur_page; /* The page */
99 unsigned cur_page_offset; /* Offset into it, in bytes */
100 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
101 sector_t cur_page_block; /* Where it starts */
102 loff_t cur_page_fs_offset; /* Offset in file */
104 struct iov_iter *iter;
106 * Page queue. These variables belong to dio_refill_pages() and
107 * dio_get_page().
109 unsigned head; /* next page to process */
110 unsigned tail; /* last valid page + 1 */
111 size_t from, to;
114 /* dio_state communicated between submission path and end_io */
115 struct dio {
116 int flags; /* doesn't change */
117 int op;
118 int op_flags;
119 blk_qc_t bio_cookie;
120 struct gendisk *bio_disk;
121 struct inode *inode;
122 loff_t i_size; /* i_size when submitted */
123 dio_iodone_t *end_io; /* IO completion function */
125 void *private; /* copy from map_bh.b_private */
127 /* BIO completion state */
128 spinlock_t bio_lock; /* protects BIO fields below */
129 int page_errors; /* errno from get_user_pages() */
130 int is_async; /* is IO async ? */
131 bool defer_completion; /* defer AIO completion to workqueue? */
132 bool should_dirty; /* if pages should be dirtied */
133 int io_error; /* IO error in completion path */
134 unsigned long refcount; /* direct_io_worker() and bios */
135 struct bio *bio_list; /* singly linked via bi_private */
136 struct task_struct *waiter; /* waiting task (NULL if none) */
138 /* AIO related stuff */
139 struct kiocb *iocb; /* kiocb */
140 ssize_t result; /* IO result */
143 * pages[] (and any fields placed after it) are not zeroed out at
144 * allocation time. Don't add new fields after pages[] unless you
145 * wish that they not be zeroed.
147 union {
148 struct page *pages[DIO_PAGES]; /* page buffer */
149 struct work_struct complete_work;/* deferred AIO completion */
151 } ____cacheline_aligned_in_smp;
153 static struct kmem_cache *dio_cache __read_mostly;
156 * How many pages are in the queue?
158 static inline unsigned dio_pages_present(struct dio_submit *sdio)
160 return sdio->tail - sdio->head;
164 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
166 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
168 ssize_t ret;
170 ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
171 &sdio->from);
173 if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) {
174 struct page *page = ZERO_PAGE(0);
176 * A memory fault, but the filesystem has some outstanding
177 * mapped blocks. We need to use those blocks up to avoid
178 * leaking stale data in the file.
180 if (dio->page_errors == 0)
181 dio->page_errors = ret;
182 get_page(page);
183 dio->pages[0] = page;
184 sdio->head = 0;
185 sdio->tail = 1;
186 sdio->from = 0;
187 sdio->to = PAGE_SIZE;
188 return 0;
191 if (ret >= 0) {
192 iov_iter_advance(sdio->iter, ret);
193 ret += sdio->from;
194 sdio->head = 0;
195 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
196 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
197 return 0;
199 return ret;
203 * Get another userspace page. Returns an ERR_PTR on error. Pages are
204 * buffered inside the dio so that we can call get_user_pages() against a
205 * decent number of pages, less frequently. To provide nicer use of the
206 * L1 cache.
208 static inline struct page *dio_get_page(struct dio *dio,
209 struct dio_submit *sdio)
211 if (dio_pages_present(sdio) == 0) {
212 int ret;
214 ret = dio_refill_pages(dio, sdio);
215 if (ret)
216 return ERR_PTR(ret);
217 BUG_ON(dio_pages_present(sdio) == 0);
219 return dio->pages[sdio->head];
223 * Warn about a page cache invalidation failure during a direct io write.
225 void dio_warn_stale_pagecache(struct file *filp)
227 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
228 char pathname[128];
229 struct inode *inode = file_inode(filp);
230 char *path;
232 errseq_set(&inode->i_mapping->wb_err, -EIO);
233 if (__ratelimit(&_rs)) {
234 path = file_path(filp, pathname, sizeof(pathname));
235 if (IS_ERR(path))
236 path = "(unknown)";
237 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
238 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
239 current->comm);
244 * dio_complete() - called when all DIO BIO I/O has been completed
245 * @offset: the byte offset in the file of the completed operation
247 * This drops i_dio_count, lets interested parties know that a DIO operation
248 * has completed, and calculates the resulting return code for the operation.
250 * It lets the filesystem know if it registered an interest earlier via
251 * get_block. Pass the private field of the map buffer_head so that
252 * filesystems can use it to hold additional state between get_block calls and
253 * dio_complete.
255 static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags)
257 loff_t offset = dio->iocb->ki_pos;
258 ssize_t transferred = 0;
259 int err;
262 * AIO submission can race with bio completion to get here while
263 * expecting to have the last io completed by bio completion.
264 * In that case -EIOCBQUEUED is in fact not an error we want
265 * to preserve through this call.
267 if (ret == -EIOCBQUEUED)
268 ret = 0;
270 if (dio->result) {
271 transferred = dio->result;
273 /* Check for short read case */
274 if ((dio->op == REQ_OP_READ) &&
275 ((offset + transferred) > dio->i_size))
276 transferred = dio->i_size - offset;
277 /* ignore EFAULT if some IO has been done */
278 if (unlikely(ret == -EFAULT) && transferred)
279 ret = 0;
282 if (ret == 0)
283 ret = dio->page_errors;
284 if (ret == 0)
285 ret = dio->io_error;
286 if (ret == 0)
287 ret = transferred;
289 if (dio->end_io) {
290 // XXX: ki_pos??
291 err = dio->end_io(dio->iocb, offset, ret, dio->private);
292 if (err)
293 ret = err;
297 * Try again to invalidate clean pages which might have been cached by
298 * non-direct readahead, or faulted in by get_user_pages() if the source
299 * of the write was an mmap'ed region of the file we're writing. Either
300 * one is a pretty crazy thing to do, so we don't support it 100%. If
301 * this invalidation fails, tough, the write still worked...
303 * And this page cache invalidation has to be after dio->end_io(), as
304 * some filesystems convert unwritten extents to real allocations in
305 * end_io() when necessary, otherwise a racing buffer read would cache
306 * zeros from unwritten extents.
308 if (flags & DIO_COMPLETE_INVALIDATE &&
309 ret > 0 && dio->op == REQ_OP_WRITE &&
310 dio->inode->i_mapping->nrpages) {
311 err = invalidate_inode_pages2_range(dio->inode->i_mapping,
312 offset >> PAGE_SHIFT,
313 (offset + ret - 1) >> PAGE_SHIFT);
314 if (err)
315 dio_warn_stale_pagecache(dio->iocb->ki_filp);
318 if (!(dio->flags & DIO_SKIP_DIO_COUNT))
319 inode_dio_end(dio->inode);
321 if (flags & DIO_COMPLETE_ASYNC) {
323 * generic_write_sync expects ki_pos to have been updated
324 * already, but the submission path only does this for
325 * synchronous I/O.
327 dio->iocb->ki_pos += transferred;
329 if (dio->op == REQ_OP_WRITE)
330 ret = generic_write_sync(dio->iocb, transferred);
331 dio->iocb->ki_complete(dio->iocb, ret, 0);
334 kmem_cache_free(dio_cache, dio);
335 return ret;
338 static void dio_aio_complete_work(struct work_struct *work)
340 struct dio *dio = container_of(work, struct dio, complete_work);
342 dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE);
345 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio);
348 * Asynchronous IO callback.
350 static void dio_bio_end_aio(struct bio *bio)
352 struct dio *dio = bio->bi_private;
353 unsigned long remaining;
354 unsigned long flags;
355 bool defer_completion = false;
357 /* cleanup the bio */
358 dio_bio_complete(dio, bio);
360 spin_lock_irqsave(&dio->bio_lock, flags);
361 remaining = --dio->refcount;
362 if (remaining == 1 && dio->waiter)
363 wake_up_process(dio->waiter);
364 spin_unlock_irqrestore(&dio->bio_lock, flags);
366 if (remaining == 0) {
368 * Defer completion when defer_completion is set or
369 * when the inode has pages mapped and this is AIO write.
370 * We need to invalidate those pages because there is a
371 * chance they contain stale data in the case buffered IO
372 * went in between AIO submission and completion into the
373 * same region.
375 if (dio->result)
376 defer_completion = dio->defer_completion ||
377 (dio->op == REQ_OP_WRITE &&
378 dio->inode->i_mapping->nrpages);
379 if (defer_completion) {
380 INIT_WORK(&dio->complete_work, dio_aio_complete_work);
381 queue_work(dio->inode->i_sb->s_dio_done_wq,
382 &dio->complete_work);
383 } else {
384 dio_complete(dio, 0, DIO_COMPLETE_ASYNC);
390 * The BIO completion handler simply queues the BIO up for the process-context
391 * handler.
393 * During I/O bi_private points at the dio. After I/O, bi_private is used to
394 * implement a singly-linked list of completed BIOs, at dio->bio_list.
396 static void dio_bio_end_io(struct bio *bio)
398 struct dio *dio = bio->bi_private;
399 unsigned long flags;
401 spin_lock_irqsave(&dio->bio_lock, flags);
402 bio->bi_private = dio->bio_list;
403 dio->bio_list = bio;
404 if (--dio->refcount == 1 && dio->waiter)
405 wake_up_process(dio->waiter);
406 spin_unlock_irqrestore(&dio->bio_lock, flags);
410 * dio_end_io - handle the end io action for the given bio
411 * @bio: The direct io bio thats being completed
413 * This is meant to be called by any filesystem that uses their own dio_submit_t
414 * so that the DIO specific endio actions are dealt with after the filesystem
415 * has done it's completion work.
417 void dio_end_io(struct bio *bio)
419 struct dio *dio = bio->bi_private;
421 if (dio->is_async)
422 dio_bio_end_aio(bio);
423 else
424 dio_bio_end_io(bio);
426 EXPORT_SYMBOL_GPL(dio_end_io);
428 static inline void
429 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
430 struct block_device *bdev,
431 sector_t first_sector, int nr_vecs)
433 struct bio *bio;
436 * bio_alloc() is guaranteed to return a bio when called with
437 * __GFP_RECLAIM and we request a valid number of vectors.
439 bio = bio_alloc(GFP_KERNEL, nr_vecs);
441 bio_set_dev(bio, bdev);
442 bio->bi_iter.bi_sector = first_sector;
443 bio_set_op_attrs(bio, dio->op, dio->op_flags);
444 if (dio->is_async)
445 bio->bi_end_io = dio_bio_end_aio;
446 else
447 bio->bi_end_io = dio_bio_end_io;
449 bio->bi_write_hint = dio->iocb->ki_hint;
451 sdio->bio = bio;
452 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
456 * In the AIO read case we speculatively dirty the pages before starting IO.
457 * During IO completion, any of these pages which happen to have been written
458 * back will be redirtied by bio_check_pages_dirty().
460 * bios hold a dio reference between submit_bio and ->end_io.
462 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
464 struct bio *bio = sdio->bio;
465 unsigned long flags;
467 bio->bi_private = dio;
469 spin_lock_irqsave(&dio->bio_lock, flags);
470 dio->refcount++;
471 spin_unlock_irqrestore(&dio->bio_lock, flags);
473 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty)
474 bio_set_pages_dirty(bio);
476 dio->bio_disk = bio->bi_disk;
478 if (sdio->submit_io) {
479 sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio);
480 dio->bio_cookie = BLK_QC_T_NONE;
481 } else
482 dio->bio_cookie = submit_bio(bio);
484 sdio->bio = NULL;
485 sdio->boundary = 0;
486 sdio->logical_offset_in_bio = 0;
490 * Release any resources in case of a failure
492 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
494 while (sdio->head < sdio->tail)
495 put_page(dio->pages[sdio->head++]);
499 * Wait for the next BIO to complete. Remove it and return it. NULL is
500 * returned once all BIOs have been completed. This must only be called once
501 * all bios have been issued so that dio->refcount can only decrease. This
502 * requires that that the caller hold a reference on the dio.
504 static struct bio *dio_await_one(struct dio *dio)
506 unsigned long flags;
507 struct bio *bio = NULL;
509 spin_lock_irqsave(&dio->bio_lock, flags);
512 * Wait as long as the list is empty and there are bios in flight. bio
513 * completion drops the count, maybe adds to the list, and wakes while
514 * holding the bio_lock so we don't need set_current_state()'s barrier
515 * and can call it after testing our condition.
517 while (dio->refcount > 1 && dio->bio_list == NULL) {
518 __set_current_state(TASK_UNINTERRUPTIBLE);
519 dio->waiter = current;
520 spin_unlock_irqrestore(&dio->bio_lock, flags);
521 if (!(dio->iocb->ki_flags & IOCB_HIPRI) ||
522 !blk_poll(dio->bio_disk->queue, dio->bio_cookie))
523 io_schedule();
524 /* wake up sets us TASK_RUNNING */
525 spin_lock_irqsave(&dio->bio_lock, flags);
526 dio->waiter = NULL;
528 if (dio->bio_list) {
529 bio = dio->bio_list;
530 dio->bio_list = bio->bi_private;
532 spin_unlock_irqrestore(&dio->bio_lock, flags);
533 return bio;
537 * Process one completed BIO. No locks are held.
539 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio)
541 struct bio_vec *bvec;
542 unsigned i;
543 blk_status_t err = bio->bi_status;
545 if (err) {
546 if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT))
547 dio->io_error = -EAGAIN;
548 else
549 dio->io_error = -EIO;
552 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty) {
553 bio_check_pages_dirty(bio); /* transfers ownership */
554 } else {
555 bio_for_each_segment_all(bvec, bio, i) {
556 struct page *page = bvec->bv_page;
558 if (dio->op == REQ_OP_READ && !PageCompound(page) &&
559 dio->should_dirty)
560 set_page_dirty_lock(page);
561 put_page(page);
563 bio_put(bio);
565 return err;
569 * Wait on and process all in-flight BIOs. This must only be called once
570 * all bios have been issued so that the refcount can only decrease.
571 * This just waits for all bios to make it through dio_bio_complete. IO
572 * errors are propagated through dio->io_error and should be propagated via
573 * dio_complete().
575 static void dio_await_completion(struct dio *dio)
577 struct bio *bio;
578 do {
579 bio = dio_await_one(dio);
580 if (bio)
581 dio_bio_complete(dio, bio);
582 } while (bio);
586 * A really large O_DIRECT read or write can generate a lot of BIOs. So
587 * to keep the memory consumption sane we periodically reap any completed BIOs
588 * during the BIO generation phase.
590 * This also helps to limit the peak amount of pinned userspace memory.
592 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
594 int ret = 0;
596 if (sdio->reap_counter++ >= 64) {
597 while (dio->bio_list) {
598 unsigned long flags;
599 struct bio *bio;
600 int ret2;
602 spin_lock_irqsave(&dio->bio_lock, flags);
603 bio = dio->bio_list;
604 dio->bio_list = bio->bi_private;
605 spin_unlock_irqrestore(&dio->bio_lock, flags);
606 ret2 = blk_status_to_errno(dio_bio_complete(dio, bio));
607 if (ret == 0)
608 ret = ret2;
610 sdio->reap_counter = 0;
612 return ret;
616 * Create workqueue for deferred direct IO completions. We allocate the
617 * workqueue when it's first needed. This avoids creating workqueue for
618 * filesystems that don't need it and also allows us to create the workqueue
619 * late enough so the we can include s_id in the name of the workqueue.
621 int sb_init_dio_done_wq(struct super_block *sb)
623 struct workqueue_struct *old;
624 struct workqueue_struct *wq = alloc_workqueue("dio/%s",
625 WQ_MEM_RECLAIM, 0,
626 sb->s_id);
627 if (!wq)
628 return -ENOMEM;
630 * This has to be atomic as more DIOs can race to create the workqueue
632 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
633 /* Someone created workqueue before us? Free ours... */
634 if (old)
635 destroy_workqueue(wq);
636 return 0;
639 static int dio_set_defer_completion(struct dio *dio)
641 struct super_block *sb = dio->inode->i_sb;
643 if (dio->defer_completion)
644 return 0;
645 dio->defer_completion = true;
646 if (!sb->s_dio_done_wq)
647 return sb_init_dio_done_wq(sb);
648 return 0;
652 * Call into the fs to map some more disk blocks. We record the current number
653 * of available blocks at sdio->blocks_available. These are in units of the
654 * fs blocksize, i_blocksize(inode).
656 * The fs is allowed to map lots of blocks at once. If it wants to do that,
657 * it uses the passed inode-relative block number as the file offset, as usual.
659 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
660 * has remaining to do. The fs should not map more than this number of blocks.
662 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
663 * indicate how much contiguous disk space has been made available at
664 * bh->b_blocknr.
666 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
667 * This isn't very efficient...
669 * In the case of filesystem holes: the fs may return an arbitrarily-large
670 * hole by returning an appropriate value in b_size and by clearing
671 * buffer_mapped(). However the direct-io code will only process holes one
672 * block at a time - it will repeatedly call get_block() as it walks the hole.
674 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
675 struct buffer_head *map_bh)
677 int ret;
678 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
679 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */
680 unsigned long fs_count; /* Number of filesystem-sized blocks */
681 int create;
682 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
685 * If there was a memory error and we've overwritten all the
686 * mapped blocks then we can now return that memory error
688 ret = dio->page_errors;
689 if (ret == 0) {
690 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
691 fs_startblk = sdio->block_in_file >> sdio->blkfactor;
692 fs_endblk = (sdio->final_block_in_request - 1) >>
693 sdio->blkfactor;
694 fs_count = fs_endblk - fs_startblk + 1;
696 map_bh->b_state = 0;
697 map_bh->b_size = fs_count << i_blkbits;
700 * For writes that could fill holes inside i_size on a
701 * DIO_SKIP_HOLES filesystem we forbid block creations: only
702 * overwrites are permitted. We will return early to the caller
703 * once we see an unmapped buffer head returned, and the caller
704 * will fall back to buffered I/O.
706 * Otherwise the decision is left to the get_blocks method,
707 * which may decide to handle it or also return an unmapped
708 * buffer head.
710 create = dio->op == REQ_OP_WRITE;
711 if (dio->flags & DIO_SKIP_HOLES) {
712 if (fs_startblk <= ((i_size_read(dio->inode) - 1) >>
713 i_blkbits))
714 create = 0;
717 ret = (*sdio->get_block)(dio->inode, fs_startblk,
718 map_bh, create);
720 /* Store for completion */
721 dio->private = map_bh->b_private;
723 if (ret == 0 && buffer_defer_completion(map_bh))
724 ret = dio_set_defer_completion(dio);
726 return ret;
730 * There is no bio. Make one now.
732 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
733 sector_t start_sector, struct buffer_head *map_bh)
735 sector_t sector;
736 int ret, nr_pages;
738 ret = dio_bio_reap(dio, sdio);
739 if (ret)
740 goto out;
741 sector = start_sector << (sdio->blkbits - 9);
742 nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES);
743 BUG_ON(nr_pages <= 0);
744 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
745 sdio->boundary = 0;
746 out:
747 return ret;
751 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
752 * that was successful then update final_block_in_bio and take a ref against
753 * the just-added page.
755 * Return zero on success. Non-zero means the caller needs to start a new BIO.
757 static inline int dio_bio_add_page(struct dio_submit *sdio)
759 int ret;
761 ret = bio_add_page(sdio->bio, sdio->cur_page,
762 sdio->cur_page_len, sdio->cur_page_offset);
763 if (ret == sdio->cur_page_len) {
765 * Decrement count only, if we are done with this page
767 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
768 sdio->pages_in_io--;
769 get_page(sdio->cur_page);
770 sdio->final_block_in_bio = sdio->cur_page_block +
771 (sdio->cur_page_len >> sdio->blkbits);
772 ret = 0;
773 } else {
774 ret = 1;
776 return ret;
780 * Put cur_page under IO. The section of cur_page which is described by
781 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
782 * starts on-disk at cur_page_block.
784 * We take a ref against the page here (on behalf of its presence in the bio).
786 * The caller of this function is responsible for removing cur_page from the
787 * dio, and for dropping the refcount which came from that presence.
789 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
790 struct buffer_head *map_bh)
792 int ret = 0;
794 if (sdio->bio) {
795 loff_t cur_offset = sdio->cur_page_fs_offset;
796 loff_t bio_next_offset = sdio->logical_offset_in_bio +
797 sdio->bio->bi_iter.bi_size;
800 * See whether this new request is contiguous with the old.
802 * Btrfs cannot handle having logically non-contiguous requests
803 * submitted. For example if you have
805 * Logical: [0-4095][HOLE][8192-12287]
806 * Physical: [0-4095] [4096-8191]
808 * We cannot submit those pages together as one BIO. So if our
809 * current logical offset in the file does not equal what would
810 * be the next logical offset in the bio, submit the bio we
811 * have.
813 if (sdio->final_block_in_bio != sdio->cur_page_block ||
814 cur_offset != bio_next_offset)
815 dio_bio_submit(dio, sdio);
818 if (sdio->bio == NULL) {
819 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
820 if (ret)
821 goto out;
824 if (dio_bio_add_page(sdio) != 0) {
825 dio_bio_submit(dio, sdio);
826 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
827 if (ret == 0) {
828 ret = dio_bio_add_page(sdio);
829 BUG_ON(ret != 0);
832 out:
833 return ret;
837 * An autonomous function to put a chunk of a page under deferred IO.
839 * The caller doesn't actually know (or care) whether this piece of page is in
840 * a BIO, or is under IO or whatever. We just take care of all possible
841 * situations here. The separation between the logic of do_direct_IO() and
842 * that of submit_page_section() is important for clarity. Please don't break.
844 * The chunk of page starts on-disk at blocknr.
846 * We perform deferred IO, by recording the last-submitted page inside our
847 * private part of the dio structure. If possible, we just expand the IO
848 * across that page here.
850 * If that doesn't work out then we put the old page into the bio and add this
851 * page to the dio instead.
853 static inline int
854 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
855 unsigned offset, unsigned len, sector_t blocknr,
856 struct buffer_head *map_bh)
858 int ret = 0;
860 if (dio->op == REQ_OP_WRITE) {
862 * Read accounting is performed in submit_bio()
864 task_io_account_write(len);
868 * Can we just grow the current page's presence in the dio?
870 if (sdio->cur_page == page &&
871 sdio->cur_page_offset + sdio->cur_page_len == offset &&
872 sdio->cur_page_block +
873 (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
874 sdio->cur_page_len += len;
875 goto out;
879 * If there's a deferred page already there then send it.
881 if (sdio->cur_page) {
882 ret = dio_send_cur_page(dio, sdio, map_bh);
883 put_page(sdio->cur_page);
884 sdio->cur_page = NULL;
885 if (ret)
886 return ret;
889 get_page(page); /* It is in dio */
890 sdio->cur_page = page;
891 sdio->cur_page_offset = offset;
892 sdio->cur_page_len = len;
893 sdio->cur_page_block = blocknr;
894 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
895 out:
897 * If sdio->boundary then we want to schedule the IO now to
898 * avoid metadata seeks.
900 if (sdio->boundary) {
901 ret = dio_send_cur_page(dio, sdio, map_bh);
902 if (sdio->bio)
903 dio_bio_submit(dio, sdio);
904 put_page(sdio->cur_page);
905 sdio->cur_page = NULL;
907 return ret;
911 * If we are not writing the entire block and get_block() allocated
912 * the block for us, we need to fill-in the unused portion of the
913 * block with zeros. This happens only if user-buffer, fileoffset or
914 * io length is not filesystem block-size multiple.
916 * `end' is zero if we're doing the start of the IO, 1 at the end of the
917 * IO.
919 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
920 int end, struct buffer_head *map_bh)
922 unsigned dio_blocks_per_fs_block;
923 unsigned this_chunk_blocks; /* In dio_blocks */
924 unsigned this_chunk_bytes;
925 struct page *page;
927 sdio->start_zero_done = 1;
928 if (!sdio->blkfactor || !buffer_new(map_bh))
929 return;
931 dio_blocks_per_fs_block = 1 << sdio->blkfactor;
932 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
934 if (!this_chunk_blocks)
935 return;
938 * We need to zero out part of an fs block. It is either at the
939 * beginning or the end of the fs block.
941 if (end)
942 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
944 this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
946 page = ZERO_PAGE(0);
947 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
948 sdio->next_block_for_io, map_bh))
949 return;
951 sdio->next_block_for_io += this_chunk_blocks;
955 * Walk the user pages, and the file, mapping blocks to disk and generating
956 * a sequence of (page,offset,len,block) mappings. These mappings are injected
957 * into submit_page_section(), which takes care of the next stage of submission
959 * Direct IO against a blockdev is different from a file. Because we can
960 * happily perform page-sized but 512-byte aligned IOs. It is important that
961 * blockdev IO be able to have fine alignment and large sizes.
963 * So what we do is to permit the ->get_block function to populate bh.b_size
964 * with the size of IO which is permitted at this offset and this i_blkbits.
966 * For best results, the blockdev should be set up with 512-byte i_blkbits and
967 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
968 * fine alignment but still allows this function to work in PAGE_SIZE units.
970 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
971 struct buffer_head *map_bh)
973 const unsigned blkbits = sdio->blkbits;
974 const unsigned i_blkbits = blkbits + sdio->blkfactor;
975 int ret = 0;
977 while (sdio->block_in_file < sdio->final_block_in_request) {
978 struct page *page;
979 size_t from, to;
981 page = dio_get_page(dio, sdio);
982 if (IS_ERR(page)) {
983 ret = PTR_ERR(page);
984 goto out;
986 from = sdio->head ? 0 : sdio->from;
987 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
988 sdio->head++;
990 while (from < to) {
991 unsigned this_chunk_bytes; /* # of bytes mapped */
992 unsigned this_chunk_blocks; /* # of blocks */
993 unsigned u;
995 if (sdio->blocks_available == 0) {
997 * Need to go and map some more disk
999 unsigned long blkmask;
1000 unsigned long dio_remainder;
1002 ret = get_more_blocks(dio, sdio, map_bh);
1003 if (ret) {
1004 put_page(page);
1005 goto out;
1007 if (!buffer_mapped(map_bh))
1008 goto do_holes;
1010 sdio->blocks_available =
1011 map_bh->b_size >> blkbits;
1012 sdio->next_block_for_io =
1013 map_bh->b_blocknr << sdio->blkfactor;
1014 if (buffer_new(map_bh)) {
1015 clean_bdev_aliases(
1016 map_bh->b_bdev,
1017 map_bh->b_blocknr,
1018 map_bh->b_size >> i_blkbits);
1021 if (!sdio->blkfactor)
1022 goto do_holes;
1024 blkmask = (1 << sdio->blkfactor) - 1;
1025 dio_remainder = (sdio->block_in_file & blkmask);
1028 * If we are at the start of IO and that IO
1029 * starts partway into a fs-block,
1030 * dio_remainder will be non-zero. If the IO
1031 * is a read then we can simply advance the IO
1032 * cursor to the first block which is to be
1033 * read. But if the IO is a write and the
1034 * block was newly allocated we cannot do that;
1035 * the start of the fs block must be zeroed out
1036 * on-disk
1038 if (!buffer_new(map_bh))
1039 sdio->next_block_for_io += dio_remainder;
1040 sdio->blocks_available -= dio_remainder;
1042 do_holes:
1043 /* Handle holes */
1044 if (!buffer_mapped(map_bh)) {
1045 loff_t i_size_aligned;
1047 /* AKPM: eargh, -ENOTBLK is a hack */
1048 if (dio->op == REQ_OP_WRITE) {
1049 put_page(page);
1050 return -ENOTBLK;
1054 * Be sure to account for a partial block as the
1055 * last block in the file
1057 i_size_aligned = ALIGN(i_size_read(dio->inode),
1058 1 << blkbits);
1059 if (sdio->block_in_file >=
1060 i_size_aligned >> blkbits) {
1061 /* We hit eof */
1062 put_page(page);
1063 goto out;
1065 zero_user(page, from, 1 << blkbits);
1066 sdio->block_in_file++;
1067 from += 1 << blkbits;
1068 dio->result += 1 << blkbits;
1069 goto next_block;
1073 * If we're performing IO which has an alignment which
1074 * is finer than the underlying fs, go check to see if
1075 * we must zero out the start of this block.
1077 if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1078 dio_zero_block(dio, sdio, 0, map_bh);
1081 * Work out, in this_chunk_blocks, how much disk we
1082 * can add to this page
1084 this_chunk_blocks = sdio->blocks_available;
1085 u = (to - from) >> blkbits;
1086 if (this_chunk_blocks > u)
1087 this_chunk_blocks = u;
1088 u = sdio->final_block_in_request - sdio->block_in_file;
1089 if (this_chunk_blocks > u)
1090 this_chunk_blocks = u;
1091 this_chunk_bytes = this_chunk_blocks << blkbits;
1092 BUG_ON(this_chunk_bytes == 0);
1094 if (this_chunk_blocks == sdio->blocks_available)
1095 sdio->boundary = buffer_boundary(map_bh);
1096 ret = submit_page_section(dio, sdio, page,
1097 from,
1098 this_chunk_bytes,
1099 sdio->next_block_for_io,
1100 map_bh);
1101 if (ret) {
1102 put_page(page);
1103 goto out;
1105 sdio->next_block_for_io += this_chunk_blocks;
1107 sdio->block_in_file += this_chunk_blocks;
1108 from += this_chunk_bytes;
1109 dio->result += this_chunk_bytes;
1110 sdio->blocks_available -= this_chunk_blocks;
1111 next_block:
1112 BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1113 if (sdio->block_in_file == sdio->final_block_in_request)
1114 break;
1117 /* Drop the ref which was taken in get_user_pages() */
1118 put_page(page);
1120 out:
1121 return ret;
1124 static inline int drop_refcount(struct dio *dio)
1126 int ret2;
1127 unsigned long flags;
1130 * Sync will always be dropping the final ref and completing the
1131 * operation. AIO can if it was a broken operation described above or
1132 * in fact if all the bios race to complete before we get here. In
1133 * that case dio_complete() translates the EIOCBQUEUED into the proper
1134 * return code that the caller will hand to ->complete().
1136 * This is managed by the bio_lock instead of being an atomic_t so that
1137 * completion paths can drop their ref and use the remaining count to
1138 * decide to wake the submission path atomically.
1140 spin_lock_irqsave(&dio->bio_lock, flags);
1141 ret2 = --dio->refcount;
1142 spin_unlock_irqrestore(&dio->bio_lock, flags);
1143 return ret2;
1147 * This is a library function for use by filesystem drivers.
1149 * The locking rules are governed by the flags parameter:
1150 * - if the flags value contains DIO_LOCKING we use a fancy locking
1151 * scheme for dumb filesystems.
1152 * For writes this function is called under i_mutex and returns with
1153 * i_mutex held, for reads, i_mutex is not held on entry, but it is
1154 * taken and dropped again before returning.
1155 * - if the flags value does NOT contain DIO_LOCKING we don't use any
1156 * internal locking but rather rely on the filesystem to synchronize
1157 * direct I/O reads/writes versus each other and truncate.
1159 * To help with locking against truncate we incremented the i_dio_count
1160 * counter before starting direct I/O, and decrement it once we are done.
1161 * Truncate can wait for it to reach zero to provide exclusion. It is
1162 * expected that filesystem provide exclusion between new direct I/O
1163 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex,
1164 * but other filesystems need to take care of this on their own.
1166 * NOTE: if you pass "sdio" to anything by pointer make sure that function
1167 * is always inlined. Otherwise gcc is unable to split the structure into
1168 * individual fields and will generate much worse code. This is important
1169 * for the whole file.
1171 static inline ssize_t
1172 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1173 struct block_device *bdev, struct iov_iter *iter,
1174 get_block_t get_block, dio_iodone_t end_io,
1175 dio_submit_t submit_io, int flags)
1177 unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
1178 unsigned blkbits = i_blkbits;
1179 unsigned blocksize_mask = (1 << blkbits) - 1;
1180 ssize_t retval = -EINVAL;
1181 size_t count = iov_iter_count(iter);
1182 loff_t offset = iocb->ki_pos;
1183 loff_t end = offset + count;
1184 struct dio *dio;
1185 struct dio_submit sdio = { 0, };
1186 struct buffer_head map_bh = { 0, };
1187 struct blk_plug plug;
1188 unsigned long align = offset | iov_iter_alignment(iter);
1191 * Avoid references to bdev if not absolutely needed to give
1192 * the early prefetch in the caller enough time.
1195 if (align & blocksize_mask) {
1196 if (bdev)
1197 blkbits = blksize_bits(bdev_logical_block_size(bdev));
1198 blocksize_mask = (1 << blkbits) - 1;
1199 if (align & blocksize_mask)
1200 goto out;
1203 /* watch out for a 0 len io from a tricksy fs */
1204 if (iov_iter_rw(iter) == READ && !iov_iter_count(iter))
1205 return 0;
1207 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1208 retval = -ENOMEM;
1209 if (!dio)
1210 goto out;
1212 * Believe it or not, zeroing out the page array caused a .5%
1213 * performance regression in a database benchmark. So, we take
1214 * care to only zero out what's needed.
1216 memset(dio, 0, offsetof(struct dio, pages));
1218 dio->flags = flags;
1219 if (dio->flags & DIO_LOCKING) {
1220 if (iov_iter_rw(iter) == READ) {
1221 struct address_space *mapping =
1222 iocb->ki_filp->f_mapping;
1224 /* will be released by direct_io_worker */
1225 inode_lock(inode);
1227 retval = filemap_write_and_wait_range(mapping, offset,
1228 end - 1);
1229 if (retval) {
1230 inode_unlock(inode);
1231 kmem_cache_free(dio_cache, dio);
1232 goto out;
1237 /* Once we sampled i_size check for reads beyond EOF */
1238 dio->i_size = i_size_read(inode);
1239 if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1240 if (dio->flags & DIO_LOCKING)
1241 inode_unlock(inode);
1242 kmem_cache_free(dio_cache, dio);
1243 retval = 0;
1244 goto out;
1248 * For file extending writes updating i_size before data writeouts
1249 * complete can expose uninitialized blocks in dumb filesystems.
1250 * In that case we need to wait for I/O completion even if asked
1251 * for an asynchronous write.
1253 if (is_sync_kiocb(iocb))
1254 dio->is_async = false;
1255 else if (!(dio->flags & DIO_ASYNC_EXTEND) &&
1256 iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1257 dio->is_async = false;
1258 else
1259 dio->is_async = true;
1261 dio->inode = inode;
1262 if (iov_iter_rw(iter) == WRITE) {
1263 dio->op = REQ_OP_WRITE;
1264 dio->op_flags = REQ_SYNC | REQ_IDLE;
1265 if (iocb->ki_flags & IOCB_NOWAIT)
1266 dio->op_flags |= REQ_NOWAIT;
1267 } else {
1268 dio->op = REQ_OP_READ;
1272 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1273 * so that we can call ->fsync.
1275 if (dio->is_async && iov_iter_rw(iter) == WRITE) {
1276 retval = 0;
1277 if (iocb->ki_flags & IOCB_DSYNC)
1278 retval = dio_set_defer_completion(dio);
1279 else if (!dio->inode->i_sb->s_dio_done_wq) {
1281 * In case of AIO write racing with buffered read we
1282 * need to defer completion. We can't decide this now,
1283 * however the workqueue needs to be initialized here.
1285 retval = sb_init_dio_done_wq(dio->inode->i_sb);
1287 if (retval) {
1289 * We grab i_mutex only for reads so we don't have
1290 * to release it here
1292 kmem_cache_free(dio_cache, dio);
1293 goto out;
1298 * Will be decremented at I/O completion time.
1300 if (!(dio->flags & DIO_SKIP_DIO_COUNT))
1301 inode_dio_begin(inode);
1303 retval = 0;
1304 sdio.blkbits = blkbits;
1305 sdio.blkfactor = i_blkbits - blkbits;
1306 sdio.block_in_file = offset >> blkbits;
1308 sdio.get_block = get_block;
1309 dio->end_io = end_io;
1310 sdio.submit_io = submit_io;
1311 sdio.final_block_in_bio = -1;
1312 sdio.next_block_for_io = -1;
1314 dio->iocb = iocb;
1316 spin_lock_init(&dio->bio_lock);
1317 dio->refcount = 1;
1319 dio->should_dirty = (iter->type == ITER_IOVEC);
1320 sdio.iter = iter;
1321 sdio.final_block_in_request =
1322 (offset + iov_iter_count(iter)) >> blkbits;
1325 * In case of non-aligned buffers, we may need 2 more
1326 * pages since we need to zero out first and last block.
1328 if (unlikely(sdio.blkfactor))
1329 sdio.pages_in_io = 2;
1331 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1333 blk_start_plug(&plug);
1335 retval = do_direct_IO(dio, &sdio, &map_bh);
1336 if (retval)
1337 dio_cleanup(dio, &sdio);
1339 if (retval == -ENOTBLK) {
1341 * The remaining part of the request will be
1342 * be handled by buffered I/O when we return
1344 retval = 0;
1347 * There may be some unwritten disk at the end of a part-written
1348 * fs-block-sized block. Go zero that now.
1350 dio_zero_block(dio, &sdio, 1, &map_bh);
1352 if (sdio.cur_page) {
1353 ssize_t ret2;
1355 ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1356 if (retval == 0)
1357 retval = ret2;
1358 put_page(sdio.cur_page);
1359 sdio.cur_page = NULL;
1361 if (sdio.bio)
1362 dio_bio_submit(dio, &sdio);
1364 blk_finish_plug(&plug);
1367 * It is possible that, we return short IO due to end of file.
1368 * In that case, we need to release all the pages we got hold on.
1370 dio_cleanup(dio, &sdio);
1373 * All block lookups have been performed. For READ requests
1374 * we can let i_mutex go now that its achieved its purpose
1375 * of protecting us from looking up uninitialized blocks.
1377 if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1378 inode_unlock(dio->inode);
1381 * The only time we want to leave bios in flight is when a successful
1382 * partial aio read or full aio write have been setup. In that case
1383 * bio completion will call aio_complete. The only time it's safe to
1384 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1385 * This had *better* be the only place that raises -EIOCBQUEUED.
1387 BUG_ON(retval == -EIOCBQUEUED);
1388 if (dio->is_async && retval == 0 && dio->result &&
1389 (iov_iter_rw(iter) == READ || dio->result == count))
1390 retval = -EIOCBQUEUED;
1391 else
1392 dio_await_completion(dio);
1394 if (drop_refcount(dio) == 0) {
1395 retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE);
1396 } else
1397 BUG_ON(retval != -EIOCBQUEUED);
1399 out:
1400 return retval;
1403 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1404 struct block_device *bdev, struct iov_iter *iter,
1405 get_block_t get_block,
1406 dio_iodone_t end_io, dio_submit_t submit_io,
1407 int flags)
1410 * The block device state is needed in the end to finally
1411 * submit everything. Since it's likely to be cache cold
1412 * prefetch it here as first thing to hide some of the
1413 * latency.
1415 * Attempt to prefetch the pieces we likely need later.
1417 prefetch(&bdev->bd_disk->part_tbl);
1418 prefetch(bdev->bd_queue);
1419 prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1421 return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block,
1422 end_io, submit_io, flags);
1425 EXPORT_SYMBOL(__blockdev_direct_IO);
1427 static __init int dio_init(void)
1429 dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1430 return 0;
1432 module_init(dio_init)