4 * Copyright (C) 2002, Linus Torvalds.
8 * 04Jul2002 Andrew Morton
10 * 11Sep2002 janetinc@us.ibm.com
11 * added readv/writev support.
12 * 29Oct2002 Andrew Morton
13 * rewrote bio_add_page() support.
14 * 30Oct2002 pbadari@us.ibm.com
15 * added support for non-aligned IO.
16 * 06Nov2002 pbadari@us.ibm.com
17 * added asynchronous IO support.
18 * 21Jul2003 nathans@sgi.com
19 * added IO completion notifier.
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <linux/atomic.h>
39 #include <linux/prefetch.h>
42 * How many user pages to map in one call to get_user_pages(). This determines
43 * the size of a structure in the slab cache
48 * Flags for dio_complete()
50 #define DIO_COMPLETE_ASYNC 0x01 /* This is async IO */
51 #define DIO_COMPLETE_INVALIDATE 0x02 /* Can invalidate pages */
54 * This code generally works in units of "dio_blocks". A dio_block is
55 * somewhere between the hard sector size and the filesystem block size. it
56 * is determined on a per-invocation basis. When talking to the filesystem
57 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
58 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
59 * to bio_block quantities by shifting left by blkfactor.
61 * If blkfactor is zero then the user's request was aligned to the filesystem's
65 /* dio_state only used in the submission path */
68 struct bio
*bio
; /* bio under assembly */
69 unsigned blkbits
; /* doesn't change */
70 unsigned blkfactor
; /* When we're using an alignment which
71 is finer than the filesystem's soft
72 blocksize, this specifies how much
73 finer. blkfactor=2 means 1/4-block
74 alignment. Does not change */
75 unsigned start_zero_done
; /* flag: sub-blocksize zeroing has
76 been performed at the start of a
78 int pages_in_io
; /* approximate total IO pages */
79 sector_t block_in_file
; /* Current offset into the underlying
80 file in dio_block units. */
81 unsigned blocks_available
; /* At block_in_file. changes */
82 int reap_counter
; /* rate limit reaping */
83 sector_t final_block_in_request
;/* doesn't change */
84 int boundary
; /* prev block is at a boundary */
85 get_block_t
*get_block
; /* block mapping function */
86 dio_submit_t
*submit_io
; /* IO submition function */
88 loff_t logical_offset_in_bio
; /* current first logical block in bio */
89 sector_t final_block_in_bio
; /* current final block in bio + 1 */
90 sector_t next_block_for_io
; /* next block to be put under IO,
91 in dio_blocks units */
94 * Deferred addition of a page to the dio. These variables are
95 * private to dio_send_cur_page(), submit_page_section() and
98 struct page
*cur_page
; /* The page */
99 unsigned cur_page_offset
; /* Offset into it, in bytes */
100 unsigned cur_page_len
; /* Nr of bytes at cur_page_offset */
101 sector_t cur_page_block
; /* Where it starts */
102 loff_t cur_page_fs_offset
; /* Offset in file */
104 struct iov_iter
*iter
;
106 * Page queue. These variables belong to dio_refill_pages() and
109 unsigned head
; /* next page to process */
110 unsigned tail
; /* last valid page + 1 */
114 /* dio_state communicated between submission path and end_io */
116 int flags
; /* doesn't change */
120 struct gendisk
*bio_disk
;
122 loff_t i_size
; /* i_size when submitted */
123 dio_iodone_t
*end_io
; /* IO completion function */
125 void *private; /* copy from map_bh.b_private */
127 /* BIO completion state */
128 spinlock_t bio_lock
; /* protects BIO fields below */
129 int page_errors
; /* errno from get_user_pages() */
130 int is_async
; /* is IO async ? */
131 bool defer_completion
; /* defer AIO completion to workqueue? */
132 bool should_dirty
; /* if pages should be dirtied */
133 int io_error
; /* IO error in completion path */
134 unsigned long refcount
; /* direct_io_worker() and bios */
135 struct bio
*bio_list
; /* singly linked via bi_private */
136 struct task_struct
*waiter
; /* waiting task (NULL if none) */
138 /* AIO related stuff */
139 struct kiocb
*iocb
; /* kiocb */
140 ssize_t result
; /* IO result */
143 * pages[] (and any fields placed after it) are not zeroed out at
144 * allocation time. Don't add new fields after pages[] unless you
145 * wish that they not be zeroed.
148 struct page
*pages
[DIO_PAGES
]; /* page buffer */
149 struct work_struct complete_work
;/* deferred AIO completion */
151 } ____cacheline_aligned_in_smp
;
153 static struct kmem_cache
*dio_cache __read_mostly
;
156 * How many pages are in the queue?
158 static inline unsigned dio_pages_present(struct dio_submit
*sdio
)
160 return sdio
->tail
- sdio
->head
;
164 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
166 static inline int dio_refill_pages(struct dio
*dio
, struct dio_submit
*sdio
)
170 ret
= iov_iter_get_pages(sdio
->iter
, dio
->pages
, LONG_MAX
, DIO_PAGES
,
173 if (ret
< 0 && sdio
->blocks_available
&& (dio
->op
== REQ_OP_WRITE
)) {
174 struct page
*page
= ZERO_PAGE(0);
176 * A memory fault, but the filesystem has some outstanding
177 * mapped blocks. We need to use those blocks up to avoid
178 * leaking stale data in the file.
180 if (dio
->page_errors
== 0)
181 dio
->page_errors
= ret
;
183 dio
->pages
[0] = page
;
187 sdio
->to
= PAGE_SIZE
;
192 iov_iter_advance(sdio
->iter
, ret
);
195 sdio
->tail
= (ret
+ PAGE_SIZE
- 1) / PAGE_SIZE
;
196 sdio
->to
= ((ret
- 1) & (PAGE_SIZE
- 1)) + 1;
203 * Get another userspace page. Returns an ERR_PTR on error. Pages are
204 * buffered inside the dio so that we can call get_user_pages() against a
205 * decent number of pages, less frequently. To provide nicer use of the
208 static inline struct page
*dio_get_page(struct dio
*dio
,
209 struct dio_submit
*sdio
)
211 if (dio_pages_present(sdio
) == 0) {
214 ret
= dio_refill_pages(dio
, sdio
);
217 BUG_ON(dio_pages_present(sdio
) == 0);
219 return dio
->pages
[sdio
->head
];
223 * Warn about a page cache invalidation failure during a direct io write.
225 void dio_warn_stale_pagecache(struct file
*filp
)
227 static DEFINE_RATELIMIT_STATE(_rs
, 86400 * HZ
, DEFAULT_RATELIMIT_BURST
);
229 struct inode
*inode
= file_inode(filp
);
232 errseq_set(&inode
->i_mapping
->wb_err
, -EIO
);
233 if (__ratelimit(&_rs
)) {
234 path
= file_path(filp
, pathname
, sizeof(pathname
));
237 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
238 pr_crit("File: %s PID: %d Comm: %.20s\n", path
, current
->pid
,
244 * dio_complete() - called when all DIO BIO I/O has been completed
245 * @offset: the byte offset in the file of the completed operation
247 * This drops i_dio_count, lets interested parties know that a DIO operation
248 * has completed, and calculates the resulting return code for the operation.
250 * It lets the filesystem know if it registered an interest earlier via
251 * get_block. Pass the private field of the map buffer_head so that
252 * filesystems can use it to hold additional state between get_block calls and
255 static ssize_t
dio_complete(struct dio
*dio
, ssize_t ret
, unsigned int flags
)
257 loff_t offset
= dio
->iocb
->ki_pos
;
258 ssize_t transferred
= 0;
262 * AIO submission can race with bio completion to get here while
263 * expecting to have the last io completed by bio completion.
264 * In that case -EIOCBQUEUED is in fact not an error we want
265 * to preserve through this call.
267 if (ret
== -EIOCBQUEUED
)
271 transferred
= dio
->result
;
273 /* Check for short read case */
274 if ((dio
->op
== REQ_OP_READ
) &&
275 ((offset
+ transferred
) > dio
->i_size
))
276 transferred
= dio
->i_size
- offset
;
277 /* ignore EFAULT if some IO has been done */
278 if (unlikely(ret
== -EFAULT
) && transferred
)
283 ret
= dio
->page_errors
;
291 err
= dio
->end_io(dio
->iocb
, offset
, ret
, dio
->private);
297 * Try again to invalidate clean pages which might have been cached by
298 * non-direct readahead, or faulted in by get_user_pages() if the source
299 * of the write was an mmap'ed region of the file we're writing. Either
300 * one is a pretty crazy thing to do, so we don't support it 100%. If
301 * this invalidation fails, tough, the write still worked...
303 * And this page cache invalidation has to be after dio->end_io(), as
304 * some filesystems convert unwritten extents to real allocations in
305 * end_io() when necessary, otherwise a racing buffer read would cache
306 * zeros from unwritten extents.
308 if (flags
& DIO_COMPLETE_INVALIDATE
&&
309 ret
> 0 && dio
->op
== REQ_OP_WRITE
&&
310 dio
->inode
->i_mapping
->nrpages
) {
311 err
= invalidate_inode_pages2_range(dio
->inode
->i_mapping
,
312 offset
>> PAGE_SHIFT
,
313 (offset
+ ret
- 1) >> PAGE_SHIFT
);
315 dio_warn_stale_pagecache(dio
->iocb
->ki_filp
);
318 if (!(dio
->flags
& DIO_SKIP_DIO_COUNT
))
319 inode_dio_end(dio
->inode
);
321 if (flags
& DIO_COMPLETE_ASYNC
) {
323 * generic_write_sync expects ki_pos to have been updated
324 * already, but the submission path only does this for
327 dio
->iocb
->ki_pos
+= transferred
;
329 if (dio
->op
== REQ_OP_WRITE
)
330 ret
= generic_write_sync(dio
->iocb
, transferred
);
331 dio
->iocb
->ki_complete(dio
->iocb
, ret
, 0);
334 kmem_cache_free(dio_cache
, dio
);
338 static void dio_aio_complete_work(struct work_struct
*work
)
340 struct dio
*dio
= container_of(work
, struct dio
, complete_work
);
342 dio_complete(dio
, 0, DIO_COMPLETE_ASYNC
| DIO_COMPLETE_INVALIDATE
);
345 static blk_status_t
dio_bio_complete(struct dio
*dio
, struct bio
*bio
);
348 * Asynchronous IO callback.
350 static void dio_bio_end_aio(struct bio
*bio
)
352 struct dio
*dio
= bio
->bi_private
;
353 unsigned long remaining
;
355 bool defer_completion
= false;
357 /* cleanup the bio */
358 dio_bio_complete(dio
, bio
);
360 spin_lock_irqsave(&dio
->bio_lock
, flags
);
361 remaining
= --dio
->refcount
;
362 if (remaining
== 1 && dio
->waiter
)
363 wake_up_process(dio
->waiter
);
364 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
366 if (remaining
== 0) {
368 * Defer completion when defer_completion is set or
369 * when the inode has pages mapped and this is AIO write.
370 * We need to invalidate those pages because there is a
371 * chance they contain stale data in the case buffered IO
372 * went in between AIO submission and completion into the
376 defer_completion
= dio
->defer_completion
||
377 (dio
->op
== REQ_OP_WRITE
&&
378 dio
->inode
->i_mapping
->nrpages
);
379 if (defer_completion
) {
380 INIT_WORK(&dio
->complete_work
, dio_aio_complete_work
);
381 queue_work(dio
->inode
->i_sb
->s_dio_done_wq
,
382 &dio
->complete_work
);
384 dio_complete(dio
, 0, DIO_COMPLETE_ASYNC
);
390 * The BIO completion handler simply queues the BIO up for the process-context
393 * During I/O bi_private points at the dio. After I/O, bi_private is used to
394 * implement a singly-linked list of completed BIOs, at dio->bio_list.
396 static void dio_bio_end_io(struct bio
*bio
)
398 struct dio
*dio
= bio
->bi_private
;
401 spin_lock_irqsave(&dio
->bio_lock
, flags
);
402 bio
->bi_private
= dio
->bio_list
;
404 if (--dio
->refcount
== 1 && dio
->waiter
)
405 wake_up_process(dio
->waiter
);
406 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
410 * dio_end_io - handle the end io action for the given bio
411 * @bio: The direct io bio thats being completed
413 * This is meant to be called by any filesystem that uses their own dio_submit_t
414 * so that the DIO specific endio actions are dealt with after the filesystem
415 * has done it's completion work.
417 void dio_end_io(struct bio
*bio
)
419 struct dio
*dio
= bio
->bi_private
;
422 dio_bio_end_aio(bio
);
426 EXPORT_SYMBOL_GPL(dio_end_io
);
429 dio_bio_alloc(struct dio
*dio
, struct dio_submit
*sdio
,
430 struct block_device
*bdev
,
431 sector_t first_sector
, int nr_vecs
)
436 * bio_alloc() is guaranteed to return a bio when called with
437 * __GFP_RECLAIM and we request a valid number of vectors.
439 bio
= bio_alloc(GFP_KERNEL
, nr_vecs
);
441 bio_set_dev(bio
, bdev
);
442 bio
->bi_iter
.bi_sector
= first_sector
;
443 bio_set_op_attrs(bio
, dio
->op
, dio
->op_flags
);
445 bio
->bi_end_io
= dio_bio_end_aio
;
447 bio
->bi_end_io
= dio_bio_end_io
;
449 bio
->bi_write_hint
= dio
->iocb
->ki_hint
;
452 sdio
->logical_offset_in_bio
= sdio
->cur_page_fs_offset
;
456 * In the AIO read case we speculatively dirty the pages before starting IO.
457 * During IO completion, any of these pages which happen to have been written
458 * back will be redirtied by bio_check_pages_dirty().
460 * bios hold a dio reference between submit_bio and ->end_io.
462 static inline void dio_bio_submit(struct dio
*dio
, struct dio_submit
*sdio
)
464 struct bio
*bio
= sdio
->bio
;
467 bio
->bi_private
= dio
;
469 spin_lock_irqsave(&dio
->bio_lock
, flags
);
471 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
473 if (dio
->is_async
&& dio
->op
== REQ_OP_READ
&& dio
->should_dirty
)
474 bio_set_pages_dirty(bio
);
476 dio
->bio_disk
= bio
->bi_disk
;
478 if (sdio
->submit_io
) {
479 sdio
->submit_io(bio
, dio
->inode
, sdio
->logical_offset_in_bio
);
480 dio
->bio_cookie
= BLK_QC_T_NONE
;
482 dio
->bio_cookie
= submit_bio(bio
);
486 sdio
->logical_offset_in_bio
= 0;
490 * Release any resources in case of a failure
492 static inline void dio_cleanup(struct dio
*dio
, struct dio_submit
*sdio
)
494 while (sdio
->head
< sdio
->tail
)
495 put_page(dio
->pages
[sdio
->head
++]);
499 * Wait for the next BIO to complete. Remove it and return it. NULL is
500 * returned once all BIOs have been completed. This must only be called once
501 * all bios have been issued so that dio->refcount can only decrease. This
502 * requires that that the caller hold a reference on the dio.
504 static struct bio
*dio_await_one(struct dio
*dio
)
507 struct bio
*bio
= NULL
;
509 spin_lock_irqsave(&dio
->bio_lock
, flags
);
512 * Wait as long as the list is empty and there are bios in flight. bio
513 * completion drops the count, maybe adds to the list, and wakes while
514 * holding the bio_lock so we don't need set_current_state()'s barrier
515 * and can call it after testing our condition.
517 while (dio
->refcount
> 1 && dio
->bio_list
== NULL
) {
518 __set_current_state(TASK_UNINTERRUPTIBLE
);
519 dio
->waiter
= current
;
520 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
521 if (!(dio
->iocb
->ki_flags
& IOCB_HIPRI
) ||
522 !blk_poll(dio
->bio_disk
->queue
, dio
->bio_cookie
))
524 /* wake up sets us TASK_RUNNING */
525 spin_lock_irqsave(&dio
->bio_lock
, flags
);
530 dio
->bio_list
= bio
->bi_private
;
532 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
537 * Process one completed BIO. No locks are held.
539 static blk_status_t
dio_bio_complete(struct dio
*dio
, struct bio
*bio
)
541 struct bio_vec
*bvec
;
543 blk_status_t err
= bio
->bi_status
;
546 if (err
== BLK_STS_AGAIN
&& (bio
->bi_opf
& REQ_NOWAIT
))
547 dio
->io_error
= -EAGAIN
;
549 dio
->io_error
= -EIO
;
552 if (dio
->is_async
&& dio
->op
== REQ_OP_READ
&& dio
->should_dirty
) {
553 bio_check_pages_dirty(bio
); /* transfers ownership */
555 bio_for_each_segment_all(bvec
, bio
, i
) {
556 struct page
*page
= bvec
->bv_page
;
558 if (dio
->op
== REQ_OP_READ
&& !PageCompound(page
) &&
560 set_page_dirty_lock(page
);
569 * Wait on and process all in-flight BIOs. This must only be called once
570 * all bios have been issued so that the refcount can only decrease.
571 * This just waits for all bios to make it through dio_bio_complete. IO
572 * errors are propagated through dio->io_error and should be propagated via
575 static void dio_await_completion(struct dio
*dio
)
579 bio
= dio_await_one(dio
);
581 dio_bio_complete(dio
, bio
);
586 * A really large O_DIRECT read or write can generate a lot of BIOs. So
587 * to keep the memory consumption sane we periodically reap any completed BIOs
588 * during the BIO generation phase.
590 * This also helps to limit the peak amount of pinned userspace memory.
592 static inline int dio_bio_reap(struct dio
*dio
, struct dio_submit
*sdio
)
596 if (sdio
->reap_counter
++ >= 64) {
597 while (dio
->bio_list
) {
602 spin_lock_irqsave(&dio
->bio_lock
, flags
);
604 dio
->bio_list
= bio
->bi_private
;
605 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
606 ret2
= blk_status_to_errno(dio_bio_complete(dio
, bio
));
610 sdio
->reap_counter
= 0;
616 * Create workqueue for deferred direct IO completions. We allocate the
617 * workqueue when it's first needed. This avoids creating workqueue for
618 * filesystems that don't need it and also allows us to create the workqueue
619 * late enough so the we can include s_id in the name of the workqueue.
621 int sb_init_dio_done_wq(struct super_block
*sb
)
623 struct workqueue_struct
*old
;
624 struct workqueue_struct
*wq
= alloc_workqueue("dio/%s",
630 * This has to be atomic as more DIOs can race to create the workqueue
632 old
= cmpxchg(&sb
->s_dio_done_wq
, NULL
, wq
);
633 /* Someone created workqueue before us? Free ours... */
635 destroy_workqueue(wq
);
639 static int dio_set_defer_completion(struct dio
*dio
)
641 struct super_block
*sb
= dio
->inode
->i_sb
;
643 if (dio
->defer_completion
)
645 dio
->defer_completion
= true;
646 if (!sb
->s_dio_done_wq
)
647 return sb_init_dio_done_wq(sb
);
652 * Call into the fs to map some more disk blocks. We record the current number
653 * of available blocks at sdio->blocks_available. These are in units of the
654 * fs blocksize, i_blocksize(inode).
656 * The fs is allowed to map lots of blocks at once. If it wants to do that,
657 * it uses the passed inode-relative block number as the file offset, as usual.
659 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
660 * has remaining to do. The fs should not map more than this number of blocks.
662 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
663 * indicate how much contiguous disk space has been made available at
666 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
667 * This isn't very efficient...
669 * In the case of filesystem holes: the fs may return an arbitrarily-large
670 * hole by returning an appropriate value in b_size and by clearing
671 * buffer_mapped(). However the direct-io code will only process holes one
672 * block at a time - it will repeatedly call get_block() as it walks the hole.
674 static int get_more_blocks(struct dio
*dio
, struct dio_submit
*sdio
,
675 struct buffer_head
*map_bh
)
678 sector_t fs_startblk
; /* Into file, in filesystem-sized blocks */
679 sector_t fs_endblk
; /* Into file, in filesystem-sized blocks */
680 unsigned long fs_count
; /* Number of filesystem-sized blocks */
682 unsigned int i_blkbits
= sdio
->blkbits
+ sdio
->blkfactor
;
685 * If there was a memory error and we've overwritten all the
686 * mapped blocks then we can now return that memory error
688 ret
= dio
->page_errors
;
690 BUG_ON(sdio
->block_in_file
>= sdio
->final_block_in_request
);
691 fs_startblk
= sdio
->block_in_file
>> sdio
->blkfactor
;
692 fs_endblk
= (sdio
->final_block_in_request
- 1) >>
694 fs_count
= fs_endblk
- fs_startblk
+ 1;
697 map_bh
->b_size
= fs_count
<< i_blkbits
;
700 * For writes that could fill holes inside i_size on a
701 * DIO_SKIP_HOLES filesystem we forbid block creations: only
702 * overwrites are permitted. We will return early to the caller
703 * once we see an unmapped buffer head returned, and the caller
704 * will fall back to buffered I/O.
706 * Otherwise the decision is left to the get_blocks method,
707 * which may decide to handle it or also return an unmapped
710 create
= dio
->op
== REQ_OP_WRITE
;
711 if (dio
->flags
& DIO_SKIP_HOLES
) {
712 if (fs_startblk
<= ((i_size_read(dio
->inode
) - 1) >>
717 ret
= (*sdio
->get_block
)(dio
->inode
, fs_startblk
,
720 /* Store for completion */
721 dio
->private = map_bh
->b_private
;
723 if (ret
== 0 && buffer_defer_completion(map_bh
))
724 ret
= dio_set_defer_completion(dio
);
730 * There is no bio. Make one now.
732 static inline int dio_new_bio(struct dio
*dio
, struct dio_submit
*sdio
,
733 sector_t start_sector
, struct buffer_head
*map_bh
)
738 ret
= dio_bio_reap(dio
, sdio
);
741 sector
= start_sector
<< (sdio
->blkbits
- 9);
742 nr_pages
= min(sdio
->pages_in_io
, BIO_MAX_PAGES
);
743 BUG_ON(nr_pages
<= 0);
744 dio_bio_alloc(dio
, sdio
, map_bh
->b_bdev
, sector
, nr_pages
);
751 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
752 * that was successful then update final_block_in_bio and take a ref against
753 * the just-added page.
755 * Return zero on success. Non-zero means the caller needs to start a new BIO.
757 static inline int dio_bio_add_page(struct dio_submit
*sdio
)
761 ret
= bio_add_page(sdio
->bio
, sdio
->cur_page
,
762 sdio
->cur_page_len
, sdio
->cur_page_offset
);
763 if (ret
== sdio
->cur_page_len
) {
765 * Decrement count only, if we are done with this page
767 if ((sdio
->cur_page_len
+ sdio
->cur_page_offset
) == PAGE_SIZE
)
769 get_page(sdio
->cur_page
);
770 sdio
->final_block_in_bio
= sdio
->cur_page_block
+
771 (sdio
->cur_page_len
>> sdio
->blkbits
);
780 * Put cur_page under IO. The section of cur_page which is described by
781 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
782 * starts on-disk at cur_page_block.
784 * We take a ref against the page here (on behalf of its presence in the bio).
786 * The caller of this function is responsible for removing cur_page from the
787 * dio, and for dropping the refcount which came from that presence.
789 static inline int dio_send_cur_page(struct dio
*dio
, struct dio_submit
*sdio
,
790 struct buffer_head
*map_bh
)
795 loff_t cur_offset
= sdio
->cur_page_fs_offset
;
796 loff_t bio_next_offset
= sdio
->logical_offset_in_bio
+
797 sdio
->bio
->bi_iter
.bi_size
;
800 * See whether this new request is contiguous with the old.
802 * Btrfs cannot handle having logically non-contiguous requests
803 * submitted. For example if you have
805 * Logical: [0-4095][HOLE][8192-12287]
806 * Physical: [0-4095] [4096-8191]
808 * We cannot submit those pages together as one BIO. So if our
809 * current logical offset in the file does not equal what would
810 * be the next logical offset in the bio, submit the bio we
813 if (sdio
->final_block_in_bio
!= sdio
->cur_page_block
||
814 cur_offset
!= bio_next_offset
)
815 dio_bio_submit(dio
, sdio
);
818 if (sdio
->bio
== NULL
) {
819 ret
= dio_new_bio(dio
, sdio
, sdio
->cur_page_block
, map_bh
);
824 if (dio_bio_add_page(sdio
) != 0) {
825 dio_bio_submit(dio
, sdio
);
826 ret
= dio_new_bio(dio
, sdio
, sdio
->cur_page_block
, map_bh
);
828 ret
= dio_bio_add_page(sdio
);
837 * An autonomous function to put a chunk of a page under deferred IO.
839 * The caller doesn't actually know (or care) whether this piece of page is in
840 * a BIO, or is under IO or whatever. We just take care of all possible
841 * situations here. The separation between the logic of do_direct_IO() and
842 * that of submit_page_section() is important for clarity. Please don't break.
844 * The chunk of page starts on-disk at blocknr.
846 * We perform deferred IO, by recording the last-submitted page inside our
847 * private part of the dio structure. If possible, we just expand the IO
848 * across that page here.
850 * If that doesn't work out then we put the old page into the bio and add this
851 * page to the dio instead.
854 submit_page_section(struct dio
*dio
, struct dio_submit
*sdio
, struct page
*page
,
855 unsigned offset
, unsigned len
, sector_t blocknr
,
856 struct buffer_head
*map_bh
)
860 if (dio
->op
== REQ_OP_WRITE
) {
862 * Read accounting is performed in submit_bio()
864 task_io_account_write(len
);
868 * Can we just grow the current page's presence in the dio?
870 if (sdio
->cur_page
== page
&&
871 sdio
->cur_page_offset
+ sdio
->cur_page_len
== offset
&&
872 sdio
->cur_page_block
+
873 (sdio
->cur_page_len
>> sdio
->blkbits
) == blocknr
) {
874 sdio
->cur_page_len
+= len
;
879 * If there's a deferred page already there then send it.
881 if (sdio
->cur_page
) {
882 ret
= dio_send_cur_page(dio
, sdio
, map_bh
);
883 put_page(sdio
->cur_page
);
884 sdio
->cur_page
= NULL
;
889 get_page(page
); /* It is in dio */
890 sdio
->cur_page
= page
;
891 sdio
->cur_page_offset
= offset
;
892 sdio
->cur_page_len
= len
;
893 sdio
->cur_page_block
= blocknr
;
894 sdio
->cur_page_fs_offset
= sdio
->block_in_file
<< sdio
->blkbits
;
897 * If sdio->boundary then we want to schedule the IO now to
898 * avoid metadata seeks.
900 if (sdio
->boundary
) {
901 ret
= dio_send_cur_page(dio
, sdio
, map_bh
);
903 dio_bio_submit(dio
, sdio
);
904 put_page(sdio
->cur_page
);
905 sdio
->cur_page
= NULL
;
911 * If we are not writing the entire block and get_block() allocated
912 * the block for us, we need to fill-in the unused portion of the
913 * block with zeros. This happens only if user-buffer, fileoffset or
914 * io length is not filesystem block-size multiple.
916 * `end' is zero if we're doing the start of the IO, 1 at the end of the
919 static inline void dio_zero_block(struct dio
*dio
, struct dio_submit
*sdio
,
920 int end
, struct buffer_head
*map_bh
)
922 unsigned dio_blocks_per_fs_block
;
923 unsigned this_chunk_blocks
; /* In dio_blocks */
924 unsigned this_chunk_bytes
;
927 sdio
->start_zero_done
= 1;
928 if (!sdio
->blkfactor
|| !buffer_new(map_bh
))
931 dio_blocks_per_fs_block
= 1 << sdio
->blkfactor
;
932 this_chunk_blocks
= sdio
->block_in_file
& (dio_blocks_per_fs_block
- 1);
934 if (!this_chunk_blocks
)
938 * We need to zero out part of an fs block. It is either at the
939 * beginning or the end of the fs block.
942 this_chunk_blocks
= dio_blocks_per_fs_block
- this_chunk_blocks
;
944 this_chunk_bytes
= this_chunk_blocks
<< sdio
->blkbits
;
947 if (submit_page_section(dio
, sdio
, page
, 0, this_chunk_bytes
,
948 sdio
->next_block_for_io
, map_bh
))
951 sdio
->next_block_for_io
+= this_chunk_blocks
;
955 * Walk the user pages, and the file, mapping blocks to disk and generating
956 * a sequence of (page,offset,len,block) mappings. These mappings are injected
957 * into submit_page_section(), which takes care of the next stage of submission
959 * Direct IO against a blockdev is different from a file. Because we can
960 * happily perform page-sized but 512-byte aligned IOs. It is important that
961 * blockdev IO be able to have fine alignment and large sizes.
963 * So what we do is to permit the ->get_block function to populate bh.b_size
964 * with the size of IO which is permitted at this offset and this i_blkbits.
966 * For best results, the blockdev should be set up with 512-byte i_blkbits and
967 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
968 * fine alignment but still allows this function to work in PAGE_SIZE units.
970 static int do_direct_IO(struct dio
*dio
, struct dio_submit
*sdio
,
971 struct buffer_head
*map_bh
)
973 const unsigned blkbits
= sdio
->blkbits
;
974 const unsigned i_blkbits
= blkbits
+ sdio
->blkfactor
;
977 while (sdio
->block_in_file
< sdio
->final_block_in_request
) {
981 page
= dio_get_page(dio
, sdio
);
986 from
= sdio
->head
? 0 : sdio
->from
;
987 to
= (sdio
->head
== sdio
->tail
- 1) ? sdio
->to
: PAGE_SIZE
;
991 unsigned this_chunk_bytes
; /* # of bytes mapped */
992 unsigned this_chunk_blocks
; /* # of blocks */
995 if (sdio
->blocks_available
== 0) {
997 * Need to go and map some more disk
999 unsigned long blkmask
;
1000 unsigned long dio_remainder
;
1002 ret
= get_more_blocks(dio
, sdio
, map_bh
);
1007 if (!buffer_mapped(map_bh
))
1010 sdio
->blocks_available
=
1011 map_bh
->b_size
>> blkbits
;
1012 sdio
->next_block_for_io
=
1013 map_bh
->b_blocknr
<< sdio
->blkfactor
;
1014 if (buffer_new(map_bh
)) {
1018 map_bh
->b_size
>> i_blkbits
);
1021 if (!sdio
->blkfactor
)
1024 blkmask
= (1 << sdio
->blkfactor
) - 1;
1025 dio_remainder
= (sdio
->block_in_file
& blkmask
);
1028 * If we are at the start of IO and that IO
1029 * starts partway into a fs-block,
1030 * dio_remainder will be non-zero. If the IO
1031 * is a read then we can simply advance the IO
1032 * cursor to the first block which is to be
1033 * read. But if the IO is a write and the
1034 * block was newly allocated we cannot do that;
1035 * the start of the fs block must be zeroed out
1038 if (!buffer_new(map_bh
))
1039 sdio
->next_block_for_io
+= dio_remainder
;
1040 sdio
->blocks_available
-= dio_remainder
;
1044 if (!buffer_mapped(map_bh
)) {
1045 loff_t i_size_aligned
;
1047 /* AKPM: eargh, -ENOTBLK is a hack */
1048 if (dio
->op
== REQ_OP_WRITE
) {
1054 * Be sure to account for a partial block as the
1055 * last block in the file
1057 i_size_aligned
= ALIGN(i_size_read(dio
->inode
),
1059 if (sdio
->block_in_file
>=
1060 i_size_aligned
>> blkbits
) {
1065 zero_user(page
, from
, 1 << blkbits
);
1066 sdio
->block_in_file
++;
1067 from
+= 1 << blkbits
;
1068 dio
->result
+= 1 << blkbits
;
1073 * If we're performing IO which has an alignment which
1074 * is finer than the underlying fs, go check to see if
1075 * we must zero out the start of this block.
1077 if (unlikely(sdio
->blkfactor
&& !sdio
->start_zero_done
))
1078 dio_zero_block(dio
, sdio
, 0, map_bh
);
1081 * Work out, in this_chunk_blocks, how much disk we
1082 * can add to this page
1084 this_chunk_blocks
= sdio
->blocks_available
;
1085 u
= (to
- from
) >> blkbits
;
1086 if (this_chunk_blocks
> u
)
1087 this_chunk_blocks
= u
;
1088 u
= sdio
->final_block_in_request
- sdio
->block_in_file
;
1089 if (this_chunk_blocks
> u
)
1090 this_chunk_blocks
= u
;
1091 this_chunk_bytes
= this_chunk_blocks
<< blkbits
;
1092 BUG_ON(this_chunk_bytes
== 0);
1094 if (this_chunk_blocks
== sdio
->blocks_available
)
1095 sdio
->boundary
= buffer_boundary(map_bh
);
1096 ret
= submit_page_section(dio
, sdio
, page
,
1099 sdio
->next_block_for_io
,
1105 sdio
->next_block_for_io
+= this_chunk_blocks
;
1107 sdio
->block_in_file
+= this_chunk_blocks
;
1108 from
+= this_chunk_bytes
;
1109 dio
->result
+= this_chunk_bytes
;
1110 sdio
->blocks_available
-= this_chunk_blocks
;
1112 BUG_ON(sdio
->block_in_file
> sdio
->final_block_in_request
);
1113 if (sdio
->block_in_file
== sdio
->final_block_in_request
)
1117 /* Drop the ref which was taken in get_user_pages() */
1124 static inline int drop_refcount(struct dio
*dio
)
1127 unsigned long flags
;
1130 * Sync will always be dropping the final ref and completing the
1131 * operation. AIO can if it was a broken operation described above or
1132 * in fact if all the bios race to complete before we get here. In
1133 * that case dio_complete() translates the EIOCBQUEUED into the proper
1134 * return code that the caller will hand to ->complete().
1136 * This is managed by the bio_lock instead of being an atomic_t so that
1137 * completion paths can drop their ref and use the remaining count to
1138 * decide to wake the submission path atomically.
1140 spin_lock_irqsave(&dio
->bio_lock
, flags
);
1141 ret2
= --dio
->refcount
;
1142 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
1147 * This is a library function for use by filesystem drivers.
1149 * The locking rules are governed by the flags parameter:
1150 * - if the flags value contains DIO_LOCKING we use a fancy locking
1151 * scheme for dumb filesystems.
1152 * For writes this function is called under i_mutex and returns with
1153 * i_mutex held, for reads, i_mutex is not held on entry, but it is
1154 * taken and dropped again before returning.
1155 * - if the flags value does NOT contain DIO_LOCKING we don't use any
1156 * internal locking but rather rely on the filesystem to synchronize
1157 * direct I/O reads/writes versus each other and truncate.
1159 * To help with locking against truncate we incremented the i_dio_count
1160 * counter before starting direct I/O, and decrement it once we are done.
1161 * Truncate can wait for it to reach zero to provide exclusion. It is
1162 * expected that filesystem provide exclusion between new direct I/O
1163 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex,
1164 * but other filesystems need to take care of this on their own.
1166 * NOTE: if you pass "sdio" to anything by pointer make sure that function
1167 * is always inlined. Otherwise gcc is unable to split the structure into
1168 * individual fields and will generate much worse code. This is important
1169 * for the whole file.
1171 static inline ssize_t
1172 do_blockdev_direct_IO(struct kiocb
*iocb
, struct inode
*inode
,
1173 struct block_device
*bdev
, struct iov_iter
*iter
,
1174 get_block_t get_block
, dio_iodone_t end_io
,
1175 dio_submit_t submit_io
, int flags
)
1177 unsigned i_blkbits
= READ_ONCE(inode
->i_blkbits
);
1178 unsigned blkbits
= i_blkbits
;
1179 unsigned blocksize_mask
= (1 << blkbits
) - 1;
1180 ssize_t retval
= -EINVAL
;
1181 size_t count
= iov_iter_count(iter
);
1182 loff_t offset
= iocb
->ki_pos
;
1183 loff_t end
= offset
+ count
;
1185 struct dio_submit sdio
= { 0, };
1186 struct buffer_head map_bh
= { 0, };
1187 struct blk_plug plug
;
1188 unsigned long align
= offset
| iov_iter_alignment(iter
);
1191 * Avoid references to bdev if not absolutely needed to give
1192 * the early prefetch in the caller enough time.
1195 if (align
& blocksize_mask
) {
1197 blkbits
= blksize_bits(bdev_logical_block_size(bdev
));
1198 blocksize_mask
= (1 << blkbits
) - 1;
1199 if (align
& blocksize_mask
)
1203 /* watch out for a 0 len io from a tricksy fs */
1204 if (iov_iter_rw(iter
) == READ
&& !iov_iter_count(iter
))
1207 dio
= kmem_cache_alloc(dio_cache
, GFP_KERNEL
);
1212 * Believe it or not, zeroing out the page array caused a .5%
1213 * performance regression in a database benchmark. So, we take
1214 * care to only zero out what's needed.
1216 memset(dio
, 0, offsetof(struct dio
, pages
));
1219 if (dio
->flags
& DIO_LOCKING
) {
1220 if (iov_iter_rw(iter
) == READ
) {
1221 struct address_space
*mapping
=
1222 iocb
->ki_filp
->f_mapping
;
1224 /* will be released by direct_io_worker */
1227 retval
= filemap_write_and_wait_range(mapping
, offset
,
1230 inode_unlock(inode
);
1231 kmem_cache_free(dio_cache
, dio
);
1237 /* Once we sampled i_size check for reads beyond EOF */
1238 dio
->i_size
= i_size_read(inode
);
1239 if (iov_iter_rw(iter
) == READ
&& offset
>= dio
->i_size
) {
1240 if (dio
->flags
& DIO_LOCKING
)
1241 inode_unlock(inode
);
1242 kmem_cache_free(dio_cache
, dio
);
1248 * For file extending writes updating i_size before data writeouts
1249 * complete can expose uninitialized blocks in dumb filesystems.
1250 * In that case we need to wait for I/O completion even if asked
1251 * for an asynchronous write.
1253 if (is_sync_kiocb(iocb
))
1254 dio
->is_async
= false;
1255 else if (!(dio
->flags
& DIO_ASYNC_EXTEND
) &&
1256 iov_iter_rw(iter
) == WRITE
&& end
> i_size_read(inode
))
1257 dio
->is_async
= false;
1259 dio
->is_async
= true;
1262 if (iov_iter_rw(iter
) == WRITE
) {
1263 dio
->op
= REQ_OP_WRITE
;
1264 dio
->op_flags
= REQ_SYNC
| REQ_IDLE
;
1265 if (iocb
->ki_flags
& IOCB_NOWAIT
)
1266 dio
->op_flags
|= REQ_NOWAIT
;
1268 dio
->op
= REQ_OP_READ
;
1272 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1273 * so that we can call ->fsync.
1275 if (dio
->is_async
&& iov_iter_rw(iter
) == WRITE
) {
1277 if (iocb
->ki_flags
& IOCB_DSYNC
)
1278 retval
= dio_set_defer_completion(dio
);
1279 else if (!dio
->inode
->i_sb
->s_dio_done_wq
) {
1281 * In case of AIO write racing with buffered read we
1282 * need to defer completion. We can't decide this now,
1283 * however the workqueue needs to be initialized here.
1285 retval
= sb_init_dio_done_wq(dio
->inode
->i_sb
);
1289 * We grab i_mutex only for reads so we don't have
1290 * to release it here
1292 kmem_cache_free(dio_cache
, dio
);
1298 * Will be decremented at I/O completion time.
1300 if (!(dio
->flags
& DIO_SKIP_DIO_COUNT
))
1301 inode_dio_begin(inode
);
1304 sdio
.blkbits
= blkbits
;
1305 sdio
.blkfactor
= i_blkbits
- blkbits
;
1306 sdio
.block_in_file
= offset
>> blkbits
;
1308 sdio
.get_block
= get_block
;
1309 dio
->end_io
= end_io
;
1310 sdio
.submit_io
= submit_io
;
1311 sdio
.final_block_in_bio
= -1;
1312 sdio
.next_block_for_io
= -1;
1316 spin_lock_init(&dio
->bio_lock
);
1319 dio
->should_dirty
= (iter
->type
== ITER_IOVEC
);
1321 sdio
.final_block_in_request
=
1322 (offset
+ iov_iter_count(iter
)) >> blkbits
;
1325 * In case of non-aligned buffers, we may need 2 more
1326 * pages since we need to zero out first and last block.
1328 if (unlikely(sdio
.blkfactor
))
1329 sdio
.pages_in_io
= 2;
1331 sdio
.pages_in_io
+= iov_iter_npages(iter
, INT_MAX
);
1333 blk_start_plug(&plug
);
1335 retval
= do_direct_IO(dio
, &sdio
, &map_bh
);
1337 dio_cleanup(dio
, &sdio
);
1339 if (retval
== -ENOTBLK
) {
1341 * The remaining part of the request will be
1342 * be handled by buffered I/O when we return
1347 * There may be some unwritten disk at the end of a part-written
1348 * fs-block-sized block. Go zero that now.
1350 dio_zero_block(dio
, &sdio
, 1, &map_bh
);
1352 if (sdio
.cur_page
) {
1355 ret2
= dio_send_cur_page(dio
, &sdio
, &map_bh
);
1358 put_page(sdio
.cur_page
);
1359 sdio
.cur_page
= NULL
;
1362 dio_bio_submit(dio
, &sdio
);
1364 blk_finish_plug(&plug
);
1367 * It is possible that, we return short IO due to end of file.
1368 * In that case, we need to release all the pages we got hold on.
1370 dio_cleanup(dio
, &sdio
);
1373 * All block lookups have been performed. For READ requests
1374 * we can let i_mutex go now that its achieved its purpose
1375 * of protecting us from looking up uninitialized blocks.
1377 if (iov_iter_rw(iter
) == READ
&& (dio
->flags
& DIO_LOCKING
))
1378 inode_unlock(dio
->inode
);
1381 * The only time we want to leave bios in flight is when a successful
1382 * partial aio read or full aio write have been setup. In that case
1383 * bio completion will call aio_complete. The only time it's safe to
1384 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1385 * This had *better* be the only place that raises -EIOCBQUEUED.
1387 BUG_ON(retval
== -EIOCBQUEUED
);
1388 if (dio
->is_async
&& retval
== 0 && dio
->result
&&
1389 (iov_iter_rw(iter
) == READ
|| dio
->result
== count
))
1390 retval
= -EIOCBQUEUED
;
1392 dio_await_completion(dio
);
1394 if (drop_refcount(dio
) == 0) {
1395 retval
= dio_complete(dio
, retval
, DIO_COMPLETE_INVALIDATE
);
1397 BUG_ON(retval
!= -EIOCBQUEUED
);
1403 ssize_t
__blockdev_direct_IO(struct kiocb
*iocb
, struct inode
*inode
,
1404 struct block_device
*bdev
, struct iov_iter
*iter
,
1405 get_block_t get_block
,
1406 dio_iodone_t end_io
, dio_submit_t submit_io
,
1410 * The block device state is needed in the end to finally
1411 * submit everything. Since it's likely to be cache cold
1412 * prefetch it here as first thing to hide some of the
1415 * Attempt to prefetch the pieces we likely need later.
1417 prefetch(&bdev
->bd_disk
->part_tbl
);
1418 prefetch(bdev
->bd_queue
);
1419 prefetch((char *)bdev
->bd_queue
+ SMP_CACHE_BYTES
);
1421 return do_blockdev_direct_IO(iocb
, inode
, bdev
, iter
, get_block
,
1422 end_io
, submit_io
, flags
);
1425 EXPORT_SYMBOL(__blockdev_direct_IO
);
1427 static __init
int dio_init(void)
1429 dio_cache
= KMEM_CACHE(dio
, SLAB_PANIC
);
1432 module_init(dio_init
)