thp: allow mlocked THP again
[linux/fpc-iii.git] / mm / rmap.c
blob31d8866fb5629cb35033ac414b7a95625c688722
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
26 * mapping->i_mmap_rwsem
27 * anon_vma->rwsem
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
33 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
34 * mapping->tree_lock (widely used)
35 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
36 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
37 * sb_lock (within inode_lock in fs/fs-writeback.c)
38 * mapping->tree_lock (widely used, in set_page_dirty,
39 * in arch-dependent flush_dcache_mmap_lock,
40 * within bdi.wb->list_lock in __sync_single_inode)
42 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
43 * ->tasklist_lock
44 * pte map lock
47 #include <linux/mm.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/swapops.h>
51 #include <linux/slab.h>
52 #include <linux/init.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/rcupdate.h>
56 #include <linux/export.h>
57 #include <linux/memcontrol.h>
58 #include <linux/mmu_notifier.h>
59 #include <linux/migrate.h>
60 #include <linux/hugetlb.h>
61 #include <linux/backing-dev.h>
62 #include <linux/page_idle.h>
64 #include <asm/tlbflush.h>
66 #include <trace/events/tlb.h>
68 #include "internal.h"
70 static struct kmem_cache *anon_vma_cachep;
71 static struct kmem_cache *anon_vma_chain_cachep;
73 static inline struct anon_vma *anon_vma_alloc(void)
75 struct anon_vma *anon_vma;
77 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
78 if (anon_vma) {
79 atomic_set(&anon_vma->refcount, 1);
80 anon_vma->degree = 1; /* Reference for first vma */
81 anon_vma->parent = anon_vma;
83 * Initialise the anon_vma root to point to itself. If called
84 * from fork, the root will be reset to the parents anon_vma.
86 anon_vma->root = anon_vma;
89 return anon_vma;
92 static inline void anon_vma_free(struct anon_vma *anon_vma)
94 VM_BUG_ON(atomic_read(&anon_vma->refcount));
97 * Synchronize against page_lock_anon_vma_read() such that
98 * we can safely hold the lock without the anon_vma getting
99 * freed.
101 * Relies on the full mb implied by the atomic_dec_and_test() from
102 * put_anon_vma() against the acquire barrier implied by
103 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
105 * page_lock_anon_vma_read() VS put_anon_vma()
106 * down_read_trylock() atomic_dec_and_test()
107 * LOCK MB
108 * atomic_read() rwsem_is_locked()
110 * LOCK should suffice since the actual taking of the lock must
111 * happen _before_ what follows.
113 might_sleep();
114 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
115 anon_vma_lock_write(anon_vma);
116 anon_vma_unlock_write(anon_vma);
119 kmem_cache_free(anon_vma_cachep, anon_vma);
122 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
124 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
127 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
129 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
132 static void anon_vma_chain_link(struct vm_area_struct *vma,
133 struct anon_vma_chain *avc,
134 struct anon_vma *anon_vma)
136 avc->vma = vma;
137 avc->anon_vma = anon_vma;
138 list_add(&avc->same_vma, &vma->anon_vma_chain);
139 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
143 * anon_vma_prepare - attach an anon_vma to a memory region
144 * @vma: the memory region in question
146 * This makes sure the memory mapping described by 'vma' has
147 * an 'anon_vma' attached to it, so that we can associate the
148 * anonymous pages mapped into it with that anon_vma.
150 * The common case will be that we already have one, but if
151 * not we either need to find an adjacent mapping that we
152 * can re-use the anon_vma from (very common when the only
153 * reason for splitting a vma has been mprotect()), or we
154 * allocate a new one.
156 * Anon-vma allocations are very subtle, because we may have
157 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
158 * and that may actually touch the spinlock even in the newly
159 * allocated vma (it depends on RCU to make sure that the
160 * anon_vma isn't actually destroyed).
162 * As a result, we need to do proper anon_vma locking even
163 * for the new allocation. At the same time, we do not want
164 * to do any locking for the common case of already having
165 * an anon_vma.
167 * This must be called with the mmap_sem held for reading.
169 int anon_vma_prepare(struct vm_area_struct *vma)
171 struct anon_vma *anon_vma = vma->anon_vma;
172 struct anon_vma_chain *avc;
174 might_sleep();
175 if (unlikely(!anon_vma)) {
176 struct mm_struct *mm = vma->vm_mm;
177 struct anon_vma *allocated;
179 avc = anon_vma_chain_alloc(GFP_KERNEL);
180 if (!avc)
181 goto out_enomem;
183 anon_vma = find_mergeable_anon_vma(vma);
184 allocated = NULL;
185 if (!anon_vma) {
186 anon_vma = anon_vma_alloc();
187 if (unlikely(!anon_vma))
188 goto out_enomem_free_avc;
189 allocated = anon_vma;
192 anon_vma_lock_write(anon_vma);
193 /* page_table_lock to protect against threads */
194 spin_lock(&mm->page_table_lock);
195 if (likely(!vma->anon_vma)) {
196 vma->anon_vma = anon_vma;
197 anon_vma_chain_link(vma, avc, anon_vma);
198 /* vma reference or self-parent link for new root */
199 anon_vma->degree++;
200 allocated = NULL;
201 avc = NULL;
203 spin_unlock(&mm->page_table_lock);
204 anon_vma_unlock_write(anon_vma);
206 if (unlikely(allocated))
207 put_anon_vma(allocated);
208 if (unlikely(avc))
209 anon_vma_chain_free(avc);
211 return 0;
213 out_enomem_free_avc:
214 anon_vma_chain_free(avc);
215 out_enomem:
216 return -ENOMEM;
220 * This is a useful helper function for locking the anon_vma root as
221 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
222 * have the same vma.
224 * Such anon_vma's should have the same root, so you'd expect to see
225 * just a single mutex_lock for the whole traversal.
227 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
229 struct anon_vma *new_root = anon_vma->root;
230 if (new_root != root) {
231 if (WARN_ON_ONCE(root))
232 up_write(&root->rwsem);
233 root = new_root;
234 down_write(&root->rwsem);
236 return root;
239 static inline void unlock_anon_vma_root(struct anon_vma *root)
241 if (root)
242 up_write(&root->rwsem);
246 * Attach the anon_vmas from src to dst.
247 * Returns 0 on success, -ENOMEM on failure.
249 * If dst->anon_vma is NULL this function tries to find and reuse existing
250 * anon_vma which has no vmas and only one child anon_vma. This prevents
251 * degradation of anon_vma hierarchy to endless linear chain in case of
252 * constantly forking task. On the other hand, an anon_vma with more than one
253 * child isn't reused even if there was no alive vma, thus rmap walker has a
254 * good chance of avoiding scanning the whole hierarchy when it searches where
255 * page is mapped.
257 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
259 struct anon_vma_chain *avc, *pavc;
260 struct anon_vma *root = NULL;
262 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
263 struct anon_vma *anon_vma;
265 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
266 if (unlikely(!avc)) {
267 unlock_anon_vma_root(root);
268 root = NULL;
269 avc = anon_vma_chain_alloc(GFP_KERNEL);
270 if (!avc)
271 goto enomem_failure;
273 anon_vma = pavc->anon_vma;
274 root = lock_anon_vma_root(root, anon_vma);
275 anon_vma_chain_link(dst, avc, anon_vma);
278 * Reuse existing anon_vma if its degree lower than two,
279 * that means it has no vma and only one anon_vma child.
281 * Do not chose parent anon_vma, otherwise first child
282 * will always reuse it. Root anon_vma is never reused:
283 * it has self-parent reference and at least one child.
285 if (!dst->anon_vma && anon_vma != src->anon_vma &&
286 anon_vma->degree < 2)
287 dst->anon_vma = anon_vma;
289 if (dst->anon_vma)
290 dst->anon_vma->degree++;
291 unlock_anon_vma_root(root);
292 return 0;
294 enomem_failure:
296 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
297 * decremented in unlink_anon_vmas().
298 * We can safely do this because callers of anon_vma_clone() don't care
299 * about dst->anon_vma if anon_vma_clone() failed.
301 dst->anon_vma = NULL;
302 unlink_anon_vmas(dst);
303 return -ENOMEM;
307 * Attach vma to its own anon_vma, as well as to the anon_vmas that
308 * the corresponding VMA in the parent process is attached to.
309 * Returns 0 on success, non-zero on failure.
311 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
313 struct anon_vma_chain *avc;
314 struct anon_vma *anon_vma;
315 int error;
317 /* Don't bother if the parent process has no anon_vma here. */
318 if (!pvma->anon_vma)
319 return 0;
321 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
322 vma->anon_vma = NULL;
325 * First, attach the new VMA to the parent VMA's anon_vmas,
326 * so rmap can find non-COWed pages in child processes.
328 error = anon_vma_clone(vma, pvma);
329 if (error)
330 return error;
332 /* An existing anon_vma has been reused, all done then. */
333 if (vma->anon_vma)
334 return 0;
336 /* Then add our own anon_vma. */
337 anon_vma = anon_vma_alloc();
338 if (!anon_vma)
339 goto out_error;
340 avc = anon_vma_chain_alloc(GFP_KERNEL);
341 if (!avc)
342 goto out_error_free_anon_vma;
345 * The root anon_vma's spinlock is the lock actually used when we
346 * lock any of the anon_vmas in this anon_vma tree.
348 anon_vma->root = pvma->anon_vma->root;
349 anon_vma->parent = pvma->anon_vma;
351 * With refcounts, an anon_vma can stay around longer than the
352 * process it belongs to. The root anon_vma needs to be pinned until
353 * this anon_vma is freed, because the lock lives in the root.
355 get_anon_vma(anon_vma->root);
356 /* Mark this anon_vma as the one where our new (COWed) pages go. */
357 vma->anon_vma = anon_vma;
358 anon_vma_lock_write(anon_vma);
359 anon_vma_chain_link(vma, avc, anon_vma);
360 anon_vma->parent->degree++;
361 anon_vma_unlock_write(anon_vma);
363 return 0;
365 out_error_free_anon_vma:
366 put_anon_vma(anon_vma);
367 out_error:
368 unlink_anon_vmas(vma);
369 return -ENOMEM;
372 void unlink_anon_vmas(struct vm_area_struct *vma)
374 struct anon_vma_chain *avc, *next;
375 struct anon_vma *root = NULL;
378 * Unlink each anon_vma chained to the VMA. This list is ordered
379 * from newest to oldest, ensuring the root anon_vma gets freed last.
381 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
382 struct anon_vma *anon_vma = avc->anon_vma;
384 root = lock_anon_vma_root(root, anon_vma);
385 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
388 * Leave empty anon_vmas on the list - we'll need
389 * to free them outside the lock.
391 if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
392 anon_vma->parent->degree--;
393 continue;
396 list_del(&avc->same_vma);
397 anon_vma_chain_free(avc);
399 if (vma->anon_vma)
400 vma->anon_vma->degree--;
401 unlock_anon_vma_root(root);
404 * Iterate the list once more, it now only contains empty and unlinked
405 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
406 * needing to write-acquire the anon_vma->root->rwsem.
408 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
409 struct anon_vma *anon_vma = avc->anon_vma;
411 BUG_ON(anon_vma->degree);
412 put_anon_vma(anon_vma);
414 list_del(&avc->same_vma);
415 anon_vma_chain_free(avc);
419 static void anon_vma_ctor(void *data)
421 struct anon_vma *anon_vma = data;
423 init_rwsem(&anon_vma->rwsem);
424 atomic_set(&anon_vma->refcount, 0);
425 anon_vma->rb_root = RB_ROOT;
428 void __init anon_vma_init(void)
430 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
431 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
432 anon_vma_ctor);
433 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
434 SLAB_PANIC|SLAB_ACCOUNT);
438 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
440 * Since there is no serialization what so ever against page_remove_rmap()
441 * the best this function can do is return a locked anon_vma that might
442 * have been relevant to this page.
444 * The page might have been remapped to a different anon_vma or the anon_vma
445 * returned may already be freed (and even reused).
447 * In case it was remapped to a different anon_vma, the new anon_vma will be a
448 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
449 * ensure that any anon_vma obtained from the page will still be valid for as
450 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
452 * All users of this function must be very careful when walking the anon_vma
453 * chain and verify that the page in question is indeed mapped in it
454 * [ something equivalent to page_mapped_in_vma() ].
456 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
457 * that the anon_vma pointer from page->mapping is valid if there is a
458 * mapcount, we can dereference the anon_vma after observing those.
460 struct anon_vma *page_get_anon_vma(struct page *page)
462 struct anon_vma *anon_vma = NULL;
463 unsigned long anon_mapping;
465 rcu_read_lock();
466 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
467 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
468 goto out;
469 if (!page_mapped(page))
470 goto out;
472 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
473 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
474 anon_vma = NULL;
475 goto out;
479 * If this page is still mapped, then its anon_vma cannot have been
480 * freed. But if it has been unmapped, we have no security against the
481 * anon_vma structure being freed and reused (for another anon_vma:
482 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
483 * above cannot corrupt).
485 if (!page_mapped(page)) {
486 rcu_read_unlock();
487 put_anon_vma(anon_vma);
488 return NULL;
490 out:
491 rcu_read_unlock();
493 return anon_vma;
497 * Similar to page_get_anon_vma() except it locks the anon_vma.
499 * Its a little more complex as it tries to keep the fast path to a single
500 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
501 * reference like with page_get_anon_vma() and then block on the mutex.
503 struct anon_vma *page_lock_anon_vma_read(struct page *page)
505 struct anon_vma *anon_vma = NULL;
506 struct anon_vma *root_anon_vma;
507 unsigned long anon_mapping;
509 rcu_read_lock();
510 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
511 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
512 goto out;
513 if (!page_mapped(page))
514 goto out;
516 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
517 root_anon_vma = READ_ONCE(anon_vma->root);
518 if (down_read_trylock(&root_anon_vma->rwsem)) {
520 * If the page is still mapped, then this anon_vma is still
521 * its anon_vma, and holding the mutex ensures that it will
522 * not go away, see anon_vma_free().
524 if (!page_mapped(page)) {
525 up_read(&root_anon_vma->rwsem);
526 anon_vma = NULL;
528 goto out;
531 /* trylock failed, we got to sleep */
532 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
533 anon_vma = NULL;
534 goto out;
537 if (!page_mapped(page)) {
538 rcu_read_unlock();
539 put_anon_vma(anon_vma);
540 return NULL;
543 /* we pinned the anon_vma, its safe to sleep */
544 rcu_read_unlock();
545 anon_vma_lock_read(anon_vma);
547 if (atomic_dec_and_test(&anon_vma->refcount)) {
549 * Oops, we held the last refcount, release the lock
550 * and bail -- can't simply use put_anon_vma() because
551 * we'll deadlock on the anon_vma_lock_write() recursion.
553 anon_vma_unlock_read(anon_vma);
554 __put_anon_vma(anon_vma);
555 anon_vma = NULL;
558 return anon_vma;
560 out:
561 rcu_read_unlock();
562 return anon_vma;
565 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
567 anon_vma_unlock_read(anon_vma);
570 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
571 static void percpu_flush_tlb_batch_pages(void *data)
574 * All TLB entries are flushed on the assumption that it is
575 * cheaper to flush all TLBs and let them be refilled than
576 * flushing individual PFNs. Note that we do not track mm's
577 * to flush as that might simply be multiple full TLB flushes
578 * for no gain.
580 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
581 flush_tlb_local();
585 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
586 * important if a PTE was dirty when it was unmapped that it's flushed
587 * before any IO is initiated on the page to prevent lost writes. Similarly,
588 * it must be flushed before freeing to prevent data leakage.
590 void try_to_unmap_flush(void)
592 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
593 int cpu;
595 if (!tlb_ubc->flush_required)
596 return;
598 cpu = get_cpu();
600 trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, -1UL);
602 if (cpumask_test_cpu(cpu, &tlb_ubc->cpumask))
603 percpu_flush_tlb_batch_pages(&tlb_ubc->cpumask);
605 if (cpumask_any_but(&tlb_ubc->cpumask, cpu) < nr_cpu_ids) {
606 smp_call_function_many(&tlb_ubc->cpumask,
607 percpu_flush_tlb_batch_pages, (void *)tlb_ubc, true);
609 cpumask_clear(&tlb_ubc->cpumask);
610 tlb_ubc->flush_required = false;
611 tlb_ubc->writable = false;
612 put_cpu();
615 /* Flush iff there are potentially writable TLB entries that can race with IO */
616 void try_to_unmap_flush_dirty(void)
618 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
620 if (tlb_ubc->writable)
621 try_to_unmap_flush();
624 static void set_tlb_ubc_flush_pending(struct mm_struct *mm,
625 struct page *page, bool writable)
627 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
629 cpumask_or(&tlb_ubc->cpumask, &tlb_ubc->cpumask, mm_cpumask(mm));
630 tlb_ubc->flush_required = true;
633 * If the PTE was dirty then it's best to assume it's writable. The
634 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
635 * before the page is queued for IO.
637 if (writable)
638 tlb_ubc->writable = true;
642 * Returns true if the TLB flush should be deferred to the end of a batch of
643 * unmap operations to reduce IPIs.
645 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
647 bool should_defer = false;
649 if (!(flags & TTU_BATCH_FLUSH))
650 return false;
652 /* If remote CPUs need to be flushed then defer batch the flush */
653 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
654 should_defer = true;
655 put_cpu();
657 return should_defer;
659 #else
660 static void set_tlb_ubc_flush_pending(struct mm_struct *mm,
661 struct page *page, bool writable)
665 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
667 return false;
669 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
672 * At what user virtual address is page expected in vma?
673 * Caller should check the page is actually part of the vma.
675 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
677 unsigned long address;
678 if (PageAnon(page)) {
679 struct anon_vma *page__anon_vma = page_anon_vma(page);
681 * Note: swapoff's unuse_vma() is more efficient with this
682 * check, and needs it to match anon_vma when KSM is active.
684 if (!vma->anon_vma || !page__anon_vma ||
685 vma->anon_vma->root != page__anon_vma->root)
686 return -EFAULT;
687 } else if (page->mapping) {
688 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
689 return -EFAULT;
690 } else
691 return -EFAULT;
692 address = __vma_address(page, vma);
693 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
694 return -EFAULT;
695 return address;
698 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
700 pgd_t *pgd;
701 pud_t *pud;
702 pmd_t *pmd = NULL;
703 pmd_t pmde;
705 pgd = pgd_offset(mm, address);
706 if (!pgd_present(*pgd))
707 goto out;
709 pud = pud_offset(pgd, address);
710 if (!pud_present(*pud))
711 goto out;
713 pmd = pmd_offset(pud, address);
715 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
716 * without holding anon_vma lock for write. So when looking for a
717 * genuine pmde (in which to find pte), test present and !THP together.
719 pmde = *pmd;
720 barrier();
721 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
722 pmd = NULL;
723 out:
724 return pmd;
728 * Check that @page is mapped at @address into @mm.
730 * If @sync is false, page_check_address may perform a racy check to avoid
731 * the page table lock when the pte is not present (helpful when reclaiming
732 * highly shared pages).
734 * On success returns with pte mapped and locked.
736 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
737 unsigned long address, spinlock_t **ptlp, int sync)
739 pmd_t *pmd;
740 pte_t *pte;
741 spinlock_t *ptl;
743 if (unlikely(PageHuge(page))) {
744 /* when pud is not present, pte will be NULL */
745 pte = huge_pte_offset(mm, address);
746 if (!pte)
747 return NULL;
749 ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
750 goto check;
753 pmd = mm_find_pmd(mm, address);
754 if (!pmd)
755 return NULL;
757 pte = pte_offset_map(pmd, address);
758 /* Make a quick check before getting the lock */
759 if (!sync && !pte_present(*pte)) {
760 pte_unmap(pte);
761 return NULL;
764 ptl = pte_lockptr(mm, pmd);
765 check:
766 spin_lock(ptl);
767 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
768 *ptlp = ptl;
769 return pte;
771 pte_unmap_unlock(pte, ptl);
772 return NULL;
776 * page_mapped_in_vma - check whether a page is really mapped in a VMA
777 * @page: the page to test
778 * @vma: the VMA to test
780 * Returns 1 if the page is mapped into the page tables of the VMA, 0
781 * if the page is not mapped into the page tables of this VMA. Only
782 * valid for normal file or anonymous VMAs.
784 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
786 unsigned long address;
787 pte_t *pte;
788 spinlock_t *ptl;
790 address = __vma_address(page, vma);
791 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
792 return 0;
793 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
794 if (!pte) /* the page is not in this mm */
795 return 0;
796 pte_unmap_unlock(pte, ptl);
798 return 1;
801 struct page_referenced_arg {
802 int mapcount;
803 int referenced;
804 unsigned long vm_flags;
805 struct mem_cgroup *memcg;
808 * arg: page_referenced_arg will be passed
810 static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
811 unsigned long address, void *arg)
813 struct mm_struct *mm = vma->vm_mm;
814 spinlock_t *ptl;
815 int referenced = 0;
816 struct page_referenced_arg *pra = arg;
818 if (unlikely(PageTransHuge(page))) {
819 pmd_t *pmd;
822 * rmap might return false positives; we must filter
823 * these out using page_check_address_pmd().
825 pmd = page_check_address_pmd(page, mm, address, &ptl);
826 if (!pmd)
827 return SWAP_AGAIN;
829 if (vma->vm_flags & VM_LOCKED) {
830 spin_unlock(ptl);
831 pra->vm_flags |= VM_LOCKED;
832 return SWAP_FAIL; /* To break the loop */
835 if (pmdp_clear_flush_young_notify(vma, address, pmd))
836 referenced++;
837 spin_unlock(ptl);
838 } else {
839 pte_t *pte;
842 * rmap might return false positives; we must filter
843 * these out using page_check_address().
845 pte = page_check_address(page, mm, address, &ptl, 0);
846 if (!pte)
847 return SWAP_AGAIN;
849 if (vma->vm_flags & VM_LOCKED) {
850 pte_unmap_unlock(pte, ptl);
851 pra->vm_flags |= VM_LOCKED;
852 return SWAP_FAIL; /* To break the loop */
855 if (ptep_clear_flush_young_notify(vma, address, pte)) {
857 * Don't treat a reference through a sequentially read
858 * mapping as such. If the page has been used in
859 * another mapping, we will catch it; if this other
860 * mapping is already gone, the unmap path will have
861 * set PG_referenced or activated the page.
863 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
864 referenced++;
866 pte_unmap_unlock(pte, ptl);
869 if (referenced)
870 clear_page_idle(page);
871 if (test_and_clear_page_young(page))
872 referenced++;
874 if (referenced) {
875 pra->referenced++;
876 pra->vm_flags |= vma->vm_flags;
879 pra->mapcount--;
880 if (!pra->mapcount)
881 return SWAP_SUCCESS; /* To break the loop */
883 return SWAP_AGAIN;
886 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
888 struct page_referenced_arg *pra = arg;
889 struct mem_cgroup *memcg = pra->memcg;
891 if (!mm_match_cgroup(vma->vm_mm, memcg))
892 return true;
894 return false;
898 * page_referenced - test if the page was referenced
899 * @page: the page to test
900 * @is_locked: caller holds lock on the page
901 * @memcg: target memory cgroup
902 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
904 * Quick test_and_clear_referenced for all mappings to a page,
905 * returns the number of ptes which referenced the page.
907 int page_referenced(struct page *page,
908 int is_locked,
909 struct mem_cgroup *memcg,
910 unsigned long *vm_flags)
912 int ret;
913 int we_locked = 0;
914 struct page_referenced_arg pra = {
915 .mapcount = page_mapcount(page),
916 .memcg = memcg,
918 struct rmap_walk_control rwc = {
919 .rmap_one = page_referenced_one,
920 .arg = (void *)&pra,
921 .anon_lock = page_lock_anon_vma_read,
924 *vm_flags = 0;
925 if (!page_mapped(page))
926 return 0;
928 if (!page_rmapping(page))
929 return 0;
931 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
932 we_locked = trylock_page(page);
933 if (!we_locked)
934 return 1;
938 * If we are reclaiming on behalf of a cgroup, skip
939 * counting on behalf of references from different
940 * cgroups
942 if (memcg) {
943 rwc.invalid_vma = invalid_page_referenced_vma;
946 ret = rmap_walk(page, &rwc);
947 *vm_flags = pra.vm_flags;
949 if (we_locked)
950 unlock_page(page);
952 return pra.referenced;
955 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
956 unsigned long address, void *arg)
958 struct mm_struct *mm = vma->vm_mm;
959 pte_t *pte;
960 spinlock_t *ptl;
961 int ret = 0;
962 int *cleaned = arg;
964 pte = page_check_address(page, mm, address, &ptl, 1);
965 if (!pte)
966 goto out;
968 if (pte_dirty(*pte) || pte_write(*pte)) {
969 pte_t entry;
971 flush_cache_page(vma, address, pte_pfn(*pte));
972 entry = ptep_clear_flush(vma, address, pte);
973 entry = pte_wrprotect(entry);
974 entry = pte_mkclean(entry);
975 set_pte_at(mm, address, pte, entry);
976 ret = 1;
979 pte_unmap_unlock(pte, ptl);
981 if (ret) {
982 mmu_notifier_invalidate_page(mm, address);
983 (*cleaned)++;
985 out:
986 return SWAP_AGAIN;
989 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
991 if (vma->vm_flags & VM_SHARED)
992 return false;
994 return true;
997 int page_mkclean(struct page *page)
999 int cleaned = 0;
1000 struct address_space *mapping;
1001 struct rmap_walk_control rwc = {
1002 .arg = (void *)&cleaned,
1003 .rmap_one = page_mkclean_one,
1004 .invalid_vma = invalid_mkclean_vma,
1007 BUG_ON(!PageLocked(page));
1009 if (!page_mapped(page))
1010 return 0;
1012 mapping = page_mapping(page);
1013 if (!mapping)
1014 return 0;
1016 rmap_walk(page, &rwc);
1018 return cleaned;
1020 EXPORT_SYMBOL_GPL(page_mkclean);
1023 * page_move_anon_rmap - move a page to our anon_vma
1024 * @page: the page to move to our anon_vma
1025 * @vma: the vma the page belongs to
1026 * @address: the user virtual address mapped
1028 * When a page belongs exclusively to one process after a COW event,
1029 * that page can be moved into the anon_vma that belongs to just that
1030 * process, so the rmap code will not search the parent or sibling
1031 * processes.
1033 void page_move_anon_rmap(struct page *page,
1034 struct vm_area_struct *vma, unsigned long address)
1036 struct anon_vma *anon_vma = vma->anon_vma;
1038 VM_BUG_ON_PAGE(!PageLocked(page), page);
1039 VM_BUG_ON_VMA(!anon_vma, vma);
1040 VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
1042 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1044 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1045 * simultaneously, so a concurrent reader (eg page_referenced()'s
1046 * PageAnon()) will not see one without the other.
1048 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1052 * __page_set_anon_rmap - set up new anonymous rmap
1053 * @page: Page to add to rmap
1054 * @vma: VM area to add page to.
1055 * @address: User virtual address of the mapping
1056 * @exclusive: the page is exclusively owned by the current process
1058 static void __page_set_anon_rmap(struct page *page,
1059 struct vm_area_struct *vma, unsigned long address, int exclusive)
1061 struct anon_vma *anon_vma = vma->anon_vma;
1063 BUG_ON(!anon_vma);
1065 if (PageAnon(page))
1066 return;
1069 * If the page isn't exclusively mapped into this vma,
1070 * we must use the _oldest_ possible anon_vma for the
1071 * page mapping!
1073 if (!exclusive)
1074 anon_vma = anon_vma->root;
1076 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1077 page->mapping = (struct address_space *) anon_vma;
1078 page->index = linear_page_index(vma, address);
1082 * __page_check_anon_rmap - sanity check anonymous rmap addition
1083 * @page: the page to add the mapping to
1084 * @vma: the vm area in which the mapping is added
1085 * @address: the user virtual address mapped
1087 static void __page_check_anon_rmap(struct page *page,
1088 struct vm_area_struct *vma, unsigned long address)
1090 #ifdef CONFIG_DEBUG_VM
1092 * The page's anon-rmap details (mapping and index) are guaranteed to
1093 * be set up correctly at this point.
1095 * We have exclusion against page_add_anon_rmap because the caller
1096 * always holds the page locked, except if called from page_dup_rmap,
1097 * in which case the page is already known to be setup.
1099 * We have exclusion against page_add_new_anon_rmap because those pages
1100 * are initially only visible via the pagetables, and the pte is locked
1101 * over the call to page_add_new_anon_rmap.
1103 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1104 BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address));
1105 #endif
1109 * page_add_anon_rmap - add pte mapping to an anonymous page
1110 * @page: the page to add the mapping to
1111 * @vma: the vm area in which the mapping is added
1112 * @address: the user virtual address mapped
1113 * @compound: charge the page as compound or small page
1115 * The caller needs to hold the pte lock, and the page must be locked in
1116 * the anon_vma case: to serialize mapping,index checking after setting,
1117 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1118 * (but PageKsm is never downgraded to PageAnon).
1120 void page_add_anon_rmap(struct page *page,
1121 struct vm_area_struct *vma, unsigned long address, bool compound)
1123 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1127 * Special version of the above for do_swap_page, which often runs
1128 * into pages that are exclusively owned by the current process.
1129 * Everybody else should continue to use page_add_anon_rmap above.
1131 void do_page_add_anon_rmap(struct page *page,
1132 struct vm_area_struct *vma, unsigned long address, int flags)
1134 bool compound = flags & RMAP_COMPOUND;
1135 bool first;
1137 if (compound) {
1138 atomic_t *mapcount;
1139 VM_BUG_ON_PAGE(!PageLocked(page), page);
1140 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1141 mapcount = compound_mapcount_ptr(page);
1142 first = atomic_inc_and_test(mapcount);
1143 } else {
1144 first = atomic_inc_and_test(&page->_mapcount);
1147 if (first) {
1148 int nr = compound ? hpage_nr_pages(page) : 1;
1150 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1151 * these counters are not modified in interrupt context, and
1152 * pte lock(a spinlock) is held, which implies preemption
1153 * disabled.
1155 if (compound) {
1156 __inc_zone_page_state(page,
1157 NR_ANON_TRANSPARENT_HUGEPAGES);
1159 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, nr);
1161 if (unlikely(PageKsm(page)))
1162 return;
1164 VM_BUG_ON_PAGE(!PageLocked(page), page);
1166 /* address might be in next vma when migration races vma_adjust */
1167 if (first)
1168 __page_set_anon_rmap(page, vma, address,
1169 flags & RMAP_EXCLUSIVE);
1170 else
1171 __page_check_anon_rmap(page, vma, address);
1175 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1176 * @page: the page to add the mapping to
1177 * @vma: the vm area in which the mapping is added
1178 * @address: the user virtual address mapped
1179 * @compound: charge the page as compound or small page
1181 * Same as page_add_anon_rmap but must only be called on *new* pages.
1182 * This means the inc-and-test can be bypassed.
1183 * Page does not have to be locked.
1185 void page_add_new_anon_rmap(struct page *page,
1186 struct vm_area_struct *vma, unsigned long address, bool compound)
1188 int nr = compound ? hpage_nr_pages(page) : 1;
1190 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1191 SetPageSwapBacked(page);
1192 if (compound) {
1193 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1194 /* increment count (starts at -1) */
1195 atomic_set(compound_mapcount_ptr(page), 0);
1196 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1197 } else {
1198 /* Anon THP always mapped first with PMD */
1199 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1200 /* increment count (starts at -1) */
1201 atomic_set(&page->_mapcount, 0);
1203 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, nr);
1204 __page_set_anon_rmap(page, vma, address, 1);
1208 * page_add_file_rmap - add pte mapping to a file page
1209 * @page: the page to add the mapping to
1211 * The caller needs to hold the pte lock.
1213 void page_add_file_rmap(struct page *page)
1215 struct mem_cgroup *memcg;
1217 memcg = mem_cgroup_begin_page_stat(page);
1218 if (atomic_inc_and_test(&page->_mapcount)) {
1219 __inc_zone_page_state(page, NR_FILE_MAPPED);
1220 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1222 mem_cgroup_end_page_stat(memcg);
1225 static void page_remove_file_rmap(struct page *page)
1227 struct mem_cgroup *memcg;
1229 memcg = mem_cgroup_begin_page_stat(page);
1231 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1232 if (unlikely(PageHuge(page))) {
1233 /* hugetlb pages are always mapped with pmds */
1234 atomic_dec(compound_mapcount_ptr(page));
1235 goto out;
1238 /* page still mapped by someone else? */
1239 if (!atomic_add_negative(-1, &page->_mapcount))
1240 goto out;
1243 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1244 * these counters are not modified in interrupt context, and
1245 * pte lock(a spinlock) is held, which implies preemption disabled.
1247 __dec_zone_page_state(page, NR_FILE_MAPPED);
1248 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1250 if (unlikely(PageMlocked(page)))
1251 clear_page_mlock(page);
1252 out:
1253 mem_cgroup_end_page_stat(memcg);
1256 static void page_remove_anon_compound_rmap(struct page *page)
1258 int i, nr;
1260 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1261 return;
1263 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1264 if (unlikely(PageHuge(page)))
1265 return;
1267 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1268 return;
1270 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1272 if (TestClearPageDoubleMap(page)) {
1274 * Subpages can be mapped with PTEs too. Check how many of
1275 * themi are still mapped.
1277 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1278 if (atomic_add_negative(-1, &page[i]._mapcount))
1279 nr++;
1281 } else {
1282 nr = HPAGE_PMD_NR;
1285 if (unlikely(PageMlocked(page)))
1286 clear_page_mlock(page);
1288 if (nr) {
1289 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, -nr);
1290 deferred_split_huge_page(page);
1295 * page_remove_rmap - take down pte mapping from a page
1296 * @page: page to remove mapping from
1297 * @compound: uncharge the page as compound or small page
1299 * The caller needs to hold the pte lock.
1301 void page_remove_rmap(struct page *page, bool compound)
1303 if (!PageAnon(page)) {
1304 VM_BUG_ON_PAGE(compound && !PageHuge(page), page);
1305 page_remove_file_rmap(page);
1306 return;
1309 if (compound)
1310 return page_remove_anon_compound_rmap(page);
1312 /* page still mapped by someone else? */
1313 if (!atomic_add_negative(-1, &page->_mapcount))
1314 return;
1317 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1318 * these counters are not modified in interrupt context, and
1319 * pte lock(a spinlock) is held, which implies preemption disabled.
1321 __dec_zone_page_state(page, NR_ANON_PAGES);
1323 if (unlikely(PageMlocked(page)))
1324 clear_page_mlock(page);
1326 if (PageTransCompound(page))
1327 deferred_split_huge_page(compound_head(page));
1330 * It would be tidy to reset the PageAnon mapping here,
1331 * but that might overwrite a racing page_add_anon_rmap
1332 * which increments mapcount after us but sets mapping
1333 * before us: so leave the reset to free_hot_cold_page,
1334 * and remember that it's only reliable while mapped.
1335 * Leaving it set also helps swapoff to reinstate ptes
1336 * faster for those pages still in swapcache.
1341 * @arg: enum ttu_flags will be passed to this argument
1343 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1344 unsigned long address, void *arg)
1346 struct mm_struct *mm = vma->vm_mm;
1347 pte_t *pte;
1348 pte_t pteval;
1349 spinlock_t *ptl;
1350 int ret = SWAP_AGAIN;
1351 enum ttu_flags flags = (enum ttu_flags)arg;
1353 /* munlock has nothing to gain from examining un-locked vmas */
1354 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1355 goto out;
1357 pte = page_check_address(page, mm, address, &ptl, 0);
1358 if (!pte)
1359 goto out;
1362 * If the page is mlock()d, we cannot swap it out.
1363 * If it's recently referenced (perhaps page_referenced
1364 * skipped over this mm) then we should reactivate it.
1366 if (!(flags & TTU_IGNORE_MLOCK)) {
1367 if (vma->vm_flags & VM_LOCKED) {
1368 /* Holding pte lock, we do *not* need mmap_sem here */
1369 mlock_vma_page(page);
1370 ret = SWAP_MLOCK;
1371 goto out_unmap;
1373 if (flags & TTU_MUNLOCK)
1374 goto out_unmap;
1376 if (!(flags & TTU_IGNORE_ACCESS)) {
1377 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1378 ret = SWAP_FAIL;
1379 goto out_unmap;
1383 /* Nuke the page table entry. */
1384 flush_cache_page(vma, address, page_to_pfn(page));
1385 if (should_defer_flush(mm, flags)) {
1387 * We clear the PTE but do not flush so potentially a remote
1388 * CPU could still be writing to the page. If the entry was
1389 * previously clean then the architecture must guarantee that
1390 * a clear->dirty transition on a cached TLB entry is written
1391 * through and traps if the PTE is unmapped.
1393 pteval = ptep_get_and_clear(mm, address, pte);
1395 set_tlb_ubc_flush_pending(mm, page, pte_dirty(pteval));
1396 } else {
1397 pteval = ptep_clear_flush(vma, address, pte);
1400 /* Move the dirty bit to the physical page now the pte is gone. */
1401 if (pte_dirty(pteval))
1402 set_page_dirty(page);
1404 /* Update high watermark before we lower rss */
1405 update_hiwater_rss(mm);
1407 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1408 if (PageHuge(page)) {
1409 hugetlb_count_sub(1 << compound_order(page), mm);
1410 } else {
1411 dec_mm_counter(mm, mm_counter(page));
1413 set_pte_at(mm, address, pte,
1414 swp_entry_to_pte(make_hwpoison_entry(page)));
1415 } else if (pte_unused(pteval)) {
1417 * The guest indicated that the page content is of no
1418 * interest anymore. Simply discard the pte, vmscan
1419 * will take care of the rest.
1421 dec_mm_counter(mm, mm_counter(page));
1422 } else if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION)) {
1423 swp_entry_t entry;
1424 pte_t swp_pte;
1426 * Store the pfn of the page in a special migration
1427 * pte. do_swap_page() will wait until the migration
1428 * pte is removed and then restart fault handling.
1430 entry = make_migration_entry(page, pte_write(pteval));
1431 swp_pte = swp_entry_to_pte(entry);
1432 if (pte_soft_dirty(pteval))
1433 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1434 set_pte_at(mm, address, pte, swp_pte);
1435 } else if (PageAnon(page)) {
1436 swp_entry_t entry = { .val = page_private(page) };
1437 pte_t swp_pte;
1439 * Store the swap location in the pte.
1440 * See handle_pte_fault() ...
1442 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
1443 if (swap_duplicate(entry) < 0) {
1444 set_pte_at(mm, address, pte, pteval);
1445 ret = SWAP_FAIL;
1446 goto out_unmap;
1448 if (list_empty(&mm->mmlist)) {
1449 spin_lock(&mmlist_lock);
1450 if (list_empty(&mm->mmlist))
1451 list_add(&mm->mmlist, &init_mm.mmlist);
1452 spin_unlock(&mmlist_lock);
1454 dec_mm_counter(mm, MM_ANONPAGES);
1455 inc_mm_counter(mm, MM_SWAPENTS);
1456 swp_pte = swp_entry_to_pte(entry);
1457 if (pte_soft_dirty(pteval))
1458 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1459 set_pte_at(mm, address, pte, swp_pte);
1460 } else
1461 dec_mm_counter(mm, mm_counter_file(page));
1463 page_remove_rmap(page, PageHuge(page));
1464 page_cache_release(page);
1466 out_unmap:
1467 pte_unmap_unlock(pte, ptl);
1468 if (ret != SWAP_FAIL && ret != SWAP_MLOCK && !(flags & TTU_MUNLOCK))
1469 mmu_notifier_invalidate_page(mm, address);
1470 out:
1471 return ret;
1474 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1476 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1478 if (!maybe_stack)
1479 return false;
1481 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1482 VM_STACK_INCOMPLETE_SETUP)
1483 return true;
1485 return false;
1488 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1490 return is_vma_temporary_stack(vma);
1493 static int page_not_mapped(struct page *page)
1495 return !page_mapped(page);
1499 * try_to_unmap - try to remove all page table mappings to a page
1500 * @page: the page to get unmapped
1501 * @flags: action and flags
1503 * Tries to remove all the page table entries which are mapping this
1504 * page, used in the pageout path. Caller must hold the page lock.
1505 * Return values are:
1507 * SWAP_SUCCESS - we succeeded in removing all mappings
1508 * SWAP_AGAIN - we missed a mapping, try again later
1509 * SWAP_FAIL - the page is unswappable
1510 * SWAP_MLOCK - page is mlocked.
1512 int try_to_unmap(struct page *page, enum ttu_flags flags)
1514 int ret;
1515 struct rmap_walk_control rwc = {
1516 .rmap_one = try_to_unmap_one,
1517 .arg = (void *)flags,
1518 .done = page_not_mapped,
1519 .anon_lock = page_lock_anon_vma_read,
1522 VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
1525 * During exec, a temporary VMA is setup and later moved.
1526 * The VMA is moved under the anon_vma lock but not the
1527 * page tables leading to a race where migration cannot
1528 * find the migration ptes. Rather than increasing the
1529 * locking requirements of exec(), migration skips
1530 * temporary VMAs until after exec() completes.
1532 if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
1533 rwc.invalid_vma = invalid_migration_vma;
1535 ret = rmap_walk(page, &rwc);
1537 if (ret != SWAP_MLOCK && !page_mapped(page))
1538 ret = SWAP_SUCCESS;
1539 return ret;
1543 * try_to_munlock - try to munlock a page
1544 * @page: the page to be munlocked
1546 * Called from munlock code. Checks all of the VMAs mapping the page
1547 * to make sure nobody else has this page mlocked. The page will be
1548 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1550 * Return values are:
1552 * SWAP_AGAIN - no vma is holding page mlocked, or,
1553 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1554 * SWAP_FAIL - page cannot be located at present
1555 * SWAP_MLOCK - page is now mlocked.
1557 int try_to_munlock(struct page *page)
1559 int ret;
1560 struct rmap_walk_control rwc = {
1561 .rmap_one = try_to_unmap_one,
1562 .arg = (void *)TTU_MUNLOCK,
1563 .done = page_not_mapped,
1564 .anon_lock = page_lock_anon_vma_read,
1568 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1570 ret = rmap_walk(page, &rwc);
1571 return ret;
1574 void __put_anon_vma(struct anon_vma *anon_vma)
1576 struct anon_vma *root = anon_vma->root;
1578 anon_vma_free(anon_vma);
1579 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1580 anon_vma_free(root);
1583 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1584 struct rmap_walk_control *rwc)
1586 struct anon_vma *anon_vma;
1588 if (rwc->anon_lock)
1589 return rwc->anon_lock(page);
1592 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1593 * because that depends on page_mapped(); but not all its usages
1594 * are holding mmap_sem. Users without mmap_sem are required to
1595 * take a reference count to prevent the anon_vma disappearing
1597 anon_vma = page_anon_vma(page);
1598 if (!anon_vma)
1599 return NULL;
1601 anon_vma_lock_read(anon_vma);
1602 return anon_vma;
1606 * rmap_walk_anon - do something to anonymous page using the object-based
1607 * rmap method
1608 * @page: the page to be handled
1609 * @rwc: control variable according to each walk type
1611 * Find all the mappings of a page using the mapping pointer and the vma chains
1612 * contained in the anon_vma struct it points to.
1614 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1615 * where the page was found will be held for write. So, we won't recheck
1616 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1617 * LOCKED.
1619 static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
1621 struct anon_vma *anon_vma;
1622 pgoff_t pgoff;
1623 struct anon_vma_chain *avc;
1624 int ret = SWAP_AGAIN;
1626 anon_vma = rmap_walk_anon_lock(page, rwc);
1627 if (!anon_vma)
1628 return ret;
1630 pgoff = page_to_pgoff(page);
1631 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1632 struct vm_area_struct *vma = avc->vma;
1633 unsigned long address = vma_address(page, vma);
1635 cond_resched();
1637 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1638 continue;
1640 ret = rwc->rmap_one(page, vma, address, rwc->arg);
1641 if (ret != SWAP_AGAIN)
1642 break;
1643 if (rwc->done && rwc->done(page))
1644 break;
1646 anon_vma_unlock_read(anon_vma);
1647 return ret;
1651 * rmap_walk_file - do something to file page using the object-based rmap method
1652 * @page: the page to be handled
1653 * @rwc: control variable according to each walk type
1655 * Find all the mappings of a page using the mapping pointer and the vma chains
1656 * contained in the address_space struct it points to.
1658 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1659 * where the page was found will be held for write. So, we won't recheck
1660 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1661 * LOCKED.
1663 static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
1665 struct address_space *mapping = page->mapping;
1666 pgoff_t pgoff;
1667 struct vm_area_struct *vma;
1668 int ret = SWAP_AGAIN;
1671 * The page lock not only makes sure that page->mapping cannot
1672 * suddenly be NULLified by truncation, it makes sure that the
1673 * structure at mapping cannot be freed and reused yet,
1674 * so we can safely take mapping->i_mmap_rwsem.
1676 VM_BUG_ON_PAGE(!PageLocked(page), page);
1678 if (!mapping)
1679 return ret;
1681 pgoff = page_to_pgoff(page);
1682 i_mmap_lock_read(mapping);
1683 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1684 unsigned long address = vma_address(page, vma);
1686 cond_resched();
1688 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1689 continue;
1691 ret = rwc->rmap_one(page, vma, address, rwc->arg);
1692 if (ret != SWAP_AGAIN)
1693 goto done;
1694 if (rwc->done && rwc->done(page))
1695 goto done;
1698 done:
1699 i_mmap_unlock_read(mapping);
1700 return ret;
1703 int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1705 if (unlikely(PageKsm(page)))
1706 return rmap_walk_ksm(page, rwc);
1707 else if (PageAnon(page))
1708 return rmap_walk_anon(page, rwc);
1709 else
1710 return rmap_walk_file(page, rwc);
1713 #ifdef CONFIG_HUGETLB_PAGE
1715 * The following three functions are for anonymous (private mapped) hugepages.
1716 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1717 * and no lru code, because we handle hugepages differently from common pages.
1719 static void __hugepage_set_anon_rmap(struct page *page,
1720 struct vm_area_struct *vma, unsigned long address, int exclusive)
1722 struct anon_vma *anon_vma = vma->anon_vma;
1724 BUG_ON(!anon_vma);
1726 if (PageAnon(page))
1727 return;
1728 if (!exclusive)
1729 anon_vma = anon_vma->root;
1731 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1732 page->mapping = (struct address_space *) anon_vma;
1733 page->index = linear_page_index(vma, address);
1736 void hugepage_add_anon_rmap(struct page *page,
1737 struct vm_area_struct *vma, unsigned long address)
1739 struct anon_vma *anon_vma = vma->anon_vma;
1740 int first;
1742 BUG_ON(!PageLocked(page));
1743 BUG_ON(!anon_vma);
1744 /* address might be in next vma when migration races vma_adjust */
1745 first = atomic_inc_and_test(compound_mapcount_ptr(page));
1746 if (first)
1747 __hugepage_set_anon_rmap(page, vma, address, 0);
1750 void hugepage_add_new_anon_rmap(struct page *page,
1751 struct vm_area_struct *vma, unsigned long address)
1753 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1754 atomic_set(compound_mapcount_ptr(page), 0);
1755 __hugepage_set_anon_rmap(page, vma, address, 1);
1757 #endif /* CONFIG_HUGETLB_PAGE */