mtd: nand: omap: Fix comment in platform data using wrong Kconfig symbol
[linux/fpc-iii.git] / arch / alpha / lib / ev6-stxncpy.S
blob76da205282eec7aa1115568beb1f16f184e4a08d
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * arch/alpha/lib/ev6-stxncpy.S
4  * 21264 version contributed by Rick Gorton <rick.gorton@api-networks.com>
5  *
6  * Copy no more than COUNT bytes of the null-terminated string from
7  * SRC to DST.
8  *
9  * This is an internal routine used by strncpy, stpncpy, and strncat.
10  * As such, it uses special linkage conventions to make implementation
11  * of these public functions more efficient.
12  *
13  * On input:
14  *      t9 = return address
15  *      a0 = DST
16  *      a1 = SRC
17  *      a2 = COUNT
18  *
19  * Furthermore, COUNT may not be zero.
20  *
21  * On output:
22  *      t0  = last word written
23  *      t10 = bitmask (with one bit set) indicating the byte position of
24  *            the end of the range specified by COUNT
25  *      t12 = bitmask (with one bit set) indicating the last byte written
26  *      a0  = unaligned address of the last *word* written
27  *      a2  = the number of full words left in COUNT
28  *
29  * Furthermore, v0, a3-a5, t11, and $at are untouched.
30  *
31  * Much of the information about 21264 scheduling/coding comes from:
32  *      Compiler Writer's Guide for the Alpha 21264
33  *      abbreviated as 'CWG' in other comments here
34  *      ftp.digital.com/pub/Digital/info/semiconductor/literature/dsc-library.html
35  * Scheduling notation:
36  *      E       - either cluster
37  *      U       - upper subcluster; U0 - subcluster U0; U1 - subcluster U1
38  *      L       - lower subcluster; L0 - subcluster L0; L1 - subcluster L1
39  * Try not to change the actual algorithm if possible for consistency.
40  */
42 #include <asm/regdef.h>
44         .set noat
45         .set noreorder
47         .text
49 /* There is a problem with either gdb (as of 4.16) or gas (as of 2.7) that
50    doesn't like putting the entry point for a procedure somewhere in the
51    middle of the procedure descriptor.  Work around this by putting the
52    aligned copy in its own procedure descriptor */
55         .ent stxncpy_aligned
56         .align 4
57 stxncpy_aligned:
58         .frame sp, 0, t9, 0
59         .prologue 0
61         /* On entry to this basic block:
62            t0 == the first destination word for masking back in
63            t1 == the first source word.  */
65         /* Create the 1st output word and detect 0's in the 1st input word.  */
66         lda     t2, -1          # E : build a mask against false zero
67         mskqh   t2, a1, t2      # U :   detection in the src word (stall)
68         mskqh   t1, a1, t3      # U :
69         ornot   t1, t2, t2      # E : (stall)
71         mskql   t0, a1, t0      # U : assemble the first output word
72         cmpbge  zero, t2, t8    # E : bits set iff null found
73         or      t0, t3, t0      # E : (stall)
74         beq     a2, $a_eoc      # U :
76         bne     t8, $a_eos      # U :
77         nop
78         nop
79         nop
81         /* On entry to this basic block:
82            t0 == a source word not containing a null.  */
84         /*
85          * nops here to:
86          *      separate store quads from load quads
87          *      limit of 1 bcond/quad to permit training
88          */
89 $a_loop:
90         stq_u   t0, 0(a0)       # L :
91         addq    a0, 8, a0       # E :
92         subq    a2, 1, a2       # E :
93         nop
95         ldq_u   t0, 0(a1)       # L :
96         addq    a1, 8, a1       # E :
97         cmpbge  zero, t0, t8    # E :
98         beq     a2, $a_eoc      # U :
100         beq     t8, $a_loop     # U :
101         nop
102         nop
103         nop
105         /* Take care of the final (partial) word store.  At this point
106            the end-of-count bit is set in t8 iff it applies.
108            On entry to this basic block we have:
109            t0 == the source word containing the null
110            t8 == the cmpbge mask that found it.  */
112 $a_eos:
113         negq    t8, t12         # E : find low bit set
114         and     t8, t12, t12    # E : (stall)
115         /* For the sake of the cache, don't read a destination word
116            if we're not going to need it.  */
117         and     t12, 0x80, t6   # E : (stall)
118         bne     t6, 1f          # U : (stall)
120         /* We're doing a partial word store and so need to combine
121            our source and original destination words.  */
122         ldq_u   t1, 0(a0)       # L :
123         subq    t12, 1, t6      # E :
124         or      t12, t6, t8     # E : (stall)
125         zapnot  t0, t8, t0      # U : clear src bytes > null (stall)
127         zap     t1, t8, t1      # .. e1 : clear dst bytes <= null
128         or      t0, t1, t0      # e1    : (stall)
129         nop
130         nop
132 1:      stq_u   t0, 0(a0)       # L :
133         ret     (t9)            # L0 : Latency=3
134         nop
135         nop
137         /* Add the end-of-count bit to the eos detection bitmask.  */
138 $a_eoc:
139         or      t10, t8, t8     # E :
140         br      $a_eos          # L0 : Latency=3
141         nop
142         nop
144         .end stxncpy_aligned
146         .align 4
147         .ent __stxncpy
148         .globl __stxncpy
149 __stxncpy:
150         .frame sp, 0, t9, 0
151         .prologue 0
153         /* Are source and destination co-aligned?  */
154         xor     a0, a1, t1      # E :
155         and     a0, 7, t0       # E : find dest misalignment
156         and     t1, 7, t1       # E : (stall)
157         addq    a2, t0, a2      # E : bias count by dest misalignment (stall)
159         subq    a2, 1, a2       # E :
160         and     a2, 7, t2       # E : (stall)
161         srl     a2, 3, a2       # U : a2 = loop counter = (count - 1)/8 (stall)
162         addq    zero, 1, t10    # E :
164         sll     t10, t2, t10    # U : t10 = bitmask of last count byte
165         bne     t1, $unaligned  # U :
166         /* We are co-aligned; take care of a partial first word.  */
167         ldq_u   t1, 0(a1)       # L : load first src word
168         addq    a1, 8, a1       # E :
170         beq     t0, stxncpy_aligned     # U : avoid loading dest word if not needed
171         ldq_u   t0, 0(a0)       # L :
172         nop
173         nop
175         br      stxncpy_aligned # .. e1 :
176         nop
177         nop
178         nop
182 /* The source and destination are not co-aligned.  Align the destination
183    and cope.  We have to be very careful about not reading too much and
184    causing a SEGV.  */
186         .align 4
187 $u_head:
188         /* We know just enough now to be able to assemble the first
189            full source word.  We can still find a zero at the end of it
190            that prevents us from outputting the whole thing.
192            On entry to this basic block:
193            t0 == the first dest word, unmasked
194            t1 == the shifted low bits of the first source word
195            t6 == bytemask that is -1 in dest word bytes */
197         ldq_u   t2, 8(a1)       # L : Latency=3 load second src word
198         addq    a1, 8, a1       # E :
199         mskql   t0, a0, t0      # U : mask trailing garbage in dst
200         extqh   t2, a1, t4      # U : (3 cycle stall on t2)
202         or      t1, t4, t1      # E : first aligned src word complete (stall)
203         mskqh   t1, a0, t1      # U : mask leading garbage in src (stall)
204         or      t0, t1, t0      # E : first output word complete (stall)
205         or      t0, t6, t6      # E : mask original data for zero test (stall)
207         cmpbge  zero, t6, t8    # E :
208         beq     a2, $u_eocfin   # U :
209         lda     t6, -1          # E :
210         nop
212         bne     t8, $u_final    # U :
213         mskql   t6, a1, t6      # U : mask out bits already seen
214         stq_u   t0, 0(a0)       # L : store first output word
215         or      t6, t2, t2      # E : (stall)
217         cmpbge  zero, t2, t8    # E : find nulls in second partial
218         addq    a0, 8, a0       # E :
219         subq    a2, 1, a2       # E :
220         bne     t8, $u_late_head_exit   # U :
222         /* Finally, we've got all the stupid leading edge cases taken care
223            of and we can set up to enter the main loop.  */
224         extql   t2, a1, t1      # U : position hi-bits of lo word
225         beq     a2, $u_eoc      # U :
226         ldq_u   t2, 8(a1)       # L : read next high-order source word
227         addq    a1, 8, a1       # E :
229         extqh   t2, a1, t0      # U : position lo-bits of hi word (stall)
230         cmpbge  zero, t2, t8    # E :
231         nop
232         bne     t8, $u_eos      # U :
234         /* Unaligned copy main loop.  In order to avoid reading too much,
235            the loop is structured to detect zeros in aligned source words.
236            This has, unfortunately, effectively pulled half of a loop
237            iteration out into the head and half into the tail, but it does
238            prevent nastiness from accumulating in the very thing we want
239            to run as fast as possible.
241            On entry to this basic block:
242            t0 == the shifted low-order bits from the current source word
243            t1 == the shifted high-order bits from the previous source word
244            t2 == the unshifted current source word
246            We further know that t2 does not contain a null terminator.  */
248         .align 4
249 $u_loop:
250         or      t0, t1, t0      # E : current dst word now complete
251         subq    a2, 1, a2       # E : decrement word count
252         extql   t2, a1, t1      # U : extract low bits for next time
253         addq    a0, 8, a0       # E :
255         stq_u   t0, -8(a0)      # U : save the current word
256         beq     a2, $u_eoc      # U :
257         ldq_u   t2, 8(a1)       # U : Latency=3 load high word for next time
258         addq    a1, 8, a1       # E :
260         extqh   t2, a1, t0      # U : extract low bits (2 cycle stall)
261         cmpbge  zero, t2, t8    # E : test new word for eos
262         nop
263         beq     t8, $u_loop     # U :
265         /* We've found a zero somewhere in the source word we just read.
266            If it resides in the lower half, we have one (probably partial)
267            word to write out, and if it resides in the upper half, we
268            have one full and one partial word left to write out.
270            On entry to this basic block:
271            t0 == the shifted low-order bits from the current source word
272            t1 == the shifted high-order bits from the previous source word
273            t2 == the unshifted current source word.  */
274 $u_eos:
275         or      t0, t1, t0      # E : first (partial) source word complete
276         nop
277         cmpbge  zero, t0, t8    # E : is the null in this first bit? (stall)
278         bne     t8, $u_final    # U : (stall)
280         stq_u   t0, 0(a0)       # L : the null was in the high-order bits
281         addq    a0, 8, a0       # E :
282         subq    a2, 1, a2       # E :
283         nop
285 $u_late_head_exit:
286         extql   t2, a1, t0      # U :
287         cmpbge  zero, t0, t8    # E :
288         or      t8, t10, t6     # E : (stall)
289         cmoveq  a2, t6, t8      # E : Latency=2, extra map slot (stall)
291         /* Take care of a final (probably partial) result word.
292            On entry to this basic block:
293            t0 == assembled source word
294            t8 == cmpbge mask that found the null.  */
295 $u_final:
296         negq    t8, t6          # E : isolate low bit set
297         and     t6, t8, t12     # E : (stall)
298         and     t12, 0x80, t6   # E : avoid dest word load if we can (stall)
299         bne     t6, 1f          # U : (stall)
301         ldq_u   t1, 0(a0)       # L :
302         subq    t12, 1, t6      # E :
303         or      t6, t12, t8     # E : (stall)
304         zapnot  t0, t8, t0      # U : kill source bytes > null
306         zap     t1, t8, t1      # U : kill dest bytes <= null
307         or      t0, t1, t0      # E : (stall)
308         nop
309         nop
311 1:      stq_u   t0, 0(a0)       # L :
312         ret     (t9)            # L0 : Latency=3
314           /* Got to end-of-count before end of string.  
315              On entry to this basic block:
316              t1 == the shifted high-order bits from the previous source word  */
317 $u_eoc:
318         and     a1, 7, t6       # E : avoid final load if possible
319         sll     t10, t6, t6     # U : (stall)
320         and     t6, 0xff, t6    # E : (stall)
321         bne     t6, 1f          # U : (stall)
323         ldq_u   t2, 8(a1)       # L : load final src word
324         nop
325         extqh   t2, a1, t0      # U : extract low bits for last word (stall)
326         or      t1, t0, t1      # E : (stall)
328 1:      cmpbge  zero, t1, t8    # E :
329         mov     t1, t0          # E :
331 $u_eocfin:                      # end-of-count, final word
332         or      t10, t8, t8     # E :
333         br      $u_final        # L0 : Latency=3
335         /* Unaligned copy entry point.  */
336         .align 4
337 $unaligned:
339         ldq_u   t1, 0(a1)       # L : load first source word
340         and     a0, 7, t4       # E : find dest misalignment
341         and     a1, 7, t5       # E : find src misalignment
342         /* Conditionally load the first destination word and a bytemask
343            with 0xff indicating that the destination byte is sacrosanct.  */
344         mov     zero, t0        # E :
346         mov     zero, t6        # E :
347         beq     t4, 1f          # U :
348         ldq_u   t0, 0(a0)       # L :
349         lda     t6, -1          # E :
351         mskql   t6, a0, t6      # U :
352         nop
353         nop
354         subq    a1, t4, a1      # E : sub dest misalignment from src addr
356         /* If source misalignment is larger than dest misalignment, we need
357            extra startup checks to avoid SEGV.  */
359 1:      cmplt   t4, t5, t12     # E :
360         extql   t1, a1, t1      # U : shift src into place
361         lda     t2, -1          # E : for creating masks later
362         beq     t12, $u_head    # U : (stall)
364         extql   t2, a1, t2      # U :
365         cmpbge  zero, t1, t8    # E : is there a zero?
366         andnot  t2, t6, t2      # E : dest mask for a single word copy
367         or      t8, t10, t5     # E : test for end-of-count too
369         cmpbge  zero, t2, t3    # E :
370         cmoveq  a2, t5, t8      # E : Latency=2, extra map slot
371         nop                     # E : keep with cmoveq
372         andnot  t8, t3, t8      # E : (stall)
374         beq     t8, $u_head     # U :
375         /* At this point we've found a zero in the first partial word of
376            the source.  We need to isolate the valid source data and mask
377            it into the original destination data.  (Incidentally, we know
378            that we'll need at least one byte of that original dest word.) */
379         ldq_u   t0, 0(a0)       # L :
380         negq    t8, t6          # E : build bitmask of bytes <= zero
381         mskqh   t1, t4, t1      # U :
383         and     t6, t8, t12     # E :
384         subq    t12, 1, t6      # E : (stall)
385         or      t6, t12, t8     # E : (stall)
386         zapnot  t2, t8, t2      # U : prepare source word; mirror changes (stall)
388         zapnot  t1, t8, t1      # U : to source validity mask
389         andnot  t0, t2, t0      # E : zero place for source to reside
390         or      t0, t1, t0      # E : and put it there (stall both t0, t1)
391         stq_u   t0, 0(a0)       # L : (stall)
393         ret     (t9)            # L0 : Latency=3
394         nop
395         nop
396         nop
398         .end __stxncpy