mtd: nand: omap: Fix comment in platform data using wrong Kconfig symbol
[linux/fpc-iii.git] / arch / arm / net / bpf_jit_32.c
blobc8bfbbfdfcc3895ba7b6e2603a02ac7473e8d8b9
1 /*
2 * Just-In-Time compiler for eBPF filters on 32bit ARM
4 * Copyright (c) 2017 Shubham Bansal <illusionist.neo@gmail.com>
5 * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com>
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License as published by the
9 * Free Software Foundation; version 2 of the License.
12 #include <linux/bpf.h>
13 #include <linux/bitops.h>
14 #include <linux/compiler.h>
15 #include <linux/errno.h>
16 #include <linux/filter.h>
17 #include <linux/netdevice.h>
18 #include <linux/string.h>
19 #include <linux/slab.h>
20 #include <linux/if_vlan.h>
22 #include <asm/cacheflush.h>
23 #include <asm/hwcap.h>
24 #include <asm/opcodes.h>
25 #include <asm/system_info.h>
27 #include "bpf_jit_32.h"
30 * eBPF prog stack layout:
32 * high
33 * original ARM_SP => +-----+
34 * | | callee saved registers
35 * +-----+ <= (BPF_FP + SCRATCH_SIZE)
36 * | ... | eBPF JIT scratch space
37 * eBPF fp register => +-----+
38 * (BPF_FP) | ... | eBPF prog stack
39 * +-----+
40 * |RSVD | JIT scratchpad
41 * current ARM_SP => +-----+ <= (BPF_FP - STACK_SIZE + SCRATCH_SIZE)
42 * | |
43 * | ... | Function call stack
44 * | |
45 * +-----+
46 * low
48 * The callee saved registers depends on whether frame pointers are enabled.
49 * With frame pointers (to be compliant with the ABI):
51 * high
52 * original ARM_SP => +--------------+ \
53 * | pc | |
54 * current ARM_FP => +--------------+ } callee saved registers
55 * |r4-r9,fp,ip,lr| |
56 * +--------------+ /
57 * low
59 * Without frame pointers:
61 * high
62 * original ARM_SP => +--------------+
63 * | r4-r9,fp,lr | callee saved registers
64 * current ARM_FP => +--------------+
65 * low
67 * When popping registers off the stack at the end of a BPF function, we
68 * reference them via the current ARM_FP register.
70 #define CALLEE_MASK (1 << ARM_R4 | 1 << ARM_R5 | 1 << ARM_R6 | \
71 1 << ARM_R7 | 1 << ARM_R8 | 1 << ARM_R9 | \
72 1 << ARM_FP)
73 #define CALLEE_PUSH_MASK (CALLEE_MASK | 1 << ARM_LR)
74 #define CALLEE_POP_MASK (CALLEE_MASK | 1 << ARM_PC)
76 enum {
77 /* Stack layout - these are offsets from (top of stack - 4) */
78 BPF_R2_HI,
79 BPF_R2_LO,
80 BPF_R3_HI,
81 BPF_R3_LO,
82 BPF_R4_HI,
83 BPF_R4_LO,
84 BPF_R5_HI,
85 BPF_R5_LO,
86 BPF_R7_HI,
87 BPF_R7_LO,
88 BPF_R8_HI,
89 BPF_R8_LO,
90 BPF_R9_HI,
91 BPF_R9_LO,
92 BPF_FP_HI,
93 BPF_FP_LO,
94 BPF_TC_HI,
95 BPF_TC_LO,
96 BPF_AX_HI,
97 BPF_AX_LO,
98 /* Stack space for BPF_REG_2, BPF_REG_3, BPF_REG_4,
99 * BPF_REG_5, BPF_REG_7, BPF_REG_8, BPF_REG_9,
100 * BPF_REG_FP and Tail call counts.
102 BPF_JIT_SCRATCH_REGS,
106 * Negative "register" values indicate the register is stored on the stack
107 * and are the offset from the top of the eBPF JIT scratch space.
109 #define STACK_OFFSET(k) (-4 - (k) * 4)
110 #define SCRATCH_SIZE (BPF_JIT_SCRATCH_REGS * 4)
112 #ifdef CONFIG_FRAME_POINTER
113 #define EBPF_SCRATCH_TO_ARM_FP(x) ((x) - 4 * hweight16(CALLEE_PUSH_MASK) - 4)
114 #else
115 #define EBPF_SCRATCH_TO_ARM_FP(x) (x)
116 #endif
118 #define TMP_REG_1 (MAX_BPF_JIT_REG + 0) /* TEMP Register 1 */
119 #define TMP_REG_2 (MAX_BPF_JIT_REG + 1) /* TEMP Register 2 */
120 #define TCALL_CNT (MAX_BPF_JIT_REG + 2) /* Tail Call Count */
122 #define FLAG_IMM_OVERFLOW (1 << 0)
125 * Map eBPF registers to ARM 32bit registers or stack scratch space.
127 * 1. First argument is passed using the arm 32bit registers and rest of the
128 * arguments are passed on stack scratch space.
129 * 2. First callee-saved argument is mapped to arm 32 bit registers and rest
130 * arguments are mapped to scratch space on stack.
131 * 3. We need two 64 bit temp registers to do complex operations on eBPF
132 * registers.
134 * As the eBPF registers are all 64 bit registers and arm has only 32 bit
135 * registers, we have to map each eBPF registers with two arm 32 bit regs or
136 * scratch memory space and we have to build eBPF 64 bit register from those.
139 static const s8 bpf2a32[][2] = {
140 /* return value from in-kernel function, and exit value from eBPF */
141 [BPF_REG_0] = {ARM_R1, ARM_R0},
142 /* arguments from eBPF program to in-kernel function */
143 [BPF_REG_1] = {ARM_R3, ARM_R2},
144 /* Stored on stack scratch space */
145 [BPF_REG_2] = {STACK_OFFSET(BPF_R2_HI), STACK_OFFSET(BPF_R2_LO)},
146 [BPF_REG_3] = {STACK_OFFSET(BPF_R3_HI), STACK_OFFSET(BPF_R3_LO)},
147 [BPF_REG_4] = {STACK_OFFSET(BPF_R4_HI), STACK_OFFSET(BPF_R4_LO)},
148 [BPF_REG_5] = {STACK_OFFSET(BPF_R5_HI), STACK_OFFSET(BPF_R5_LO)},
149 /* callee saved registers that in-kernel function will preserve */
150 [BPF_REG_6] = {ARM_R5, ARM_R4},
151 /* Stored on stack scratch space */
152 [BPF_REG_7] = {STACK_OFFSET(BPF_R7_HI), STACK_OFFSET(BPF_R7_LO)},
153 [BPF_REG_8] = {STACK_OFFSET(BPF_R8_HI), STACK_OFFSET(BPF_R8_LO)},
154 [BPF_REG_9] = {STACK_OFFSET(BPF_R9_HI), STACK_OFFSET(BPF_R9_LO)},
155 /* Read only Frame Pointer to access Stack */
156 [BPF_REG_FP] = {STACK_OFFSET(BPF_FP_HI), STACK_OFFSET(BPF_FP_LO)},
157 /* Temporary Register for internal BPF JIT, can be used
158 * for constant blindings and others.
160 [TMP_REG_1] = {ARM_R7, ARM_R6},
161 [TMP_REG_2] = {ARM_R9, ARM_R8},
162 /* Tail call count. Stored on stack scratch space. */
163 [TCALL_CNT] = {STACK_OFFSET(BPF_TC_HI), STACK_OFFSET(BPF_TC_LO)},
164 /* temporary register for blinding constants.
165 * Stored on stack scratch space.
167 [BPF_REG_AX] = {STACK_OFFSET(BPF_AX_HI), STACK_OFFSET(BPF_AX_LO)},
170 #define dst_lo dst[1]
171 #define dst_hi dst[0]
172 #define src_lo src[1]
173 #define src_hi src[0]
176 * JIT Context:
178 * prog : bpf_prog
179 * idx : index of current last JITed instruction.
180 * prologue_bytes : bytes used in prologue.
181 * epilogue_offset : offset of epilogue starting.
182 * offsets : array of eBPF instruction offsets in
183 * JITed code.
184 * target : final JITed code.
185 * epilogue_bytes : no of bytes used in epilogue.
186 * imm_count : no of immediate counts used for global
187 * variables.
188 * imms : array of global variable addresses.
191 struct jit_ctx {
192 const struct bpf_prog *prog;
193 unsigned int idx;
194 unsigned int prologue_bytes;
195 unsigned int epilogue_offset;
196 unsigned int cpu_architecture;
197 u32 flags;
198 u32 *offsets;
199 u32 *target;
200 u32 stack_size;
201 #if __LINUX_ARM_ARCH__ < 7
202 u16 epilogue_bytes;
203 u16 imm_count;
204 u32 *imms;
205 #endif
209 * Wrappers which handle both OABI and EABI and assures Thumb2 interworking
210 * (where the assembly routines like __aeabi_uidiv could cause problems).
212 static u32 jit_udiv32(u32 dividend, u32 divisor)
214 return dividend / divisor;
217 static u32 jit_mod32(u32 dividend, u32 divisor)
219 return dividend % divisor;
222 static inline void _emit(int cond, u32 inst, struct jit_ctx *ctx)
224 inst |= (cond << 28);
225 inst = __opcode_to_mem_arm(inst);
227 if (ctx->target != NULL)
228 ctx->target[ctx->idx] = inst;
230 ctx->idx++;
234 * Emit an instruction that will be executed unconditionally.
236 static inline void emit(u32 inst, struct jit_ctx *ctx)
238 _emit(ARM_COND_AL, inst, ctx);
242 * This is rather horrid, but necessary to convert an integer constant
243 * to an immediate operand for the opcodes, and be able to detect at
244 * build time whether the constant can't be converted (iow, usable in
245 * BUILD_BUG_ON()).
247 #define imm12val(v, s) (rol32(v, (s)) | (s) << 7)
248 #define const_imm8m(x) \
249 ({ int r; \
250 u32 v = (x); \
251 if (!(v & ~0x000000ff)) \
252 r = imm12val(v, 0); \
253 else if (!(v & ~0xc000003f)) \
254 r = imm12val(v, 2); \
255 else if (!(v & ~0xf000000f)) \
256 r = imm12val(v, 4); \
257 else if (!(v & ~0xfc000003)) \
258 r = imm12val(v, 6); \
259 else if (!(v & ~0xff000000)) \
260 r = imm12val(v, 8); \
261 else if (!(v & ~0x3fc00000)) \
262 r = imm12val(v, 10); \
263 else if (!(v & ~0x0ff00000)) \
264 r = imm12val(v, 12); \
265 else if (!(v & ~0x03fc0000)) \
266 r = imm12val(v, 14); \
267 else if (!(v & ~0x00ff0000)) \
268 r = imm12val(v, 16); \
269 else if (!(v & ~0x003fc000)) \
270 r = imm12val(v, 18); \
271 else if (!(v & ~0x000ff000)) \
272 r = imm12val(v, 20); \
273 else if (!(v & ~0x0003fc00)) \
274 r = imm12val(v, 22); \
275 else if (!(v & ~0x0000ff00)) \
276 r = imm12val(v, 24); \
277 else if (!(v & ~0x00003fc0)) \
278 r = imm12val(v, 26); \
279 else if (!(v & ~0x00000ff0)) \
280 r = imm12val(v, 28); \
281 else if (!(v & ~0x000003fc)) \
282 r = imm12val(v, 30); \
283 else \
284 r = -1; \
285 r; })
288 * Checks if immediate value can be converted to imm12(12 bits) value.
290 static int imm8m(u32 x)
292 u32 rot;
294 for (rot = 0; rot < 16; rot++)
295 if ((x & ~ror32(0xff, 2 * rot)) == 0)
296 return rol32(x, 2 * rot) | (rot << 8);
297 return -1;
300 #define imm8m(x) (__builtin_constant_p(x) ? const_imm8m(x) : imm8m(x))
302 static u32 arm_bpf_ldst_imm12(u32 op, u8 rt, u8 rn, s16 imm12)
304 op |= rt << 12 | rn << 16;
305 if (imm12 >= 0)
306 op |= ARM_INST_LDST__U;
307 else
308 imm12 = -imm12;
309 return op | (imm12 & ARM_INST_LDST__IMM12);
312 static u32 arm_bpf_ldst_imm8(u32 op, u8 rt, u8 rn, s16 imm8)
314 op |= rt << 12 | rn << 16;
315 if (imm8 >= 0)
316 op |= ARM_INST_LDST__U;
317 else
318 imm8 = -imm8;
319 return op | (imm8 & 0xf0) << 4 | (imm8 & 0x0f);
322 #define ARM_LDR_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_LDR_I, rt, rn, off)
323 #define ARM_LDRB_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_LDRB_I, rt, rn, off)
324 #define ARM_LDRD_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRD_I, rt, rn, off)
325 #define ARM_LDRH_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRH_I, rt, rn, off)
327 #define ARM_STR_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_STR_I, rt, rn, off)
328 #define ARM_STRB_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_STRB_I, rt, rn, off)
329 #define ARM_STRD_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_STRD_I, rt, rn, off)
330 #define ARM_STRH_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_STRH_I, rt, rn, off)
333 * Initializes the JIT space with undefined instructions.
335 static void jit_fill_hole(void *area, unsigned int size)
337 u32 *ptr;
338 /* We are guaranteed to have aligned memory. */
339 for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
340 *ptr++ = __opcode_to_mem_arm(ARM_INST_UDF);
343 #if defined(CONFIG_AEABI) && (__LINUX_ARM_ARCH__ >= 5)
344 /* EABI requires the stack to be aligned to 64-bit boundaries */
345 #define STACK_ALIGNMENT 8
346 #else
347 /* Stack must be aligned to 32-bit boundaries */
348 #define STACK_ALIGNMENT 4
349 #endif
351 /* total stack size used in JITed code */
352 #define _STACK_SIZE (ctx->prog->aux->stack_depth + SCRATCH_SIZE)
353 #define STACK_SIZE ALIGN(_STACK_SIZE, STACK_ALIGNMENT)
355 #if __LINUX_ARM_ARCH__ < 7
357 static u16 imm_offset(u32 k, struct jit_ctx *ctx)
359 unsigned int i = 0, offset;
360 u16 imm;
362 /* on the "fake" run we just count them (duplicates included) */
363 if (ctx->target == NULL) {
364 ctx->imm_count++;
365 return 0;
368 while ((i < ctx->imm_count) && ctx->imms[i]) {
369 if (ctx->imms[i] == k)
370 break;
371 i++;
374 if (ctx->imms[i] == 0)
375 ctx->imms[i] = k;
377 /* constants go just after the epilogue */
378 offset = ctx->offsets[ctx->prog->len - 1] * 4;
379 offset += ctx->prologue_bytes;
380 offset += ctx->epilogue_bytes;
381 offset += i * 4;
383 ctx->target[offset / 4] = k;
385 /* PC in ARM mode == address of the instruction + 8 */
386 imm = offset - (8 + ctx->idx * 4);
388 if (imm & ~0xfff) {
390 * literal pool is too far, signal it into flags. we
391 * can only detect it on the second pass unfortunately.
393 ctx->flags |= FLAG_IMM_OVERFLOW;
394 return 0;
397 return imm;
400 #endif /* __LINUX_ARM_ARCH__ */
402 static inline int bpf2a32_offset(int bpf_to, int bpf_from,
403 const struct jit_ctx *ctx) {
404 int to, from;
406 if (ctx->target == NULL)
407 return 0;
408 to = ctx->offsets[bpf_to];
409 from = ctx->offsets[bpf_from];
411 return to - from - 1;
415 * Move an immediate that's not an imm8m to a core register.
417 static inline void emit_mov_i_no8m(const u8 rd, u32 val, struct jit_ctx *ctx)
419 #if __LINUX_ARM_ARCH__ < 7
420 emit(ARM_LDR_I(rd, ARM_PC, imm_offset(val, ctx)), ctx);
421 #else
422 emit(ARM_MOVW(rd, val & 0xffff), ctx);
423 if (val > 0xffff)
424 emit(ARM_MOVT(rd, val >> 16), ctx);
425 #endif
428 static inline void emit_mov_i(const u8 rd, u32 val, struct jit_ctx *ctx)
430 int imm12 = imm8m(val);
432 if (imm12 >= 0)
433 emit(ARM_MOV_I(rd, imm12), ctx);
434 else
435 emit_mov_i_no8m(rd, val, ctx);
438 static void emit_bx_r(u8 tgt_reg, struct jit_ctx *ctx)
440 if (elf_hwcap & HWCAP_THUMB)
441 emit(ARM_BX(tgt_reg), ctx);
442 else
443 emit(ARM_MOV_R(ARM_PC, tgt_reg), ctx);
446 static inline void emit_blx_r(u8 tgt_reg, struct jit_ctx *ctx)
448 #if __LINUX_ARM_ARCH__ < 5
449 emit(ARM_MOV_R(ARM_LR, ARM_PC), ctx);
450 emit_bx_r(tgt_reg, ctx);
451 #else
452 emit(ARM_BLX_R(tgt_reg), ctx);
453 #endif
456 static inline int epilogue_offset(const struct jit_ctx *ctx)
458 int to, from;
459 /* No need for 1st dummy run */
460 if (ctx->target == NULL)
461 return 0;
462 to = ctx->epilogue_offset;
463 from = ctx->idx;
465 return to - from - 2;
468 static inline void emit_udivmod(u8 rd, u8 rm, u8 rn, struct jit_ctx *ctx, u8 op)
470 const s8 *tmp = bpf2a32[TMP_REG_1];
472 #if __LINUX_ARM_ARCH__ == 7
473 if (elf_hwcap & HWCAP_IDIVA) {
474 if (op == BPF_DIV)
475 emit(ARM_UDIV(rd, rm, rn), ctx);
476 else {
477 emit(ARM_UDIV(ARM_IP, rm, rn), ctx);
478 emit(ARM_MLS(rd, rn, ARM_IP, rm), ctx);
480 return;
482 #endif
485 * For BPF_ALU | BPF_DIV | BPF_K instructions
486 * As ARM_R1 and ARM_R0 contains 1st argument of bpf
487 * function, we need to save it on caller side to save
488 * it from getting destroyed within callee.
489 * After the return from the callee, we restore ARM_R0
490 * ARM_R1.
492 if (rn != ARM_R1) {
493 emit(ARM_MOV_R(tmp[0], ARM_R1), ctx);
494 emit(ARM_MOV_R(ARM_R1, rn), ctx);
496 if (rm != ARM_R0) {
497 emit(ARM_MOV_R(tmp[1], ARM_R0), ctx);
498 emit(ARM_MOV_R(ARM_R0, rm), ctx);
501 /* Call appropriate function */
502 emit_mov_i(ARM_IP, op == BPF_DIV ?
503 (u32)jit_udiv32 : (u32)jit_mod32, ctx);
504 emit_blx_r(ARM_IP, ctx);
506 /* Save return value */
507 if (rd != ARM_R0)
508 emit(ARM_MOV_R(rd, ARM_R0), ctx);
510 /* Restore ARM_R0 and ARM_R1 */
511 if (rn != ARM_R1)
512 emit(ARM_MOV_R(ARM_R1, tmp[0]), ctx);
513 if (rm != ARM_R0)
514 emit(ARM_MOV_R(ARM_R0, tmp[1]), ctx);
517 /* Is the translated BPF register on stack? */
518 static bool is_stacked(s8 reg)
520 return reg < 0;
523 /* If a BPF register is on the stack (stk is true), load it to the
524 * supplied temporary register and return the temporary register
525 * for subsequent operations, otherwise just use the CPU register.
527 static s8 arm_bpf_get_reg32(s8 reg, s8 tmp, struct jit_ctx *ctx)
529 if (is_stacked(reg)) {
530 emit(ARM_LDR_I(tmp, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx);
531 reg = tmp;
533 return reg;
536 static const s8 *arm_bpf_get_reg64(const s8 *reg, const s8 *tmp,
537 struct jit_ctx *ctx)
539 if (is_stacked(reg[1])) {
540 if (__LINUX_ARM_ARCH__ >= 6 ||
541 ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) {
542 emit(ARM_LDRD_I(tmp[1], ARM_FP,
543 EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
544 } else {
545 emit(ARM_LDR_I(tmp[1], ARM_FP,
546 EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
547 emit(ARM_LDR_I(tmp[0], ARM_FP,
548 EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx);
550 reg = tmp;
552 return reg;
555 /* If a BPF register is on the stack (stk is true), save the register
556 * back to the stack. If the source register is not the same, then
557 * move it into the correct register.
559 static void arm_bpf_put_reg32(s8 reg, s8 src, struct jit_ctx *ctx)
561 if (is_stacked(reg))
562 emit(ARM_STR_I(src, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx);
563 else if (reg != src)
564 emit(ARM_MOV_R(reg, src), ctx);
567 static void arm_bpf_put_reg64(const s8 *reg, const s8 *src,
568 struct jit_ctx *ctx)
570 if (is_stacked(reg[1])) {
571 if (__LINUX_ARM_ARCH__ >= 6 ||
572 ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) {
573 emit(ARM_STRD_I(src[1], ARM_FP,
574 EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
575 } else {
576 emit(ARM_STR_I(src[1], ARM_FP,
577 EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
578 emit(ARM_STR_I(src[0], ARM_FP,
579 EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx);
581 } else {
582 if (reg[1] != src[1])
583 emit(ARM_MOV_R(reg[1], src[1]), ctx);
584 if (reg[0] != src[0])
585 emit(ARM_MOV_R(reg[0], src[0]), ctx);
589 static inline void emit_a32_mov_i(const s8 dst, const u32 val,
590 struct jit_ctx *ctx)
592 const s8 *tmp = bpf2a32[TMP_REG_1];
594 if (is_stacked(dst)) {
595 emit_mov_i(tmp[1], val, ctx);
596 arm_bpf_put_reg32(dst, tmp[1], ctx);
597 } else {
598 emit_mov_i(dst, val, ctx);
602 static void emit_a32_mov_i64(const s8 dst[], u64 val, struct jit_ctx *ctx)
604 const s8 *tmp = bpf2a32[TMP_REG_1];
605 const s8 *rd = is_stacked(dst_lo) ? tmp : dst;
607 emit_mov_i(rd[1], (u32)val, ctx);
608 emit_mov_i(rd[0], val >> 32, ctx);
610 arm_bpf_put_reg64(dst, rd, ctx);
613 /* Sign extended move */
614 static inline void emit_a32_mov_se_i64(const bool is64, const s8 dst[],
615 const u32 val, struct jit_ctx *ctx) {
616 u64 val64 = val;
618 if (is64 && (val & (1<<31)))
619 val64 |= 0xffffffff00000000ULL;
620 emit_a32_mov_i64(dst, val64, ctx);
623 static inline void emit_a32_add_r(const u8 dst, const u8 src,
624 const bool is64, const bool hi,
625 struct jit_ctx *ctx) {
626 /* 64 bit :
627 * adds dst_lo, dst_lo, src_lo
628 * adc dst_hi, dst_hi, src_hi
629 * 32 bit :
630 * add dst_lo, dst_lo, src_lo
632 if (!hi && is64)
633 emit(ARM_ADDS_R(dst, dst, src), ctx);
634 else if (hi && is64)
635 emit(ARM_ADC_R(dst, dst, src), ctx);
636 else
637 emit(ARM_ADD_R(dst, dst, src), ctx);
640 static inline void emit_a32_sub_r(const u8 dst, const u8 src,
641 const bool is64, const bool hi,
642 struct jit_ctx *ctx) {
643 /* 64 bit :
644 * subs dst_lo, dst_lo, src_lo
645 * sbc dst_hi, dst_hi, src_hi
646 * 32 bit :
647 * sub dst_lo, dst_lo, src_lo
649 if (!hi && is64)
650 emit(ARM_SUBS_R(dst, dst, src), ctx);
651 else if (hi && is64)
652 emit(ARM_SBC_R(dst, dst, src), ctx);
653 else
654 emit(ARM_SUB_R(dst, dst, src), ctx);
657 static inline void emit_alu_r(const u8 dst, const u8 src, const bool is64,
658 const bool hi, const u8 op, struct jit_ctx *ctx){
659 switch (BPF_OP(op)) {
660 /* dst = dst + src */
661 case BPF_ADD:
662 emit_a32_add_r(dst, src, is64, hi, ctx);
663 break;
664 /* dst = dst - src */
665 case BPF_SUB:
666 emit_a32_sub_r(dst, src, is64, hi, ctx);
667 break;
668 /* dst = dst | src */
669 case BPF_OR:
670 emit(ARM_ORR_R(dst, dst, src), ctx);
671 break;
672 /* dst = dst & src */
673 case BPF_AND:
674 emit(ARM_AND_R(dst, dst, src), ctx);
675 break;
676 /* dst = dst ^ src */
677 case BPF_XOR:
678 emit(ARM_EOR_R(dst, dst, src), ctx);
679 break;
680 /* dst = dst * src */
681 case BPF_MUL:
682 emit(ARM_MUL(dst, dst, src), ctx);
683 break;
684 /* dst = dst << src */
685 case BPF_LSH:
686 emit(ARM_LSL_R(dst, dst, src), ctx);
687 break;
688 /* dst = dst >> src */
689 case BPF_RSH:
690 emit(ARM_LSR_R(dst, dst, src), ctx);
691 break;
692 /* dst = dst >> src (signed)*/
693 case BPF_ARSH:
694 emit(ARM_MOV_SR(dst, dst, SRTYPE_ASR, src), ctx);
695 break;
699 /* ALU operation (32 bit)
700 * dst = dst (op) src
702 static inline void emit_a32_alu_r(const s8 dst, const s8 src,
703 struct jit_ctx *ctx, const bool is64,
704 const bool hi, const u8 op) {
705 const s8 *tmp = bpf2a32[TMP_REG_1];
706 s8 rn, rd;
708 rn = arm_bpf_get_reg32(src, tmp[1], ctx);
709 rd = arm_bpf_get_reg32(dst, tmp[0], ctx);
710 /* ALU operation */
711 emit_alu_r(rd, rn, is64, hi, op, ctx);
712 arm_bpf_put_reg32(dst, rd, ctx);
715 /* ALU operation (64 bit) */
716 static inline void emit_a32_alu_r64(const bool is64, const s8 dst[],
717 const s8 src[], struct jit_ctx *ctx,
718 const u8 op) {
719 const s8 *tmp = bpf2a32[TMP_REG_1];
720 const s8 *tmp2 = bpf2a32[TMP_REG_2];
721 const s8 *rd;
723 rd = arm_bpf_get_reg64(dst, tmp, ctx);
724 if (is64) {
725 const s8 *rs;
727 rs = arm_bpf_get_reg64(src, tmp2, ctx);
729 /* ALU operation */
730 emit_alu_r(rd[1], rs[1], true, false, op, ctx);
731 emit_alu_r(rd[0], rs[0], true, true, op, ctx);
732 } else {
733 s8 rs;
735 rs = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
737 /* ALU operation */
738 emit_alu_r(rd[1], rs, true, false, op, ctx);
739 emit_a32_mov_i(rd[0], 0, ctx);
742 arm_bpf_put_reg64(dst, rd, ctx);
745 /* dst = src (4 bytes)*/
746 static inline void emit_a32_mov_r(const s8 dst, const s8 src,
747 struct jit_ctx *ctx) {
748 const s8 *tmp = bpf2a32[TMP_REG_1];
749 s8 rt;
751 rt = arm_bpf_get_reg32(src, tmp[0], ctx);
752 arm_bpf_put_reg32(dst, rt, ctx);
755 /* dst = src */
756 static inline void emit_a32_mov_r64(const bool is64, const s8 dst[],
757 const s8 src[],
758 struct jit_ctx *ctx) {
759 if (!is64) {
760 emit_a32_mov_r(dst_lo, src_lo, ctx);
761 /* Zero out high 4 bytes */
762 emit_a32_mov_i(dst_hi, 0, ctx);
763 } else if (__LINUX_ARM_ARCH__ < 6 &&
764 ctx->cpu_architecture < CPU_ARCH_ARMv5TE) {
765 /* complete 8 byte move */
766 emit_a32_mov_r(dst_lo, src_lo, ctx);
767 emit_a32_mov_r(dst_hi, src_hi, ctx);
768 } else if (is_stacked(src_lo) && is_stacked(dst_lo)) {
769 const u8 *tmp = bpf2a32[TMP_REG_1];
771 emit(ARM_LDRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx);
772 emit(ARM_STRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx);
773 } else if (is_stacked(src_lo)) {
774 emit(ARM_LDRD_I(dst[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx);
775 } else if (is_stacked(dst_lo)) {
776 emit(ARM_STRD_I(src[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx);
777 } else {
778 emit(ARM_MOV_R(dst[0], src[0]), ctx);
779 emit(ARM_MOV_R(dst[1], src[1]), ctx);
783 /* Shift operations */
784 static inline void emit_a32_alu_i(const s8 dst, const u32 val,
785 struct jit_ctx *ctx, const u8 op) {
786 const s8 *tmp = bpf2a32[TMP_REG_1];
787 s8 rd;
789 rd = arm_bpf_get_reg32(dst, tmp[0], ctx);
791 /* Do shift operation */
792 switch (op) {
793 case BPF_LSH:
794 emit(ARM_LSL_I(rd, rd, val), ctx);
795 break;
796 case BPF_RSH:
797 emit(ARM_LSR_I(rd, rd, val), ctx);
798 break;
799 case BPF_NEG:
800 emit(ARM_RSB_I(rd, rd, val), ctx);
801 break;
804 arm_bpf_put_reg32(dst, rd, ctx);
807 /* dst = ~dst (64 bit) */
808 static inline void emit_a32_neg64(const s8 dst[],
809 struct jit_ctx *ctx){
810 const s8 *tmp = bpf2a32[TMP_REG_1];
811 const s8 *rd;
813 /* Setup Operand */
814 rd = arm_bpf_get_reg64(dst, tmp, ctx);
816 /* Do Negate Operation */
817 emit(ARM_RSBS_I(rd[1], rd[1], 0), ctx);
818 emit(ARM_RSC_I(rd[0], rd[0], 0), ctx);
820 arm_bpf_put_reg64(dst, rd, ctx);
823 /* dst = dst << src */
824 static inline void emit_a32_lsh_r64(const s8 dst[], const s8 src[],
825 struct jit_ctx *ctx) {
826 const s8 *tmp = bpf2a32[TMP_REG_1];
827 const s8 *tmp2 = bpf2a32[TMP_REG_2];
828 const s8 *rd;
829 s8 rt;
831 /* Setup Operands */
832 rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
833 rd = arm_bpf_get_reg64(dst, tmp, ctx);
835 /* Do LSH operation */
836 emit(ARM_SUB_I(ARM_IP, rt, 32), ctx);
837 emit(ARM_RSB_I(tmp2[0], rt, 32), ctx);
838 emit(ARM_MOV_SR(ARM_LR, rd[0], SRTYPE_ASL, rt), ctx);
839 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[1], SRTYPE_ASL, ARM_IP), ctx);
840 emit(ARM_ORR_SR(ARM_IP, ARM_LR, rd[1], SRTYPE_LSR, tmp2[0]), ctx);
841 emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_ASL, rt), ctx);
843 arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
844 arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
847 /* dst = dst >> src (signed)*/
848 static inline void emit_a32_arsh_r64(const s8 dst[], const s8 src[],
849 struct jit_ctx *ctx) {
850 const s8 *tmp = bpf2a32[TMP_REG_1];
851 const s8 *tmp2 = bpf2a32[TMP_REG_2];
852 const s8 *rd;
853 s8 rt;
855 /* Setup Operands */
856 rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
857 rd = arm_bpf_get_reg64(dst, tmp, ctx);
859 /* Do the ARSH operation */
860 emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
861 emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
862 emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx);
863 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx);
864 _emit(ARM_COND_MI, ARM_B(0), ctx);
865 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASR, tmp2[0]), ctx);
866 emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_ASR, rt), ctx);
868 arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
869 arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
872 /* dst = dst >> src */
873 static inline void emit_a32_rsh_r64(const s8 dst[], const s8 src[],
874 struct jit_ctx *ctx) {
875 const s8 *tmp = bpf2a32[TMP_REG_1];
876 const s8 *tmp2 = bpf2a32[TMP_REG_2];
877 const s8 *rd;
878 s8 rt;
880 /* Setup Operands */
881 rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
882 rd = arm_bpf_get_reg64(dst, tmp, ctx);
884 /* Do RSH operation */
885 emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
886 emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
887 emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx);
888 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx);
889 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_LSR, tmp2[0]), ctx);
890 emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_LSR, rt), ctx);
892 arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
893 arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
896 /* dst = dst << val */
897 static inline void emit_a32_lsh_i64(const s8 dst[],
898 const u32 val, struct jit_ctx *ctx){
899 const s8 *tmp = bpf2a32[TMP_REG_1];
900 const s8 *tmp2 = bpf2a32[TMP_REG_2];
901 const s8 *rd;
903 /* Setup operands */
904 rd = arm_bpf_get_reg64(dst, tmp, ctx);
906 /* Do LSH operation */
907 if (val < 32) {
908 emit(ARM_MOV_SI(tmp2[0], rd[0], SRTYPE_ASL, val), ctx);
909 emit(ARM_ORR_SI(rd[0], tmp2[0], rd[1], SRTYPE_LSR, 32 - val), ctx);
910 emit(ARM_MOV_SI(rd[1], rd[1], SRTYPE_ASL, val), ctx);
911 } else {
912 if (val == 32)
913 emit(ARM_MOV_R(rd[0], rd[1]), ctx);
914 else
915 emit(ARM_MOV_SI(rd[0], rd[1], SRTYPE_ASL, val - 32), ctx);
916 emit(ARM_EOR_R(rd[1], rd[1], rd[1]), ctx);
919 arm_bpf_put_reg64(dst, rd, ctx);
922 /* dst = dst >> val */
923 static inline void emit_a32_rsh_i64(const s8 dst[],
924 const u32 val, struct jit_ctx *ctx) {
925 const s8 *tmp = bpf2a32[TMP_REG_1];
926 const s8 *tmp2 = bpf2a32[TMP_REG_2];
927 const s8 *rd;
929 /* Setup operands */
930 rd = arm_bpf_get_reg64(dst, tmp, ctx);
932 /* Do LSR operation */
933 if (val < 32) {
934 emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx);
935 emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx);
936 emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_LSR, val), ctx);
937 } else if (val == 32) {
938 emit(ARM_MOV_R(rd[1], rd[0]), ctx);
939 emit(ARM_MOV_I(rd[0], 0), ctx);
940 } else {
941 emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_LSR, val - 32), ctx);
942 emit(ARM_MOV_I(rd[0], 0), ctx);
945 arm_bpf_put_reg64(dst, rd, ctx);
948 /* dst = dst >> val (signed) */
949 static inline void emit_a32_arsh_i64(const s8 dst[],
950 const u32 val, struct jit_ctx *ctx){
951 const s8 *tmp = bpf2a32[TMP_REG_1];
952 const s8 *tmp2 = bpf2a32[TMP_REG_2];
953 const s8 *rd;
955 /* Setup operands */
956 rd = arm_bpf_get_reg64(dst, tmp, ctx);
958 /* Do ARSH operation */
959 if (val < 32) {
960 emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx);
961 emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx);
962 emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, val), ctx);
963 } else if (val == 32) {
964 emit(ARM_MOV_R(rd[1], rd[0]), ctx);
965 emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx);
966 } else {
967 emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_ASR, val - 32), ctx);
968 emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx);
971 arm_bpf_put_reg64(dst, rd, ctx);
974 static inline void emit_a32_mul_r64(const s8 dst[], const s8 src[],
975 struct jit_ctx *ctx) {
976 const s8 *tmp = bpf2a32[TMP_REG_1];
977 const s8 *tmp2 = bpf2a32[TMP_REG_2];
978 const s8 *rd, *rt;
980 /* Setup operands for multiplication */
981 rd = arm_bpf_get_reg64(dst, tmp, ctx);
982 rt = arm_bpf_get_reg64(src, tmp2, ctx);
984 /* Do Multiplication */
985 emit(ARM_MUL(ARM_IP, rd[1], rt[0]), ctx);
986 emit(ARM_MUL(ARM_LR, rd[0], rt[1]), ctx);
987 emit(ARM_ADD_R(ARM_LR, ARM_IP, ARM_LR), ctx);
989 emit(ARM_UMULL(ARM_IP, rd[0], rd[1], rt[1]), ctx);
990 emit(ARM_ADD_R(rd[0], ARM_LR, rd[0]), ctx);
992 arm_bpf_put_reg32(dst_lo, ARM_IP, ctx);
993 arm_bpf_put_reg32(dst_hi, rd[0], ctx);
996 /* *(size *)(dst + off) = src */
997 static inline void emit_str_r(const s8 dst, const s8 src[],
998 s32 off, struct jit_ctx *ctx, const u8 sz){
999 const s8 *tmp = bpf2a32[TMP_REG_1];
1000 s32 off_max;
1001 s8 rd;
1003 rd = arm_bpf_get_reg32(dst, tmp[1], ctx);
1005 if (sz == BPF_H)
1006 off_max = 0xff;
1007 else
1008 off_max = 0xfff;
1010 if (off < 0 || off > off_max) {
1011 emit_a32_mov_i(tmp[0], off, ctx);
1012 emit(ARM_ADD_R(tmp[0], tmp[0], rd), ctx);
1013 rd = tmp[0];
1014 off = 0;
1016 switch (sz) {
1017 case BPF_B:
1018 /* Store a Byte */
1019 emit(ARM_STRB_I(src_lo, rd, off), ctx);
1020 break;
1021 case BPF_H:
1022 /* Store a HalfWord */
1023 emit(ARM_STRH_I(src_lo, rd, off), ctx);
1024 break;
1025 case BPF_W:
1026 /* Store a Word */
1027 emit(ARM_STR_I(src_lo, rd, off), ctx);
1028 break;
1029 case BPF_DW:
1030 /* Store a Double Word */
1031 emit(ARM_STR_I(src_lo, rd, off), ctx);
1032 emit(ARM_STR_I(src_hi, rd, off + 4), ctx);
1033 break;
1037 /* dst = *(size*)(src + off) */
1038 static inline void emit_ldx_r(const s8 dst[], const s8 src,
1039 s32 off, struct jit_ctx *ctx, const u8 sz){
1040 const s8 *tmp = bpf2a32[TMP_REG_1];
1041 const s8 *rd = is_stacked(dst_lo) ? tmp : dst;
1042 s8 rm = src;
1043 s32 off_max;
1045 if (sz == BPF_H)
1046 off_max = 0xff;
1047 else
1048 off_max = 0xfff;
1050 if (off < 0 || off > off_max) {
1051 emit_a32_mov_i(tmp[0], off, ctx);
1052 emit(ARM_ADD_R(tmp[0], tmp[0], src), ctx);
1053 rm = tmp[0];
1054 off = 0;
1055 } else if (rd[1] == rm) {
1056 emit(ARM_MOV_R(tmp[0], rm), ctx);
1057 rm = tmp[0];
1059 switch (sz) {
1060 case BPF_B:
1061 /* Load a Byte */
1062 emit(ARM_LDRB_I(rd[1], rm, off), ctx);
1063 emit_a32_mov_i(rd[0], 0, ctx);
1064 break;
1065 case BPF_H:
1066 /* Load a HalfWord */
1067 emit(ARM_LDRH_I(rd[1], rm, off), ctx);
1068 emit_a32_mov_i(rd[0], 0, ctx);
1069 break;
1070 case BPF_W:
1071 /* Load a Word */
1072 emit(ARM_LDR_I(rd[1], rm, off), ctx);
1073 emit_a32_mov_i(rd[0], 0, ctx);
1074 break;
1075 case BPF_DW:
1076 /* Load a Double Word */
1077 emit(ARM_LDR_I(rd[1], rm, off), ctx);
1078 emit(ARM_LDR_I(rd[0], rm, off + 4), ctx);
1079 break;
1081 arm_bpf_put_reg64(dst, rd, ctx);
1084 /* Arithmatic Operation */
1085 static inline void emit_ar_r(const u8 rd, const u8 rt, const u8 rm,
1086 const u8 rn, struct jit_ctx *ctx, u8 op,
1087 bool is_jmp64) {
1088 switch (op) {
1089 case BPF_JSET:
1090 if (is_jmp64) {
1091 emit(ARM_AND_R(ARM_IP, rt, rn), ctx);
1092 emit(ARM_AND_R(ARM_LR, rd, rm), ctx);
1093 emit(ARM_ORRS_R(ARM_IP, ARM_LR, ARM_IP), ctx);
1094 } else {
1095 emit(ARM_ANDS_R(ARM_IP, rt, rn), ctx);
1097 break;
1098 case BPF_JEQ:
1099 case BPF_JNE:
1100 case BPF_JGT:
1101 case BPF_JGE:
1102 case BPF_JLE:
1103 case BPF_JLT:
1104 if (is_jmp64) {
1105 emit(ARM_CMP_R(rd, rm), ctx);
1106 /* Only compare low halve if high halve are equal. */
1107 _emit(ARM_COND_EQ, ARM_CMP_R(rt, rn), ctx);
1108 } else {
1109 emit(ARM_CMP_R(rt, rn), ctx);
1111 break;
1112 case BPF_JSLE:
1113 case BPF_JSGT:
1114 emit(ARM_CMP_R(rn, rt), ctx);
1115 if (is_jmp64)
1116 emit(ARM_SBCS_R(ARM_IP, rm, rd), ctx);
1117 break;
1118 case BPF_JSLT:
1119 case BPF_JSGE:
1120 emit(ARM_CMP_R(rt, rn), ctx);
1121 if (is_jmp64)
1122 emit(ARM_SBCS_R(ARM_IP, rd, rm), ctx);
1123 break;
1127 static int out_offset = -1; /* initialized on the first pass of build_body() */
1128 static int emit_bpf_tail_call(struct jit_ctx *ctx)
1131 /* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */
1132 const s8 *r2 = bpf2a32[BPF_REG_2];
1133 const s8 *r3 = bpf2a32[BPF_REG_3];
1134 const s8 *tmp = bpf2a32[TMP_REG_1];
1135 const s8 *tmp2 = bpf2a32[TMP_REG_2];
1136 const s8 *tcc = bpf2a32[TCALL_CNT];
1137 const s8 *tc;
1138 const int idx0 = ctx->idx;
1139 #define cur_offset (ctx->idx - idx0)
1140 #define jmp_offset (out_offset - (cur_offset) - 2)
1141 u32 lo, hi;
1142 s8 r_array, r_index;
1143 int off;
1145 /* if (index >= array->map.max_entries)
1146 * goto out;
1148 BUILD_BUG_ON(offsetof(struct bpf_array, map.max_entries) >
1149 ARM_INST_LDST__IMM12);
1150 off = offsetof(struct bpf_array, map.max_entries);
1151 r_array = arm_bpf_get_reg32(r2[1], tmp2[0], ctx);
1152 /* index is 32-bit for arrays */
1153 r_index = arm_bpf_get_reg32(r3[1], tmp2[1], ctx);
1154 /* array->map.max_entries */
1155 emit(ARM_LDR_I(tmp[1], r_array, off), ctx);
1156 /* index >= array->map.max_entries */
1157 emit(ARM_CMP_R(r_index, tmp[1]), ctx);
1158 _emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
1160 /* tmp2[0] = array, tmp2[1] = index */
1162 /* if (tail_call_cnt > MAX_TAIL_CALL_CNT)
1163 * goto out;
1164 * tail_call_cnt++;
1166 lo = (u32)MAX_TAIL_CALL_CNT;
1167 hi = (u32)((u64)MAX_TAIL_CALL_CNT >> 32);
1168 tc = arm_bpf_get_reg64(tcc, tmp, ctx);
1169 emit(ARM_CMP_I(tc[0], hi), ctx);
1170 _emit(ARM_COND_EQ, ARM_CMP_I(tc[1], lo), ctx);
1171 _emit(ARM_COND_HI, ARM_B(jmp_offset), ctx);
1172 emit(ARM_ADDS_I(tc[1], tc[1], 1), ctx);
1173 emit(ARM_ADC_I(tc[0], tc[0], 0), ctx);
1174 arm_bpf_put_reg64(tcc, tmp, ctx);
1176 /* prog = array->ptrs[index]
1177 * if (prog == NULL)
1178 * goto out;
1180 BUILD_BUG_ON(imm8m(offsetof(struct bpf_array, ptrs)) < 0);
1181 off = imm8m(offsetof(struct bpf_array, ptrs));
1182 emit(ARM_ADD_I(tmp[1], r_array, off), ctx);
1183 emit(ARM_LDR_R_SI(tmp[1], tmp[1], r_index, SRTYPE_ASL, 2), ctx);
1184 emit(ARM_CMP_I(tmp[1], 0), ctx);
1185 _emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
1187 /* goto *(prog->bpf_func + prologue_size); */
1188 BUILD_BUG_ON(offsetof(struct bpf_prog, bpf_func) >
1189 ARM_INST_LDST__IMM12);
1190 off = offsetof(struct bpf_prog, bpf_func);
1191 emit(ARM_LDR_I(tmp[1], tmp[1], off), ctx);
1192 emit(ARM_ADD_I(tmp[1], tmp[1], ctx->prologue_bytes), ctx);
1193 emit_bx_r(tmp[1], ctx);
1195 /* out: */
1196 if (out_offset == -1)
1197 out_offset = cur_offset;
1198 if (cur_offset != out_offset) {
1199 pr_err_once("tail_call out_offset = %d, expected %d!\n",
1200 cur_offset, out_offset);
1201 return -1;
1203 return 0;
1204 #undef cur_offset
1205 #undef jmp_offset
1208 /* 0xabcd => 0xcdab */
1209 static inline void emit_rev16(const u8 rd, const u8 rn, struct jit_ctx *ctx)
1211 #if __LINUX_ARM_ARCH__ < 6
1212 const s8 *tmp2 = bpf2a32[TMP_REG_2];
1214 emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
1215 emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 8), ctx);
1216 emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
1217 emit(ARM_ORR_SI(rd, tmp2[0], tmp2[1], SRTYPE_LSL, 8), ctx);
1218 #else /* ARMv6+ */
1219 emit(ARM_REV16(rd, rn), ctx);
1220 #endif
1223 /* 0xabcdefgh => 0xghefcdab */
1224 static inline void emit_rev32(const u8 rd, const u8 rn, struct jit_ctx *ctx)
1226 #if __LINUX_ARM_ARCH__ < 6
1227 const s8 *tmp2 = bpf2a32[TMP_REG_2];
1229 emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
1230 emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 24), ctx);
1231 emit(ARM_ORR_SI(ARM_IP, tmp2[0], tmp2[1], SRTYPE_LSL, 24), ctx);
1233 emit(ARM_MOV_SI(tmp2[1], rn, SRTYPE_LSR, 8), ctx);
1234 emit(ARM_AND_I(tmp2[1], tmp2[1], 0xff), ctx);
1235 emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 16), ctx);
1236 emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
1237 emit(ARM_MOV_SI(tmp2[0], tmp2[0], SRTYPE_LSL, 8), ctx);
1238 emit(ARM_ORR_SI(tmp2[0], tmp2[0], tmp2[1], SRTYPE_LSL, 16), ctx);
1239 emit(ARM_ORR_R(rd, ARM_IP, tmp2[0]), ctx);
1241 #else /* ARMv6+ */
1242 emit(ARM_REV(rd, rn), ctx);
1243 #endif
1246 // push the scratch stack register on top of the stack
1247 static inline void emit_push_r64(const s8 src[], struct jit_ctx *ctx)
1249 const s8 *tmp2 = bpf2a32[TMP_REG_2];
1250 const s8 *rt;
1251 u16 reg_set = 0;
1253 rt = arm_bpf_get_reg64(src, tmp2, ctx);
1255 reg_set = (1 << rt[1]) | (1 << rt[0]);
1256 emit(ARM_PUSH(reg_set), ctx);
1259 static void build_prologue(struct jit_ctx *ctx)
1261 const s8 r0 = bpf2a32[BPF_REG_0][1];
1262 const s8 r2 = bpf2a32[BPF_REG_1][1];
1263 const s8 r3 = bpf2a32[BPF_REG_1][0];
1264 const s8 r4 = bpf2a32[BPF_REG_6][1];
1265 const s8 fplo = bpf2a32[BPF_REG_FP][1];
1266 const s8 fphi = bpf2a32[BPF_REG_FP][0];
1267 const s8 *tcc = bpf2a32[TCALL_CNT];
1269 /* Save callee saved registers. */
1270 #ifdef CONFIG_FRAME_POINTER
1271 u16 reg_set = CALLEE_PUSH_MASK | 1 << ARM_IP | 1 << ARM_PC;
1272 emit(ARM_MOV_R(ARM_IP, ARM_SP), ctx);
1273 emit(ARM_PUSH(reg_set), ctx);
1274 emit(ARM_SUB_I(ARM_FP, ARM_IP, 4), ctx);
1275 #else
1276 emit(ARM_PUSH(CALLEE_PUSH_MASK), ctx);
1277 emit(ARM_MOV_R(ARM_FP, ARM_SP), ctx);
1278 #endif
1279 /* Save frame pointer for later */
1280 emit(ARM_SUB_I(ARM_IP, ARM_SP, SCRATCH_SIZE), ctx);
1282 ctx->stack_size = imm8m(STACK_SIZE);
1284 /* Set up function call stack */
1285 emit(ARM_SUB_I(ARM_SP, ARM_SP, ctx->stack_size), ctx);
1287 /* Set up BPF prog stack base register */
1288 emit_a32_mov_r(fplo, ARM_IP, ctx);
1289 emit_a32_mov_i(fphi, 0, ctx);
1291 /* mov r4, 0 */
1292 emit(ARM_MOV_I(r4, 0), ctx);
1294 /* Move BPF_CTX to BPF_R1 */
1295 emit(ARM_MOV_R(r3, r4), ctx);
1296 emit(ARM_MOV_R(r2, r0), ctx);
1297 /* Initialize Tail Count */
1298 emit(ARM_STR_I(r4, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(tcc[0])), ctx);
1299 emit(ARM_STR_I(r4, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(tcc[1])), ctx);
1300 /* end of prologue */
1303 /* restore callee saved registers. */
1304 static void build_epilogue(struct jit_ctx *ctx)
1306 #ifdef CONFIG_FRAME_POINTER
1307 /* When using frame pointers, some additional registers need to
1308 * be loaded. */
1309 u16 reg_set = CALLEE_POP_MASK | 1 << ARM_SP;
1310 emit(ARM_SUB_I(ARM_SP, ARM_FP, hweight16(reg_set) * 4), ctx);
1311 emit(ARM_LDM(ARM_SP, reg_set), ctx);
1312 #else
1313 /* Restore callee saved registers. */
1314 emit(ARM_MOV_R(ARM_SP, ARM_FP), ctx);
1315 emit(ARM_POP(CALLEE_POP_MASK), ctx);
1316 #endif
1320 * Convert an eBPF instruction to native instruction, i.e
1321 * JITs an eBPF instruction.
1322 * Returns :
1323 * 0 - Successfully JITed an 8-byte eBPF instruction
1324 * >0 - Successfully JITed a 16-byte eBPF instruction
1325 * <0 - Failed to JIT.
1327 static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
1329 const u8 code = insn->code;
1330 const s8 *dst = bpf2a32[insn->dst_reg];
1331 const s8 *src = bpf2a32[insn->src_reg];
1332 const s8 *tmp = bpf2a32[TMP_REG_1];
1333 const s8 *tmp2 = bpf2a32[TMP_REG_2];
1334 const s16 off = insn->off;
1335 const s32 imm = insn->imm;
1336 const int i = insn - ctx->prog->insnsi;
1337 const bool is64 = BPF_CLASS(code) == BPF_ALU64;
1338 const s8 *rd, *rs;
1339 s8 rd_lo, rt, rm, rn;
1340 s32 jmp_offset;
1342 #define check_imm(bits, imm) do { \
1343 if ((imm) >= (1 << ((bits) - 1)) || \
1344 (imm) < -(1 << ((bits) - 1))) { \
1345 pr_info("[%2d] imm=%d(0x%x) out of range\n", \
1346 i, imm, imm); \
1347 return -EINVAL; \
1349 } while (0)
1350 #define check_imm24(imm) check_imm(24, imm)
1352 switch (code) {
1353 /* ALU operations */
1355 /* dst = src */
1356 case BPF_ALU | BPF_MOV | BPF_K:
1357 case BPF_ALU | BPF_MOV | BPF_X:
1358 case BPF_ALU64 | BPF_MOV | BPF_K:
1359 case BPF_ALU64 | BPF_MOV | BPF_X:
1360 switch (BPF_SRC(code)) {
1361 case BPF_X:
1362 emit_a32_mov_r64(is64, dst, src, ctx);
1363 break;
1364 case BPF_K:
1365 /* Sign-extend immediate value to destination reg */
1366 emit_a32_mov_se_i64(is64, dst, imm, ctx);
1367 break;
1369 break;
1370 /* dst = dst + src/imm */
1371 /* dst = dst - src/imm */
1372 /* dst = dst | src/imm */
1373 /* dst = dst & src/imm */
1374 /* dst = dst ^ src/imm */
1375 /* dst = dst * src/imm */
1376 /* dst = dst << src */
1377 /* dst = dst >> src */
1378 case BPF_ALU | BPF_ADD | BPF_K:
1379 case BPF_ALU | BPF_ADD | BPF_X:
1380 case BPF_ALU | BPF_SUB | BPF_K:
1381 case BPF_ALU | BPF_SUB | BPF_X:
1382 case BPF_ALU | BPF_OR | BPF_K:
1383 case BPF_ALU | BPF_OR | BPF_X:
1384 case BPF_ALU | BPF_AND | BPF_K:
1385 case BPF_ALU | BPF_AND | BPF_X:
1386 case BPF_ALU | BPF_XOR | BPF_K:
1387 case BPF_ALU | BPF_XOR | BPF_X:
1388 case BPF_ALU | BPF_MUL | BPF_K:
1389 case BPF_ALU | BPF_MUL | BPF_X:
1390 case BPF_ALU | BPF_LSH | BPF_X:
1391 case BPF_ALU | BPF_RSH | BPF_X:
1392 case BPF_ALU | BPF_ARSH | BPF_K:
1393 case BPF_ALU | BPF_ARSH | BPF_X:
1394 case BPF_ALU64 | BPF_ADD | BPF_K:
1395 case BPF_ALU64 | BPF_ADD | BPF_X:
1396 case BPF_ALU64 | BPF_SUB | BPF_K:
1397 case BPF_ALU64 | BPF_SUB | BPF_X:
1398 case BPF_ALU64 | BPF_OR | BPF_K:
1399 case BPF_ALU64 | BPF_OR | BPF_X:
1400 case BPF_ALU64 | BPF_AND | BPF_K:
1401 case BPF_ALU64 | BPF_AND | BPF_X:
1402 case BPF_ALU64 | BPF_XOR | BPF_K:
1403 case BPF_ALU64 | BPF_XOR | BPF_X:
1404 switch (BPF_SRC(code)) {
1405 case BPF_X:
1406 emit_a32_alu_r64(is64, dst, src, ctx, BPF_OP(code));
1407 break;
1408 case BPF_K:
1409 /* Move immediate value to the temporary register
1410 * and then do the ALU operation on the temporary
1411 * register as this will sign-extend the immediate
1412 * value into temporary reg and then it would be
1413 * safe to do the operation on it.
1415 emit_a32_mov_se_i64(is64, tmp2, imm, ctx);
1416 emit_a32_alu_r64(is64, dst, tmp2, ctx, BPF_OP(code));
1417 break;
1419 break;
1420 /* dst = dst / src(imm) */
1421 /* dst = dst % src(imm) */
1422 case BPF_ALU | BPF_DIV | BPF_K:
1423 case BPF_ALU | BPF_DIV | BPF_X:
1424 case BPF_ALU | BPF_MOD | BPF_K:
1425 case BPF_ALU | BPF_MOD | BPF_X:
1426 rd_lo = arm_bpf_get_reg32(dst_lo, tmp2[1], ctx);
1427 switch (BPF_SRC(code)) {
1428 case BPF_X:
1429 rt = arm_bpf_get_reg32(src_lo, tmp2[0], ctx);
1430 break;
1431 case BPF_K:
1432 rt = tmp2[0];
1433 emit_a32_mov_i(rt, imm, ctx);
1434 break;
1435 default:
1436 rt = src_lo;
1437 break;
1439 emit_udivmod(rd_lo, rd_lo, rt, ctx, BPF_OP(code));
1440 arm_bpf_put_reg32(dst_lo, rd_lo, ctx);
1441 emit_a32_mov_i(dst_hi, 0, ctx);
1442 break;
1443 case BPF_ALU64 | BPF_DIV | BPF_K:
1444 case BPF_ALU64 | BPF_DIV | BPF_X:
1445 case BPF_ALU64 | BPF_MOD | BPF_K:
1446 case BPF_ALU64 | BPF_MOD | BPF_X:
1447 goto notyet;
1448 /* dst = dst >> imm */
1449 /* dst = dst << imm */
1450 case BPF_ALU | BPF_RSH | BPF_K:
1451 case BPF_ALU | BPF_LSH | BPF_K:
1452 if (unlikely(imm > 31))
1453 return -EINVAL;
1454 if (imm)
1455 emit_a32_alu_i(dst_lo, imm, ctx, BPF_OP(code));
1456 emit_a32_mov_i(dst_hi, 0, ctx);
1457 break;
1458 /* dst = dst << imm */
1459 case BPF_ALU64 | BPF_LSH | BPF_K:
1460 if (unlikely(imm > 63))
1461 return -EINVAL;
1462 emit_a32_lsh_i64(dst, imm, ctx);
1463 break;
1464 /* dst = dst >> imm */
1465 case BPF_ALU64 | BPF_RSH | BPF_K:
1466 if (unlikely(imm > 63))
1467 return -EINVAL;
1468 emit_a32_rsh_i64(dst, imm, ctx);
1469 break;
1470 /* dst = dst << src */
1471 case BPF_ALU64 | BPF_LSH | BPF_X:
1472 emit_a32_lsh_r64(dst, src, ctx);
1473 break;
1474 /* dst = dst >> src */
1475 case BPF_ALU64 | BPF_RSH | BPF_X:
1476 emit_a32_rsh_r64(dst, src, ctx);
1477 break;
1478 /* dst = dst >> src (signed) */
1479 case BPF_ALU64 | BPF_ARSH | BPF_X:
1480 emit_a32_arsh_r64(dst, src, ctx);
1481 break;
1482 /* dst = dst >> imm (signed) */
1483 case BPF_ALU64 | BPF_ARSH | BPF_K:
1484 if (unlikely(imm > 63))
1485 return -EINVAL;
1486 emit_a32_arsh_i64(dst, imm, ctx);
1487 break;
1488 /* dst = ~dst */
1489 case BPF_ALU | BPF_NEG:
1490 emit_a32_alu_i(dst_lo, 0, ctx, BPF_OP(code));
1491 emit_a32_mov_i(dst_hi, 0, ctx);
1492 break;
1493 /* dst = ~dst (64 bit) */
1494 case BPF_ALU64 | BPF_NEG:
1495 emit_a32_neg64(dst, ctx);
1496 break;
1497 /* dst = dst * src/imm */
1498 case BPF_ALU64 | BPF_MUL | BPF_X:
1499 case BPF_ALU64 | BPF_MUL | BPF_K:
1500 switch (BPF_SRC(code)) {
1501 case BPF_X:
1502 emit_a32_mul_r64(dst, src, ctx);
1503 break;
1504 case BPF_K:
1505 /* Move immediate value to the temporary register
1506 * and then do the multiplication on it as this
1507 * will sign-extend the immediate value into temp
1508 * reg then it would be safe to do the operation
1509 * on it.
1511 emit_a32_mov_se_i64(is64, tmp2, imm, ctx);
1512 emit_a32_mul_r64(dst, tmp2, ctx);
1513 break;
1515 break;
1516 /* dst = htole(dst) */
1517 /* dst = htobe(dst) */
1518 case BPF_ALU | BPF_END | BPF_FROM_LE:
1519 case BPF_ALU | BPF_END | BPF_FROM_BE:
1520 rd = arm_bpf_get_reg64(dst, tmp, ctx);
1521 if (BPF_SRC(code) == BPF_FROM_LE)
1522 goto emit_bswap_uxt;
1523 switch (imm) {
1524 case 16:
1525 emit_rev16(rd[1], rd[1], ctx);
1526 goto emit_bswap_uxt;
1527 case 32:
1528 emit_rev32(rd[1], rd[1], ctx);
1529 goto emit_bswap_uxt;
1530 case 64:
1531 emit_rev32(ARM_LR, rd[1], ctx);
1532 emit_rev32(rd[1], rd[0], ctx);
1533 emit(ARM_MOV_R(rd[0], ARM_LR), ctx);
1534 break;
1536 goto exit;
1537 emit_bswap_uxt:
1538 switch (imm) {
1539 case 16:
1540 /* zero-extend 16 bits into 64 bits */
1541 #if __LINUX_ARM_ARCH__ < 6
1542 emit_a32_mov_i(tmp2[1], 0xffff, ctx);
1543 emit(ARM_AND_R(rd[1], rd[1], tmp2[1]), ctx);
1544 #else /* ARMv6+ */
1545 emit(ARM_UXTH(rd[1], rd[1]), ctx);
1546 #endif
1547 emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx);
1548 break;
1549 case 32:
1550 /* zero-extend 32 bits into 64 bits */
1551 emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx);
1552 break;
1553 case 64:
1554 /* nop */
1555 break;
1557 exit:
1558 arm_bpf_put_reg64(dst, rd, ctx);
1559 break;
1560 /* dst = imm64 */
1561 case BPF_LD | BPF_IMM | BPF_DW:
1563 u64 val = (u32)imm | (u64)insn[1].imm << 32;
1565 emit_a32_mov_i64(dst, val, ctx);
1567 return 1;
1569 /* LDX: dst = *(size *)(src + off) */
1570 case BPF_LDX | BPF_MEM | BPF_W:
1571 case BPF_LDX | BPF_MEM | BPF_H:
1572 case BPF_LDX | BPF_MEM | BPF_B:
1573 case BPF_LDX | BPF_MEM | BPF_DW:
1574 rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
1575 emit_ldx_r(dst, rn, off, ctx, BPF_SIZE(code));
1576 break;
1577 /* ST: *(size *)(dst + off) = imm */
1578 case BPF_ST | BPF_MEM | BPF_W:
1579 case BPF_ST | BPF_MEM | BPF_H:
1580 case BPF_ST | BPF_MEM | BPF_B:
1581 case BPF_ST | BPF_MEM | BPF_DW:
1582 switch (BPF_SIZE(code)) {
1583 case BPF_DW:
1584 /* Sign-extend immediate value into temp reg */
1585 emit_a32_mov_se_i64(true, tmp2, imm, ctx);
1586 break;
1587 case BPF_W:
1588 case BPF_H:
1589 case BPF_B:
1590 emit_a32_mov_i(tmp2[1], imm, ctx);
1591 break;
1593 emit_str_r(dst_lo, tmp2, off, ctx, BPF_SIZE(code));
1594 break;
1595 /* STX XADD: lock *(u32 *)(dst + off) += src */
1596 case BPF_STX | BPF_XADD | BPF_W:
1597 /* STX XADD: lock *(u64 *)(dst + off) += src */
1598 case BPF_STX | BPF_XADD | BPF_DW:
1599 goto notyet;
1600 /* STX: *(size *)(dst + off) = src */
1601 case BPF_STX | BPF_MEM | BPF_W:
1602 case BPF_STX | BPF_MEM | BPF_H:
1603 case BPF_STX | BPF_MEM | BPF_B:
1604 case BPF_STX | BPF_MEM | BPF_DW:
1605 rs = arm_bpf_get_reg64(src, tmp2, ctx);
1606 emit_str_r(dst_lo, rs, off, ctx, BPF_SIZE(code));
1607 break;
1608 /* PC += off if dst == src */
1609 /* PC += off if dst > src */
1610 /* PC += off if dst >= src */
1611 /* PC += off if dst < src */
1612 /* PC += off if dst <= src */
1613 /* PC += off if dst != src */
1614 /* PC += off if dst > src (signed) */
1615 /* PC += off if dst >= src (signed) */
1616 /* PC += off if dst < src (signed) */
1617 /* PC += off if dst <= src (signed) */
1618 /* PC += off if dst & src */
1619 case BPF_JMP | BPF_JEQ | BPF_X:
1620 case BPF_JMP | BPF_JGT | BPF_X:
1621 case BPF_JMP | BPF_JGE | BPF_X:
1622 case BPF_JMP | BPF_JNE | BPF_X:
1623 case BPF_JMP | BPF_JSGT | BPF_X:
1624 case BPF_JMP | BPF_JSGE | BPF_X:
1625 case BPF_JMP | BPF_JSET | BPF_X:
1626 case BPF_JMP | BPF_JLE | BPF_X:
1627 case BPF_JMP | BPF_JLT | BPF_X:
1628 case BPF_JMP | BPF_JSLT | BPF_X:
1629 case BPF_JMP | BPF_JSLE | BPF_X:
1630 case BPF_JMP32 | BPF_JEQ | BPF_X:
1631 case BPF_JMP32 | BPF_JGT | BPF_X:
1632 case BPF_JMP32 | BPF_JGE | BPF_X:
1633 case BPF_JMP32 | BPF_JNE | BPF_X:
1634 case BPF_JMP32 | BPF_JSGT | BPF_X:
1635 case BPF_JMP32 | BPF_JSGE | BPF_X:
1636 case BPF_JMP32 | BPF_JSET | BPF_X:
1637 case BPF_JMP32 | BPF_JLE | BPF_X:
1638 case BPF_JMP32 | BPF_JLT | BPF_X:
1639 case BPF_JMP32 | BPF_JSLT | BPF_X:
1640 case BPF_JMP32 | BPF_JSLE | BPF_X:
1641 /* Setup source registers */
1642 rm = arm_bpf_get_reg32(src_hi, tmp2[0], ctx);
1643 rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
1644 goto go_jmp;
1645 /* PC += off if dst == imm */
1646 /* PC += off if dst > imm */
1647 /* PC += off if dst >= imm */
1648 /* PC += off if dst < imm */
1649 /* PC += off if dst <= imm */
1650 /* PC += off if dst != imm */
1651 /* PC += off if dst > imm (signed) */
1652 /* PC += off if dst >= imm (signed) */
1653 /* PC += off if dst < imm (signed) */
1654 /* PC += off if dst <= imm (signed) */
1655 /* PC += off if dst & imm */
1656 case BPF_JMP | BPF_JEQ | BPF_K:
1657 case BPF_JMP | BPF_JGT | BPF_K:
1658 case BPF_JMP | BPF_JGE | BPF_K:
1659 case BPF_JMP | BPF_JNE | BPF_K:
1660 case BPF_JMP | BPF_JSGT | BPF_K:
1661 case BPF_JMP | BPF_JSGE | BPF_K:
1662 case BPF_JMP | BPF_JSET | BPF_K:
1663 case BPF_JMP | BPF_JLT | BPF_K:
1664 case BPF_JMP | BPF_JLE | BPF_K:
1665 case BPF_JMP | BPF_JSLT | BPF_K:
1666 case BPF_JMP | BPF_JSLE | BPF_K:
1667 case BPF_JMP32 | BPF_JEQ | BPF_K:
1668 case BPF_JMP32 | BPF_JGT | BPF_K:
1669 case BPF_JMP32 | BPF_JGE | BPF_K:
1670 case BPF_JMP32 | BPF_JNE | BPF_K:
1671 case BPF_JMP32 | BPF_JSGT | BPF_K:
1672 case BPF_JMP32 | BPF_JSGE | BPF_K:
1673 case BPF_JMP32 | BPF_JSET | BPF_K:
1674 case BPF_JMP32 | BPF_JLT | BPF_K:
1675 case BPF_JMP32 | BPF_JLE | BPF_K:
1676 case BPF_JMP32 | BPF_JSLT | BPF_K:
1677 case BPF_JMP32 | BPF_JSLE | BPF_K:
1678 if (off == 0)
1679 break;
1680 rm = tmp2[0];
1681 rn = tmp2[1];
1682 /* Sign-extend immediate value */
1683 emit_a32_mov_se_i64(true, tmp2, imm, ctx);
1684 go_jmp:
1685 /* Setup destination register */
1686 rd = arm_bpf_get_reg64(dst, tmp, ctx);
1688 /* Check for the condition */
1689 emit_ar_r(rd[0], rd[1], rm, rn, ctx, BPF_OP(code),
1690 BPF_CLASS(code) == BPF_JMP);
1692 /* Setup JUMP instruction */
1693 jmp_offset = bpf2a32_offset(i+off, i, ctx);
1694 switch (BPF_OP(code)) {
1695 case BPF_JNE:
1696 case BPF_JSET:
1697 _emit(ARM_COND_NE, ARM_B(jmp_offset), ctx);
1698 break;
1699 case BPF_JEQ:
1700 _emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
1701 break;
1702 case BPF_JGT:
1703 _emit(ARM_COND_HI, ARM_B(jmp_offset), ctx);
1704 break;
1705 case BPF_JGE:
1706 _emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
1707 break;
1708 case BPF_JSGT:
1709 _emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
1710 break;
1711 case BPF_JSGE:
1712 _emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
1713 break;
1714 case BPF_JLE:
1715 _emit(ARM_COND_LS, ARM_B(jmp_offset), ctx);
1716 break;
1717 case BPF_JLT:
1718 _emit(ARM_COND_CC, ARM_B(jmp_offset), ctx);
1719 break;
1720 case BPF_JSLT:
1721 _emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
1722 break;
1723 case BPF_JSLE:
1724 _emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
1725 break;
1727 break;
1728 /* JMP OFF */
1729 case BPF_JMP | BPF_JA:
1731 if (off == 0)
1732 break;
1733 jmp_offset = bpf2a32_offset(i+off, i, ctx);
1734 check_imm24(jmp_offset);
1735 emit(ARM_B(jmp_offset), ctx);
1736 break;
1738 /* tail call */
1739 case BPF_JMP | BPF_TAIL_CALL:
1740 if (emit_bpf_tail_call(ctx))
1741 return -EFAULT;
1742 break;
1743 /* function call */
1744 case BPF_JMP | BPF_CALL:
1746 const s8 *r0 = bpf2a32[BPF_REG_0];
1747 const s8 *r1 = bpf2a32[BPF_REG_1];
1748 const s8 *r2 = bpf2a32[BPF_REG_2];
1749 const s8 *r3 = bpf2a32[BPF_REG_3];
1750 const s8 *r4 = bpf2a32[BPF_REG_4];
1751 const s8 *r5 = bpf2a32[BPF_REG_5];
1752 const u32 func = (u32)__bpf_call_base + (u32)imm;
1754 emit_a32_mov_r64(true, r0, r1, ctx);
1755 emit_a32_mov_r64(true, r1, r2, ctx);
1756 emit_push_r64(r5, ctx);
1757 emit_push_r64(r4, ctx);
1758 emit_push_r64(r3, ctx);
1760 emit_a32_mov_i(tmp[1], func, ctx);
1761 emit_blx_r(tmp[1], ctx);
1763 emit(ARM_ADD_I(ARM_SP, ARM_SP, imm8m(24)), ctx); // callee clean
1764 break;
1766 /* function return */
1767 case BPF_JMP | BPF_EXIT:
1768 /* Optimization: when last instruction is EXIT
1769 * simply fallthrough to epilogue.
1771 if (i == ctx->prog->len - 1)
1772 break;
1773 jmp_offset = epilogue_offset(ctx);
1774 check_imm24(jmp_offset);
1775 emit(ARM_B(jmp_offset), ctx);
1776 break;
1777 notyet:
1778 pr_info_once("*** NOT YET: opcode %02x ***\n", code);
1779 return -EFAULT;
1780 default:
1781 pr_err_once("unknown opcode %02x\n", code);
1782 return -EINVAL;
1785 if (ctx->flags & FLAG_IMM_OVERFLOW)
1787 * this instruction generated an overflow when
1788 * trying to access the literal pool, so
1789 * delegate this filter to the kernel interpreter.
1791 return -1;
1792 return 0;
1795 static int build_body(struct jit_ctx *ctx)
1797 const struct bpf_prog *prog = ctx->prog;
1798 unsigned int i;
1800 for (i = 0; i < prog->len; i++) {
1801 const struct bpf_insn *insn = &(prog->insnsi[i]);
1802 int ret;
1804 ret = build_insn(insn, ctx);
1806 /* It's used with loading the 64 bit immediate value. */
1807 if (ret > 0) {
1808 i++;
1809 if (ctx->target == NULL)
1810 ctx->offsets[i] = ctx->idx;
1811 continue;
1814 if (ctx->target == NULL)
1815 ctx->offsets[i] = ctx->idx;
1817 /* If unsuccesfull, return with error code */
1818 if (ret)
1819 return ret;
1821 return 0;
1824 static int validate_code(struct jit_ctx *ctx)
1826 int i;
1828 for (i = 0; i < ctx->idx; i++) {
1829 if (ctx->target[i] == __opcode_to_mem_arm(ARM_INST_UDF))
1830 return -1;
1833 return 0;
1836 void bpf_jit_compile(struct bpf_prog *prog)
1838 /* Nothing to do here. We support Internal BPF. */
1841 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1843 struct bpf_prog *tmp, *orig_prog = prog;
1844 struct bpf_binary_header *header;
1845 bool tmp_blinded = false;
1846 struct jit_ctx ctx;
1847 unsigned int tmp_idx;
1848 unsigned int image_size;
1849 u8 *image_ptr;
1851 /* If BPF JIT was not enabled then we must fall back to
1852 * the interpreter.
1854 if (!prog->jit_requested)
1855 return orig_prog;
1857 /* If constant blinding was enabled and we failed during blinding
1858 * then we must fall back to the interpreter. Otherwise, we save
1859 * the new JITed code.
1861 tmp = bpf_jit_blind_constants(prog);
1863 if (IS_ERR(tmp))
1864 return orig_prog;
1865 if (tmp != prog) {
1866 tmp_blinded = true;
1867 prog = tmp;
1870 memset(&ctx, 0, sizeof(ctx));
1871 ctx.prog = prog;
1872 ctx.cpu_architecture = cpu_architecture();
1874 /* Not able to allocate memory for offsets[] , then
1875 * we must fall back to the interpreter
1877 ctx.offsets = kcalloc(prog->len, sizeof(int), GFP_KERNEL);
1878 if (ctx.offsets == NULL) {
1879 prog = orig_prog;
1880 goto out;
1883 /* 1) fake pass to find in the length of the JITed code,
1884 * to compute ctx->offsets and other context variables
1885 * needed to compute final JITed code.
1886 * Also, calculate random starting pointer/start of JITed code
1887 * which is prefixed by random number of fault instructions.
1889 * If the first pass fails then there is no chance of it
1890 * being successful in the second pass, so just fall back
1891 * to the interpreter.
1893 if (build_body(&ctx)) {
1894 prog = orig_prog;
1895 goto out_off;
1898 tmp_idx = ctx.idx;
1899 build_prologue(&ctx);
1900 ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4;
1902 ctx.epilogue_offset = ctx.idx;
1904 #if __LINUX_ARM_ARCH__ < 7
1905 tmp_idx = ctx.idx;
1906 build_epilogue(&ctx);
1907 ctx.epilogue_bytes = (ctx.idx - tmp_idx) * 4;
1909 ctx.idx += ctx.imm_count;
1910 if (ctx.imm_count) {
1911 ctx.imms = kcalloc(ctx.imm_count, sizeof(u32), GFP_KERNEL);
1912 if (ctx.imms == NULL) {
1913 prog = orig_prog;
1914 goto out_off;
1917 #else
1918 /* there's nothing about the epilogue on ARMv7 */
1919 build_epilogue(&ctx);
1920 #endif
1921 /* Now we can get the actual image size of the JITed arm code.
1922 * Currently, we are not considering the THUMB-2 instructions
1923 * for jit, although it can decrease the size of the image.
1925 * As each arm instruction is of length 32bit, we are translating
1926 * number of JITed intructions into the size required to store these
1927 * JITed code.
1929 image_size = sizeof(u32) * ctx.idx;
1931 /* Now we know the size of the structure to make */
1932 header = bpf_jit_binary_alloc(image_size, &image_ptr,
1933 sizeof(u32), jit_fill_hole);
1934 /* Not able to allocate memory for the structure then
1935 * we must fall back to the interpretation
1937 if (header == NULL) {
1938 prog = orig_prog;
1939 goto out_imms;
1942 /* 2.) Actual pass to generate final JIT code */
1943 ctx.target = (u32 *) image_ptr;
1944 ctx.idx = 0;
1946 build_prologue(&ctx);
1948 /* If building the body of the JITed code fails somehow,
1949 * we fall back to the interpretation.
1951 if (build_body(&ctx) < 0) {
1952 image_ptr = NULL;
1953 bpf_jit_binary_free(header);
1954 prog = orig_prog;
1955 goto out_imms;
1957 build_epilogue(&ctx);
1959 /* 3.) Extra pass to validate JITed Code */
1960 if (validate_code(&ctx)) {
1961 image_ptr = NULL;
1962 bpf_jit_binary_free(header);
1963 prog = orig_prog;
1964 goto out_imms;
1966 flush_icache_range((u32)header, (u32)(ctx.target + ctx.idx));
1968 if (bpf_jit_enable > 1)
1969 /* there are 2 passes here */
1970 bpf_jit_dump(prog->len, image_size, 2, ctx.target);
1972 bpf_jit_binary_lock_ro(header);
1973 prog->bpf_func = (void *)ctx.target;
1974 prog->jited = 1;
1975 prog->jited_len = image_size;
1977 out_imms:
1978 #if __LINUX_ARM_ARCH__ < 7
1979 if (ctx.imm_count)
1980 kfree(ctx.imms);
1981 #endif
1982 out_off:
1983 kfree(ctx.offsets);
1984 out:
1985 if (tmp_blinded)
1986 bpf_jit_prog_release_other(prog, prog == orig_prog ?
1987 tmp : orig_prog);
1988 return prog;