2 * Just-In-Time compiler for eBPF filters on 32bit ARM
4 * Copyright (c) 2017 Shubham Bansal <illusionist.neo@gmail.com>
5 * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com>
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License as published by the
9 * Free Software Foundation; version 2 of the License.
12 #include <linux/bpf.h>
13 #include <linux/bitops.h>
14 #include <linux/compiler.h>
15 #include <linux/errno.h>
16 #include <linux/filter.h>
17 #include <linux/netdevice.h>
18 #include <linux/string.h>
19 #include <linux/slab.h>
20 #include <linux/if_vlan.h>
22 #include <asm/cacheflush.h>
23 #include <asm/hwcap.h>
24 #include <asm/opcodes.h>
25 #include <asm/system_info.h>
27 #include "bpf_jit_32.h"
30 * eBPF prog stack layout:
33 * original ARM_SP => +-----+
34 * | | callee saved registers
35 * +-----+ <= (BPF_FP + SCRATCH_SIZE)
36 * | ... | eBPF JIT scratch space
37 * eBPF fp register => +-----+
38 * (BPF_FP) | ... | eBPF prog stack
40 * |RSVD | JIT scratchpad
41 * current ARM_SP => +-----+ <= (BPF_FP - STACK_SIZE + SCRATCH_SIZE)
43 * | ... | Function call stack
48 * The callee saved registers depends on whether frame pointers are enabled.
49 * With frame pointers (to be compliant with the ABI):
52 * original ARM_SP => +--------------+ \
54 * current ARM_FP => +--------------+ } callee saved registers
59 * Without frame pointers:
62 * original ARM_SP => +--------------+
63 * | r4-r9,fp,lr | callee saved registers
64 * current ARM_FP => +--------------+
67 * When popping registers off the stack at the end of a BPF function, we
68 * reference them via the current ARM_FP register.
70 #define CALLEE_MASK (1 << ARM_R4 | 1 << ARM_R5 | 1 << ARM_R6 | \
71 1 << ARM_R7 | 1 << ARM_R8 | 1 << ARM_R9 | \
73 #define CALLEE_PUSH_MASK (CALLEE_MASK | 1 << ARM_LR)
74 #define CALLEE_POP_MASK (CALLEE_MASK | 1 << ARM_PC)
77 /* Stack layout - these are offsets from (top of stack - 4) */
98 /* Stack space for BPF_REG_2, BPF_REG_3, BPF_REG_4,
99 * BPF_REG_5, BPF_REG_7, BPF_REG_8, BPF_REG_9,
100 * BPF_REG_FP and Tail call counts.
102 BPF_JIT_SCRATCH_REGS
,
106 * Negative "register" values indicate the register is stored on the stack
107 * and are the offset from the top of the eBPF JIT scratch space.
109 #define STACK_OFFSET(k) (-4 - (k) * 4)
110 #define SCRATCH_SIZE (BPF_JIT_SCRATCH_REGS * 4)
112 #ifdef CONFIG_FRAME_POINTER
113 #define EBPF_SCRATCH_TO_ARM_FP(x) ((x) - 4 * hweight16(CALLEE_PUSH_MASK) - 4)
115 #define EBPF_SCRATCH_TO_ARM_FP(x) (x)
118 #define TMP_REG_1 (MAX_BPF_JIT_REG + 0) /* TEMP Register 1 */
119 #define TMP_REG_2 (MAX_BPF_JIT_REG + 1) /* TEMP Register 2 */
120 #define TCALL_CNT (MAX_BPF_JIT_REG + 2) /* Tail Call Count */
122 #define FLAG_IMM_OVERFLOW (1 << 0)
125 * Map eBPF registers to ARM 32bit registers or stack scratch space.
127 * 1. First argument is passed using the arm 32bit registers and rest of the
128 * arguments are passed on stack scratch space.
129 * 2. First callee-saved argument is mapped to arm 32 bit registers and rest
130 * arguments are mapped to scratch space on stack.
131 * 3. We need two 64 bit temp registers to do complex operations on eBPF
134 * As the eBPF registers are all 64 bit registers and arm has only 32 bit
135 * registers, we have to map each eBPF registers with two arm 32 bit regs or
136 * scratch memory space and we have to build eBPF 64 bit register from those.
139 static const s8 bpf2a32
[][2] = {
140 /* return value from in-kernel function, and exit value from eBPF */
141 [BPF_REG_0
] = {ARM_R1
, ARM_R0
},
142 /* arguments from eBPF program to in-kernel function */
143 [BPF_REG_1
] = {ARM_R3
, ARM_R2
},
144 /* Stored on stack scratch space */
145 [BPF_REG_2
] = {STACK_OFFSET(BPF_R2_HI
), STACK_OFFSET(BPF_R2_LO
)},
146 [BPF_REG_3
] = {STACK_OFFSET(BPF_R3_HI
), STACK_OFFSET(BPF_R3_LO
)},
147 [BPF_REG_4
] = {STACK_OFFSET(BPF_R4_HI
), STACK_OFFSET(BPF_R4_LO
)},
148 [BPF_REG_5
] = {STACK_OFFSET(BPF_R5_HI
), STACK_OFFSET(BPF_R5_LO
)},
149 /* callee saved registers that in-kernel function will preserve */
150 [BPF_REG_6
] = {ARM_R5
, ARM_R4
},
151 /* Stored on stack scratch space */
152 [BPF_REG_7
] = {STACK_OFFSET(BPF_R7_HI
), STACK_OFFSET(BPF_R7_LO
)},
153 [BPF_REG_8
] = {STACK_OFFSET(BPF_R8_HI
), STACK_OFFSET(BPF_R8_LO
)},
154 [BPF_REG_9
] = {STACK_OFFSET(BPF_R9_HI
), STACK_OFFSET(BPF_R9_LO
)},
155 /* Read only Frame Pointer to access Stack */
156 [BPF_REG_FP
] = {STACK_OFFSET(BPF_FP_HI
), STACK_OFFSET(BPF_FP_LO
)},
157 /* Temporary Register for internal BPF JIT, can be used
158 * for constant blindings and others.
160 [TMP_REG_1
] = {ARM_R7
, ARM_R6
},
161 [TMP_REG_2
] = {ARM_R9
, ARM_R8
},
162 /* Tail call count. Stored on stack scratch space. */
163 [TCALL_CNT
] = {STACK_OFFSET(BPF_TC_HI
), STACK_OFFSET(BPF_TC_LO
)},
164 /* temporary register for blinding constants.
165 * Stored on stack scratch space.
167 [BPF_REG_AX
] = {STACK_OFFSET(BPF_AX_HI
), STACK_OFFSET(BPF_AX_LO
)},
170 #define dst_lo dst[1]
171 #define dst_hi dst[0]
172 #define src_lo src[1]
173 #define src_hi src[0]
179 * idx : index of current last JITed instruction.
180 * prologue_bytes : bytes used in prologue.
181 * epilogue_offset : offset of epilogue starting.
182 * offsets : array of eBPF instruction offsets in
184 * target : final JITed code.
185 * epilogue_bytes : no of bytes used in epilogue.
186 * imm_count : no of immediate counts used for global
188 * imms : array of global variable addresses.
192 const struct bpf_prog
*prog
;
194 unsigned int prologue_bytes
;
195 unsigned int epilogue_offset
;
196 unsigned int cpu_architecture
;
201 #if __LINUX_ARM_ARCH__ < 7
209 * Wrappers which handle both OABI and EABI and assures Thumb2 interworking
210 * (where the assembly routines like __aeabi_uidiv could cause problems).
212 static u32
jit_udiv32(u32 dividend
, u32 divisor
)
214 return dividend
/ divisor
;
217 static u32
jit_mod32(u32 dividend
, u32 divisor
)
219 return dividend
% divisor
;
222 static inline void _emit(int cond
, u32 inst
, struct jit_ctx
*ctx
)
224 inst
|= (cond
<< 28);
225 inst
= __opcode_to_mem_arm(inst
);
227 if (ctx
->target
!= NULL
)
228 ctx
->target
[ctx
->idx
] = inst
;
234 * Emit an instruction that will be executed unconditionally.
236 static inline void emit(u32 inst
, struct jit_ctx
*ctx
)
238 _emit(ARM_COND_AL
, inst
, ctx
);
242 * This is rather horrid, but necessary to convert an integer constant
243 * to an immediate operand for the opcodes, and be able to detect at
244 * build time whether the constant can't be converted (iow, usable in
247 #define imm12val(v, s) (rol32(v, (s)) | (s) << 7)
248 #define const_imm8m(x) \
251 if (!(v & ~0x000000ff)) \
252 r = imm12val(v, 0); \
253 else if (!(v & ~0xc000003f)) \
254 r = imm12val(v, 2); \
255 else if (!(v & ~0xf000000f)) \
256 r = imm12val(v, 4); \
257 else if (!(v & ~0xfc000003)) \
258 r = imm12val(v, 6); \
259 else if (!(v & ~0xff000000)) \
260 r = imm12val(v, 8); \
261 else if (!(v & ~0x3fc00000)) \
262 r = imm12val(v, 10); \
263 else if (!(v & ~0x0ff00000)) \
264 r = imm12val(v, 12); \
265 else if (!(v & ~0x03fc0000)) \
266 r = imm12val(v, 14); \
267 else if (!(v & ~0x00ff0000)) \
268 r = imm12val(v, 16); \
269 else if (!(v & ~0x003fc000)) \
270 r = imm12val(v, 18); \
271 else if (!(v & ~0x000ff000)) \
272 r = imm12val(v, 20); \
273 else if (!(v & ~0x0003fc00)) \
274 r = imm12val(v, 22); \
275 else if (!(v & ~0x0000ff00)) \
276 r = imm12val(v, 24); \
277 else if (!(v & ~0x00003fc0)) \
278 r = imm12val(v, 26); \
279 else if (!(v & ~0x00000ff0)) \
280 r = imm12val(v, 28); \
281 else if (!(v & ~0x000003fc)) \
282 r = imm12val(v, 30); \
288 * Checks if immediate value can be converted to imm12(12 bits) value.
290 static int imm8m(u32 x
)
294 for (rot
= 0; rot
< 16; rot
++)
295 if ((x
& ~ror32(0xff, 2 * rot
)) == 0)
296 return rol32(x
, 2 * rot
) | (rot
<< 8);
300 #define imm8m(x) (__builtin_constant_p(x) ? const_imm8m(x) : imm8m(x))
302 static u32
arm_bpf_ldst_imm12(u32 op
, u8 rt
, u8 rn
, s16 imm12
)
304 op
|= rt
<< 12 | rn
<< 16;
306 op
|= ARM_INST_LDST__U
;
309 return op
| (imm12
& ARM_INST_LDST__IMM12
);
312 static u32
arm_bpf_ldst_imm8(u32 op
, u8 rt
, u8 rn
, s16 imm8
)
314 op
|= rt
<< 12 | rn
<< 16;
316 op
|= ARM_INST_LDST__U
;
319 return op
| (imm8
& 0xf0) << 4 | (imm8
& 0x0f);
322 #define ARM_LDR_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_LDR_I, rt, rn, off)
323 #define ARM_LDRB_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_LDRB_I, rt, rn, off)
324 #define ARM_LDRD_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRD_I, rt, rn, off)
325 #define ARM_LDRH_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRH_I, rt, rn, off)
327 #define ARM_STR_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_STR_I, rt, rn, off)
328 #define ARM_STRB_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_STRB_I, rt, rn, off)
329 #define ARM_STRD_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_STRD_I, rt, rn, off)
330 #define ARM_STRH_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_STRH_I, rt, rn, off)
333 * Initializes the JIT space with undefined instructions.
335 static void jit_fill_hole(void *area
, unsigned int size
)
338 /* We are guaranteed to have aligned memory. */
339 for (ptr
= area
; size
>= sizeof(u32
); size
-= sizeof(u32
))
340 *ptr
++ = __opcode_to_mem_arm(ARM_INST_UDF
);
343 #if defined(CONFIG_AEABI) && (__LINUX_ARM_ARCH__ >= 5)
344 /* EABI requires the stack to be aligned to 64-bit boundaries */
345 #define STACK_ALIGNMENT 8
347 /* Stack must be aligned to 32-bit boundaries */
348 #define STACK_ALIGNMENT 4
351 /* total stack size used in JITed code */
352 #define _STACK_SIZE (ctx->prog->aux->stack_depth + SCRATCH_SIZE)
353 #define STACK_SIZE ALIGN(_STACK_SIZE, STACK_ALIGNMENT)
355 #if __LINUX_ARM_ARCH__ < 7
357 static u16
imm_offset(u32 k
, struct jit_ctx
*ctx
)
359 unsigned int i
= 0, offset
;
362 /* on the "fake" run we just count them (duplicates included) */
363 if (ctx
->target
== NULL
) {
368 while ((i
< ctx
->imm_count
) && ctx
->imms
[i
]) {
369 if (ctx
->imms
[i
] == k
)
374 if (ctx
->imms
[i
] == 0)
377 /* constants go just after the epilogue */
378 offset
= ctx
->offsets
[ctx
->prog
->len
- 1] * 4;
379 offset
+= ctx
->prologue_bytes
;
380 offset
+= ctx
->epilogue_bytes
;
383 ctx
->target
[offset
/ 4] = k
;
385 /* PC in ARM mode == address of the instruction + 8 */
386 imm
= offset
- (8 + ctx
->idx
* 4);
390 * literal pool is too far, signal it into flags. we
391 * can only detect it on the second pass unfortunately.
393 ctx
->flags
|= FLAG_IMM_OVERFLOW
;
400 #endif /* __LINUX_ARM_ARCH__ */
402 static inline int bpf2a32_offset(int bpf_to
, int bpf_from
,
403 const struct jit_ctx
*ctx
) {
406 if (ctx
->target
== NULL
)
408 to
= ctx
->offsets
[bpf_to
];
409 from
= ctx
->offsets
[bpf_from
];
411 return to
- from
- 1;
415 * Move an immediate that's not an imm8m to a core register.
417 static inline void emit_mov_i_no8m(const u8 rd
, u32 val
, struct jit_ctx
*ctx
)
419 #if __LINUX_ARM_ARCH__ < 7
420 emit(ARM_LDR_I(rd
, ARM_PC
, imm_offset(val
, ctx
)), ctx
);
422 emit(ARM_MOVW(rd
, val
& 0xffff), ctx
);
424 emit(ARM_MOVT(rd
, val
>> 16), ctx
);
428 static inline void emit_mov_i(const u8 rd
, u32 val
, struct jit_ctx
*ctx
)
430 int imm12
= imm8m(val
);
433 emit(ARM_MOV_I(rd
, imm12
), ctx
);
435 emit_mov_i_no8m(rd
, val
, ctx
);
438 static void emit_bx_r(u8 tgt_reg
, struct jit_ctx
*ctx
)
440 if (elf_hwcap
& HWCAP_THUMB
)
441 emit(ARM_BX(tgt_reg
), ctx
);
443 emit(ARM_MOV_R(ARM_PC
, tgt_reg
), ctx
);
446 static inline void emit_blx_r(u8 tgt_reg
, struct jit_ctx
*ctx
)
448 #if __LINUX_ARM_ARCH__ < 5
449 emit(ARM_MOV_R(ARM_LR
, ARM_PC
), ctx
);
450 emit_bx_r(tgt_reg
, ctx
);
452 emit(ARM_BLX_R(tgt_reg
), ctx
);
456 static inline int epilogue_offset(const struct jit_ctx
*ctx
)
459 /* No need for 1st dummy run */
460 if (ctx
->target
== NULL
)
462 to
= ctx
->epilogue_offset
;
465 return to
- from
- 2;
468 static inline void emit_udivmod(u8 rd
, u8 rm
, u8 rn
, struct jit_ctx
*ctx
, u8 op
)
470 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
472 #if __LINUX_ARM_ARCH__ == 7
473 if (elf_hwcap
& HWCAP_IDIVA
) {
475 emit(ARM_UDIV(rd
, rm
, rn
), ctx
);
477 emit(ARM_UDIV(ARM_IP
, rm
, rn
), ctx
);
478 emit(ARM_MLS(rd
, rn
, ARM_IP
, rm
), ctx
);
485 * For BPF_ALU | BPF_DIV | BPF_K instructions
486 * As ARM_R1 and ARM_R0 contains 1st argument of bpf
487 * function, we need to save it on caller side to save
488 * it from getting destroyed within callee.
489 * After the return from the callee, we restore ARM_R0
493 emit(ARM_MOV_R(tmp
[0], ARM_R1
), ctx
);
494 emit(ARM_MOV_R(ARM_R1
, rn
), ctx
);
497 emit(ARM_MOV_R(tmp
[1], ARM_R0
), ctx
);
498 emit(ARM_MOV_R(ARM_R0
, rm
), ctx
);
501 /* Call appropriate function */
502 emit_mov_i(ARM_IP
, op
== BPF_DIV
?
503 (u32
)jit_udiv32
: (u32
)jit_mod32
, ctx
);
504 emit_blx_r(ARM_IP
, ctx
);
506 /* Save return value */
508 emit(ARM_MOV_R(rd
, ARM_R0
), ctx
);
510 /* Restore ARM_R0 and ARM_R1 */
512 emit(ARM_MOV_R(ARM_R1
, tmp
[0]), ctx
);
514 emit(ARM_MOV_R(ARM_R0
, tmp
[1]), ctx
);
517 /* Is the translated BPF register on stack? */
518 static bool is_stacked(s8 reg
)
523 /* If a BPF register is on the stack (stk is true), load it to the
524 * supplied temporary register and return the temporary register
525 * for subsequent operations, otherwise just use the CPU register.
527 static s8
arm_bpf_get_reg32(s8 reg
, s8 tmp
, struct jit_ctx
*ctx
)
529 if (is_stacked(reg
)) {
530 emit(ARM_LDR_I(tmp
, ARM_FP
, EBPF_SCRATCH_TO_ARM_FP(reg
)), ctx
);
536 static const s8
*arm_bpf_get_reg64(const s8
*reg
, const s8
*tmp
,
539 if (is_stacked(reg
[1])) {
540 if (__LINUX_ARM_ARCH__
>= 6 ||
541 ctx
->cpu_architecture
>= CPU_ARCH_ARMv5TE
) {
542 emit(ARM_LDRD_I(tmp
[1], ARM_FP
,
543 EBPF_SCRATCH_TO_ARM_FP(reg
[1])), ctx
);
545 emit(ARM_LDR_I(tmp
[1], ARM_FP
,
546 EBPF_SCRATCH_TO_ARM_FP(reg
[1])), ctx
);
547 emit(ARM_LDR_I(tmp
[0], ARM_FP
,
548 EBPF_SCRATCH_TO_ARM_FP(reg
[0])), ctx
);
555 /* If a BPF register is on the stack (stk is true), save the register
556 * back to the stack. If the source register is not the same, then
557 * move it into the correct register.
559 static void arm_bpf_put_reg32(s8 reg
, s8 src
, struct jit_ctx
*ctx
)
562 emit(ARM_STR_I(src
, ARM_FP
, EBPF_SCRATCH_TO_ARM_FP(reg
)), ctx
);
564 emit(ARM_MOV_R(reg
, src
), ctx
);
567 static void arm_bpf_put_reg64(const s8
*reg
, const s8
*src
,
570 if (is_stacked(reg
[1])) {
571 if (__LINUX_ARM_ARCH__
>= 6 ||
572 ctx
->cpu_architecture
>= CPU_ARCH_ARMv5TE
) {
573 emit(ARM_STRD_I(src
[1], ARM_FP
,
574 EBPF_SCRATCH_TO_ARM_FP(reg
[1])), ctx
);
576 emit(ARM_STR_I(src
[1], ARM_FP
,
577 EBPF_SCRATCH_TO_ARM_FP(reg
[1])), ctx
);
578 emit(ARM_STR_I(src
[0], ARM_FP
,
579 EBPF_SCRATCH_TO_ARM_FP(reg
[0])), ctx
);
582 if (reg
[1] != src
[1])
583 emit(ARM_MOV_R(reg
[1], src
[1]), ctx
);
584 if (reg
[0] != src
[0])
585 emit(ARM_MOV_R(reg
[0], src
[0]), ctx
);
589 static inline void emit_a32_mov_i(const s8 dst
, const u32 val
,
592 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
594 if (is_stacked(dst
)) {
595 emit_mov_i(tmp
[1], val
, ctx
);
596 arm_bpf_put_reg32(dst
, tmp
[1], ctx
);
598 emit_mov_i(dst
, val
, ctx
);
602 static void emit_a32_mov_i64(const s8 dst
[], u64 val
, struct jit_ctx
*ctx
)
604 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
605 const s8
*rd
= is_stacked(dst_lo
) ? tmp
: dst
;
607 emit_mov_i(rd
[1], (u32
)val
, ctx
);
608 emit_mov_i(rd
[0], val
>> 32, ctx
);
610 arm_bpf_put_reg64(dst
, rd
, ctx
);
613 /* Sign extended move */
614 static inline void emit_a32_mov_se_i64(const bool is64
, const s8 dst
[],
615 const u32 val
, struct jit_ctx
*ctx
) {
618 if (is64
&& (val
& (1<<31)))
619 val64
|= 0xffffffff00000000ULL
;
620 emit_a32_mov_i64(dst
, val64
, ctx
);
623 static inline void emit_a32_add_r(const u8 dst
, const u8 src
,
624 const bool is64
, const bool hi
,
625 struct jit_ctx
*ctx
) {
627 * adds dst_lo, dst_lo, src_lo
628 * adc dst_hi, dst_hi, src_hi
630 * add dst_lo, dst_lo, src_lo
633 emit(ARM_ADDS_R(dst
, dst
, src
), ctx
);
635 emit(ARM_ADC_R(dst
, dst
, src
), ctx
);
637 emit(ARM_ADD_R(dst
, dst
, src
), ctx
);
640 static inline void emit_a32_sub_r(const u8 dst
, const u8 src
,
641 const bool is64
, const bool hi
,
642 struct jit_ctx
*ctx
) {
644 * subs dst_lo, dst_lo, src_lo
645 * sbc dst_hi, dst_hi, src_hi
647 * sub dst_lo, dst_lo, src_lo
650 emit(ARM_SUBS_R(dst
, dst
, src
), ctx
);
652 emit(ARM_SBC_R(dst
, dst
, src
), ctx
);
654 emit(ARM_SUB_R(dst
, dst
, src
), ctx
);
657 static inline void emit_alu_r(const u8 dst
, const u8 src
, const bool is64
,
658 const bool hi
, const u8 op
, struct jit_ctx
*ctx
){
659 switch (BPF_OP(op
)) {
660 /* dst = dst + src */
662 emit_a32_add_r(dst
, src
, is64
, hi
, ctx
);
664 /* dst = dst - src */
666 emit_a32_sub_r(dst
, src
, is64
, hi
, ctx
);
668 /* dst = dst | src */
670 emit(ARM_ORR_R(dst
, dst
, src
), ctx
);
672 /* dst = dst & src */
674 emit(ARM_AND_R(dst
, dst
, src
), ctx
);
676 /* dst = dst ^ src */
678 emit(ARM_EOR_R(dst
, dst
, src
), ctx
);
680 /* dst = dst * src */
682 emit(ARM_MUL(dst
, dst
, src
), ctx
);
684 /* dst = dst << src */
686 emit(ARM_LSL_R(dst
, dst
, src
), ctx
);
688 /* dst = dst >> src */
690 emit(ARM_LSR_R(dst
, dst
, src
), ctx
);
692 /* dst = dst >> src (signed)*/
694 emit(ARM_MOV_SR(dst
, dst
, SRTYPE_ASR
, src
), ctx
);
699 /* ALU operation (32 bit)
702 static inline void emit_a32_alu_r(const s8 dst
, const s8 src
,
703 struct jit_ctx
*ctx
, const bool is64
,
704 const bool hi
, const u8 op
) {
705 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
708 rn
= arm_bpf_get_reg32(src
, tmp
[1], ctx
);
709 rd
= arm_bpf_get_reg32(dst
, tmp
[0], ctx
);
711 emit_alu_r(rd
, rn
, is64
, hi
, op
, ctx
);
712 arm_bpf_put_reg32(dst
, rd
, ctx
);
715 /* ALU operation (64 bit) */
716 static inline void emit_a32_alu_r64(const bool is64
, const s8 dst
[],
717 const s8 src
[], struct jit_ctx
*ctx
,
719 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
720 const s8
*tmp2
= bpf2a32
[TMP_REG_2
];
723 rd
= arm_bpf_get_reg64(dst
, tmp
, ctx
);
727 rs
= arm_bpf_get_reg64(src
, tmp2
, ctx
);
730 emit_alu_r(rd
[1], rs
[1], true, false, op
, ctx
);
731 emit_alu_r(rd
[0], rs
[0], true, true, op
, ctx
);
735 rs
= arm_bpf_get_reg32(src_lo
, tmp2
[1], ctx
);
738 emit_alu_r(rd
[1], rs
, true, false, op
, ctx
);
739 emit_a32_mov_i(rd
[0], 0, ctx
);
742 arm_bpf_put_reg64(dst
, rd
, ctx
);
745 /* dst = src (4 bytes)*/
746 static inline void emit_a32_mov_r(const s8 dst
, const s8 src
,
747 struct jit_ctx
*ctx
) {
748 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
751 rt
= arm_bpf_get_reg32(src
, tmp
[0], ctx
);
752 arm_bpf_put_reg32(dst
, rt
, ctx
);
756 static inline void emit_a32_mov_r64(const bool is64
, const s8 dst
[],
758 struct jit_ctx
*ctx
) {
760 emit_a32_mov_r(dst_lo
, src_lo
, ctx
);
761 /* Zero out high 4 bytes */
762 emit_a32_mov_i(dst_hi
, 0, ctx
);
763 } else if (__LINUX_ARM_ARCH__
< 6 &&
764 ctx
->cpu_architecture
< CPU_ARCH_ARMv5TE
) {
765 /* complete 8 byte move */
766 emit_a32_mov_r(dst_lo
, src_lo
, ctx
);
767 emit_a32_mov_r(dst_hi
, src_hi
, ctx
);
768 } else if (is_stacked(src_lo
) && is_stacked(dst_lo
)) {
769 const u8
*tmp
= bpf2a32
[TMP_REG_1
];
771 emit(ARM_LDRD_I(tmp
[1], ARM_FP
, EBPF_SCRATCH_TO_ARM_FP(src_lo
)), ctx
);
772 emit(ARM_STRD_I(tmp
[1], ARM_FP
, EBPF_SCRATCH_TO_ARM_FP(dst_lo
)), ctx
);
773 } else if (is_stacked(src_lo
)) {
774 emit(ARM_LDRD_I(dst
[1], ARM_FP
, EBPF_SCRATCH_TO_ARM_FP(src_lo
)), ctx
);
775 } else if (is_stacked(dst_lo
)) {
776 emit(ARM_STRD_I(src
[1], ARM_FP
, EBPF_SCRATCH_TO_ARM_FP(dst_lo
)), ctx
);
778 emit(ARM_MOV_R(dst
[0], src
[0]), ctx
);
779 emit(ARM_MOV_R(dst
[1], src
[1]), ctx
);
783 /* Shift operations */
784 static inline void emit_a32_alu_i(const s8 dst
, const u32 val
,
785 struct jit_ctx
*ctx
, const u8 op
) {
786 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
789 rd
= arm_bpf_get_reg32(dst
, tmp
[0], ctx
);
791 /* Do shift operation */
794 emit(ARM_LSL_I(rd
, rd
, val
), ctx
);
797 emit(ARM_LSR_I(rd
, rd
, val
), ctx
);
800 emit(ARM_RSB_I(rd
, rd
, val
), ctx
);
804 arm_bpf_put_reg32(dst
, rd
, ctx
);
807 /* dst = ~dst (64 bit) */
808 static inline void emit_a32_neg64(const s8 dst
[],
809 struct jit_ctx
*ctx
){
810 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
814 rd
= arm_bpf_get_reg64(dst
, tmp
, ctx
);
816 /* Do Negate Operation */
817 emit(ARM_RSBS_I(rd
[1], rd
[1], 0), ctx
);
818 emit(ARM_RSC_I(rd
[0], rd
[0], 0), ctx
);
820 arm_bpf_put_reg64(dst
, rd
, ctx
);
823 /* dst = dst << src */
824 static inline void emit_a32_lsh_r64(const s8 dst
[], const s8 src
[],
825 struct jit_ctx
*ctx
) {
826 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
827 const s8
*tmp2
= bpf2a32
[TMP_REG_2
];
832 rt
= arm_bpf_get_reg32(src_lo
, tmp2
[1], ctx
);
833 rd
= arm_bpf_get_reg64(dst
, tmp
, ctx
);
835 /* Do LSH operation */
836 emit(ARM_SUB_I(ARM_IP
, rt
, 32), ctx
);
837 emit(ARM_RSB_I(tmp2
[0], rt
, 32), ctx
);
838 emit(ARM_MOV_SR(ARM_LR
, rd
[0], SRTYPE_ASL
, rt
), ctx
);
839 emit(ARM_ORR_SR(ARM_LR
, ARM_LR
, rd
[1], SRTYPE_ASL
, ARM_IP
), ctx
);
840 emit(ARM_ORR_SR(ARM_IP
, ARM_LR
, rd
[1], SRTYPE_LSR
, tmp2
[0]), ctx
);
841 emit(ARM_MOV_SR(ARM_LR
, rd
[1], SRTYPE_ASL
, rt
), ctx
);
843 arm_bpf_put_reg32(dst_lo
, ARM_LR
, ctx
);
844 arm_bpf_put_reg32(dst_hi
, ARM_IP
, ctx
);
847 /* dst = dst >> src (signed)*/
848 static inline void emit_a32_arsh_r64(const s8 dst
[], const s8 src
[],
849 struct jit_ctx
*ctx
) {
850 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
851 const s8
*tmp2
= bpf2a32
[TMP_REG_2
];
856 rt
= arm_bpf_get_reg32(src_lo
, tmp2
[1], ctx
);
857 rd
= arm_bpf_get_reg64(dst
, tmp
, ctx
);
859 /* Do the ARSH operation */
860 emit(ARM_RSB_I(ARM_IP
, rt
, 32), ctx
);
861 emit(ARM_SUBS_I(tmp2
[0], rt
, 32), ctx
);
862 emit(ARM_MOV_SR(ARM_LR
, rd
[1], SRTYPE_LSR
, rt
), ctx
);
863 emit(ARM_ORR_SR(ARM_LR
, ARM_LR
, rd
[0], SRTYPE_ASL
, ARM_IP
), ctx
);
864 _emit(ARM_COND_MI
, ARM_B(0), ctx
);
865 emit(ARM_ORR_SR(ARM_LR
, ARM_LR
, rd
[0], SRTYPE_ASR
, tmp2
[0]), ctx
);
866 emit(ARM_MOV_SR(ARM_IP
, rd
[0], SRTYPE_ASR
, rt
), ctx
);
868 arm_bpf_put_reg32(dst_lo
, ARM_LR
, ctx
);
869 arm_bpf_put_reg32(dst_hi
, ARM_IP
, ctx
);
872 /* dst = dst >> src */
873 static inline void emit_a32_rsh_r64(const s8 dst
[], const s8 src
[],
874 struct jit_ctx
*ctx
) {
875 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
876 const s8
*tmp2
= bpf2a32
[TMP_REG_2
];
881 rt
= arm_bpf_get_reg32(src_lo
, tmp2
[1], ctx
);
882 rd
= arm_bpf_get_reg64(dst
, tmp
, ctx
);
884 /* Do RSH operation */
885 emit(ARM_RSB_I(ARM_IP
, rt
, 32), ctx
);
886 emit(ARM_SUBS_I(tmp2
[0], rt
, 32), ctx
);
887 emit(ARM_MOV_SR(ARM_LR
, rd
[1], SRTYPE_LSR
, rt
), ctx
);
888 emit(ARM_ORR_SR(ARM_LR
, ARM_LR
, rd
[0], SRTYPE_ASL
, ARM_IP
), ctx
);
889 emit(ARM_ORR_SR(ARM_LR
, ARM_LR
, rd
[0], SRTYPE_LSR
, tmp2
[0]), ctx
);
890 emit(ARM_MOV_SR(ARM_IP
, rd
[0], SRTYPE_LSR
, rt
), ctx
);
892 arm_bpf_put_reg32(dst_lo
, ARM_LR
, ctx
);
893 arm_bpf_put_reg32(dst_hi
, ARM_IP
, ctx
);
896 /* dst = dst << val */
897 static inline void emit_a32_lsh_i64(const s8 dst
[],
898 const u32 val
, struct jit_ctx
*ctx
){
899 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
900 const s8
*tmp2
= bpf2a32
[TMP_REG_2
];
904 rd
= arm_bpf_get_reg64(dst
, tmp
, ctx
);
906 /* Do LSH operation */
908 emit(ARM_MOV_SI(tmp2
[0], rd
[0], SRTYPE_ASL
, val
), ctx
);
909 emit(ARM_ORR_SI(rd
[0], tmp2
[0], rd
[1], SRTYPE_LSR
, 32 - val
), ctx
);
910 emit(ARM_MOV_SI(rd
[1], rd
[1], SRTYPE_ASL
, val
), ctx
);
913 emit(ARM_MOV_R(rd
[0], rd
[1]), ctx
);
915 emit(ARM_MOV_SI(rd
[0], rd
[1], SRTYPE_ASL
, val
- 32), ctx
);
916 emit(ARM_EOR_R(rd
[1], rd
[1], rd
[1]), ctx
);
919 arm_bpf_put_reg64(dst
, rd
, ctx
);
922 /* dst = dst >> val */
923 static inline void emit_a32_rsh_i64(const s8 dst
[],
924 const u32 val
, struct jit_ctx
*ctx
) {
925 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
926 const s8
*tmp2
= bpf2a32
[TMP_REG_2
];
930 rd
= arm_bpf_get_reg64(dst
, tmp
, ctx
);
932 /* Do LSR operation */
934 emit(ARM_MOV_SI(tmp2
[1], rd
[1], SRTYPE_LSR
, val
), ctx
);
935 emit(ARM_ORR_SI(rd
[1], tmp2
[1], rd
[0], SRTYPE_ASL
, 32 - val
), ctx
);
936 emit(ARM_MOV_SI(rd
[0], rd
[0], SRTYPE_LSR
, val
), ctx
);
937 } else if (val
== 32) {
938 emit(ARM_MOV_R(rd
[1], rd
[0]), ctx
);
939 emit(ARM_MOV_I(rd
[0], 0), ctx
);
941 emit(ARM_MOV_SI(rd
[1], rd
[0], SRTYPE_LSR
, val
- 32), ctx
);
942 emit(ARM_MOV_I(rd
[0], 0), ctx
);
945 arm_bpf_put_reg64(dst
, rd
, ctx
);
948 /* dst = dst >> val (signed) */
949 static inline void emit_a32_arsh_i64(const s8 dst
[],
950 const u32 val
, struct jit_ctx
*ctx
){
951 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
952 const s8
*tmp2
= bpf2a32
[TMP_REG_2
];
956 rd
= arm_bpf_get_reg64(dst
, tmp
, ctx
);
958 /* Do ARSH operation */
960 emit(ARM_MOV_SI(tmp2
[1], rd
[1], SRTYPE_LSR
, val
), ctx
);
961 emit(ARM_ORR_SI(rd
[1], tmp2
[1], rd
[0], SRTYPE_ASL
, 32 - val
), ctx
);
962 emit(ARM_MOV_SI(rd
[0], rd
[0], SRTYPE_ASR
, val
), ctx
);
963 } else if (val
== 32) {
964 emit(ARM_MOV_R(rd
[1], rd
[0]), ctx
);
965 emit(ARM_MOV_SI(rd
[0], rd
[0], SRTYPE_ASR
, 31), ctx
);
967 emit(ARM_MOV_SI(rd
[1], rd
[0], SRTYPE_ASR
, val
- 32), ctx
);
968 emit(ARM_MOV_SI(rd
[0], rd
[0], SRTYPE_ASR
, 31), ctx
);
971 arm_bpf_put_reg64(dst
, rd
, ctx
);
974 static inline void emit_a32_mul_r64(const s8 dst
[], const s8 src
[],
975 struct jit_ctx
*ctx
) {
976 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
977 const s8
*tmp2
= bpf2a32
[TMP_REG_2
];
980 /* Setup operands for multiplication */
981 rd
= arm_bpf_get_reg64(dst
, tmp
, ctx
);
982 rt
= arm_bpf_get_reg64(src
, tmp2
, ctx
);
984 /* Do Multiplication */
985 emit(ARM_MUL(ARM_IP
, rd
[1], rt
[0]), ctx
);
986 emit(ARM_MUL(ARM_LR
, rd
[0], rt
[1]), ctx
);
987 emit(ARM_ADD_R(ARM_LR
, ARM_IP
, ARM_LR
), ctx
);
989 emit(ARM_UMULL(ARM_IP
, rd
[0], rd
[1], rt
[1]), ctx
);
990 emit(ARM_ADD_R(rd
[0], ARM_LR
, rd
[0]), ctx
);
992 arm_bpf_put_reg32(dst_lo
, ARM_IP
, ctx
);
993 arm_bpf_put_reg32(dst_hi
, rd
[0], ctx
);
996 /* *(size *)(dst + off) = src */
997 static inline void emit_str_r(const s8 dst
, const s8 src
[],
998 s32 off
, struct jit_ctx
*ctx
, const u8 sz
){
999 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
1003 rd
= arm_bpf_get_reg32(dst
, tmp
[1], ctx
);
1010 if (off
< 0 || off
> off_max
) {
1011 emit_a32_mov_i(tmp
[0], off
, ctx
);
1012 emit(ARM_ADD_R(tmp
[0], tmp
[0], rd
), ctx
);
1019 emit(ARM_STRB_I(src_lo
, rd
, off
), ctx
);
1022 /* Store a HalfWord */
1023 emit(ARM_STRH_I(src_lo
, rd
, off
), ctx
);
1027 emit(ARM_STR_I(src_lo
, rd
, off
), ctx
);
1030 /* Store a Double Word */
1031 emit(ARM_STR_I(src_lo
, rd
, off
), ctx
);
1032 emit(ARM_STR_I(src_hi
, rd
, off
+ 4), ctx
);
1037 /* dst = *(size*)(src + off) */
1038 static inline void emit_ldx_r(const s8 dst
[], const s8 src
,
1039 s32 off
, struct jit_ctx
*ctx
, const u8 sz
){
1040 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
1041 const s8
*rd
= is_stacked(dst_lo
) ? tmp
: dst
;
1050 if (off
< 0 || off
> off_max
) {
1051 emit_a32_mov_i(tmp
[0], off
, ctx
);
1052 emit(ARM_ADD_R(tmp
[0], tmp
[0], src
), ctx
);
1055 } else if (rd
[1] == rm
) {
1056 emit(ARM_MOV_R(tmp
[0], rm
), ctx
);
1062 emit(ARM_LDRB_I(rd
[1], rm
, off
), ctx
);
1063 emit_a32_mov_i(rd
[0], 0, ctx
);
1066 /* Load a HalfWord */
1067 emit(ARM_LDRH_I(rd
[1], rm
, off
), ctx
);
1068 emit_a32_mov_i(rd
[0], 0, ctx
);
1072 emit(ARM_LDR_I(rd
[1], rm
, off
), ctx
);
1073 emit_a32_mov_i(rd
[0], 0, ctx
);
1076 /* Load a Double Word */
1077 emit(ARM_LDR_I(rd
[1], rm
, off
), ctx
);
1078 emit(ARM_LDR_I(rd
[0], rm
, off
+ 4), ctx
);
1081 arm_bpf_put_reg64(dst
, rd
, ctx
);
1084 /* Arithmatic Operation */
1085 static inline void emit_ar_r(const u8 rd
, const u8 rt
, const u8 rm
,
1086 const u8 rn
, struct jit_ctx
*ctx
, u8 op
,
1091 emit(ARM_AND_R(ARM_IP
, rt
, rn
), ctx
);
1092 emit(ARM_AND_R(ARM_LR
, rd
, rm
), ctx
);
1093 emit(ARM_ORRS_R(ARM_IP
, ARM_LR
, ARM_IP
), ctx
);
1095 emit(ARM_ANDS_R(ARM_IP
, rt
, rn
), ctx
);
1105 emit(ARM_CMP_R(rd
, rm
), ctx
);
1106 /* Only compare low halve if high halve are equal. */
1107 _emit(ARM_COND_EQ
, ARM_CMP_R(rt
, rn
), ctx
);
1109 emit(ARM_CMP_R(rt
, rn
), ctx
);
1114 emit(ARM_CMP_R(rn
, rt
), ctx
);
1116 emit(ARM_SBCS_R(ARM_IP
, rm
, rd
), ctx
);
1120 emit(ARM_CMP_R(rt
, rn
), ctx
);
1122 emit(ARM_SBCS_R(ARM_IP
, rd
, rm
), ctx
);
1127 static int out_offset
= -1; /* initialized on the first pass of build_body() */
1128 static int emit_bpf_tail_call(struct jit_ctx
*ctx
)
1131 /* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */
1132 const s8
*r2
= bpf2a32
[BPF_REG_2
];
1133 const s8
*r3
= bpf2a32
[BPF_REG_3
];
1134 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
1135 const s8
*tmp2
= bpf2a32
[TMP_REG_2
];
1136 const s8
*tcc
= bpf2a32
[TCALL_CNT
];
1138 const int idx0
= ctx
->idx
;
1139 #define cur_offset (ctx->idx - idx0)
1140 #define jmp_offset (out_offset - (cur_offset) - 2)
1142 s8 r_array
, r_index
;
1145 /* if (index >= array->map.max_entries)
1148 BUILD_BUG_ON(offsetof(struct bpf_array
, map
.max_entries
) >
1149 ARM_INST_LDST__IMM12
);
1150 off
= offsetof(struct bpf_array
, map
.max_entries
);
1151 r_array
= arm_bpf_get_reg32(r2
[1], tmp2
[0], ctx
);
1152 /* index is 32-bit for arrays */
1153 r_index
= arm_bpf_get_reg32(r3
[1], tmp2
[1], ctx
);
1154 /* array->map.max_entries */
1155 emit(ARM_LDR_I(tmp
[1], r_array
, off
), ctx
);
1156 /* index >= array->map.max_entries */
1157 emit(ARM_CMP_R(r_index
, tmp
[1]), ctx
);
1158 _emit(ARM_COND_CS
, ARM_B(jmp_offset
), ctx
);
1160 /* tmp2[0] = array, tmp2[1] = index */
1162 /* if (tail_call_cnt > MAX_TAIL_CALL_CNT)
1166 lo
= (u32
)MAX_TAIL_CALL_CNT
;
1167 hi
= (u32
)((u64
)MAX_TAIL_CALL_CNT
>> 32);
1168 tc
= arm_bpf_get_reg64(tcc
, tmp
, ctx
);
1169 emit(ARM_CMP_I(tc
[0], hi
), ctx
);
1170 _emit(ARM_COND_EQ
, ARM_CMP_I(tc
[1], lo
), ctx
);
1171 _emit(ARM_COND_HI
, ARM_B(jmp_offset
), ctx
);
1172 emit(ARM_ADDS_I(tc
[1], tc
[1], 1), ctx
);
1173 emit(ARM_ADC_I(tc
[0], tc
[0], 0), ctx
);
1174 arm_bpf_put_reg64(tcc
, tmp
, ctx
);
1176 /* prog = array->ptrs[index]
1180 BUILD_BUG_ON(imm8m(offsetof(struct bpf_array
, ptrs
)) < 0);
1181 off
= imm8m(offsetof(struct bpf_array
, ptrs
));
1182 emit(ARM_ADD_I(tmp
[1], r_array
, off
), ctx
);
1183 emit(ARM_LDR_R_SI(tmp
[1], tmp
[1], r_index
, SRTYPE_ASL
, 2), ctx
);
1184 emit(ARM_CMP_I(tmp
[1], 0), ctx
);
1185 _emit(ARM_COND_EQ
, ARM_B(jmp_offset
), ctx
);
1187 /* goto *(prog->bpf_func + prologue_size); */
1188 BUILD_BUG_ON(offsetof(struct bpf_prog
, bpf_func
) >
1189 ARM_INST_LDST__IMM12
);
1190 off
= offsetof(struct bpf_prog
, bpf_func
);
1191 emit(ARM_LDR_I(tmp
[1], tmp
[1], off
), ctx
);
1192 emit(ARM_ADD_I(tmp
[1], tmp
[1], ctx
->prologue_bytes
), ctx
);
1193 emit_bx_r(tmp
[1], ctx
);
1196 if (out_offset
== -1)
1197 out_offset
= cur_offset
;
1198 if (cur_offset
!= out_offset
) {
1199 pr_err_once("tail_call out_offset = %d, expected %d!\n",
1200 cur_offset
, out_offset
);
1208 /* 0xabcd => 0xcdab */
1209 static inline void emit_rev16(const u8 rd
, const u8 rn
, struct jit_ctx
*ctx
)
1211 #if __LINUX_ARM_ARCH__ < 6
1212 const s8
*tmp2
= bpf2a32
[TMP_REG_2
];
1214 emit(ARM_AND_I(tmp2
[1], rn
, 0xff), ctx
);
1215 emit(ARM_MOV_SI(tmp2
[0], rn
, SRTYPE_LSR
, 8), ctx
);
1216 emit(ARM_AND_I(tmp2
[0], tmp2
[0], 0xff), ctx
);
1217 emit(ARM_ORR_SI(rd
, tmp2
[0], tmp2
[1], SRTYPE_LSL
, 8), ctx
);
1219 emit(ARM_REV16(rd
, rn
), ctx
);
1223 /* 0xabcdefgh => 0xghefcdab */
1224 static inline void emit_rev32(const u8 rd
, const u8 rn
, struct jit_ctx
*ctx
)
1226 #if __LINUX_ARM_ARCH__ < 6
1227 const s8
*tmp2
= bpf2a32
[TMP_REG_2
];
1229 emit(ARM_AND_I(tmp2
[1], rn
, 0xff), ctx
);
1230 emit(ARM_MOV_SI(tmp2
[0], rn
, SRTYPE_LSR
, 24), ctx
);
1231 emit(ARM_ORR_SI(ARM_IP
, tmp2
[0], tmp2
[1], SRTYPE_LSL
, 24), ctx
);
1233 emit(ARM_MOV_SI(tmp2
[1], rn
, SRTYPE_LSR
, 8), ctx
);
1234 emit(ARM_AND_I(tmp2
[1], tmp2
[1], 0xff), ctx
);
1235 emit(ARM_MOV_SI(tmp2
[0], rn
, SRTYPE_LSR
, 16), ctx
);
1236 emit(ARM_AND_I(tmp2
[0], tmp2
[0], 0xff), ctx
);
1237 emit(ARM_MOV_SI(tmp2
[0], tmp2
[0], SRTYPE_LSL
, 8), ctx
);
1238 emit(ARM_ORR_SI(tmp2
[0], tmp2
[0], tmp2
[1], SRTYPE_LSL
, 16), ctx
);
1239 emit(ARM_ORR_R(rd
, ARM_IP
, tmp2
[0]), ctx
);
1242 emit(ARM_REV(rd
, rn
), ctx
);
1246 // push the scratch stack register on top of the stack
1247 static inline void emit_push_r64(const s8 src
[], struct jit_ctx
*ctx
)
1249 const s8
*tmp2
= bpf2a32
[TMP_REG_2
];
1253 rt
= arm_bpf_get_reg64(src
, tmp2
, ctx
);
1255 reg_set
= (1 << rt
[1]) | (1 << rt
[0]);
1256 emit(ARM_PUSH(reg_set
), ctx
);
1259 static void build_prologue(struct jit_ctx
*ctx
)
1261 const s8 r0
= bpf2a32
[BPF_REG_0
][1];
1262 const s8 r2
= bpf2a32
[BPF_REG_1
][1];
1263 const s8 r3
= bpf2a32
[BPF_REG_1
][0];
1264 const s8 r4
= bpf2a32
[BPF_REG_6
][1];
1265 const s8 fplo
= bpf2a32
[BPF_REG_FP
][1];
1266 const s8 fphi
= bpf2a32
[BPF_REG_FP
][0];
1267 const s8
*tcc
= bpf2a32
[TCALL_CNT
];
1269 /* Save callee saved registers. */
1270 #ifdef CONFIG_FRAME_POINTER
1271 u16 reg_set
= CALLEE_PUSH_MASK
| 1 << ARM_IP
| 1 << ARM_PC
;
1272 emit(ARM_MOV_R(ARM_IP
, ARM_SP
), ctx
);
1273 emit(ARM_PUSH(reg_set
), ctx
);
1274 emit(ARM_SUB_I(ARM_FP
, ARM_IP
, 4), ctx
);
1276 emit(ARM_PUSH(CALLEE_PUSH_MASK
), ctx
);
1277 emit(ARM_MOV_R(ARM_FP
, ARM_SP
), ctx
);
1279 /* Save frame pointer for later */
1280 emit(ARM_SUB_I(ARM_IP
, ARM_SP
, SCRATCH_SIZE
), ctx
);
1282 ctx
->stack_size
= imm8m(STACK_SIZE
);
1284 /* Set up function call stack */
1285 emit(ARM_SUB_I(ARM_SP
, ARM_SP
, ctx
->stack_size
), ctx
);
1287 /* Set up BPF prog stack base register */
1288 emit_a32_mov_r(fplo
, ARM_IP
, ctx
);
1289 emit_a32_mov_i(fphi
, 0, ctx
);
1292 emit(ARM_MOV_I(r4
, 0), ctx
);
1294 /* Move BPF_CTX to BPF_R1 */
1295 emit(ARM_MOV_R(r3
, r4
), ctx
);
1296 emit(ARM_MOV_R(r2
, r0
), ctx
);
1297 /* Initialize Tail Count */
1298 emit(ARM_STR_I(r4
, ARM_FP
, EBPF_SCRATCH_TO_ARM_FP(tcc
[0])), ctx
);
1299 emit(ARM_STR_I(r4
, ARM_FP
, EBPF_SCRATCH_TO_ARM_FP(tcc
[1])), ctx
);
1300 /* end of prologue */
1303 /* restore callee saved registers. */
1304 static void build_epilogue(struct jit_ctx
*ctx
)
1306 #ifdef CONFIG_FRAME_POINTER
1307 /* When using frame pointers, some additional registers need to
1309 u16 reg_set
= CALLEE_POP_MASK
| 1 << ARM_SP
;
1310 emit(ARM_SUB_I(ARM_SP
, ARM_FP
, hweight16(reg_set
) * 4), ctx
);
1311 emit(ARM_LDM(ARM_SP
, reg_set
), ctx
);
1313 /* Restore callee saved registers. */
1314 emit(ARM_MOV_R(ARM_SP
, ARM_FP
), ctx
);
1315 emit(ARM_POP(CALLEE_POP_MASK
), ctx
);
1320 * Convert an eBPF instruction to native instruction, i.e
1321 * JITs an eBPF instruction.
1323 * 0 - Successfully JITed an 8-byte eBPF instruction
1324 * >0 - Successfully JITed a 16-byte eBPF instruction
1325 * <0 - Failed to JIT.
1327 static int build_insn(const struct bpf_insn
*insn
, struct jit_ctx
*ctx
)
1329 const u8 code
= insn
->code
;
1330 const s8
*dst
= bpf2a32
[insn
->dst_reg
];
1331 const s8
*src
= bpf2a32
[insn
->src_reg
];
1332 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
1333 const s8
*tmp2
= bpf2a32
[TMP_REG_2
];
1334 const s16 off
= insn
->off
;
1335 const s32 imm
= insn
->imm
;
1336 const int i
= insn
- ctx
->prog
->insnsi
;
1337 const bool is64
= BPF_CLASS(code
) == BPF_ALU64
;
1339 s8 rd_lo
, rt
, rm
, rn
;
1342 #define check_imm(bits, imm) do { \
1343 if ((imm) >= (1 << ((bits) - 1)) || \
1344 (imm) < -(1 << ((bits) - 1))) { \
1345 pr_info("[%2d] imm=%d(0x%x) out of range\n", \
1350 #define check_imm24(imm) check_imm(24, imm)
1353 /* ALU operations */
1356 case BPF_ALU
| BPF_MOV
| BPF_K
:
1357 case BPF_ALU
| BPF_MOV
| BPF_X
:
1358 case BPF_ALU64
| BPF_MOV
| BPF_K
:
1359 case BPF_ALU64
| BPF_MOV
| BPF_X
:
1360 switch (BPF_SRC(code
)) {
1362 emit_a32_mov_r64(is64
, dst
, src
, ctx
);
1365 /* Sign-extend immediate value to destination reg */
1366 emit_a32_mov_se_i64(is64
, dst
, imm
, ctx
);
1370 /* dst = dst + src/imm */
1371 /* dst = dst - src/imm */
1372 /* dst = dst | src/imm */
1373 /* dst = dst & src/imm */
1374 /* dst = dst ^ src/imm */
1375 /* dst = dst * src/imm */
1376 /* dst = dst << src */
1377 /* dst = dst >> src */
1378 case BPF_ALU
| BPF_ADD
| BPF_K
:
1379 case BPF_ALU
| BPF_ADD
| BPF_X
:
1380 case BPF_ALU
| BPF_SUB
| BPF_K
:
1381 case BPF_ALU
| BPF_SUB
| BPF_X
:
1382 case BPF_ALU
| BPF_OR
| BPF_K
:
1383 case BPF_ALU
| BPF_OR
| BPF_X
:
1384 case BPF_ALU
| BPF_AND
| BPF_K
:
1385 case BPF_ALU
| BPF_AND
| BPF_X
:
1386 case BPF_ALU
| BPF_XOR
| BPF_K
:
1387 case BPF_ALU
| BPF_XOR
| BPF_X
:
1388 case BPF_ALU
| BPF_MUL
| BPF_K
:
1389 case BPF_ALU
| BPF_MUL
| BPF_X
:
1390 case BPF_ALU
| BPF_LSH
| BPF_X
:
1391 case BPF_ALU
| BPF_RSH
| BPF_X
:
1392 case BPF_ALU
| BPF_ARSH
| BPF_K
:
1393 case BPF_ALU
| BPF_ARSH
| BPF_X
:
1394 case BPF_ALU64
| BPF_ADD
| BPF_K
:
1395 case BPF_ALU64
| BPF_ADD
| BPF_X
:
1396 case BPF_ALU64
| BPF_SUB
| BPF_K
:
1397 case BPF_ALU64
| BPF_SUB
| BPF_X
:
1398 case BPF_ALU64
| BPF_OR
| BPF_K
:
1399 case BPF_ALU64
| BPF_OR
| BPF_X
:
1400 case BPF_ALU64
| BPF_AND
| BPF_K
:
1401 case BPF_ALU64
| BPF_AND
| BPF_X
:
1402 case BPF_ALU64
| BPF_XOR
| BPF_K
:
1403 case BPF_ALU64
| BPF_XOR
| BPF_X
:
1404 switch (BPF_SRC(code
)) {
1406 emit_a32_alu_r64(is64
, dst
, src
, ctx
, BPF_OP(code
));
1409 /* Move immediate value to the temporary register
1410 * and then do the ALU operation on the temporary
1411 * register as this will sign-extend the immediate
1412 * value into temporary reg and then it would be
1413 * safe to do the operation on it.
1415 emit_a32_mov_se_i64(is64
, tmp2
, imm
, ctx
);
1416 emit_a32_alu_r64(is64
, dst
, tmp2
, ctx
, BPF_OP(code
));
1420 /* dst = dst / src(imm) */
1421 /* dst = dst % src(imm) */
1422 case BPF_ALU
| BPF_DIV
| BPF_K
:
1423 case BPF_ALU
| BPF_DIV
| BPF_X
:
1424 case BPF_ALU
| BPF_MOD
| BPF_K
:
1425 case BPF_ALU
| BPF_MOD
| BPF_X
:
1426 rd_lo
= arm_bpf_get_reg32(dst_lo
, tmp2
[1], ctx
);
1427 switch (BPF_SRC(code
)) {
1429 rt
= arm_bpf_get_reg32(src_lo
, tmp2
[0], ctx
);
1433 emit_a32_mov_i(rt
, imm
, ctx
);
1439 emit_udivmod(rd_lo
, rd_lo
, rt
, ctx
, BPF_OP(code
));
1440 arm_bpf_put_reg32(dst_lo
, rd_lo
, ctx
);
1441 emit_a32_mov_i(dst_hi
, 0, ctx
);
1443 case BPF_ALU64
| BPF_DIV
| BPF_K
:
1444 case BPF_ALU64
| BPF_DIV
| BPF_X
:
1445 case BPF_ALU64
| BPF_MOD
| BPF_K
:
1446 case BPF_ALU64
| BPF_MOD
| BPF_X
:
1448 /* dst = dst >> imm */
1449 /* dst = dst << imm */
1450 case BPF_ALU
| BPF_RSH
| BPF_K
:
1451 case BPF_ALU
| BPF_LSH
| BPF_K
:
1452 if (unlikely(imm
> 31))
1455 emit_a32_alu_i(dst_lo
, imm
, ctx
, BPF_OP(code
));
1456 emit_a32_mov_i(dst_hi
, 0, ctx
);
1458 /* dst = dst << imm */
1459 case BPF_ALU64
| BPF_LSH
| BPF_K
:
1460 if (unlikely(imm
> 63))
1462 emit_a32_lsh_i64(dst
, imm
, ctx
);
1464 /* dst = dst >> imm */
1465 case BPF_ALU64
| BPF_RSH
| BPF_K
:
1466 if (unlikely(imm
> 63))
1468 emit_a32_rsh_i64(dst
, imm
, ctx
);
1470 /* dst = dst << src */
1471 case BPF_ALU64
| BPF_LSH
| BPF_X
:
1472 emit_a32_lsh_r64(dst
, src
, ctx
);
1474 /* dst = dst >> src */
1475 case BPF_ALU64
| BPF_RSH
| BPF_X
:
1476 emit_a32_rsh_r64(dst
, src
, ctx
);
1478 /* dst = dst >> src (signed) */
1479 case BPF_ALU64
| BPF_ARSH
| BPF_X
:
1480 emit_a32_arsh_r64(dst
, src
, ctx
);
1482 /* dst = dst >> imm (signed) */
1483 case BPF_ALU64
| BPF_ARSH
| BPF_K
:
1484 if (unlikely(imm
> 63))
1486 emit_a32_arsh_i64(dst
, imm
, ctx
);
1489 case BPF_ALU
| BPF_NEG
:
1490 emit_a32_alu_i(dst_lo
, 0, ctx
, BPF_OP(code
));
1491 emit_a32_mov_i(dst_hi
, 0, ctx
);
1493 /* dst = ~dst (64 bit) */
1494 case BPF_ALU64
| BPF_NEG
:
1495 emit_a32_neg64(dst
, ctx
);
1497 /* dst = dst * src/imm */
1498 case BPF_ALU64
| BPF_MUL
| BPF_X
:
1499 case BPF_ALU64
| BPF_MUL
| BPF_K
:
1500 switch (BPF_SRC(code
)) {
1502 emit_a32_mul_r64(dst
, src
, ctx
);
1505 /* Move immediate value to the temporary register
1506 * and then do the multiplication on it as this
1507 * will sign-extend the immediate value into temp
1508 * reg then it would be safe to do the operation
1511 emit_a32_mov_se_i64(is64
, tmp2
, imm
, ctx
);
1512 emit_a32_mul_r64(dst
, tmp2
, ctx
);
1516 /* dst = htole(dst) */
1517 /* dst = htobe(dst) */
1518 case BPF_ALU
| BPF_END
| BPF_FROM_LE
:
1519 case BPF_ALU
| BPF_END
| BPF_FROM_BE
:
1520 rd
= arm_bpf_get_reg64(dst
, tmp
, ctx
);
1521 if (BPF_SRC(code
) == BPF_FROM_LE
)
1522 goto emit_bswap_uxt
;
1525 emit_rev16(rd
[1], rd
[1], ctx
);
1526 goto emit_bswap_uxt
;
1528 emit_rev32(rd
[1], rd
[1], ctx
);
1529 goto emit_bswap_uxt
;
1531 emit_rev32(ARM_LR
, rd
[1], ctx
);
1532 emit_rev32(rd
[1], rd
[0], ctx
);
1533 emit(ARM_MOV_R(rd
[0], ARM_LR
), ctx
);
1540 /* zero-extend 16 bits into 64 bits */
1541 #if __LINUX_ARM_ARCH__ < 6
1542 emit_a32_mov_i(tmp2
[1], 0xffff, ctx
);
1543 emit(ARM_AND_R(rd
[1], rd
[1], tmp2
[1]), ctx
);
1545 emit(ARM_UXTH(rd
[1], rd
[1]), ctx
);
1547 emit(ARM_EOR_R(rd
[0], rd
[0], rd
[0]), ctx
);
1550 /* zero-extend 32 bits into 64 bits */
1551 emit(ARM_EOR_R(rd
[0], rd
[0], rd
[0]), ctx
);
1558 arm_bpf_put_reg64(dst
, rd
, ctx
);
1561 case BPF_LD
| BPF_IMM
| BPF_DW
:
1563 u64 val
= (u32
)imm
| (u64
)insn
[1].imm
<< 32;
1565 emit_a32_mov_i64(dst
, val
, ctx
);
1569 /* LDX: dst = *(size *)(src + off) */
1570 case BPF_LDX
| BPF_MEM
| BPF_W
:
1571 case BPF_LDX
| BPF_MEM
| BPF_H
:
1572 case BPF_LDX
| BPF_MEM
| BPF_B
:
1573 case BPF_LDX
| BPF_MEM
| BPF_DW
:
1574 rn
= arm_bpf_get_reg32(src_lo
, tmp2
[1], ctx
);
1575 emit_ldx_r(dst
, rn
, off
, ctx
, BPF_SIZE(code
));
1577 /* ST: *(size *)(dst + off) = imm */
1578 case BPF_ST
| BPF_MEM
| BPF_W
:
1579 case BPF_ST
| BPF_MEM
| BPF_H
:
1580 case BPF_ST
| BPF_MEM
| BPF_B
:
1581 case BPF_ST
| BPF_MEM
| BPF_DW
:
1582 switch (BPF_SIZE(code
)) {
1584 /* Sign-extend immediate value into temp reg */
1585 emit_a32_mov_se_i64(true, tmp2
, imm
, ctx
);
1590 emit_a32_mov_i(tmp2
[1], imm
, ctx
);
1593 emit_str_r(dst_lo
, tmp2
, off
, ctx
, BPF_SIZE(code
));
1595 /* STX XADD: lock *(u32 *)(dst + off) += src */
1596 case BPF_STX
| BPF_XADD
| BPF_W
:
1597 /* STX XADD: lock *(u64 *)(dst + off) += src */
1598 case BPF_STX
| BPF_XADD
| BPF_DW
:
1600 /* STX: *(size *)(dst + off) = src */
1601 case BPF_STX
| BPF_MEM
| BPF_W
:
1602 case BPF_STX
| BPF_MEM
| BPF_H
:
1603 case BPF_STX
| BPF_MEM
| BPF_B
:
1604 case BPF_STX
| BPF_MEM
| BPF_DW
:
1605 rs
= arm_bpf_get_reg64(src
, tmp2
, ctx
);
1606 emit_str_r(dst_lo
, rs
, off
, ctx
, BPF_SIZE(code
));
1608 /* PC += off if dst == src */
1609 /* PC += off if dst > src */
1610 /* PC += off if dst >= src */
1611 /* PC += off if dst < src */
1612 /* PC += off if dst <= src */
1613 /* PC += off if dst != src */
1614 /* PC += off if dst > src (signed) */
1615 /* PC += off if dst >= src (signed) */
1616 /* PC += off if dst < src (signed) */
1617 /* PC += off if dst <= src (signed) */
1618 /* PC += off if dst & src */
1619 case BPF_JMP
| BPF_JEQ
| BPF_X
:
1620 case BPF_JMP
| BPF_JGT
| BPF_X
:
1621 case BPF_JMP
| BPF_JGE
| BPF_X
:
1622 case BPF_JMP
| BPF_JNE
| BPF_X
:
1623 case BPF_JMP
| BPF_JSGT
| BPF_X
:
1624 case BPF_JMP
| BPF_JSGE
| BPF_X
:
1625 case BPF_JMP
| BPF_JSET
| BPF_X
:
1626 case BPF_JMP
| BPF_JLE
| BPF_X
:
1627 case BPF_JMP
| BPF_JLT
| BPF_X
:
1628 case BPF_JMP
| BPF_JSLT
| BPF_X
:
1629 case BPF_JMP
| BPF_JSLE
| BPF_X
:
1630 case BPF_JMP32
| BPF_JEQ
| BPF_X
:
1631 case BPF_JMP32
| BPF_JGT
| BPF_X
:
1632 case BPF_JMP32
| BPF_JGE
| BPF_X
:
1633 case BPF_JMP32
| BPF_JNE
| BPF_X
:
1634 case BPF_JMP32
| BPF_JSGT
| BPF_X
:
1635 case BPF_JMP32
| BPF_JSGE
| BPF_X
:
1636 case BPF_JMP32
| BPF_JSET
| BPF_X
:
1637 case BPF_JMP32
| BPF_JLE
| BPF_X
:
1638 case BPF_JMP32
| BPF_JLT
| BPF_X
:
1639 case BPF_JMP32
| BPF_JSLT
| BPF_X
:
1640 case BPF_JMP32
| BPF_JSLE
| BPF_X
:
1641 /* Setup source registers */
1642 rm
= arm_bpf_get_reg32(src_hi
, tmp2
[0], ctx
);
1643 rn
= arm_bpf_get_reg32(src_lo
, tmp2
[1], ctx
);
1645 /* PC += off if dst == imm */
1646 /* PC += off if dst > imm */
1647 /* PC += off if dst >= imm */
1648 /* PC += off if dst < imm */
1649 /* PC += off if dst <= imm */
1650 /* PC += off if dst != imm */
1651 /* PC += off if dst > imm (signed) */
1652 /* PC += off if dst >= imm (signed) */
1653 /* PC += off if dst < imm (signed) */
1654 /* PC += off if dst <= imm (signed) */
1655 /* PC += off if dst & imm */
1656 case BPF_JMP
| BPF_JEQ
| BPF_K
:
1657 case BPF_JMP
| BPF_JGT
| BPF_K
:
1658 case BPF_JMP
| BPF_JGE
| BPF_K
:
1659 case BPF_JMP
| BPF_JNE
| BPF_K
:
1660 case BPF_JMP
| BPF_JSGT
| BPF_K
:
1661 case BPF_JMP
| BPF_JSGE
| BPF_K
:
1662 case BPF_JMP
| BPF_JSET
| BPF_K
:
1663 case BPF_JMP
| BPF_JLT
| BPF_K
:
1664 case BPF_JMP
| BPF_JLE
| BPF_K
:
1665 case BPF_JMP
| BPF_JSLT
| BPF_K
:
1666 case BPF_JMP
| BPF_JSLE
| BPF_K
:
1667 case BPF_JMP32
| BPF_JEQ
| BPF_K
:
1668 case BPF_JMP32
| BPF_JGT
| BPF_K
:
1669 case BPF_JMP32
| BPF_JGE
| BPF_K
:
1670 case BPF_JMP32
| BPF_JNE
| BPF_K
:
1671 case BPF_JMP32
| BPF_JSGT
| BPF_K
:
1672 case BPF_JMP32
| BPF_JSGE
| BPF_K
:
1673 case BPF_JMP32
| BPF_JSET
| BPF_K
:
1674 case BPF_JMP32
| BPF_JLT
| BPF_K
:
1675 case BPF_JMP32
| BPF_JLE
| BPF_K
:
1676 case BPF_JMP32
| BPF_JSLT
| BPF_K
:
1677 case BPF_JMP32
| BPF_JSLE
| BPF_K
:
1682 /* Sign-extend immediate value */
1683 emit_a32_mov_se_i64(true, tmp2
, imm
, ctx
);
1685 /* Setup destination register */
1686 rd
= arm_bpf_get_reg64(dst
, tmp
, ctx
);
1688 /* Check for the condition */
1689 emit_ar_r(rd
[0], rd
[1], rm
, rn
, ctx
, BPF_OP(code
),
1690 BPF_CLASS(code
) == BPF_JMP
);
1692 /* Setup JUMP instruction */
1693 jmp_offset
= bpf2a32_offset(i
+off
, i
, ctx
);
1694 switch (BPF_OP(code
)) {
1697 _emit(ARM_COND_NE
, ARM_B(jmp_offset
), ctx
);
1700 _emit(ARM_COND_EQ
, ARM_B(jmp_offset
), ctx
);
1703 _emit(ARM_COND_HI
, ARM_B(jmp_offset
), ctx
);
1706 _emit(ARM_COND_CS
, ARM_B(jmp_offset
), ctx
);
1709 _emit(ARM_COND_LT
, ARM_B(jmp_offset
), ctx
);
1712 _emit(ARM_COND_GE
, ARM_B(jmp_offset
), ctx
);
1715 _emit(ARM_COND_LS
, ARM_B(jmp_offset
), ctx
);
1718 _emit(ARM_COND_CC
, ARM_B(jmp_offset
), ctx
);
1721 _emit(ARM_COND_LT
, ARM_B(jmp_offset
), ctx
);
1724 _emit(ARM_COND_GE
, ARM_B(jmp_offset
), ctx
);
1729 case BPF_JMP
| BPF_JA
:
1733 jmp_offset
= bpf2a32_offset(i
+off
, i
, ctx
);
1734 check_imm24(jmp_offset
);
1735 emit(ARM_B(jmp_offset
), ctx
);
1739 case BPF_JMP
| BPF_TAIL_CALL
:
1740 if (emit_bpf_tail_call(ctx
))
1744 case BPF_JMP
| BPF_CALL
:
1746 const s8
*r0
= bpf2a32
[BPF_REG_0
];
1747 const s8
*r1
= bpf2a32
[BPF_REG_1
];
1748 const s8
*r2
= bpf2a32
[BPF_REG_2
];
1749 const s8
*r3
= bpf2a32
[BPF_REG_3
];
1750 const s8
*r4
= bpf2a32
[BPF_REG_4
];
1751 const s8
*r5
= bpf2a32
[BPF_REG_5
];
1752 const u32 func
= (u32
)__bpf_call_base
+ (u32
)imm
;
1754 emit_a32_mov_r64(true, r0
, r1
, ctx
);
1755 emit_a32_mov_r64(true, r1
, r2
, ctx
);
1756 emit_push_r64(r5
, ctx
);
1757 emit_push_r64(r4
, ctx
);
1758 emit_push_r64(r3
, ctx
);
1760 emit_a32_mov_i(tmp
[1], func
, ctx
);
1761 emit_blx_r(tmp
[1], ctx
);
1763 emit(ARM_ADD_I(ARM_SP
, ARM_SP
, imm8m(24)), ctx
); // callee clean
1766 /* function return */
1767 case BPF_JMP
| BPF_EXIT
:
1768 /* Optimization: when last instruction is EXIT
1769 * simply fallthrough to epilogue.
1771 if (i
== ctx
->prog
->len
- 1)
1773 jmp_offset
= epilogue_offset(ctx
);
1774 check_imm24(jmp_offset
);
1775 emit(ARM_B(jmp_offset
), ctx
);
1778 pr_info_once("*** NOT YET: opcode %02x ***\n", code
);
1781 pr_err_once("unknown opcode %02x\n", code
);
1785 if (ctx
->flags
& FLAG_IMM_OVERFLOW
)
1787 * this instruction generated an overflow when
1788 * trying to access the literal pool, so
1789 * delegate this filter to the kernel interpreter.
1795 static int build_body(struct jit_ctx
*ctx
)
1797 const struct bpf_prog
*prog
= ctx
->prog
;
1800 for (i
= 0; i
< prog
->len
; i
++) {
1801 const struct bpf_insn
*insn
= &(prog
->insnsi
[i
]);
1804 ret
= build_insn(insn
, ctx
);
1806 /* It's used with loading the 64 bit immediate value. */
1809 if (ctx
->target
== NULL
)
1810 ctx
->offsets
[i
] = ctx
->idx
;
1814 if (ctx
->target
== NULL
)
1815 ctx
->offsets
[i
] = ctx
->idx
;
1817 /* If unsuccesfull, return with error code */
1824 static int validate_code(struct jit_ctx
*ctx
)
1828 for (i
= 0; i
< ctx
->idx
; i
++) {
1829 if (ctx
->target
[i
] == __opcode_to_mem_arm(ARM_INST_UDF
))
1836 void bpf_jit_compile(struct bpf_prog
*prog
)
1838 /* Nothing to do here. We support Internal BPF. */
1841 struct bpf_prog
*bpf_int_jit_compile(struct bpf_prog
*prog
)
1843 struct bpf_prog
*tmp
, *orig_prog
= prog
;
1844 struct bpf_binary_header
*header
;
1845 bool tmp_blinded
= false;
1847 unsigned int tmp_idx
;
1848 unsigned int image_size
;
1851 /* If BPF JIT was not enabled then we must fall back to
1854 if (!prog
->jit_requested
)
1857 /* If constant blinding was enabled and we failed during blinding
1858 * then we must fall back to the interpreter. Otherwise, we save
1859 * the new JITed code.
1861 tmp
= bpf_jit_blind_constants(prog
);
1870 memset(&ctx
, 0, sizeof(ctx
));
1872 ctx
.cpu_architecture
= cpu_architecture();
1874 /* Not able to allocate memory for offsets[] , then
1875 * we must fall back to the interpreter
1877 ctx
.offsets
= kcalloc(prog
->len
, sizeof(int), GFP_KERNEL
);
1878 if (ctx
.offsets
== NULL
) {
1883 /* 1) fake pass to find in the length of the JITed code,
1884 * to compute ctx->offsets and other context variables
1885 * needed to compute final JITed code.
1886 * Also, calculate random starting pointer/start of JITed code
1887 * which is prefixed by random number of fault instructions.
1889 * If the first pass fails then there is no chance of it
1890 * being successful in the second pass, so just fall back
1891 * to the interpreter.
1893 if (build_body(&ctx
)) {
1899 build_prologue(&ctx
);
1900 ctx
.prologue_bytes
= (ctx
.idx
- tmp_idx
) * 4;
1902 ctx
.epilogue_offset
= ctx
.idx
;
1904 #if __LINUX_ARM_ARCH__ < 7
1906 build_epilogue(&ctx
);
1907 ctx
.epilogue_bytes
= (ctx
.idx
- tmp_idx
) * 4;
1909 ctx
.idx
+= ctx
.imm_count
;
1910 if (ctx
.imm_count
) {
1911 ctx
.imms
= kcalloc(ctx
.imm_count
, sizeof(u32
), GFP_KERNEL
);
1912 if (ctx
.imms
== NULL
) {
1918 /* there's nothing about the epilogue on ARMv7 */
1919 build_epilogue(&ctx
);
1921 /* Now we can get the actual image size of the JITed arm code.
1922 * Currently, we are not considering the THUMB-2 instructions
1923 * for jit, although it can decrease the size of the image.
1925 * As each arm instruction is of length 32bit, we are translating
1926 * number of JITed intructions into the size required to store these
1929 image_size
= sizeof(u32
) * ctx
.idx
;
1931 /* Now we know the size of the structure to make */
1932 header
= bpf_jit_binary_alloc(image_size
, &image_ptr
,
1933 sizeof(u32
), jit_fill_hole
);
1934 /* Not able to allocate memory for the structure then
1935 * we must fall back to the interpretation
1937 if (header
== NULL
) {
1942 /* 2.) Actual pass to generate final JIT code */
1943 ctx
.target
= (u32
*) image_ptr
;
1946 build_prologue(&ctx
);
1948 /* If building the body of the JITed code fails somehow,
1949 * we fall back to the interpretation.
1951 if (build_body(&ctx
) < 0) {
1953 bpf_jit_binary_free(header
);
1957 build_epilogue(&ctx
);
1959 /* 3.) Extra pass to validate JITed Code */
1960 if (validate_code(&ctx
)) {
1962 bpf_jit_binary_free(header
);
1966 flush_icache_range((u32
)header
, (u32
)(ctx
.target
+ ctx
.idx
));
1968 if (bpf_jit_enable
> 1)
1969 /* there are 2 passes here */
1970 bpf_jit_dump(prog
->len
, image_size
, 2, ctx
.target
);
1972 bpf_jit_binary_lock_ro(header
);
1973 prog
->bpf_func
= (void *)ctx
.target
;
1975 prog
->jited_len
= image_size
;
1978 #if __LINUX_ARM_ARCH__ < 7
1986 bpf_jit_prog_release_other(prog
, prog
== orig_prog
?