2 * Based on arch/arm/mm/init.c
4 * Copyright (C) 1995-2005 Russell King
5 * Copyright (C) 2012 ARM Ltd.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 #include <linux/kernel.h>
21 #include <linux/export.h>
22 #include <linux/errno.h>
23 #include <linux/swap.h>
24 #include <linux/init.h>
25 #include <linux/cache.h>
26 #include <linux/mman.h>
27 #include <linux/nodemask.h>
28 #include <linux/initrd.h>
29 #include <linux/gfp.h>
30 #include <linux/memblock.h>
31 #include <linux/sort.h>
33 #include <linux/of_fdt.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/dma-contiguous.h>
36 #include <linux/efi.h>
37 #include <linux/swiotlb.h>
38 #include <linux/vmalloc.h>
40 #include <linux/kexec.h>
41 #include <linux/crash_dump.h>
44 #include <asm/fixmap.h>
45 #include <asm/kasan.h>
46 #include <asm/kernel-pgtable.h>
47 #include <asm/memory.h>
49 #include <asm/sections.h>
50 #include <asm/setup.h>
51 #include <asm/sizes.h>
53 #include <asm/alternative.h>
56 * We need to be able to catch inadvertent references to memstart_addr
57 * that occur (potentially in generic code) before arm64_memblock_init()
58 * executes, which assigns it its actual value. So use a default value
59 * that cannot be mistaken for a real physical address.
61 s64 memstart_addr __ro_after_init
= -1;
62 EXPORT_SYMBOL(memstart_addr
);
64 phys_addr_t arm64_dma_phys_limit __ro_after_init
;
66 #ifdef CONFIG_KEXEC_CORE
68 * reserve_crashkernel() - reserves memory for crash kernel
70 * This function reserves memory area given in "crashkernel=" kernel command
71 * line parameter. The memory reserved is used by dump capture kernel when
72 * primary kernel is crashing.
74 static void __init
reserve_crashkernel(void)
76 unsigned long long crash_base
, crash_size
;
79 ret
= parse_crashkernel(boot_command_line
, memblock_phys_mem_size(),
80 &crash_size
, &crash_base
);
81 /* no crashkernel= or invalid value specified */
82 if (ret
|| !crash_size
)
85 crash_size
= PAGE_ALIGN(crash_size
);
87 if (crash_base
== 0) {
88 /* Current arm64 boot protocol requires 2MB alignment */
89 crash_base
= memblock_find_in_range(0, ARCH_LOW_ADDRESS_LIMIT
,
91 if (crash_base
== 0) {
92 pr_warn("cannot allocate crashkernel (size:0x%llx)\n",
97 /* User specifies base address explicitly. */
98 if (!memblock_is_region_memory(crash_base
, crash_size
)) {
99 pr_warn("cannot reserve crashkernel: region is not memory\n");
103 if (memblock_is_region_reserved(crash_base
, crash_size
)) {
104 pr_warn("cannot reserve crashkernel: region overlaps reserved memory\n");
108 if (!IS_ALIGNED(crash_base
, SZ_2M
)) {
109 pr_warn("cannot reserve crashkernel: base address is not 2MB aligned\n");
113 memblock_reserve(crash_base
, crash_size
);
115 pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n",
116 crash_base
, crash_base
+ crash_size
, crash_size
>> 20);
118 crashk_res
.start
= crash_base
;
119 crashk_res
.end
= crash_base
+ crash_size
- 1;
122 static void __init
reserve_crashkernel(void)
125 #endif /* CONFIG_KEXEC_CORE */
127 #ifdef CONFIG_CRASH_DUMP
128 static int __init
early_init_dt_scan_elfcorehdr(unsigned long node
,
129 const char *uname
, int depth
, void *data
)
134 if (depth
!= 1 || strcmp(uname
, "chosen") != 0)
137 reg
= of_get_flat_dt_prop(node
, "linux,elfcorehdr", &len
);
138 if (!reg
|| (len
< (dt_root_addr_cells
+ dt_root_size_cells
)))
141 elfcorehdr_addr
= dt_mem_next_cell(dt_root_addr_cells
, ®
);
142 elfcorehdr_size
= dt_mem_next_cell(dt_root_size_cells
, ®
);
148 * reserve_elfcorehdr() - reserves memory for elf core header
150 * This function reserves the memory occupied by an elf core header
151 * described in the device tree. This region contains all the
152 * information about primary kernel's core image and is used by a dump
153 * capture kernel to access the system memory on primary kernel.
155 static void __init
reserve_elfcorehdr(void)
157 of_scan_flat_dt(early_init_dt_scan_elfcorehdr
, NULL
);
159 if (!elfcorehdr_size
)
162 if (memblock_is_region_reserved(elfcorehdr_addr
, elfcorehdr_size
)) {
163 pr_warn("elfcorehdr is overlapped\n");
167 memblock_reserve(elfcorehdr_addr
, elfcorehdr_size
);
169 pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n",
170 elfcorehdr_size
>> 10, elfcorehdr_addr
);
173 static void __init
reserve_elfcorehdr(void)
176 #endif /* CONFIG_CRASH_DUMP */
178 * Return the maximum physical address for ZONE_DMA32 (DMA_BIT_MASK(32)). It
179 * currently assumes that for memory starting above 4G, 32-bit devices will
182 static phys_addr_t __init
max_zone_dma_phys(void)
184 phys_addr_t offset
= memblock_start_of_DRAM() & GENMASK_ULL(63, 32);
185 return min(offset
+ (1ULL << 32), memblock_end_of_DRAM());
190 static void __init
zone_sizes_init(unsigned long min
, unsigned long max
)
192 unsigned long max_zone_pfns
[MAX_NR_ZONES
] = {0};
194 if (IS_ENABLED(CONFIG_ZONE_DMA32
))
195 max_zone_pfns
[ZONE_DMA32
] = PFN_DOWN(max_zone_dma_phys());
196 max_zone_pfns
[ZONE_NORMAL
] = max
;
198 free_area_init_nodes(max_zone_pfns
);
203 static void __init
zone_sizes_init(unsigned long min
, unsigned long max
)
205 struct memblock_region
*reg
;
206 unsigned long zone_size
[MAX_NR_ZONES
], zhole_size
[MAX_NR_ZONES
];
207 unsigned long max_dma
= min
;
209 memset(zone_size
, 0, sizeof(zone_size
));
211 /* 4GB maximum for 32-bit only capable devices */
212 #ifdef CONFIG_ZONE_DMA32
213 max_dma
= PFN_DOWN(arm64_dma_phys_limit
);
214 zone_size
[ZONE_DMA32
] = max_dma
- min
;
216 zone_size
[ZONE_NORMAL
] = max
- max_dma
;
218 memcpy(zhole_size
, zone_size
, sizeof(zhole_size
));
220 for_each_memblock(memory
, reg
) {
221 unsigned long start
= memblock_region_memory_base_pfn(reg
);
222 unsigned long end
= memblock_region_memory_end_pfn(reg
);
227 #ifdef CONFIG_ZONE_DMA32
228 if (start
< max_dma
) {
229 unsigned long dma_end
= min(end
, max_dma
);
230 zhole_size
[ZONE_DMA32
] -= dma_end
- start
;
234 unsigned long normal_end
= min(end
, max
);
235 unsigned long normal_start
= max(start
, max_dma
);
236 zhole_size
[ZONE_NORMAL
] -= normal_end
- normal_start
;
240 free_area_init_node(0, zone_size
, min
, zhole_size
);
243 #endif /* CONFIG_NUMA */
245 int pfn_valid(unsigned long pfn
)
247 phys_addr_t addr
= pfn
<< PAGE_SHIFT
;
249 if ((addr
>> PAGE_SHIFT
) != pfn
)
252 #ifdef CONFIG_SPARSEMEM
253 if (pfn_to_section_nr(pfn
) >= NR_MEM_SECTIONS
)
256 if (!valid_section(__nr_to_section(pfn_to_section_nr(pfn
))))
259 return memblock_is_map_memory(addr
);
261 EXPORT_SYMBOL(pfn_valid
);
263 static phys_addr_t memory_limit
= PHYS_ADDR_MAX
;
266 * Limit the memory size that was specified via FDT.
268 static int __init
early_mem(char *p
)
273 memory_limit
= memparse(p
, &p
) & PAGE_MASK
;
274 pr_notice("Memory limited to %lldMB\n", memory_limit
>> 20);
278 early_param("mem", early_mem
);
280 static int __init
early_init_dt_scan_usablemem(unsigned long node
,
281 const char *uname
, int depth
, void *data
)
283 struct memblock_region
*usablemem
= data
;
287 if (depth
!= 1 || strcmp(uname
, "chosen") != 0)
290 reg
= of_get_flat_dt_prop(node
, "linux,usable-memory-range", &len
);
291 if (!reg
|| (len
< (dt_root_addr_cells
+ dt_root_size_cells
)))
294 usablemem
->base
= dt_mem_next_cell(dt_root_addr_cells
, ®
);
295 usablemem
->size
= dt_mem_next_cell(dt_root_size_cells
, ®
);
300 static void __init
fdt_enforce_memory_region(void)
302 struct memblock_region reg
= {
306 of_scan_flat_dt(early_init_dt_scan_usablemem
, ®
);
309 memblock_cap_memory_range(reg
.base
, reg
.size
);
312 void __init
arm64_memblock_init(void)
314 const s64 linear_region_size
= -(s64
)PAGE_OFFSET
;
316 /* Handle linux,usable-memory-range property */
317 fdt_enforce_memory_region();
319 /* Remove memory above our supported physical address size */
320 memblock_remove(1ULL << PHYS_MASK_SHIFT
, ULLONG_MAX
);
323 * Ensure that the linear region takes up exactly half of the kernel
324 * virtual address space. This way, we can distinguish a linear address
325 * from a kernel/module/vmalloc address by testing a single bit.
327 BUILD_BUG_ON(linear_region_size
!= BIT(VA_BITS
- 1));
330 * Select a suitable value for the base of physical memory.
332 memstart_addr
= round_down(memblock_start_of_DRAM(),
333 ARM64_MEMSTART_ALIGN
);
336 * Remove the memory that we will not be able to cover with the
337 * linear mapping. Take care not to clip the kernel which may be
340 memblock_remove(max_t(u64
, memstart_addr
+ linear_region_size
,
341 __pa_symbol(_end
)), ULLONG_MAX
);
342 if (memstart_addr
+ linear_region_size
< memblock_end_of_DRAM()) {
343 /* ensure that memstart_addr remains sufficiently aligned */
344 memstart_addr
= round_up(memblock_end_of_DRAM() - linear_region_size
,
345 ARM64_MEMSTART_ALIGN
);
346 memblock_remove(0, memstart_addr
);
350 * Apply the memory limit if it was set. Since the kernel may be loaded
351 * high up in memory, add back the kernel region that must be accessible
352 * via the linear mapping.
354 if (memory_limit
!= PHYS_ADDR_MAX
) {
355 memblock_mem_limit_remove_map(memory_limit
);
356 memblock_add(__pa_symbol(_text
), (u64
)(_end
- _text
));
359 if (IS_ENABLED(CONFIG_BLK_DEV_INITRD
) && phys_initrd_size
) {
361 * Add back the memory we just removed if it results in the
362 * initrd to become inaccessible via the linear mapping.
363 * Otherwise, this is a no-op
365 u64 base
= phys_initrd_start
& PAGE_MASK
;
366 u64 size
= PAGE_ALIGN(phys_initrd_size
);
369 * We can only add back the initrd memory if we don't end up
370 * with more memory than we can address via the linear mapping.
371 * It is up to the bootloader to position the kernel and the
372 * initrd reasonably close to each other (i.e., within 32 GB of
373 * each other) so that all granule/#levels combinations can
374 * always access both.
376 if (WARN(base
< memblock_start_of_DRAM() ||
377 base
+ size
> memblock_start_of_DRAM() +
379 "initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
382 memblock_remove(base
, size
); /* clear MEMBLOCK_ flags */
383 memblock_add(base
, size
);
384 memblock_reserve(base
, size
);
388 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE
)) {
389 extern u16 memstart_offset_seed
;
390 u64 range
= linear_region_size
-
391 (memblock_end_of_DRAM() - memblock_start_of_DRAM());
394 * If the size of the linear region exceeds, by a sufficient
395 * margin, the size of the region that the available physical
396 * memory spans, randomize the linear region as well.
398 if (memstart_offset_seed
> 0 && range
>= ARM64_MEMSTART_ALIGN
) {
399 range
/= ARM64_MEMSTART_ALIGN
;
400 memstart_addr
-= ARM64_MEMSTART_ALIGN
*
401 ((range
* memstart_offset_seed
) >> 16);
406 * Register the kernel text, kernel data, initrd, and initial
407 * pagetables with memblock.
409 memblock_reserve(__pa_symbol(_text
), _end
- _text
);
410 if (IS_ENABLED(CONFIG_BLK_DEV_INITRD
) && phys_initrd_size
) {
411 /* the generic initrd code expects virtual addresses */
412 initrd_start
= __phys_to_virt(phys_initrd_start
);
413 initrd_end
= initrd_start
+ phys_initrd_size
;
416 early_init_fdt_scan_reserved_mem();
418 /* 4GB maximum for 32-bit only capable devices */
419 if (IS_ENABLED(CONFIG_ZONE_DMA32
))
420 arm64_dma_phys_limit
= max_zone_dma_phys();
422 arm64_dma_phys_limit
= PHYS_MASK
+ 1;
424 reserve_crashkernel();
426 reserve_elfcorehdr();
428 high_memory
= __va(memblock_end_of_DRAM() - 1) + 1;
430 dma_contiguous_reserve(arm64_dma_phys_limit
);
433 void __init
bootmem_init(void)
435 unsigned long min
, max
;
437 min
= PFN_UP(memblock_start_of_DRAM());
438 max
= PFN_DOWN(memblock_end_of_DRAM());
440 early_memtest(min
<< PAGE_SHIFT
, max
<< PAGE_SHIFT
);
442 max_pfn
= max_low_pfn
= max
;
446 * Sparsemem tries to allocate bootmem in memory_present(), so must be
447 * done after the fixed reservations.
452 zone_sizes_init(min
, max
);
457 #ifndef CONFIG_SPARSEMEM_VMEMMAP
458 static inline void free_memmap(unsigned long start_pfn
, unsigned long end_pfn
)
460 struct page
*start_pg
, *end_pg
;
461 unsigned long pg
, pgend
;
464 * Convert start_pfn/end_pfn to a struct page pointer.
466 start_pg
= pfn_to_page(start_pfn
- 1) + 1;
467 end_pg
= pfn_to_page(end_pfn
- 1) + 1;
470 * Convert to physical addresses, and round start upwards and end
473 pg
= (unsigned long)PAGE_ALIGN(__pa(start_pg
));
474 pgend
= (unsigned long)__pa(end_pg
) & PAGE_MASK
;
477 * If there are free pages between these, free the section of the
481 memblock_free(pg
, pgend
- pg
);
485 * The mem_map array can get very big. Free the unused area of the memory map.
487 static void __init
free_unused_memmap(void)
489 unsigned long start
, prev_end
= 0;
490 struct memblock_region
*reg
;
492 for_each_memblock(memory
, reg
) {
493 start
= __phys_to_pfn(reg
->base
);
495 #ifdef CONFIG_SPARSEMEM
497 * Take care not to free memmap entries that don't exist due
498 * to SPARSEMEM sections which aren't present.
500 start
= min(start
, ALIGN(prev_end
, PAGES_PER_SECTION
));
503 * If we had a previous bank, and there is a space between the
504 * current bank and the previous, free it.
506 if (prev_end
&& prev_end
< start
)
507 free_memmap(prev_end
, start
);
510 * Align up here since the VM subsystem insists that the
511 * memmap entries are valid from the bank end aligned to
512 * MAX_ORDER_NR_PAGES.
514 prev_end
= ALIGN(__phys_to_pfn(reg
->base
+ reg
->size
),
518 #ifdef CONFIG_SPARSEMEM
519 if (!IS_ALIGNED(prev_end
, PAGES_PER_SECTION
))
520 free_memmap(prev_end
, ALIGN(prev_end
, PAGES_PER_SECTION
));
523 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
526 * mem_init() marks the free areas in the mem_map and tells us how much memory
527 * is free. This is done after various parts of the system have claimed their
528 * memory after the kernel image.
530 void __init
mem_init(void)
532 if (swiotlb_force
== SWIOTLB_FORCE
||
533 max_pfn
> (arm64_dma_phys_limit
>> PAGE_SHIFT
))
536 swiotlb_force
= SWIOTLB_NO_FORCE
;
538 set_max_mapnr(pfn_to_page(max_pfn
) - mem_map
);
540 #ifndef CONFIG_SPARSEMEM_VMEMMAP
541 free_unused_memmap();
543 /* this will put all unused low memory onto the freelists */
546 mem_init_print_info(NULL
);
549 * Check boundaries twice: Some fundamental inconsistencies can be
550 * detected at build time already.
553 BUILD_BUG_ON(TASK_SIZE_32
> DEFAULT_MAP_WINDOW_64
);
556 if (PAGE_SIZE
>= 16384 && get_num_physpages() <= 128) {
557 extern int sysctl_overcommit_memory
;
559 * On a machine this small we won't get anywhere without
560 * overcommit, so turn it on by default.
562 sysctl_overcommit_memory
= OVERCOMMIT_ALWAYS
;
566 void free_initmem(void)
568 free_reserved_area(lm_alias(__init_begin
),
569 lm_alias(__init_end
),
572 * Unmap the __init region but leave the VM area in place. This
573 * prevents the region from being reused for kernel modules, which
574 * is not supported by kallsyms.
576 unmap_kernel_range((u64
)__init_begin
, (u64
)(__init_end
- __init_begin
));
579 #ifdef CONFIG_BLK_DEV_INITRD
581 static int keep_initrd __initdata
;
583 void __init
free_initrd_mem(unsigned long start
, unsigned long end
)
586 free_reserved_area((void *)start
, (void *)end
, 0, "initrd");
587 memblock_free(__virt_to_phys(start
), end
- start
);
591 static int __init
keepinitrd_setup(char *__unused
)
597 __setup("keepinitrd", keepinitrd_setup
);
601 * Dump out memory limit information on panic.
603 static int dump_mem_limit(struct notifier_block
*self
, unsigned long v
, void *p
)
605 if (memory_limit
!= PHYS_ADDR_MAX
) {
606 pr_emerg("Memory Limit: %llu MB\n", memory_limit
>> 20);
608 pr_emerg("Memory Limit: none\n");
613 static struct notifier_block mem_limit_notifier
= {
614 .notifier_call
= dump_mem_limit
,
617 static int __init
register_mem_limit_dumper(void)
619 atomic_notifier_chain_register(&panic_notifier_list
,
620 &mem_limit_notifier
);
623 __initcall(register_mem_limit_dumper
);