mtd: nand: omap: Fix comment in platform data using wrong Kconfig symbol
[linux/fpc-iii.git] / arch / x86 / kernel / alternative.c
blob9a79c7808f9cc13903521b2beb6b0c5c12210485
1 #define pr_fmt(fmt) "SMP alternatives: " fmt
3 #include <linux/module.h>
4 #include <linux/sched.h>
5 #include <linux/mutex.h>
6 #include <linux/list.h>
7 #include <linux/stringify.h>
8 #include <linux/mm.h>
9 #include <linux/vmalloc.h>
10 #include <linux/memory.h>
11 #include <linux/stop_machine.h>
12 #include <linux/slab.h>
13 #include <linux/kdebug.h>
14 #include <linux/kprobes.h>
15 #include <asm/text-patching.h>
16 #include <asm/alternative.h>
17 #include <asm/sections.h>
18 #include <asm/pgtable.h>
19 #include <asm/mce.h>
20 #include <asm/nmi.h>
21 #include <asm/cacheflush.h>
22 #include <asm/tlbflush.h>
23 #include <asm/io.h>
24 #include <asm/fixmap.h>
26 int __read_mostly alternatives_patched;
28 EXPORT_SYMBOL_GPL(alternatives_patched);
30 #define MAX_PATCH_LEN (255-1)
32 static int __initdata_or_module debug_alternative;
34 static int __init debug_alt(char *str)
36 debug_alternative = 1;
37 return 1;
39 __setup("debug-alternative", debug_alt);
41 static int noreplace_smp;
43 static int __init setup_noreplace_smp(char *str)
45 noreplace_smp = 1;
46 return 1;
48 __setup("noreplace-smp", setup_noreplace_smp);
50 #define DPRINTK(fmt, args...) \
51 do { \
52 if (debug_alternative) \
53 printk(KERN_DEBUG "%s: " fmt "\n", __func__, ##args); \
54 } while (0)
56 #define DUMP_BYTES(buf, len, fmt, args...) \
57 do { \
58 if (unlikely(debug_alternative)) { \
59 int j; \
61 if (!(len)) \
62 break; \
64 printk(KERN_DEBUG fmt, ##args); \
65 for (j = 0; j < (len) - 1; j++) \
66 printk(KERN_CONT "%02hhx ", buf[j]); \
67 printk(KERN_CONT "%02hhx\n", buf[j]); \
68 } \
69 } while (0)
72 * Each GENERIC_NOPX is of X bytes, and defined as an array of bytes
73 * that correspond to that nop. Getting from one nop to the next, we
74 * add to the array the offset that is equal to the sum of all sizes of
75 * nops preceding the one we are after.
77 * Note: The GENERIC_NOP5_ATOMIC is at the end, as it breaks the
78 * nice symmetry of sizes of the previous nops.
80 #if defined(GENERIC_NOP1) && !defined(CONFIG_X86_64)
81 static const unsigned char intelnops[] =
83 GENERIC_NOP1,
84 GENERIC_NOP2,
85 GENERIC_NOP3,
86 GENERIC_NOP4,
87 GENERIC_NOP5,
88 GENERIC_NOP6,
89 GENERIC_NOP7,
90 GENERIC_NOP8,
91 GENERIC_NOP5_ATOMIC
93 static const unsigned char * const intel_nops[ASM_NOP_MAX+2] =
95 NULL,
96 intelnops,
97 intelnops + 1,
98 intelnops + 1 + 2,
99 intelnops + 1 + 2 + 3,
100 intelnops + 1 + 2 + 3 + 4,
101 intelnops + 1 + 2 + 3 + 4 + 5,
102 intelnops + 1 + 2 + 3 + 4 + 5 + 6,
103 intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
104 intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
106 #endif
108 #ifdef K8_NOP1
109 static const unsigned char k8nops[] =
111 K8_NOP1,
112 K8_NOP2,
113 K8_NOP3,
114 K8_NOP4,
115 K8_NOP5,
116 K8_NOP6,
117 K8_NOP7,
118 K8_NOP8,
119 K8_NOP5_ATOMIC
121 static const unsigned char * const k8_nops[ASM_NOP_MAX+2] =
123 NULL,
124 k8nops,
125 k8nops + 1,
126 k8nops + 1 + 2,
127 k8nops + 1 + 2 + 3,
128 k8nops + 1 + 2 + 3 + 4,
129 k8nops + 1 + 2 + 3 + 4 + 5,
130 k8nops + 1 + 2 + 3 + 4 + 5 + 6,
131 k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
132 k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
134 #endif
136 #if defined(K7_NOP1) && !defined(CONFIG_X86_64)
137 static const unsigned char k7nops[] =
139 K7_NOP1,
140 K7_NOP2,
141 K7_NOP3,
142 K7_NOP4,
143 K7_NOP5,
144 K7_NOP6,
145 K7_NOP7,
146 K7_NOP8,
147 K7_NOP5_ATOMIC
149 static const unsigned char * const k7_nops[ASM_NOP_MAX+2] =
151 NULL,
152 k7nops,
153 k7nops + 1,
154 k7nops + 1 + 2,
155 k7nops + 1 + 2 + 3,
156 k7nops + 1 + 2 + 3 + 4,
157 k7nops + 1 + 2 + 3 + 4 + 5,
158 k7nops + 1 + 2 + 3 + 4 + 5 + 6,
159 k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
160 k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
162 #endif
164 #ifdef P6_NOP1
165 static const unsigned char p6nops[] =
167 P6_NOP1,
168 P6_NOP2,
169 P6_NOP3,
170 P6_NOP4,
171 P6_NOP5,
172 P6_NOP6,
173 P6_NOP7,
174 P6_NOP8,
175 P6_NOP5_ATOMIC
177 static const unsigned char * const p6_nops[ASM_NOP_MAX+2] =
179 NULL,
180 p6nops,
181 p6nops + 1,
182 p6nops + 1 + 2,
183 p6nops + 1 + 2 + 3,
184 p6nops + 1 + 2 + 3 + 4,
185 p6nops + 1 + 2 + 3 + 4 + 5,
186 p6nops + 1 + 2 + 3 + 4 + 5 + 6,
187 p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
188 p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
190 #endif
192 /* Initialize these to a safe default */
193 #ifdef CONFIG_X86_64
194 const unsigned char * const *ideal_nops = p6_nops;
195 #else
196 const unsigned char * const *ideal_nops = intel_nops;
197 #endif
199 void __init arch_init_ideal_nops(void)
201 switch (boot_cpu_data.x86_vendor) {
202 case X86_VENDOR_INTEL:
204 * Due to a decoder implementation quirk, some
205 * specific Intel CPUs actually perform better with
206 * the "k8_nops" than with the SDM-recommended NOPs.
208 if (boot_cpu_data.x86 == 6 &&
209 boot_cpu_data.x86_model >= 0x0f &&
210 boot_cpu_data.x86_model != 0x1c &&
211 boot_cpu_data.x86_model != 0x26 &&
212 boot_cpu_data.x86_model != 0x27 &&
213 boot_cpu_data.x86_model < 0x30) {
214 ideal_nops = k8_nops;
215 } else if (boot_cpu_has(X86_FEATURE_NOPL)) {
216 ideal_nops = p6_nops;
217 } else {
218 #ifdef CONFIG_X86_64
219 ideal_nops = k8_nops;
220 #else
221 ideal_nops = intel_nops;
222 #endif
224 break;
226 case X86_VENDOR_HYGON:
227 ideal_nops = p6_nops;
228 return;
230 case X86_VENDOR_AMD:
231 if (boot_cpu_data.x86 > 0xf) {
232 ideal_nops = p6_nops;
233 return;
236 /* fall through */
238 default:
239 #ifdef CONFIG_X86_64
240 ideal_nops = k8_nops;
241 #else
242 if (boot_cpu_has(X86_FEATURE_K8))
243 ideal_nops = k8_nops;
244 else if (boot_cpu_has(X86_FEATURE_K7))
245 ideal_nops = k7_nops;
246 else
247 ideal_nops = intel_nops;
248 #endif
252 /* Use this to add nops to a buffer, then text_poke the whole buffer. */
253 static void __init_or_module add_nops(void *insns, unsigned int len)
255 while (len > 0) {
256 unsigned int noplen = len;
257 if (noplen > ASM_NOP_MAX)
258 noplen = ASM_NOP_MAX;
259 memcpy(insns, ideal_nops[noplen], noplen);
260 insns += noplen;
261 len -= noplen;
265 extern struct alt_instr __alt_instructions[], __alt_instructions_end[];
266 extern s32 __smp_locks[], __smp_locks_end[];
267 void *text_poke_early(void *addr, const void *opcode, size_t len);
270 * Are we looking at a near JMP with a 1 or 4-byte displacement.
272 static inline bool is_jmp(const u8 opcode)
274 return opcode == 0xeb || opcode == 0xe9;
277 static void __init_or_module
278 recompute_jump(struct alt_instr *a, u8 *orig_insn, u8 *repl_insn, u8 *insnbuf)
280 u8 *next_rip, *tgt_rip;
281 s32 n_dspl, o_dspl;
282 int repl_len;
284 if (a->replacementlen != 5)
285 return;
287 o_dspl = *(s32 *)(insnbuf + 1);
289 /* next_rip of the replacement JMP */
290 next_rip = repl_insn + a->replacementlen;
291 /* target rip of the replacement JMP */
292 tgt_rip = next_rip + o_dspl;
293 n_dspl = tgt_rip - orig_insn;
295 DPRINTK("target RIP: %px, new_displ: 0x%x", tgt_rip, n_dspl);
297 if (tgt_rip - orig_insn >= 0) {
298 if (n_dspl - 2 <= 127)
299 goto two_byte_jmp;
300 else
301 goto five_byte_jmp;
302 /* negative offset */
303 } else {
304 if (((n_dspl - 2) & 0xff) == (n_dspl - 2))
305 goto two_byte_jmp;
306 else
307 goto five_byte_jmp;
310 two_byte_jmp:
311 n_dspl -= 2;
313 insnbuf[0] = 0xeb;
314 insnbuf[1] = (s8)n_dspl;
315 add_nops(insnbuf + 2, 3);
317 repl_len = 2;
318 goto done;
320 five_byte_jmp:
321 n_dspl -= 5;
323 insnbuf[0] = 0xe9;
324 *(s32 *)&insnbuf[1] = n_dspl;
326 repl_len = 5;
328 done:
330 DPRINTK("final displ: 0x%08x, JMP 0x%lx",
331 n_dspl, (unsigned long)orig_insn + n_dspl + repl_len);
335 * "noinline" to cause control flow change and thus invalidate I$ and
336 * cause refetch after modification.
338 static void __init_or_module noinline optimize_nops(struct alt_instr *a, u8 *instr)
340 unsigned long flags;
341 int i;
343 for (i = 0; i < a->padlen; i++) {
344 if (instr[i] != 0x90)
345 return;
348 local_irq_save(flags);
349 add_nops(instr + (a->instrlen - a->padlen), a->padlen);
350 local_irq_restore(flags);
352 DUMP_BYTES(instr, a->instrlen, "%px: [%d:%d) optimized NOPs: ",
353 instr, a->instrlen - a->padlen, a->padlen);
357 * Replace instructions with better alternatives for this CPU type. This runs
358 * before SMP is initialized to avoid SMP problems with self modifying code.
359 * This implies that asymmetric systems where APs have less capabilities than
360 * the boot processor are not handled. Tough. Make sure you disable such
361 * features by hand.
363 * Marked "noinline" to cause control flow change and thus insn cache
364 * to refetch changed I$ lines.
366 void __init_or_module noinline apply_alternatives(struct alt_instr *start,
367 struct alt_instr *end)
369 struct alt_instr *a;
370 u8 *instr, *replacement;
371 u8 insnbuf[MAX_PATCH_LEN];
373 DPRINTK("alt table %px, -> %px", start, end);
375 * The scan order should be from start to end. A later scanned
376 * alternative code can overwrite previously scanned alternative code.
377 * Some kernel functions (e.g. memcpy, memset, etc) use this order to
378 * patch code.
380 * So be careful if you want to change the scan order to any other
381 * order.
383 for (a = start; a < end; a++) {
384 int insnbuf_sz = 0;
386 instr = (u8 *)&a->instr_offset + a->instr_offset;
387 replacement = (u8 *)&a->repl_offset + a->repl_offset;
388 BUG_ON(a->instrlen > sizeof(insnbuf));
389 BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32);
390 if (!boot_cpu_has(a->cpuid)) {
391 if (a->padlen > 1)
392 optimize_nops(a, instr);
394 continue;
397 DPRINTK("feat: %d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d), pad: %d",
398 a->cpuid >> 5,
399 a->cpuid & 0x1f,
400 instr, instr, a->instrlen,
401 replacement, a->replacementlen, a->padlen);
403 DUMP_BYTES(instr, a->instrlen, "%px: old_insn: ", instr);
404 DUMP_BYTES(replacement, a->replacementlen, "%px: rpl_insn: ", replacement);
406 memcpy(insnbuf, replacement, a->replacementlen);
407 insnbuf_sz = a->replacementlen;
410 * 0xe8 is a relative jump; fix the offset.
412 * Instruction length is checked before the opcode to avoid
413 * accessing uninitialized bytes for zero-length replacements.
415 if (a->replacementlen == 5 && *insnbuf == 0xe8) {
416 *(s32 *)(insnbuf + 1) += replacement - instr;
417 DPRINTK("Fix CALL offset: 0x%x, CALL 0x%lx",
418 *(s32 *)(insnbuf + 1),
419 (unsigned long)instr + *(s32 *)(insnbuf + 1) + 5);
422 if (a->replacementlen && is_jmp(replacement[0]))
423 recompute_jump(a, instr, replacement, insnbuf);
425 if (a->instrlen > a->replacementlen) {
426 add_nops(insnbuf + a->replacementlen,
427 a->instrlen - a->replacementlen);
428 insnbuf_sz += a->instrlen - a->replacementlen;
430 DUMP_BYTES(insnbuf, insnbuf_sz, "%px: final_insn: ", instr);
432 text_poke_early(instr, insnbuf, insnbuf_sz);
436 #ifdef CONFIG_SMP
437 static void alternatives_smp_lock(const s32 *start, const s32 *end,
438 u8 *text, u8 *text_end)
440 const s32 *poff;
442 for (poff = start; poff < end; poff++) {
443 u8 *ptr = (u8 *)poff + *poff;
445 if (!*poff || ptr < text || ptr >= text_end)
446 continue;
447 /* turn DS segment override prefix into lock prefix */
448 if (*ptr == 0x3e)
449 text_poke(ptr, ((unsigned char []){0xf0}), 1);
453 static void alternatives_smp_unlock(const s32 *start, const s32 *end,
454 u8 *text, u8 *text_end)
456 const s32 *poff;
458 for (poff = start; poff < end; poff++) {
459 u8 *ptr = (u8 *)poff + *poff;
461 if (!*poff || ptr < text || ptr >= text_end)
462 continue;
463 /* turn lock prefix into DS segment override prefix */
464 if (*ptr == 0xf0)
465 text_poke(ptr, ((unsigned char []){0x3E}), 1);
469 struct smp_alt_module {
470 /* what is this ??? */
471 struct module *mod;
472 char *name;
474 /* ptrs to lock prefixes */
475 const s32 *locks;
476 const s32 *locks_end;
478 /* .text segment, needed to avoid patching init code ;) */
479 u8 *text;
480 u8 *text_end;
482 struct list_head next;
484 static LIST_HEAD(smp_alt_modules);
485 static bool uniproc_patched = false; /* protected by text_mutex */
487 void __init_or_module alternatives_smp_module_add(struct module *mod,
488 char *name,
489 void *locks, void *locks_end,
490 void *text, void *text_end)
492 struct smp_alt_module *smp;
494 mutex_lock(&text_mutex);
495 if (!uniproc_patched)
496 goto unlock;
498 if (num_possible_cpus() == 1)
499 /* Don't bother remembering, we'll never have to undo it. */
500 goto smp_unlock;
502 smp = kzalloc(sizeof(*smp), GFP_KERNEL);
503 if (NULL == smp)
504 /* we'll run the (safe but slow) SMP code then ... */
505 goto unlock;
507 smp->mod = mod;
508 smp->name = name;
509 smp->locks = locks;
510 smp->locks_end = locks_end;
511 smp->text = text;
512 smp->text_end = text_end;
513 DPRINTK("locks %p -> %p, text %p -> %p, name %s\n",
514 smp->locks, smp->locks_end,
515 smp->text, smp->text_end, smp->name);
517 list_add_tail(&smp->next, &smp_alt_modules);
518 smp_unlock:
519 alternatives_smp_unlock(locks, locks_end, text, text_end);
520 unlock:
521 mutex_unlock(&text_mutex);
524 void __init_or_module alternatives_smp_module_del(struct module *mod)
526 struct smp_alt_module *item;
528 mutex_lock(&text_mutex);
529 list_for_each_entry(item, &smp_alt_modules, next) {
530 if (mod != item->mod)
531 continue;
532 list_del(&item->next);
533 kfree(item);
534 break;
536 mutex_unlock(&text_mutex);
539 void alternatives_enable_smp(void)
541 struct smp_alt_module *mod;
543 /* Why bother if there are no other CPUs? */
544 BUG_ON(num_possible_cpus() == 1);
546 mutex_lock(&text_mutex);
548 if (uniproc_patched) {
549 pr_info("switching to SMP code\n");
550 BUG_ON(num_online_cpus() != 1);
551 clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
552 clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
553 list_for_each_entry(mod, &smp_alt_modules, next)
554 alternatives_smp_lock(mod->locks, mod->locks_end,
555 mod->text, mod->text_end);
556 uniproc_patched = false;
558 mutex_unlock(&text_mutex);
562 * Return 1 if the address range is reserved for SMP-alternatives.
563 * Must hold text_mutex.
565 int alternatives_text_reserved(void *start, void *end)
567 struct smp_alt_module *mod;
568 const s32 *poff;
569 u8 *text_start = start;
570 u8 *text_end = end;
572 lockdep_assert_held(&text_mutex);
574 list_for_each_entry(mod, &smp_alt_modules, next) {
575 if (mod->text > text_end || mod->text_end < text_start)
576 continue;
577 for (poff = mod->locks; poff < mod->locks_end; poff++) {
578 const u8 *ptr = (const u8 *)poff + *poff;
580 if (text_start <= ptr && text_end > ptr)
581 return 1;
585 return 0;
587 #endif /* CONFIG_SMP */
589 #ifdef CONFIG_PARAVIRT
590 void __init_or_module apply_paravirt(struct paravirt_patch_site *start,
591 struct paravirt_patch_site *end)
593 struct paravirt_patch_site *p;
594 char insnbuf[MAX_PATCH_LEN];
596 for (p = start; p < end; p++) {
597 unsigned int used;
599 BUG_ON(p->len > MAX_PATCH_LEN);
600 /* prep the buffer with the original instructions */
601 memcpy(insnbuf, p->instr, p->len);
602 used = pv_ops.init.patch(p->instrtype, insnbuf,
603 (unsigned long)p->instr, p->len);
605 BUG_ON(used > p->len);
607 /* Pad the rest with nops */
608 add_nops(insnbuf + used, p->len - used);
609 text_poke_early(p->instr, insnbuf, p->len);
612 extern struct paravirt_patch_site __start_parainstructions[],
613 __stop_parainstructions[];
614 #endif /* CONFIG_PARAVIRT */
616 void __init alternative_instructions(void)
618 /* The patching is not fully atomic, so try to avoid local interruptions
619 that might execute the to be patched code.
620 Other CPUs are not running. */
621 stop_nmi();
624 * Don't stop machine check exceptions while patching.
625 * MCEs only happen when something got corrupted and in this
626 * case we must do something about the corruption.
627 * Ignoring it is worse than a unlikely patching race.
628 * Also machine checks tend to be broadcast and if one CPU
629 * goes into machine check the others follow quickly, so we don't
630 * expect a machine check to cause undue problems during to code
631 * patching.
634 apply_alternatives(__alt_instructions, __alt_instructions_end);
636 #ifdef CONFIG_SMP
637 /* Patch to UP if other cpus not imminent. */
638 if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
639 uniproc_patched = true;
640 alternatives_smp_module_add(NULL, "core kernel",
641 __smp_locks, __smp_locks_end,
642 _text, _etext);
645 if (!uniproc_patched || num_possible_cpus() == 1)
646 free_init_pages("SMP alternatives",
647 (unsigned long)__smp_locks,
648 (unsigned long)__smp_locks_end);
649 #endif
651 apply_paravirt(__parainstructions, __parainstructions_end);
653 restart_nmi();
654 alternatives_patched = 1;
658 * text_poke_early - Update instructions on a live kernel at boot time
659 * @addr: address to modify
660 * @opcode: source of the copy
661 * @len: length to copy
663 * When you use this code to patch more than one byte of an instruction
664 * you need to make sure that other CPUs cannot execute this code in parallel.
665 * Also no thread must be currently preempted in the middle of these
666 * instructions. And on the local CPU you need to be protected again NMI or MCE
667 * handlers seeing an inconsistent instruction while you patch.
669 void *__init_or_module text_poke_early(void *addr, const void *opcode,
670 size_t len)
672 unsigned long flags;
673 local_irq_save(flags);
674 memcpy(addr, opcode, len);
675 local_irq_restore(flags);
676 sync_core();
677 /* Could also do a CLFLUSH here to speed up CPU recovery; but
678 that causes hangs on some VIA CPUs. */
679 return addr;
683 * text_poke - Update instructions on a live kernel
684 * @addr: address to modify
685 * @opcode: source of the copy
686 * @len: length to copy
688 * Only atomic text poke/set should be allowed when not doing early patching.
689 * It means the size must be writable atomically and the address must be aligned
690 * in a way that permits an atomic write. It also makes sure we fit on a single
691 * page.
693 void *text_poke(void *addr, const void *opcode, size_t len)
695 unsigned long flags;
696 char *vaddr;
697 struct page *pages[2];
698 int i;
701 * While boot memory allocator is runnig we cannot use struct
702 * pages as they are not yet initialized.
704 BUG_ON(!after_bootmem);
706 lockdep_assert_held(&text_mutex);
708 if (!core_kernel_text((unsigned long)addr)) {
709 pages[0] = vmalloc_to_page(addr);
710 pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
711 } else {
712 pages[0] = virt_to_page(addr);
713 WARN_ON(!PageReserved(pages[0]));
714 pages[1] = virt_to_page(addr + PAGE_SIZE);
716 BUG_ON(!pages[0]);
717 local_irq_save(flags);
718 set_fixmap(FIX_TEXT_POKE0, page_to_phys(pages[0]));
719 if (pages[1])
720 set_fixmap(FIX_TEXT_POKE1, page_to_phys(pages[1]));
721 vaddr = (char *)fix_to_virt(FIX_TEXT_POKE0);
722 memcpy(&vaddr[(unsigned long)addr & ~PAGE_MASK], opcode, len);
723 clear_fixmap(FIX_TEXT_POKE0);
724 if (pages[1])
725 clear_fixmap(FIX_TEXT_POKE1);
726 local_flush_tlb();
727 sync_core();
728 /* Could also do a CLFLUSH here to speed up CPU recovery; but
729 that causes hangs on some VIA CPUs. */
730 for (i = 0; i < len; i++)
731 BUG_ON(((char *)addr)[i] != ((char *)opcode)[i]);
732 local_irq_restore(flags);
733 return addr;
736 static void do_sync_core(void *info)
738 sync_core();
741 static bool bp_patching_in_progress;
742 static void *bp_int3_handler, *bp_int3_addr;
744 int poke_int3_handler(struct pt_regs *regs)
747 * Having observed our INT3 instruction, we now must observe
748 * bp_patching_in_progress.
750 * in_progress = TRUE INT3
751 * WMB RMB
752 * write INT3 if (in_progress)
754 * Idem for bp_int3_handler.
756 smp_rmb();
758 if (likely(!bp_patching_in_progress))
759 return 0;
761 if (user_mode(regs) || regs->ip != (unsigned long)bp_int3_addr)
762 return 0;
764 /* set up the specified breakpoint handler */
765 regs->ip = (unsigned long) bp_int3_handler;
767 return 1;
769 NOKPROBE_SYMBOL(poke_int3_handler);
772 * text_poke_bp() -- update instructions on live kernel on SMP
773 * @addr: address to patch
774 * @opcode: opcode of new instruction
775 * @len: length to copy
776 * @handler: address to jump to when the temporary breakpoint is hit
778 * Modify multi-byte instruction by using int3 breakpoint on SMP.
779 * We completely avoid stop_machine() here, and achieve the
780 * synchronization using int3 breakpoint.
782 * The way it is done:
783 * - add a int3 trap to the address that will be patched
784 * - sync cores
785 * - update all but the first byte of the patched range
786 * - sync cores
787 * - replace the first byte (int3) by the first byte of
788 * replacing opcode
789 * - sync cores
791 void *text_poke_bp(void *addr, const void *opcode, size_t len, void *handler)
793 unsigned char int3 = 0xcc;
795 bp_int3_handler = handler;
796 bp_int3_addr = (u8 *)addr + sizeof(int3);
797 bp_patching_in_progress = true;
799 lockdep_assert_held(&text_mutex);
802 * Corresponding read barrier in int3 notifier for making sure the
803 * in_progress and handler are correctly ordered wrt. patching.
805 smp_wmb();
807 text_poke(addr, &int3, sizeof(int3));
809 on_each_cpu(do_sync_core, NULL, 1);
811 if (len - sizeof(int3) > 0) {
812 /* patch all but the first byte */
813 text_poke((char *)addr + sizeof(int3),
814 (const char *) opcode + sizeof(int3),
815 len - sizeof(int3));
817 * According to Intel, this core syncing is very likely
818 * not necessary and we'd be safe even without it. But
819 * better safe than sorry (plus there's not only Intel).
821 on_each_cpu(do_sync_core, NULL, 1);
824 /* patch the first byte */
825 text_poke(addr, opcode, sizeof(int3));
827 on_each_cpu(do_sync_core, NULL, 1);
829 * sync_core() implies an smp_mb() and orders this store against
830 * the writing of the new instruction.
832 bp_patching_in_progress = false;
834 return addr;