mtd: nand: omap: Fix comment in platform data using wrong Kconfig symbol
[linux/fpc-iii.git] / arch / x86 / lib / insn-eval.c
blobcf00ab6c662108280aadb7c8ffe719645b1699c5
1 /*
2 * Utility functions for x86 operand and address decoding
4 * Copyright (C) Intel Corporation 2017
5 */
6 #include <linux/kernel.h>
7 #include <linux/string.h>
8 #include <linux/ratelimit.h>
9 #include <linux/mmu_context.h>
10 #include <asm/desc_defs.h>
11 #include <asm/desc.h>
12 #include <asm/inat.h>
13 #include <asm/insn.h>
14 #include <asm/insn-eval.h>
15 #include <asm/ldt.h>
16 #include <asm/vm86.h>
18 #undef pr_fmt
19 #define pr_fmt(fmt) "insn: " fmt
21 enum reg_type {
22 REG_TYPE_RM = 0,
23 REG_TYPE_INDEX,
24 REG_TYPE_BASE,
27 /**
28 * is_string_insn() - Determine if instruction is a string instruction
29 * @insn: Instruction containing the opcode to inspect
31 * Returns:
33 * true if the instruction, determined by the opcode, is any of the
34 * string instructions as defined in the Intel Software Development manual.
35 * False otherwise.
37 static bool is_string_insn(struct insn *insn)
39 insn_get_opcode(insn);
41 /* All string instructions have a 1-byte opcode. */
42 if (insn->opcode.nbytes != 1)
43 return false;
45 switch (insn->opcode.bytes[0]) {
46 case 0x6c ... 0x6f: /* INS, OUTS */
47 case 0xa4 ... 0xa7: /* MOVS, CMPS */
48 case 0xaa ... 0xaf: /* STOS, LODS, SCAS */
49 return true;
50 default:
51 return false;
55 /**
56 * get_seg_reg_override_idx() - obtain segment register override index
57 * @insn: Valid instruction with segment override prefixes
59 * Inspect the instruction prefixes in @insn and find segment overrides, if any.
61 * Returns:
63 * A constant identifying the segment register to use, among CS, SS, DS,
64 * ES, FS, or GS. INAT_SEG_REG_DEFAULT is returned if no segment override
65 * prefixes were found.
67 * -EINVAL in case of error.
69 static int get_seg_reg_override_idx(struct insn *insn)
71 int idx = INAT_SEG_REG_DEFAULT;
72 int num_overrides = 0, i;
74 insn_get_prefixes(insn);
76 /* Look for any segment override prefixes. */
77 for (i = 0; i < insn->prefixes.nbytes; i++) {
78 insn_attr_t attr;
80 attr = inat_get_opcode_attribute(insn->prefixes.bytes[i]);
81 switch (attr) {
82 case INAT_MAKE_PREFIX(INAT_PFX_CS):
83 idx = INAT_SEG_REG_CS;
84 num_overrides++;
85 break;
86 case INAT_MAKE_PREFIX(INAT_PFX_SS):
87 idx = INAT_SEG_REG_SS;
88 num_overrides++;
89 break;
90 case INAT_MAKE_PREFIX(INAT_PFX_DS):
91 idx = INAT_SEG_REG_DS;
92 num_overrides++;
93 break;
94 case INAT_MAKE_PREFIX(INAT_PFX_ES):
95 idx = INAT_SEG_REG_ES;
96 num_overrides++;
97 break;
98 case INAT_MAKE_PREFIX(INAT_PFX_FS):
99 idx = INAT_SEG_REG_FS;
100 num_overrides++;
101 break;
102 case INAT_MAKE_PREFIX(INAT_PFX_GS):
103 idx = INAT_SEG_REG_GS;
104 num_overrides++;
105 break;
106 /* No default action needed. */
110 /* More than one segment override prefix leads to undefined behavior. */
111 if (num_overrides > 1)
112 return -EINVAL;
114 return idx;
118 * check_seg_overrides() - check if segment override prefixes are allowed
119 * @insn: Valid instruction with segment override prefixes
120 * @regoff: Operand offset, in pt_regs, for which the check is performed
122 * For a particular register used in register-indirect addressing, determine if
123 * segment override prefixes can be used. Specifically, no overrides are allowed
124 * for rDI if used with a string instruction.
126 * Returns:
128 * True if segment override prefixes can be used with the register indicated
129 * in @regoff. False if otherwise.
131 static bool check_seg_overrides(struct insn *insn, int regoff)
133 if (regoff == offsetof(struct pt_regs, di) && is_string_insn(insn))
134 return false;
136 return true;
140 * resolve_default_seg() - resolve default segment register index for an operand
141 * @insn: Instruction with opcode and address size. Must be valid.
142 * @regs: Register values as seen when entering kernel mode
143 * @off: Operand offset, in pt_regs, for which resolution is needed
145 * Resolve the default segment register index associated with the instruction
146 * operand register indicated by @off. Such index is resolved based on defaults
147 * described in the Intel Software Development Manual.
149 * Returns:
151 * If in protected mode, a constant identifying the segment register to use,
152 * among CS, SS, ES or DS. If in long mode, INAT_SEG_REG_IGNORE.
154 * -EINVAL in case of error.
156 static int resolve_default_seg(struct insn *insn, struct pt_regs *regs, int off)
158 if (user_64bit_mode(regs))
159 return INAT_SEG_REG_IGNORE;
161 * Resolve the default segment register as described in Section 3.7.4
162 * of the Intel Software Development Manual Vol. 1:
164 * + DS for all references involving r[ABCD]X, and rSI.
165 * + If used in a string instruction, ES for rDI. Otherwise, DS.
166 * + AX, CX and DX are not valid register operands in 16-bit address
167 * encodings but are valid for 32-bit and 64-bit encodings.
168 * + -EDOM is reserved to identify for cases in which no register
169 * is used (i.e., displacement-only addressing). Use DS.
170 * + SS for rSP or rBP.
171 * + CS for rIP.
174 switch (off) {
175 case offsetof(struct pt_regs, ax):
176 case offsetof(struct pt_regs, cx):
177 case offsetof(struct pt_regs, dx):
178 /* Need insn to verify address size. */
179 if (insn->addr_bytes == 2)
180 return -EINVAL;
182 /* fall through */
184 case -EDOM:
185 case offsetof(struct pt_regs, bx):
186 case offsetof(struct pt_regs, si):
187 return INAT_SEG_REG_DS;
189 case offsetof(struct pt_regs, di):
190 if (is_string_insn(insn))
191 return INAT_SEG_REG_ES;
192 return INAT_SEG_REG_DS;
194 case offsetof(struct pt_regs, bp):
195 case offsetof(struct pt_regs, sp):
196 return INAT_SEG_REG_SS;
198 case offsetof(struct pt_regs, ip):
199 return INAT_SEG_REG_CS;
201 default:
202 return -EINVAL;
207 * resolve_seg_reg() - obtain segment register index
208 * @insn: Instruction with operands
209 * @regs: Register values as seen when entering kernel mode
210 * @regoff: Operand offset, in pt_regs, used to deterimine segment register
212 * Determine the segment register associated with the operands and, if
213 * applicable, prefixes and the instruction pointed by @insn.
215 * The segment register associated to an operand used in register-indirect
216 * addressing depends on:
218 * a) Whether running in long mode (in such a case segments are ignored, except
219 * if FS or GS are used).
221 * b) Whether segment override prefixes can be used. Certain instructions and
222 * registers do not allow override prefixes.
224 * c) Whether segment overrides prefixes are found in the instruction prefixes.
226 * d) If there are not segment override prefixes or they cannot be used, the
227 * default segment register associated with the operand register is used.
229 * The function checks first if segment override prefixes can be used with the
230 * operand indicated by @regoff. If allowed, obtain such overridden segment
231 * register index. Lastly, if not prefixes were found or cannot be used, resolve
232 * the segment register index to use based on the defaults described in the
233 * Intel documentation. In long mode, all segment register indexes will be
234 * ignored, except if overrides were found for FS or GS. All these operations
235 * are done using helper functions.
237 * The operand register, @regoff, is represented as the offset from the base of
238 * pt_regs.
240 * As stated, the main use of this function is to determine the segment register
241 * index based on the instruction, its operands and prefixes. Hence, @insn
242 * must be valid. However, if @regoff indicates rIP, we don't need to inspect
243 * @insn at all as in this case CS is used in all cases. This case is checked
244 * before proceeding further.
246 * Please note that this function does not return the value in the segment
247 * register (i.e., the segment selector) but our defined index. The segment
248 * selector needs to be obtained using get_segment_selector() and passing the
249 * segment register index resolved by this function.
251 * Returns:
253 * An index identifying the segment register to use, among CS, SS, DS,
254 * ES, FS, or GS. INAT_SEG_REG_IGNORE is returned if running in long mode.
256 * -EINVAL in case of error.
258 static int resolve_seg_reg(struct insn *insn, struct pt_regs *regs, int regoff)
260 int idx;
263 * In the unlikely event of having to resolve the segment register
264 * index for rIP, do it first. Segment override prefixes should not
265 * be used. Hence, it is not necessary to inspect the instruction,
266 * which may be invalid at this point.
268 if (regoff == offsetof(struct pt_regs, ip)) {
269 if (user_64bit_mode(regs))
270 return INAT_SEG_REG_IGNORE;
271 else
272 return INAT_SEG_REG_CS;
275 if (!insn)
276 return -EINVAL;
278 if (!check_seg_overrides(insn, regoff))
279 return resolve_default_seg(insn, regs, regoff);
281 idx = get_seg_reg_override_idx(insn);
282 if (idx < 0)
283 return idx;
285 if (idx == INAT_SEG_REG_DEFAULT)
286 return resolve_default_seg(insn, regs, regoff);
289 * In long mode, segment override prefixes are ignored, except for
290 * overrides for FS and GS.
292 if (user_64bit_mode(regs)) {
293 if (idx != INAT_SEG_REG_FS &&
294 idx != INAT_SEG_REG_GS)
295 idx = INAT_SEG_REG_IGNORE;
298 return idx;
302 * get_segment_selector() - obtain segment selector
303 * @regs: Register values as seen when entering kernel mode
304 * @seg_reg_idx: Segment register index to use
306 * Obtain the segment selector from any of the CS, SS, DS, ES, FS, GS segment
307 * registers. In CONFIG_X86_32, the segment is obtained from either pt_regs or
308 * kernel_vm86_regs as applicable. In CONFIG_X86_64, CS and SS are obtained
309 * from pt_regs. DS, ES, FS and GS are obtained by reading the actual CPU
310 * registers. This done for only for completeness as in CONFIG_X86_64 segment
311 * registers are ignored.
313 * Returns:
315 * Value of the segment selector, including null when running in
316 * long mode.
318 * -EINVAL on error.
320 static short get_segment_selector(struct pt_regs *regs, int seg_reg_idx)
322 #ifdef CONFIG_X86_64
323 unsigned short sel;
325 switch (seg_reg_idx) {
326 case INAT_SEG_REG_IGNORE:
327 return 0;
328 case INAT_SEG_REG_CS:
329 return (unsigned short)(regs->cs & 0xffff);
330 case INAT_SEG_REG_SS:
331 return (unsigned short)(regs->ss & 0xffff);
332 case INAT_SEG_REG_DS:
333 savesegment(ds, sel);
334 return sel;
335 case INAT_SEG_REG_ES:
336 savesegment(es, sel);
337 return sel;
338 case INAT_SEG_REG_FS:
339 savesegment(fs, sel);
340 return sel;
341 case INAT_SEG_REG_GS:
342 savesegment(gs, sel);
343 return sel;
344 default:
345 return -EINVAL;
347 #else /* CONFIG_X86_32 */
348 struct kernel_vm86_regs *vm86regs = (struct kernel_vm86_regs *)regs;
350 if (v8086_mode(regs)) {
351 switch (seg_reg_idx) {
352 case INAT_SEG_REG_CS:
353 return (unsigned short)(regs->cs & 0xffff);
354 case INAT_SEG_REG_SS:
355 return (unsigned short)(regs->ss & 0xffff);
356 case INAT_SEG_REG_DS:
357 return vm86regs->ds;
358 case INAT_SEG_REG_ES:
359 return vm86regs->es;
360 case INAT_SEG_REG_FS:
361 return vm86regs->fs;
362 case INAT_SEG_REG_GS:
363 return vm86regs->gs;
364 case INAT_SEG_REG_IGNORE:
365 /* fall through */
366 default:
367 return -EINVAL;
371 switch (seg_reg_idx) {
372 case INAT_SEG_REG_CS:
373 return (unsigned short)(regs->cs & 0xffff);
374 case INAT_SEG_REG_SS:
375 return (unsigned short)(regs->ss & 0xffff);
376 case INAT_SEG_REG_DS:
377 return (unsigned short)(regs->ds & 0xffff);
378 case INAT_SEG_REG_ES:
379 return (unsigned short)(regs->es & 0xffff);
380 case INAT_SEG_REG_FS:
381 return (unsigned short)(regs->fs & 0xffff);
382 case INAT_SEG_REG_GS:
384 * GS may or may not be in regs as per CONFIG_X86_32_LAZY_GS.
385 * The macro below takes care of both cases.
387 return get_user_gs(regs);
388 case INAT_SEG_REG_IGNORE:
389 /* fall through */
390 default:
391 return -EINVAL;
393 #endif /* CONFIG_X86_64 */
396 static int get_reg_offset(struct insn *insn, struct pt_regs *regs,
397 enum reg_type type)
399 int regno = 0;
401 static const int regoff[] = {
402 offsetof(struct pt_regs, ax),
403 offsetof(struct pt_regs, cx),
404 offsetof(struct pt_regs, dx),
405 offsetof(struct pt_regs, bx),
406 offsetof(struct pt_regs, sp),
407 offsetof(struct pt_regs, bp),
408 offsetof(struct pt_regs, si),
409 offsetof(struct pt_regs, di),
410 #ifdef CONFIG_X86_64
411 offsetof(struct pt_regs, r8),
412 offsetof(struct pt_regs, r9),
413 offsetof(struct pt_regs, r10),
414 offsetof(struct pt_regs, r11),
415 offsetof(struct pt_regs, r12),
416 offsetof(struct pt_regs, r13),
417 offsetof(struct pt_regs, r14),
418 offsetof(struct pt_regs, r15),
419 #endif
421 int nr_registers = ARRAY_SIZE(regoff);
423 * Don't possibly decode a 32-bit instructions as
424 * reading a 64-bit-only register.
426 if (IS_ENABLED(CONFIG_X86_64) && !insn->x86_64)
427 nr_registers -= 8;
429 switch (type) {
430 case REG_TYPE_RM:
431 regno = X86_MODRM_RM(insn->modrm.value);
434 * ModRM.mod == 0 and ModRM.rm == 5 means a 32-bit displacement
435 * follows the ModRM byte.
437 if (!X86_MODRM_MOD(insn->modrm.value) && regno == 5)
438 return -EDOM;
440 if (X86_REX_B(insn->rex_prefix.value))
441 regno += 8;
442 break;
444 case REG_TYPE_INDEX:
445 regno = X86_SIB_INDEX(insn->sib.value);
446 if (X86_REX_X(insn->rex_prefix.value))
447 regno += 8;
450 * If ModRM.mod != 3 and SIB.index = 4 the scale*index
451 * portion of the address computation is null. This is
452 * true only if REX.X is 0. In such a case, the SIB index
453 * is used in the address computation.
455 if (X86_MODRM_MOD(insn->modrm.value) != 3 && regno == 4)
456 return -EDOM;
457 break;
459 case REG_TYPE_BASE:
460 regno = X86_SIB_BASE(insn->sib.value);
462 * If ModRM.mod is 0 and SIB.base == 5, the base of the
463 * register-indirect addressing is 0. In this case, a
464 * 32-bit displacement follows the SIB byte.
466 if (!X86_MODRM_MOD(insn->modrm.value) && regno == 5)
467 return -EDOM;
469 if (X86_REX_B(insn->rex_prefix.value))
470 regno += 8;
471 break;
473 default:
474 pr_err_ratelimited("invalid register type: %d\n", type);
475 return -EINVAL;
478 if (regno >= nr_registers) {
479 WARN_ONCE(1, "decoded an instruction with an invalid register");
480 return -EINVAL;
482 return regoff[regno];
486 * get_reg_offset_16() - Obtain offset of register indicated by instruction
487 * @insn: Instruction containing ModRM byte
488 * @regs: Register values as seen when entering kernel mode
489 * @offs1: Offset of the first operand register
490 * @offs2: Offset of the second opeand register, if applicable
492 * Obtain the offset, in pt_regs, of the registers indicated by the ModRM byte
493 * in @insn. This function is to be used with 16-bit address encodings. The
494 * @offs1 and @offs2 will be written with the offset of the two registers
495 * indicated by the instruction. In cases where any of the registers is not
496 * referenced by the instruction, the value will be set to -EDOM.
498 * Returns:
500 * 0 on success, -EINVAL on error.
502 static int get_reg_offset_16(struct insn *insn, struct pt_regs *regs,
503 int *offs1, int *offs2)
506 * 16-bit addressing can use one or two registers. Specifics of
507 * encodings are given in Table 2-1. "16-Bit Addressing Forms with the
508 * ModR/M Byte" of the Intel Software Development Manual.
510 static const int regoff1[] = {
511 offsetof(struct pt_regs, bx),
512 offsetof(struct pt_regs, bx),
513 offsetof(struct pt_regs, bp),
514 offsetof(struct pt_regs, bp),
515 offsetof(struct pt_regs, si),
516 offsetof(struct pt_regs, di),
517 offsetof(struct pt_regs, bp),
518 offsetof(struct pt_regs, bx),
521 static const int regoff2[] = {
522 offsetof(struct pt_regs, si),
523 offsetof(struct pt_regs, di),
524 offsetof(struct pt_regs, si),
525 offsetof(struct pt_regs, di),
526 -EDOM,
527 -EDOM,
528 -EDOM,
529 -EDOM,
532 if (!offs1 || !offs2)
533 return -EINVAL;
535 /* Operand is a register, use the generic function. */
536 if (X86_MODRM_MOD(insn->modrm.value) == 3) {
537 *offs1 = insn_get_modrm_rm_off(insn, regs);
538 *offs2 = -EDOM;
539 return 0;
542 *offs1 = regoff1[X86_MODRM_RM(insn->modrm.value)];
543 *offs2 = regoff2[X86_MODRM_RM(insn->modrm.value)];
546 * If ModRM.mod is 0 and ModRM.rm is 110b, then we use displacement-
547 * only addressing. This means that no registers are involved in
548 * computing the effective address. Thus, ensure that the first
549 * register offset is invalild. The second register offset is already
550 * invalid under the aforementioned conditions.
552 if ((X86_MODRM_MOD(insn->modrm.value) == 0) &&
553 (X86_MODRM_RM(insn->modrm.value) == 6))
554 *offs1 = -EDOM;
556 return 0;
560 * get_desc() - Obtain pointer to a segment descriptor
561 * @sel: Segment selector
563 * Given a segment selector, obtain a pointer to the segment descriptor.
564 * Both global and local descriptor tables are supported.
566 * Returns:
568 * Pointer to segment descriptor on success.
570 * NULL on error.
572 static struct desc_struct *get_desc(unsigned short sel)
574 struct desc_ptr gdt_desc = {0, 0};
575 unsigned long desc_base;
577 #ifdef CONFIG_MODIFY_LDT_SYSCALL
578 if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT) {
579 struct desc_struct *desc = NULL;
580 struct ldt_struct *ldt;
582 /* Bits [15:3] contain the index of the desired entry. */
583 sel >>= 3;
585 mutex_lock(&current->active_mm->context.lock);
586 ldt = current->active_mm->context.ldt;
587 if (ldt && sel < ldt->nr_entries)
588 desc = &ldt->entries[sel];
590 mutex_unlock(&current->active_mm->context.lock);
592 return desc;
594 #endif
595 native_store_gdt(&gdt_desc);
598 * Segment descriptors have a size of 8 bytes. Thus, the index is
599 * multiplied by 8 to obtain the memory offset of the desired descriptor
600 * from the base of the GDT. As bits [15:3] of the segment selector
601 * contain the index, it can be regarded as multiplied by 8 already.
602 * All that remains is to clear bits [2:0].
604 desc_base = sel & ~(SEGMENT_RPL_MASK | SEGMENT_TI_MASK);
606 if (desc_base > gdt_desc.size)
607 return NULL;
609 return (struct desc_struct *)(gdt_desc.address + desc_base);
613 * insn_get_seg_base() - Obtain base address of segment descriptor.
614 * @regs: Register values as seen when entering kernel mode
615 * @seg_reg_idx: Index of the segment register pointing to seg descriptor
617 * Obtain the base address of the segment as indicated by the segment descriptor
618 * pointed by the segment selector. The segment selector is obtained from the
619 * input segment register index @seg_reg_idx.
621 * Returns:
623 * In protected mode, base address of the segment. Zero in long mode,
624 * except when FS or GS are used. In virtual-8086 mode, the segment
625 * selector shifted 4 bits to the right.
627 * -1L in case of error.
629 unsigned long insn_get_seg_base(struct pt_regs *regs, int seg_reg_idx)
631 struct desc_struct *desc;
632 short sel;
634 sel = get_segment_selector(regs, seg_reg_idx);
635 if (sel < 0)
636 return -1L;
638 if (v8086_mode(regs))
640 * Base is simply the segment selector shifted 4
641 * bits to the right.
643 return (unsigned long)(sel << 4);
645 if (user_64bit_mode(regs)) {
647 * Only FS or GS will have a base address, the rest of
648 * the segments' bases are forced to 0.
650 unsigned long base;
652 if (seg_reg_idx == INAT_SEG_REG_FS)
653 rdmsrl(MSR_FS_BASE, base);
654 else if (seg_reg_idx == INAT_SEG_REG_GS)
656 * swapgs was called at the kernel entry point. Thus,
657 * MSR_KERNEL_GS_BASE will have the user-space GS base.
659 rdmsrl(MSR_KERNEL_GS_BASE, base);
660 else
661 base = 0;
662 return base;
665 /* In protected mode the segment selector cannot be null. */
666 if (!sel)
667 return -1L;
669 desc = get_desc(sel);
670 if (!desc)
671 return -1L;
673 return get_desc_base(desc);
677 * get_seg_limit() - Obtain the limit of a segment descriptor
678 * @regs: Register values as seen when entering kernel mode
679 * @seg_reg_idx: Index of the segment register pointing to seg descriptor
681 * Obtain the limit of the segment as indicated by the segment descriptor
682 * pointed by the segment selector. The segment selector is obtained from the
683 * input segment register index @seg_reg_idx.
685 * Returns:
687 * In protected mode, the limit of the segment descriptor in bytes.
688 * In long mode and virtual-8086 mode, segment limits are not enforced. Thus,
689 * limit is returned as -1L to imply a limit-less segment.
691 * Zero is returned on error.
693 static unsigned long get_seg_limit(struct pt_regs *regs, int seg_reg_idx)
695 struct desc_struct *desc;
696 unsigned long limit;
697 short sel;
699 sel = get_segment_selector(regs, seg_reg_idx);
700 if (sel < 0)
701 return 0;
703 if (user_64bit_mode(regs) || v8086_mode(regs))
704 return -1L;
706 if (!sel)
707 return 0;
709 desc = get_desc(sel);
710 if (!desc)
711 return 0;
714 * If the granularity bit is set, the limit is given in multiples
715 * of 4096. This also means that the 12 least significant bits are
716 * not tested when checking the segment limits. In practice,
717 * this means that the segment ends in (limit << 12) + 0xfff.
719 limit = get_desc_limit(desc);
720 if (desc->g)
721 limit = (limit << 12) + 0xfff;
723 return limit;
727 * insn_get_code_seg_params() - Obtain code segment parameters
728 * @regs: Structure with register values as seen when entering kernel mode
730 * Obtain address and operand sizes of the code segment. It is obtained from the
731 * selector contained in the CS register in regs. In protected mode, the default
732 * address is determined by inspecting the L and D bits of the segment
733 * descriptor. In virtual-8086 mode, the default is always two bytes for both
734 * address and operand sizes.
736 * Returns:
738 * An int containing ORed-in default parameters on success.
740 * -EINVAL on error.
742 int insn_get_code_seg_params(struct pt_regs *regs)
744 struct desc_struct *desc;
745 short sel;
747 if (v8086_mode(regs))
748 /* Address and operand size are both 16-bit. */
749 return INSN_CODE_SEG_PARAMS(2, 2);
751 sel = get_segment_selector(regs, INAT_SEG_REG_CS);
752 if (sel < 0)
753 return sel;
755 desc = get_desc(sel);
756 if (!desc)
757 return -EINVAL;
760 * The most significant byte of the Type field of the segment descriptor
761 * determines whether a segment contains data or code. If this is a data
762 * segment, return error.
764 if (!(desc->type & BIT(3)))
765 return -EINVAL;
767 switch ((desc->l << 1) | desc->d) {
768 case 0: /*
769 * Legacy mode. CS.L=0, CS.D=0. Address and operand size are
770 * both 16-bit.
772 return INSN_CODE_SEG_PARAMS(2, 2);
773 case 1: /*
774 * Legacy mode. CS.L=0, CS.D=1. Address and operand size are
775 * both 32-bit.
777 return INSN_CODE_SEG_PARAMS(4, 4);
778 case 2: /*
779 * IA-32e 64-bit mode. CS.L=1, CS.D=0. Address size is 64-bit;
780 * operand size is 32-bit.
782 return INSN_CODE_SEG_PARAMS(4, 8);
783 case 3: /* Invalid setting. CS.L=1, CS.D=1 */
784 /* fall through */
785 default:
786 return -EINVAL;
791 * insn_get_modrm_rm_off() - Obtain register in r/m part of the ModRM byte
792 * @insn: Instruction containing the ModRM byte
793 * @regs: Register values as seen when entering kernel mode
795 * Returns:
797 * The register indicated by the r/m part of the ModRM byte. The
798 * register is obtained as an offset from the base of pt_regs. In specific
799 * cases, the returned value can be -EDOM to indicate that the particular value
800 * of ModRM does not refer to a register and shall be ignored.
802 int insn_get_modrm_rm_off(struct insn *insn, struct pt_regs *regs)
804 return get_reg_offset(insn, regs, REG_TYPE_RM);
808 * get_seg_base_limit() - obtain base address and limit of a segment
809 * @insn: Instruction. Must be valid.
810 * @regs: Register values as seen when entering kernel mode
811 * @regoff: Operand offset, in pt_regs, used to resolve segment descriptor
812 * @base: Obtained segment base
813 * @limit: Obtained segment limit
815 * Obtain the base address and limit of the segment associated with the operand
816 * @regoff and, if any or allowed, override prefixes in @insn. This function is
817 * different from insn_get_seg_base() as the latter does not resolve the segment
818 * associated with the instruction operand. If a limit is not needed (e.g.,
819 * when running in long mode), @limit can be NULL.
821 * Returns:
823 * 0 on success. @base and @limit will contain the base address and of the
824 * resolved segment, respectively.
826 * -EINVAL on error.
828 static int get_seg_base_limit(struct insn *insn, struct pt_regs *regs,
829 int regoff, unsigned long *base,
830 unsigned long *limit)
832 int seg_reg_idx;
834 if (!base)
835 return -EINVAL;
837 seg_reg_idx = resolve_seg_reg(insn, regs, regoff);
838 if (seg_reg_idx < 0)
839 return seg_reg_idx;
841 *base = insn_get_seg_base(regs, seg_reg_idx);
842 if (*base == -1L)
843 return -EINVAL;
845 if (!limit)
846 return 0;
848 *limit = get_seg_limit(regs, seg_reg_idx);
849 if (!(*limit))
850 return -EINVAL;
852 return 0;
856 * get_eff_addr_reg() - Obtain effective address from register operand
857 * @insn: Instruction. Must be valid.
858 * @regs: Register values as seen when entering kernel mode
859 * @regoff: Obtained operand offset, in pt_regs, with the effective address
860 * @eff_addr: Obtained effective address
862 * Obtain the effective address stored in the register operand as indicated by
863 * the ModRM byte. This function is to be used only with register addressing
864 * (i.e., ModRM.mod is 3). The effective address is saved in @eff_addr. The
865 * register operand, as an offset from the base of pt_regs, is saved in @regoff;
866 * such offset can then be used to resolve the segment associated with the
867 * operand. This function can be used with any of the supported address sizes
868 * in x86.
870 * Returns:
872 * 0 on success. @eff_addr will have the effective address stored in the
873 * operand indicated by ModRM. @regoff will have such operand as an offset from
874 * the base of pt_regs.
876 * -EINVAL on error.
878 static int get_eff_addr_reg(struct insn *insn, struct pt_regs *regs,
879 int *regoff, long *eff_addr)
881 insn_get_modrm(insn);
883 if (!insn->modrm.nbytes)
884 return -EINVAL;
886 if (X86_MODRM_MOD(insn->modrm.value) != 3)
887 return -EINVAL;
889 *regoff = get_reg_offset(insn, regs, REG_TYPE_RM);
890 if (*regoff < 0)
891 return -EINVAL;
893 /* Ignore bytes that are outside the address size. */
894 if (insn->addr_bytes == 2)
895 *eff_addr = regs_get_register(regs, *regoff) & 0xffff;
896 else if (insn->addr_bytes == 4)
897 *eff_addr = regs_get_register(regs, *regoff) & 0xffffffff;
898 else /* 64-bit address */
899 *eff_addr = regs_get_register(regs, *regoff);
901 return 0;
905 * get_eff_addr_modrm() - Obtain referenced effective address via ModRM
906 * @insn: Instruction. Must be valid.
907 * @regs: Register values as seen when entering kernel mode
908 * @regoff: Obtained operand offset, in pt_regs, associated with segment
909 * @eff_addr: Obtained effective address
911 * Obtain the effective address referenced by the ModRM byte of @insn. After
912 * identifying the registers involved in the register-indirect memory reference,
913 * its value is obtained from the operands in @regs. The computed address is
914 * stored @eff_addr. Also, the register operand that indicates the associated
915 * segment is stored in @regoff, this parameter can later be used to determine
916 * such segment.
918 * Returns:
920 * 0 on success. @eff_addr will have the referenced effective address. @regoff
921 * will have a register, as an offset from the base of pt_regs, that can be used
922 * to resolve the associated segment.
924 * -EINVAL on error.
926 static int get_eff_addr_modrm(struct insn *insn, struct pt_regs *regs,
927 int *regoff, long *eff_addr)
929 long tmp;
931 if (insn->addr_bytes != 8 && insn->addr_bytes != 4)
932 return -EINVAL;
934 insn_get_modrm(insn);
936 if (!insn->modrm.nbytes)
937 return -EINVAL;
939 if (X86_MODRM_MOD(insn->modrm.value) > 2)
940 return -EINVAL;
942 *regoff = get_reg_offset(insn, regs, REG_TYPE_RM);
945 * -EDOM means that we must ignore the address_offset. In such a case,
946 * in 64-bit mode the effective address relative to the rIP of the
947 * following instruction.
949 if (*regoff == -EDOM) {
950 if (user_64bit_mode(regs))
951 tmp = regs->ip + insn->length;
952 else
953 tmp = 0;
954 } else if (*regoff < 0) {
955 return -EINVAL;
956 } else {
957 tmp = regs_get_register(regs, *regoff);
960 if (insn->addr_bytes == 4) {
961 int addr32 = (int)(tmp & 0xffffffff) + insn->displacement.value;
963 *eff_addr = addr32 & 0xffffffff;
964 } else {
965 *eff_addr = tmp + insn->displacement.value;
968 return 0;
972 * get_eff_addr_modrm_16() - Obtain referenced effective address via ModRM
973 * @insn: Instruction. Must be valid.
974 * @regs: Register values as seen when entering kernel mode
975 * @regoff: Obtained operand offset, in pt_regs, associated with segment
976 * @eff_addr: Obtained effective address
978 * Obtain the 16-bit effective address referenced by the ModRM byte of @insn.
979 * After identifying the registers involved in the register-indirect memory
980 * reference, its value is obtained from the operands in @regs. The computed
981 * address is stored @eff_addr. Also, the register operand that indicates
982 * the associated segment is stored in @regoff, this parameter can later be used
983 * to determine such segment.
985 * Returns:
987 * 0 on success. @eff_addr will have the referenced effective address. @regoff
988 * will have a register, as an offset from the base of pt_regs, that can be used
989 * to resolve the associated segment.
991 * -EINVAL on error.
993 static int get_eff_addr_modrm_16(struct insn *insn, struct pt_regs *regs,
994 int *regoff, short *eff_addr)
996 int addr_offset1, addr_offset2, ret;
997 short addr1 = 0, addr2 = 0, displacement;
999 if (insn->addr_bytes != 2)
1000 return -EINVAL;
1002 insn_get_modrm(insn);
1004 if (!insn->modrm.nbytes)
1005 return -EINVAL;
1007 if (X86_MODRM_MOD(insn->modrm.value) > 2)
1008 return -EINVAL;
1010 ret = get_reg_offset_16(insn, regs, &addr_offset1, &addr_offset2);
1011 if (ret < 0)
1012 return -EINVAL;
1015 * Don't fail on invalid offset values. They might be invalid because
1016 * they cannot be used for this particular value of ModRM. Instead, use
1017 * them in the computation only if they contain a valid value.
1019 if (addr_offset1 != -EDOM)
1020 addr1 = regs_get_register(regs, addr_offset1) & 0xffff;
1022 if (addr_offset2 != -EDOM)
1023 addr2 = regs_get_register(regs, addr_offset2) & 0xffff;
1025 displacement = insn->displacement.value & 0xffff;
1026 *eff_addr = addr1 + addr2 + displacement;
1029 * The first operand register could indicate to use of either SS or DS
1030 * registers to obtain the segment selector. The second operand
1031 * register can only indicate the use of DS. Thus, the first operand
1032 * will be used to obtain the segment selector.
1034 *regoff = addr_offset1;
1036 return 0;
1040 * get_eff_addr_sib() - Obtain referenced effective address via SIB
1041 * @insn: Instruction. Must be valid.
1042 * @regs: Register values as seen when entering kernel mode
1043 * @regoff: Obtained operand offset, in pt_regs, associated with segment
1044 * @eff_addr: Obtained effective address
1046 * Obtain the effective address referenced by the SIB byte of @insn. After
1047 * identifying the registers involved in the indexed, register-indirect memory
1048 * reference, its value is obtained from the operands in @regs. The computed
1049 * address is stored @eff_addr. Also, the register operand that indicates the
1050 * associated segment is stored in @regoff, this parameter can later be used to
1051 * determine such segment.
1053 * Returns:
1055 * 0 on success. @eff_addr will have the referenced effective address.
1056 * @base_offset will have a register, as an offset from the base of pt_regs,
1057 * that can be used to resolve the associated segment.
1059 * -EINVAL on error.
1061 static int get_eff_addr_sib(struct insn *insn, struct pt_regs *regs,
1062 int *base_offset, long *eff_addr)
1064 long base, indx;
1065 int indx_offset;
1067 if (insn->addr_bytes != 8 && insn->addr_bytes != 4)
1068 return -EINVAL;
1070 insn_get_modrm(insn);
1072 if (!insn->modrm.nbytes)
1073 return -EINVAL;
1075 if (X86_MODRM_MOD(insn->modrm.value) > 2)
1076 return -EINVAL;
1078 insn_get_sib(insn);
1080 if (!insn->sib.nbytes)
1081 return -EINVAL;
1083 *base_offset = get_reg_offset(insn, regs, REG_TYPE_BASE);
1084 indx_offset = get_reg_offset(insn, regs, REG_TYPE_INDEX);
1087 * Negative values in the base and index offset means an error when
1088 * decoding the SIB byte. Except -EDOM, which means that the registers
1089 * should not be used in the address computation.
1091 if (*base_offset == -EDOM)
1092 base = 0;
1093 else if (*base_offset < 0)
1094 return -EINVAL;
1095 else
1096 base = regs_get_register(regs, *base_offset);
1098 if (indx_offset == -EDOM)
1099 indx = 0;
1100 else if (indx_offset < 0)
1101 return -EINVAL;
1102 else
1103 indx = regs_get_register(regs, indx_offset);
1105 if (insn->addr_bytes == 4) {
1106 int addr32, base32, idx32;
1108 base32 = base & 0xffffffff;
1109 idx32 = indx & 0xffffffff;
1111 addr32 = base32 + idx32 * (1 << X86_SIB_SCALE(insn->sib.value));
1112 addr32 += insn->displacement.value;
1114 *eff_addr = addr32 & 0xffffffff;
1115 } else {
1116 *eff_addr = base + indx * (1 << X86_SIB_SCALE(insn->sib.value));
1117 *eff_addr += insn->displacement.value;
1120 return 0;
1124 * get_addr_ref_16() - Obtain the 16-bit address referred by instruction
1125 * @insn: Instruction containing ModRM byte and displacement
1126 * @regs: Register values as seen when entering kernel mode
1128 * This function is to be used with 16-bit address encodings. Obtain the memory
1129 * address referred by the instruction's ModRM and displacement bytes. Also, the
1130 * segment used as base is determined by either any segment override prefixes in
1131 * @insn or the default segment of the registers involved in the address
1132 * computation. In protected mode, segment limits are enforced.
1134 * Returns:
1136 * Linear address referenced by the instruction operands on success.
1138 * -1L on error.
1140 static void __user *get_addr_ref_16(struct insn *insn, struct pt_regs *regs)
1142 unsigned long linear_addr = -1L, seg_base, seg_limit;
1143 int ret, regoff;
1144 short eff_addr;
1145 long tmp;
1147 insn_get_modrm(insn);
1148 insn_get_displacement(insn);
1150 if (insn->addr_bytes != 2)
1151 goto out;
1153 if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1154 ret = get_eff_addr_reg(insn, regs, &regoff, &tmp);
1155 if (ret)
1156 goto out;
1158 eff_addr = tmp;
1159 } else {
1160 ret = get_eff_addr_modrm_16(insn, regs, &regoff, &eff_addr);
1161 if (ret)
1162 goto out;
1165 ret = get_seg_base_limit(insn, regs, regoff, &seg_base, &seg_limit);
1166 if (ret)
1167 goto out;
1170 * Before computing the linear address, make sure the effective address
1171 * is within the limits of the segment. In virtual-8086 mode, segment
1172 * limits are not enforced. In such a case, the segment limit is -1L to
1173 * reflect this fact.
1175 if ((unsigned long)(eff_addr & 0xffff) > seg_limit)
1176 goto out;
1178 linear_addr = (unsigned long)(eff_addr & 0xffff) + seg_base;
1180 /* Limit linear address to 20 bits */
1181 if (v8086_mode(regs))
1182 linear_addr &= 0xfffff;
1184 out:
1185 return (void __user *)linear_addr;
1189 * get_addr_ref_32() - Obtain a 32-bit linear address
1190 * @insn: Instruction with ModRM, SIB bytes and displacement
1191 * @regs: Register values as seen when entering kernel mode
1193 * This function is to be used with 32-bit address encodings to obtain the
1194 * linear memory address referred by the instruction's ModRM, SIB,
1195 * displacement bytes and segment base address, as applicable. If in protected
1196 * mode, segment limits are enforced.
1198 * Returns:
1200 * Linear address referenced by instruction and registers on success.
1202 * -1L on error.
1204 static void __user *get_addr_ref_32(struct insn *insn, struct pt_regs *regs)
1206 unsigned long linear_addr = -1L, seg_base, seg_limit;
1207 int eff_addr, regoff;
1208 long tmp;
1209 int ret;
1211 if (insn->addr_bytes != 4)
1212 goto out;
1214 if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1215 ret = get_eff_addr_reg(insn, regs, &regoff, &tmp);
1216 if (ret)
1217 goto out;
1219 eff_addr = tmp;
1221 } else {
1222 if (insn->sib.nbytes) {
1223 ret = get_eff_addr_sib(insn, regs, &regoff, &tmp);
1224 if (ret)
1225 goto out;
1227 eff_addr = tmp;
1228 } else {
1229 ret = get_eff_addr_modrm(insn, regs, &regoff, &tmp);
1230 if (ret)
1231 goto out;
1233 eff_addr = tmp;
1237 ret = get_seg_base_limit(insn, regs, regoff, &seg_base, &seg_limit);
1238 if (ret)
1239 goto out;
1242 * In protected mode, before computing the linear address, make sure
1243 * the effective address is within the limits of the segment.
1244 * 32-bit addresses can be used in long and virtual-8086 modes if an
1245 * address override prefix is used. In such cases, segment limits are
1246 * not enforced. When in virtual-8086 mode, the segment limit is -1L
1247 * to reflect this situation.
1249 * After computed, the effective address is treated as an unsigned
1250 * quantity.
1252 if (!user_64bit_mode(regs) && ((unsigned int)eff_addr > seg_limit))
1253 goto out;
1256 * Even though 32-bit address encodings are allowed in virtual-8086
1257 * mode, the address range is still limited to [0x-0xffff].
1259 if (v8086_mode(regs) && (eff_addr & ~0xffff))
1260 goto out;
1263 * Data type long could be 64 bits in size. Ensure that our 32-bit
1264 * effective address is not sign-extended when computing the linear
1265 * address.
1267 linear_addr = (unsigned long)(eff_addr & 0xffffffff) + seg_base;
1269 /* Limit linear address to 20 bits */
1270 if (v8086_mode(regs))
1271 linear_addr &= 0xfffff;
1273 out:
1274 return (void __user *)linear_addr;
1278 * get_addr_ref_64() - Obtain a 64-bit linear address
1279 * @insn: Instruction struct with ModRM and SIB bytes and displacement
1280 * @regs: Structure with register values as seen when entering kernel mode
1282 * This function is to be used with 64-bit address encodings to obtain the
1283 * linear memory address referred by the instruction's ModRM, SIB,
1284 * displacement bytes and segment base address, as applicable.
1286 * Returns:
1288 * Linear address referenced by instruction and registers on success.
1290 * -1L on error.
1292 #ifndef CONFIG_X86_64
1293 static void __user *get_addr_ref_64(struct insn *insn, struct pt_regs *regs)
1295 return (void __user *)-1L;
1297 #else
1298 static void __user *get_addr_ref_64(struct insn *insn, struct pt_regs *regs)
1300 unsigned long linear_addr = -1L, seg_base;
1301 int regoff, ret;
1302 long eff_addr;
1304 if (insn->addr_bytes != 8)
1305 goto out;
1307 if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1308 ret = get_eff_addr_reg(insn, regs, &regoff, &eff_addr);
1309 if (ret)
1310 goto out;
1312 } else {
1313 if (insn->sib.nbytes) {
1314 ret = get_eff_addr_sib(insn, regs, &regoff, &eff_addr);
1315 if (ret)
1316 goto out;
1317 } else {
1318 ret = get_eff_addr_modrm(insn, regs, &regoff, &eff_addr);
1319 if (ret)
1320 goto out;
1325 ret = get_seg_base_limit(insn, regs, regoff, &seg_base, NULL);
1326 if (ret)
1327 goto out;
1329 linear_addr = (unsigned long)eff_addr + seg_base;
1331 out:
1332 return (void __user *)linear_addr;
1334 #endif /* CONFIG_X86_64 */
1337 * insn_get_addr_ref() - Obtain the linear address referred by instruction
1338 * @insn: Instruction structure containing ModRM byte and displacement
1339 * @regs: Structure with register values as seen when entering kernel mode
1341 * Obtain the linear address referred by the instruction's ModRM, SIB and
1342 * displacement bytes, and segment base, as applicable. In protected mode,
1343 * segment limits are enforced.
1345 * Returns:
1347 * Linear address referenced by instruction and registers on success.
1349 * -1L on error.
1351 void __user *insn_get_addr_ref(struct insn *insn, struct pt_regs *regs)
1353 if (!insn || !regs)
1354 return (void __user *)-1L;
1356 switch (insn->addr_bytes) {
1357 case 2:
1358 return get_addr_ref_16(insn, regs);
1359 case 4:
1360 return get_addr_ref_32(insn, regs);
1361 case 8:
1362 return get_addr_ref_64(insn, regs);
1363 default:
1364 return (void __user *)-1L;