1 // SPDX-License-Identifier: GPL-2.0
3 * linux/mm/compaction.c
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
28 #ifdef CONFIG_COMPACTION
29 static inline void count_compact_event(enum vm_event_item item
)
34 static inline void count_compact_events(enum vm_event_item item
, long delta
)
36 count_vm_events(item
, delta
);
39 #define count_compact_event(item) do { } while (0)
40 #define count_compact_events(item, delta) do { } while (0)
43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/compaction.h>
48 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
49 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
50 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
51 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
53 static unsigned long release_freepages(struct list_head
*freelist
)
55 struct page
*page
, *next
;
56 unsigned long high_pfn
= 0;
58 list_for_each_entry_safe(page
, next
, freelist
, lru
) {
59 unsigned long pfn
= page_to_pfn(page
);
69 static void split_map_pages(struct list_head
*list
)
71 unsigned int i
, order
, nr_pages
;
72 struct page
*page
, *next
;
75 list_for_each_entry_safe(page
, next
, list
, lru
) {
78 order
= page_private(page
);
79 nr_pages
= 1 << order
;
81 post_alloc_hook(page
, order
, __GFP_MOVABLE
);
83 split_page(page
, order
);
85 for (i
= 0; i
< nr_pages
; i
++) {
86 list_add(&page
->lru
, &tmp_list
);
91 list_splice(&tmp_list
, list
);
94 #ifdef CONFIG_COMPACTION
96 int PageMovable(struct page
*page
)
98 struct address_space
*mapping
;
100 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
101 if (!__PageMovable(page
))
104 mapping
= page_mapping(page
);
105 if (mapping
&& mapping
->a_ops
&& mapping
->a_ops
->isolate_page
)
110 EXPORT_SYMBOL(PageMovable
);
112 void __SetPageMovable(struct page
*page
, struct address_space
*mapping
)
114 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
115 VM_BUG_ON_PAGE((unsigned long)mapping
& PAGE_MAPPING_MOVABLE
, page
);
116 page
->mapping
= (void *)((unsigned long)mapping
| PAGE_MAPPING_MOVABLE
);
118 EXPORT_SYMBOL(__SetPageMovable
);
120 void __ClearPageMovable(struct page
*page
)
122 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
123 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
125 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
126 * flag so that VM can catch up released page by driver after isolation.
127 * With it, VM migration doesn't try to put it back.
129 page
->mapping
= (void *)((unsigned long)page
->mapping
&
130 PAGE_MAPPING_MOVABLE
);
132 EXPORT_SYMBOL(__ClearPageMovable
);
134 /* Do not skip compaction more than 64 times */
135 #define COMPACT_MAX_DEFER_SHIFT 6
138 * Compaction is deferred when compaction fails to result in a page
139 * allocation success. 1 << compact_defer_limit compactions are skipped up
140 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
142 void defer_compaction(struct zone
*zone
, int order
)
144 zone
->compact_considered
= 0;
145 zone
->compact_defer_shift
++;
147 if (order
< zone
->compact_order_failed
)
148 zone
->compact_order_failed
= order
;
150 if (zone
->compact_defer_shift
> COMPACT_MAX_DEFER_SHIFT
)
151 zone
->compact_defer_shift
= COMPACT_MAX_DEFER_SHIFT
;
153 trace_mm_compaction_defer_compaction(zone
, order
);
156 /* Returns true if compaction should be skipped this time */
157 bool compaction_deferred(struct zone
*zone
, int order
)
159 unsigned long defer_limit
= 1UL << zone
->compact_defer_shift
;
161 if (order
< zone
->compact_order_failed
)
164 /* Avoid possible overflow */
165 if (++zone
->compact_considered
> defer_limit
)
166 zone
->compact_considered
= defer_limit
;
168 if (zone
->compact_considered
>= defer_limit
)
171 trace_mm_compaction_deferred(zone
, order
);
177 * Update defer tracking counters after successful compaction of given order,
178 * which means an allocation either succeeded (alloc_success == true) or is
179 * expected to succeed.
181 void compaction_defer_reset(struct zone
*zone
, int order
,
185 zone
->compact_considered
= 0;
186 zone
->compact_defer_shift
= 0;
188 if (order
>= zone
->compact_order_failed
)
189 zone
->compact_order_failed
= order
+ 1;
191 trace_mm_compaction_defer_reset(zone
, order
);
194 /* Returns true if restarting compaction after many failures */
195 bool compaction_restarting(struct zone
*zone
, int order
)
197 if (order
< zone
->compact_order_failed
)
200 return zone
->compact_defer_shift
== COMPACT_MAX_DEFER_SHIFT
&&
201 zone
->compact_considered
>= 1UL << zone
->compact_defer_shift
;
204 /* Returns true if the pageblock should be scanned for pages to isolate. */
205 static inline bool isolation_suitable(struct compact_control
*cc
,
208 if (cc
->ignore_skip_hint
)
211 return !get_pageblock_skip(page
);
214 static void reset_cached_positions(struct zone
*zone
)
216 zone
->compact_cached_migrate_pfn
[0] = zone
->zone_start_pfn
;
217 zone
->compact_cached_migrate_pfn
[1] = zone
->zone_start_pfn
;
218 zone
->compact_cached_free_pfn
=
219 pageblock_start_pfn(zone_end_pfn(zone
) - 1);
223 * Compound pages of >= pageblock_order should consistenly be skipped until
224 * released. It is always pointless to compact pages of such order (if they are
225 * migratable), and the pageblocks they occupy cannot contain any free pages.
227 static bool pageblock_skip_persistent(struct page
*page
)
229 if (!PageCompound(page
))
232 page
= compound_head(page
);
234 if (compound_order(page
) >= pageblock_order
)
241 __reset_isolation_pfn(struct zone
*zone
, unsigned long pfn
, bool check_source
,
244 struct page
*page
= pfn_to_online_page(pfn
);
245 struct page
*end_page
;
246 unsigned long block_pfn
;
250 if (zone
!= page_zone(page
))
252 if (pageblock_skip_persistent(page
))
256 * If skip is already cleared do no further checking once the
257 * restart points have been set.
259 if (check_source
&& check_target
&& !get_pageblock_skip(page
))
263 * If clearing skip for the target scanner, do not select a
264 * non-movable pageblock as the starting point.
266 if (!check_source
&& check_target
&&
267 get_pageblock_migratetype(page
) != MIGRATE_MOVABLE
)
271 * Only clear the hint if a sample indicates there is either a
272 * free page or an LRU page in the block. One or other condition
273 * is necessary for the block to be a migration source/target.
275 block_pfn
= pageblock_start_pfn(pfn
);
276 pfn
= max(block_pfn
, zone
->zone_start_pfn
);
277 page
= pfn_to_page(pfn
);
278 if (zone
!= page_zone(page
))
280 pfn
= block_pfn
+ pageblock_nr_pages
;
281 pfn
= min(pfn
, zone_end_pfn(zone
));
282 end_page
= pfn_to_page(pfn
);
285 if (pfn_valid_within(pfn
)) {
286 if (check_source
&& PageLRU(page
)) {
287 clear_pageblock_skip(page
);
291 if (check_target
&& PageBuddy(page
)) {
292 clear_pageblock_skip(page
);
297 page
+= (1 << PAGE_ALLOC_COSTLY_ORDER
);
298 pfn
+= (1 << PAGE_ALLOC_COSTLY_ORDER
);
299 } while (page
< end_page
);
305 * This function is called to clear all cached information on pageblocks that
306 * should be skipped for page isolation when the migrate and free page scanner
309 static void __reset_isolation_suitable(struct zone
*zone
)
311 unsigned long migrate_pfn
= zone
->zone_start_pfn
;
312 unsigned long free_pfn
= zone_end_pfn(zone
);
313 unsigned long reset_migrate
= free_pfn
;
314 unsigned long reset_free
= migrate_pfn
;
315 bool source_set
= false;
316 bool free_set
= false;
318 if (!zone
->compact_blockskip_flush
)
321 zone
->compact_blockskip_flush
= false;
324 * Walk the zone and update pageblock skip information. Source looks
325 * for PageLRU while target looks for PageBuddy. When the scanner
326 * is found, both PageBuddy and PageLRU are checked as the pageblock
327 * is suitable as both source and target.
329 for (; migrate_pfn
< free_pfn
; migrate_pfn
+= pageblock_nr_pages
,
330 free_pfn
-= pageblock_nr_pages
) {
333 /* Update the migrate PFN */
334 if (__reset_isolation_pfn(zone
, migrate_pfn
, true, source_set
) &&
335 migrate_pfn
< reset_migrate
) {
337 reset_migrate
= migrate_pfn
;
338 zone
->compact_init_migrate_pfn
= reset_migrate
;
339 zone
->compact_cached_migrate_pfn
[0] = reset_migrate
;
340 zone
->compact_cached_migrate_pfn
[1] = reset_migrate
;
343 /* Update the free PFN */
344 if (__reset_isolation_pfn(zone
, free_pfn
, free_set
, true) &&
345 free_pfn
> reset_free
) {
347 reset_free
= free_pfn
;
348 zone
->compact_init_free_pfn
= reset_free
;
349 zone
->compact_cached_free_pfn
= reset_free
;
353 /* Leave no distance if no suitable block was reset */
354 if (reset_migrate
>= reset_free
) {
355 zone
->compact_cached_migrate_pfn
[0] = migrate_pfn
;
356 zone
->compact_cached_migrate_pfn
[1] = migrate_pfn
;
357 zone
->compact_cached_free_pfn
= free_pfn
;
361 void reset_isolation_suitable(pg_data_t
*pgdat
)
365 for (zoneid
= 0; zoneid
< MAX_NR_ZONES
; zoneid
++) {
366 struct zone
*zone
= &pgdat
->node_zones
[zoneid
];
367 if (!populated_zone(zone
))
370 /* Only flush if a full compaction finished recently */
371 if (zone
->compact_blockskip_flush
)
372 __reset_isolation_suitable(zone
);
377 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
378 * locks are not required for read/writers. Returns true if it was already set.
380 static bool test_and_set_skip(struct compact_control
*cc
, struct page
*page
,
385 /* Do no update if skip hint is being ignored */
386 if (cc
->ignore_skip_hint
)
389 if (!IS_ALIGNED(pfn
, pageblock_nr_pages
))
392 skip
= get_pageblock_skip(page
);
393 if (!skip
&& !cc
->no_set_skip_hint
)
394 set_pageblock_skip(page
);
399 static void update_cached_migrate(struct compact_control
*cc
, unsigned long pfn
)
401 struct zone
*zone
= cc
->zone
;
403 pfn
= pageblock_end_pfn(pfn
);
405 /* Set for isolation rather than compaction */
406 if (cc
->no_set_skip_hint
)
409 if (pfn
> zone
->compact_cached_migrate_pfn
[0])
410 zone
->compact_cached_migrate_pfn
[0] = pfn
;
411 if (cc
->mode
!= MIGRATE_ASYNC
&&
412 pfn
> zone
->compact_cached_migrate_pfn
[1])
413 zone
->compact_cached_migrate_pfn
[1] = pfn
;
417 * If no pages were isolated then mark this pageblock to be skipped in the
418 * future. The information is later cleared by __reset_isolation_suitable().
420 static void update_pageblock_skip(struct compact_control
*cc
,
421 struct page
*page
, unsigned long pfn
)
423 struct zone
*zone
= cc
->zone
;
425 if (cc
->no_set_skip_hint
)
431 set_pageblock_skip(page
);
433 /* Update where async and sync compaction should restart */
434 if (pfn
< zone
->compact_cached_free_pfn
)
435 zone
->compact_cached_free_pfn
= pfn
;
438 static inline bool isolation_suitable(struct compact_control
*cc
,
444 static inline bool pageblock_skip_persistent(struct page
*page
)
449 static inline void update_pageblock_skip(struct compact_control
*cc
,
450 struct page
*page
, unsigned long pfn
)
454 static void update_cached_migrate(struct compact_control
*cc
, unsigned long pfn
)
458 static bool test_and_set_skip(struct compact_control
*cc
, struct page
*page
,
463 #endif /* CONFIG_COMPACTION */
466 * Compaction requires the taking of some coarse locks that are potentially
467 * very heavily contended. For async compaction, trylock and record if the
468 * lock is contended. The lock will still be acquired but compaction will
469 * abort when the current block is finished regardless of success rate.
470 * Sync compaction acquires the lock.
472 * Always returns true which makes it easier to track lock state in callers.
474 static bool compact_lock_irqsave(spinlock_t
*lock
, unsigned long *flags
,
475 struct compact_control
*cc
)
477 /* Track if the lock is contended in async mode */
478 if (cc
->mode
== MIGRATE_ASYNC
&& !cc
->contended
) {
479 if (spin_trylock_irqsave(lock
, *flags
))
482 cc
->contended
= true;
485 spin_lock_irqsave(lock
, *flags
);
490 * Compaction requires the taking of some coarse locks that are potentially
491 * very heavily contended. The lock should be periodically unlocked to avoid
492 * having disabled IRQs for a long time, even when there is nobody waiting on
493 * the lock. It might also be that allowing the IRQs will result in
494 * need_resched() becoming true. If scheduling is needed, async compaction
495 * aborts. Sync compaction schedules.
496 * Either compaction type will also abort if a fatal signal is pending.
497 * In either case if the lock was locked, it is dropped and not regained.
499 * Returns true if compaction should abort due to fatal signal pending, or
500 * async compaction due to need_resched()
501 * Returns false when compaction can continue (sync compaction might have
504 static bool compact_unlock_should_abort(spinlock_t
*lock
,
505 unsigned long flags
, bool *locked
, struct compact_control
*cc
)
508 spin_unlock_irqrestore(lock
, flags
);
512 if (fatal_signal_pending(current
)) {
513 cc
->contended
= true;
523 * Isolate free pages onto a private freelist. If @strict is true, will abort
524 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
525 * (even though it may still end up isolating some pages).
527 static unsigned long isolate_freepages_block(struct compact_control
*cc
,
528 unsigned long *start_pfn
,
529 unsigned long end_pfn
,
530 struct list_head
*freelist
,
534 int nr_scanned
= 0, total_isolated
= 0;
536 unsigned long flags
= 0;
538 unsigned long blockpfn
= *start_pfn
;
541 /* Strict mode is for isolation, speed is secondary */
545 cursor
= pfn_to_page(blockpfn
);
547 /* Isolate free pages. */
548 for (; blockpfn
< end_pfn
; blockpfn
+= stride
, cursor
+= stride
) {
550 struct page
*page
= cursor
;
553 * Periodically drop the lock (if held) regardless of its
554 * contention, to give chance to IRQs. Abort if fatal signal
555 * pending or async compaction detects need_resched()
557 if (!(blockpfn
% SWAP_CLUSTER_MAX
)
558 && compact_unlock_should_abort(&cc
->zone
->lock
, flags
,
563 if (!pfn_valid_within(blockpfn
))
567 * For compound pages such as THP and hugetlbfs, we can save
568 * potentially a lot of iterations if we skip them at once.
569 * The check is racy, but we can consider only valid values
570 * and the only danger is skipping too much.
572 if (PageCompound(page
)) {
573 const unsigned int order
= compound_order(page
);
575 if (likely(order
< MAX_ORDER
)) {
576 blockpfn
+= (1UL << order
) - 1;
577 cursor
+= (1UL << order
) - 1;
582 if (!PageBuddy(page
))
586 * If we already hold the lock, we can skip some rechecking.
587 * Note that if we hold the lock now, checked_pageblock was
588 * already set in some previous iteration (or strict is true),
589 * so it is correct to skip the suitable migration target
593 locked
= compact_lock_irqsave(&cc
->zone
->lock
,
596 /* Recheck this is a buddy page under lock */
597 if (!PageBuddy(page
))
601 /* Found a free page, will break it into order-0 pages */
602 order
= page_order(page
);
603 isolated
= __isolate_free_page(page
, order
);
606 set_page_private(page
, order
);
608 total_isolated
+= isolated
;
609 cc
->nr_freepages
+= isolated
;
610 list_add_tail(&page
->lru
, freelist
);
612 if (!strict
&& cc
->nr_migratepages
<= cc
->nr_freepages
) {
613 blockpfn
+= isolated
;
616 /* Advance to the end of split page */
617 blockpfn
+= isolated
- 1;
618 cursor
+= isolated
- 1;
630 spin_unlock_irqrestore(&cc
->zone
->lock
, flags
);
633 * There is a tiny chance that we have read bogus compound_order(),
634 * so be careful to not go outside of the pageblock.
636 if (unlikely(blockpfn
> end_pfn
))
639 trace_mm_compaction_isolate_freepages(*start_pfn
, blockpfn
,
640 nr_scanned
, total_isolated
);
642 /* Record how far we have got within the block */
643 *start_pfn
= blockpfn
;
646 * If strict isolation is requested by CMA then check that all the
647 * pages requested were isolated. If there were any failures, 0 is
648 * returned and CMA will fail.
650 if (strict
&& blockpfn
< end_pfn
)
653 cc
->total_free_scanned
+= nr_scanned
;
655 count_compact_events(COMPACTISOLATED
, total_isolated
);
656 return total_isolated
;
660 * isolate_freepages_range() - isolate free pages.
661 * @cc: Compaction control structure.
662 * @start_pfn: The first PFN to start isolating.
663 * @end_pfn: The one-past-last PFN.
665 * Non-free pages, invalid PFNs, or zone boundaries within the
666 * [start_pfn, end_pfn) range are considered errors, cause function to
667 * undo its actions and return zero.
669 * Otherwise, function returns one-past-the-last PFN of isolated page
670 * (which may be greater then end_pfn if end fell in a middle of
674 isolate_freepages_range(struct compact_control
*cc
,
675 unsigned long start_pfn
, unsigned long end_pfn
)
677 unsigned long isolated
, pfn
, block_start_pfn
, block_end_pfn
;
681 block_start_pfn
= pageblock_start_pfn(pfn
);
682 if (block_start_pfn
< cc
->zone
->zone_start_pfn
)
683 block_start_pfn
= cc
->zone
->zone_start_pfn
;
684 block_end_pfn
= pageblock_end_pfn(pfn
);
686 for (; pfn
< end_pfn
; pfn
+= isolated
,
687 block_start_pfn
= block_end_pfn
,
688 block_end_pfn
+= pageblock_nr_pages
) {
689 /* Protect pfn from changing by isolate_freepages_block */
690 unsigned long isolate_start_pfn
= pfn
;
692 block_end_pfn
= min(block_end_pfn
, end_pfn
);
695 * pfn could pass the block_end_pfn if isolated freepage
696 * is more than pageblock order. In this case, we adjust
697 * scanning range to right one.
699 if (pfn
>= block_end_pfn
) {
700 block_start_pfn
= pageblock_start_pfn(pfn
);
701 block_end_pfn
= pageblock_end_pfn(pfn
);
702 block_end_pfn
= min(block_end_pfn
, end_pfn
);
705 if (!pageblock_pfn_to_page(block_start_pfn
,
706 block_end_pfn
, cc
->zone
))
709 isolated
= isolate_freepages_block(cc
, &isolate_start_pfn
,
710 block_end_pfn
, &freelist
, 0, true);
713 * In strict mode, isolate_freepages_block() returns 0 if
714 * there are any holes in the block (ie. invalid PFNs or
721 * If we managed to isolate pages, it is always (1 << n) *
722 * pageblock_nr_pages for some non-negative n. (Max order
723 * page may span two pageblocks).
727 /* __isolate_free_page() does not map the pages */
728 split_map_pages(&freelist
);
731 /* Loop terminated early, cleanup. */
732 release_freepages(&freelist
);
736 /* We don't use freelists for anything. */
740 /* Similar to reclaim, but different enough that they don't share logic */
741 static bool too_many_isolated(pg_data_t
*pgdat
)
743 unsigned long active
, inactive
, isolated
;
745 inactive
= node_page_state(pgdat
, NR_INACTIVE_FILE
) +
746 node_page_state(pgdat
, NR_INACTIVE_ANON
);
747 active
= node_page_state(pgdat
, NR_ACTIVE_FILE
) +
748 node_page_state(pgdat
, NR_ACTIVE_ANON
);
749 isolated
= node_page_state(pgdat
, NR_ISOLATED_FILE
) +
750 node_page_state(pgdat
, NR_ISOLATED_ANON
);
752 return isolated
> (inactive
+ active
) / 2;
756 * isolate_migratepages_block() - isolate all migrate-able pages within
758 * @cc: Compaction control structure.
759 * @low_pfn: The first PFN to isolate
760 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
761 * @isolate_mode: Isolation mode to be used.
763 * Isolate all pages that can be migrated from the range specified by
764 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
765 * Returns zero if there is a fatal signal pending, otherwise PFN of the
766 * first page that was not scanned (which may be both less, equal to or more
769 * The pages are isolated on cc->migratepages list (not required to be empty),
770 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
771 * is neither read nor updated.
774 isolate_migratepages_block(struct compact_control
*cc
, unsigned long low_pfn
,
775 unsigned long end_pfn
, isolate_mode_t isolate_mode
)
777 pg_data_t
*pgdat
= cc
->zone
->zone_pgdat
;
778 unsigned long nr_scanned
= 0, nr_isolated
= 0;
779 struct lruvec
*lruvec
;
780 unsigned long flags
= 0;
782 struct page
*page
= NULL
, *valid_page
= NULL
;
783 unsigned long start_pfn
= low_pfn
;
784 bool skip_on_failure
= false;
785 unsigned long next_skip_pfn
= 0;
786 bool skip_updated
= false;
789 * Ensure that there are not too many pages isolated from the LRU
790 * list by either parallel reclaimers or compaction. If there are,
791 * delay for some time until fewer pages are isolated
793 while (unlikely(too_many_isolated(pgdat
))) {
794 /* async migration should just abort */
795 if (cc
->mode
== MIGRATE_ASYNC
)
798 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
800 if (fatal_signal_pending(current
))
806 if (cc
->direct_compaction
&& (cc
->mode
== MIGRATE_ASYNC
)) {
807 skip_on_failure
= true;
808 next_skip_pfn
= block_end_pfn(low_pfn
, cc
->order
);
811 /* Time to isolate some pages for migration */
812 for (; low_pfn
< end_pfn
; low_pfn
++) {
814 if (skip_on_failure
&& low_pfn
>= next_skip_pfn
) {
816 * We have isolated all migration candidates in the
817 * previous order-aligned block, and did not skip it due
818 * to failure. We should migrate the pages now and
819 * hopefully succeed compaction.
825 * We failed to isolate in the previous order-aligned
826 * block. Set the new boundary to the end of the
827 * current block. Note we can't simply increase
828 * next_skip_pfn by 1 << order, as low_pfn might have
829 * been incremented by a higher number due to skipping
830 * a compound or a high-order buddy page in the
831 * previous loop iteration.
833 next_skip_pfn
= block_end_pfn(low_pfn
, cc
->order
);
837 * Periodically drop the lock (if held) regardless of its
838 * contention, to give chance to IRQs. Abort async compaction
841 if (!(low_pfn
% SWAP_CLUSTER_MAX
)
842 && compact_unlock_should_abort(&pgdat
->lru_lock
,
846 if (!pfn_valid_within(low_pfn
))
850 page
= pfn_to_page(low_pfn
);
853 * Check if the pageblock has already been marked skipped.
854 * Only the aligned PFN is checked as the caller isolates
855 * COMPACT_CLUSTER_MAX at a time so the second call must
856 * not falsely conclude that the block should be skipped.
858 if (!valid_page
&& IS_ALIGNED(low_pfn
, pageblock_nr_pages
)) {
859 if (!cc
->ignore_skip_hint
&& get_pageblock_skip(page
)) {
867 * Skip if free. We read page order here without zone lock
868 * which is generally unsafe, but the race window is small and
869 * the worst thing that can happen is that we skip some
870 * potential isolation targets.
872 if (PageBuddy(page
)) {
873 unsigned long freepage_order
= page_order_unsafe(page
);
876 * Without lock, we cannot be sure that what we got is
877 * a valid page order. Consider only values in the
878 * valid order range to prevent low_pfn overflow.
880 if (freepage_order
> 0 && freepage_order
< MAX_ORDER
)
881 low_pfn
+= (1UL << freepage_order
) - 1;
886 * Regardless of being on LRU, compound pages such as THP and
887 * hugetlbfs are not to be compacted. We can potentially save
888 * a lot of iterations if we skip them at once. The check is
889 * racy, but we can consider only valid values and the only
890 * danger is skipping too much.
892 if (PageCompound(page
)) {
893 const unsigned int order
= compound_order(page
);
895 if (likely(order
< MAX_ORDER
))
896 low_pfn
+= (1UL << order
) - 1;
901 * Check may be lockless but that's ok as we recheck later.
902 * It's possible to migrate LRU and non-lru movable pages.
903 * Skip any other type of page
905 if (!PageLRU(page
)) {
907 * __PageMovable can return false positive so we need
908 * to verify it under page_lock.
910 if (unlikely(__PageMovable(page
)) &&
911 !PageIsolated(page
)) {
913 spin_unlock_irqrestore(&pgdat
->lru_lock
,
918 if (!isolate_movable_page(page
, isolate_mode
))
919 goto isolate_success
;
926 * Migration will fail if an anonymous page is pinned in memory,
927 * so avoid taking lru_lock and isolating it unnecessarily in an
928 * admittedly racy check.
930 if (!page_mapping(page
) &&
931 page_count(page
) > page_mapcount(page
))
935 * Only allow to migrate anonymous pages in GFP_NOFS context
936 * because those do not depend on fs locks.
938 if (!(cc
->gfp_mask
& __GFP_FS
) && page_mapping(page
))
941 /* If we already hold the lock, we can skip some rechecking */
943 locked
= compact_lock_irqsave(&pgdat
->lru_lock
,
946 /* Try get exclusive access under lock */
949 if (test_and_set_skip(cc
, page
, low_pfn
))
953 /* Recheck PageLRU and PageCompound under lock */
958 * Page become compound since the non-locked check,
959 * and it's on LRU. It can only be a THP so the order
960 * is safe to read and it's 0 for tail pages.
962 if (unlikely(PageCompound(page
))) {
963 low_pfn
+= (1UL << compound_order(page
)) - 1;
968 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
970 /* Try isolate the page */
971 if (__isolate_lru_page(page
, isolate_mode
) != 0)
974 VM_BUG_ON_PAGE(PageCompound(page
), page
);
976 /* Successfully isolated */
977 del_page_from_lru_list(page
, lruvec
, page_lru(page
));
978 inc_node_page_state(page
,
979 NR_ISOLATED_ANON
+ page_is_file_cache(page
));
982 list_add(&page
->lru
, &cc
->migratepages
);
983 cc
->nr_migratepages
++;
987 * Avoid isolating too much unless this block is being
988 * rescanned (e.g. dirty/writeback pages, parallel allocation)
989 * or a lock is contended. For contention, isolate quickly to
990 * potentially remove one source of contention.
992 if (cc
->nr_migratepages
== COMPACT_CLUSTER_MAX
&&
993 !cc
->rescan
&& !cc
->contended
) {
1000 if (!skip_on_failure
)
1004 * We have isolated some pages, but then failed. Release them
1005 * instead of migrating, as we cannot form the cc->order buddy
1010 spin_unlock_irqrestore(&pgdat
->lru_lock
, flags
);
1013 putback_movable_pages(&cc
->migratepages
);
1014 cc
->nr_migratepages
= 0;
1018 if (low_pfn
< next_skip_pfn
) {
1019 low_pfn
= next_skip_pfn
- 1;
1021 * The check near the loop beginning would have updated
1022 * next_skip_pfn too, but this is a bit simpler.
1024 next_skip_pfn
+= 1UL << cc
->order
;
1029 * The PageBuddy() check could have potentially brought us outside
1030 * the range to be scanned.
1032 if (unlikely(low_pfn
> end_pfn
))
1037 spin_unlock_irqrestore(&pgdat
->lru_lock
, flags
);
1040 * Updated the cached scanner pfn once the pageblock has been scanned
1041 * Pages will either be migrated in which case there is no point
1042 * scanning in the near future or migration failed in which case the
1043 * failure reason may persist. The block is marked for skipping if
1044 * there were no pages isolated in the block or if the block is
1045 * rescanned twice in a row.
1047 if (low_pfn
== end_pfn
&& (!nr_isolated
|| cc
->rescan
)) {
1048 if (valid_page
&& !skip_updated
)
1049 set_pageblock_skip(valid_page
);
1050 update_cached_migrate(cc
, low_pfn
);
1053 trace_mm_compaction_isolate_migratepages(start_pfn
, low_pfn
,
1054 nr_scanned
, nr_isolated
);
1056 cc
->total_migrate_scanned
+= nr_scanned
;
1058 count_compact_events(COMPACTISOLATED
, nr_isolated
);
1064 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1065 * @cc: Compaction control structure.
1066 * @start_pfn: The first PFN to start isolating.
1067 * @end_pfn: The one-past-last PFN.
1069 * Returns zero if isolation fails fatally due to e.g. pending signal.
1070 * Otherwise, function returns one-past-the-last PFN of isolated page
1071 * (which may be greater than end_pfn if end fell in a middle of a THP page).
1074 isolate_migratepages_range(struct compact_control
*cc
, unsigned long start_pfn
,
1075 unsigned long end_pfn
)
1077 unsigned long pfn
, block_start_pfn
, block_end_pfn
;
1079 /* Scan block by block. First and last block may be incomplete */
1081 block_start_pfn
= pageblock_start_pfn(pfn
);
1082 if (block_start_pfn
< cc
->zone
->zone_start_pfn
)
1083 block_start_pfn
= cc
->zone
->zone_start_pfn
;
1084 block_end_pfn
= pageblock_end_pfn(pfn
);
1086 for (; pfn
< end_pfn
; pfn
= block_end_pfn
,
1087 block_start_pfn
= block_end_pfn
,
1088 block_end_pfn
+= pageblock_nr_pages
) {
1090 block_end_pfn
= min(block_end_pfn
, end_pfn
);
1092 if (!pageblock_pfn_to_page(block_start_pfn
,
1093 block_end_pfn
, cc
->zone
))
1096 pfn
= isolate_migratepages_block(cc
, pfn
, block_end_pfn
,
1097 ISOLATE_UNEVICTABLE
);
1102 if (cc
->nr_migratepages
== COMPACT_CLUSTER_MAX
)
1109 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1110 #ifdef CONFIG_COMPACTION
1112 static bool suitable_migration_source(struct compact_control
*cc
,
1117 if (pageblock_skip_persistent(page
))
1120 if ((cc
->mode
!= MIGRATE_ASYNC
) || !cc
->direct_compaction
)
1123 block_mt
= get_pageblock_migratetype(page
);
1125 if (cc
->migratetype
== MIGRATE_MOVABLE
)
1126 return is_migrate_movable(block_mt
);
1128 return block_mt
== cc
->migratetype
;
1131 /* Returns true if the page is within a block suitable for migration to */
1132 static bool suitable_migration_target(struct compact_control
*cc
,
1135 /* If the page is a large free page, then disallow migration */
1136 if (PageBuddy(page
)) {
1138 * We are checking page_order without zone->lock taken. But
1139 * the only small danger is that we skip a potentially suitable
1140 * pageblock, so it's not worth to check order for valid range.
1142 if (page_order_unsafe(page
) >= pageblock_order
)
1146 if (cc
->ignore_block_suitable
)
1149 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1150 if (is_migrate_movable(get_pageblock_migratetype(page
)))
1153 /* Otherwise skip the block */
1157 static inline unsigned int
1158 freelist_scan_limit(struct compact_control
*cc
)
1160 return (COMPACT_CLUSTER_MAX
>> cc
->fast_search_fail
) + 1;
1164 * Test whether the free scanner has reached the same or lower pageblock than
1165 * the migration scanner, and compaction should thus terminate.
1167 static inline bool compact_scanners_met(struct compact_control
*cc
)
1169 return (cc
->free_pfn
>> pageblock_order
)
1170 <= (cc
->migrate_pfn
>> pageblock_order
);
1174 * Used when scanning for a suitable migration target which scans freelists
1175 * in reverse. Reorders the list such as the unscanned pages are scanned
1176 * first on the next iteration of the free scanner
1179 move_freelist_head(struct list_head
*freelist
, struct page
*freepage
)
1183 if (!list_is_last(freelist
, &freepage
->lru
)) {
1184 list_cut_before(&sublist
, freelist
, &freepage
->lru
);
1185 if (!list_empty(&sublist
))
1186 list_splice_tail(&sublist
, freelist
);
1191 * Similar to move_freelist_head except used by the migration scanner
1192 * when scanning forward. It's possible for these list operations to
1193 * move against each other if they search the free list exactly in
1197 move_freelist_tail(struct list_head
*freelist
, struct page
*freepage
)
1201 if (!list_is_first(freelist
, &freepage
->lru
)) {
1202 list_cut_position(&sublist
, freelist
, &freepage
->lru
);
1203 if (!list_empty(&sublist
))
1204 list_splice_tail(&sublist
, freelist
);
1209 fast_isolate_around(struct compact_control
*cc
, unsigned long pfn
, unsigned long nr_isolated
)
1211 unsigned long start_pfn
, end_pfn
;
1212 struct page
*page
= pfn_to_page(pfn
);
1214 /* Do not search around if there are enough pages already */
1215 if (cc
->nr_freepages
>= cc
->nr_migratepages
)
1218 /* Minimise scanning during async compaction */
1219 if (cc
->direct_compaction
&& cc
->mode
== MIGRATE_ASYNC
)
1222 /* Pageblock boundaries */
1223 start_pfn
= pageblock_start_pfn(pfn
);
1224 end_pfn
= min(start_pfn
+ pageblock_nr_pages
, zone_end_pfn(cc
->zone
));
1227 if (start_pfn
!= pfn
) {
1228 isolate_freepages_block(cc
, &start_pfn
, pfn
, &cc
->freepages
, 1, false);
1229 if (cc
->nr_freepages
>= cc
->nr_migratepages
)
1234 start_pfn
= pfn
+ nr_isolated
;
1235 if (start_pfn
!= end_pfn
)
1236 isolate_freepages_block(cc
, &start_pfn
, end_pfn
, &cc
->freepages
, 1, false);
1238 /* Skip this pageblock in the future as it's full or nearly full */
1239 if (cc
->nr_freepages
< cc
->nr_migratepages
)
1240 set_pageblock_skip(page
);
1243 /* Search orders in round-robin fashion */
1244 static int next_search_order(struct compact_control
*cc
, int order
)
1248 order
= cc
->order
- 1;
1250 /* Search wrapped around? */
1251 if (order
== cc
->search_order
) {
1253 if (cc
->search_order
< 0)
1254 cc
->search_order
= cc
->order
- 1;
1261 static unsigned long
1262 fast_isolate_freepages(struct compact_control
*cc
)
1264 unsigned int limit
= min(1U, freelist_scan_limit(cc
) >> 1);
1265 unsigned int nr_scanned
= 0;
1266 unsigned long low_pfn
, min_pfn
, high_pfn
= 0, highest
= 0;
1267 unsigned long nr_isolated
= 0;
1268 unsigned long distance
;
1269 struct page
*page
= NULL
;
1270 bool scan_start
= false;
1273 /* Full compaction passes in a negative order */
1275 return cc
->free_pfn
;
1278 * If starting the scan, use a deeper search and use the highest
1279 * PFN found if a suitable one is not found.
1281 if (cc
->free_pfn
>= cc
->zone
->compact_init_free_pfn
) {
1282 limit
= pageblock_nr_pages
>> 1;
1287 * Preferred point is in the top quarter of the scan space but take
1288 * a pfn from the top half if the search is problematic.
1290 distance
= (cc
->free_pfn
- cc
->migrate_pfn
);
1291 low_pfn
= pageblock_start_pfn(cc
->free_pfn
- (distance
>> 2));
1292 min_pfn
= pageblock_start_pfn(cc
->free_pfn
- (distance
>> 1));
1294 if (WARN_ON_ONCE(min_pfn
> low_pfn
))
1298 * Search starts from the last successful isolation order or the next
1299 * order to search after a previous failure
1301 cc
->search_order
= min_t(unsigned int, cc
->order
- 1, cc
->search_order
);
1303 for (order
= cc
->search_order
;
1304 !page
&& order
>= 0;
1305 order
= next_search_order(cc
, order
)) {
1306 struct free_area
*area
= &cc
->zone
->free_area
[order
];
1307 struct list_head
*freelist
;
1308 struct page
*freepage
;
1309 unsigned long flags
;
1310 unsigned int order_scanned
= 0;
1315 spin_lock_irqsave(&cc
->zone
->lock
, flags
);
1316 freelist
= &area
->free_list
[MIGRATE_MOVABLE
];
1317 list_for_each_entry_reverse(freepage
, freelist
, lru
) {
1322 pfn
= page_to_pfn(freepage
);
1325 highest
= pageblock_start_pfn(pfn
);
1327 if (pfn
>= low_pfn
) {
1328 cc
->fast_search_fail
= 0;
1329 cc
->search_order
= order
;
1334 if (pfn
>= min_pfn
&& pfn
> high_pfn
) {
1337 /* Shorten the scan if a candidate is found */
1341 if (order_scanned
>= limit
)
1345 /* Use a minimum pfn if a preferred one was not found */
1346 if (!page
&& high_pfn
) {
1347 page
= pfn_to_page(high_pfn
);
1349 /* Update freepage for the list reorder below */
1353 /* Reorder to so a future search skips recent pages */
1354 move_freelist_head(freelist
, freepage
);
1356 /* Isolate the page if available */
1358 if (__isolate_free_page(page
, order
)) {
1359 set_page_private(page
, order
);
1360 nr_isolated
= 1 << order
;
1361 cc
->nr_freepages
+= nr_isolated
;
1362 list_add_tail(&page
->lru
, &cc
->freepages
);
1363 count_compact_events(COMPACTISOLATED
, nr_isolated
);
1365 /* If isolation fails, abort the search */
1371 spin_unlock_irqrestore(&cc
->zone
->lock
, flags
);
1374 * Smaller scan on next order so the total scan ig related
1375 * to freelist_scan_limit.
1377 if (order_scanned
>= limit
)
1378 limit
= min(1U, limit
>> 1);
1382 cc
->fast_search_fail
++;
1385 * Use the highest PFN found above min. If one was
1386 * not found, be pessemistic for direct compaction
1387 * and use the min mark.
1390 page
= pfn_to_page(highest
);
1391 cc
->free_pfn
= highest
;
1393 if (cc
->direct_compaction
) {
1394 page
= pfn_to_page(min_pfn
);
1395 cc
->free_pfn
= min_pfn
;
1401 if (highest
&& highest
>= cc
->zone
->compact_cached_free_pfn
) {
1402 highest
-= pageblock_nr_pages
;
1403 cc
->zone
->compact_cached_free_pfn
= highest
;
1406 cc
->total_free_scanned
+= nr_scanned
;
1408 return cc
->free_pfn
;
1410 low_pfn
= page_to_pfn(page
);
1411 fast_isolate_around(cc
, low_pfn
, nr_isolated
);
1416 * Based on information in the current compact_control, find blocks
1417 * suitable for isolating free pages from and then isolate them.
1419 static void isolate_freepages(struct compact_control
*cc
)
1421 struct zone
*zone
= cc
->zone
;
1423 unsigned long block_start_pfn
; /* start of current pageblock */
1424 unsigned long isolate_start_pfn
; /* exact pfn we start at */
1425 unsigned long block_end_pfn
; /* end of current pageblock */
1426 unsigned long low_pfn
; /* lowest pfn scanner is able to scan */
1427 struct list_head
*freelist
= &cc
->freepages
;
1428 unsigned int stride
;
1430 /* Try a small search of the free lists for a candidate */
1431 isolate_start_pfn
= fast_isolate_freepages(cc
);
1432 if (cc
->nr_freepages
)
1436 * Initialise the free scanner. The starting point is where we last
1437 * successfully isolated from, zone-cached value, or the end of the
1438 * zone when isolating for the first time. For looping we also need
1439 * this pfn aligned down to the pageblock boundary, because we do
1440 * block_start_pfn -= pageblock_nr_pages in the for loop.
1441 * For ending point, take care when isolating in last pageblock of a
1442 * a zone which ends in the middle of a pageblock.
1443 * The low boundary is the end of the pageblock the migration scanner
1446 isolate_start_pfn
= cc
->free_pfn
;
1447 block_start_pfn
= pageblock_start_pfn(isolate_start_pfn
);
1448 block_end_pfn
= min(block_start_pfn
+ pageblock_nr_pages
,
1449 zone_end_pfn(zone
));
1450 low_pfn
= pageblock_end_pfn(cc
->migrate_pfn
);
1451 stride
= cc
->mode
== MIGRATE_ASYNC
? COMPACT_CLUSTER_MAX
: 1;
1454 * Isolate free pages until enough are available to migrate the
1455 * pages on cc->migratepages. We stop searching if the migrate
1456 * and free page scanners meet or enough free pages are isolated.
1458 for (; block_start_pfn
>= low_pfn
;
1459 block_end_pfn
= block_start_pfn
,
1460 block_start_pfn
-= pageblock_nr_pages
,
1461 isolate_start_pfn
= block_start_pfn
) {
1462 unsigned long nr_isolated
;
1465 * This can iterate a massively long zone without finding any
1466 * suitable migration targets, so periodically check resched.
1468 if (!(block_start_pfn
% (SWAP_CLUSTER_MAX
* pageblock_nr_pages
)))
1471 page
= pageblock_pfn_to_page(block_start_pfn
, block_end_pfn
,
1476 /* Check the block is suitable for migration */
1477 if (!suitable_migration_target(cc
, page
))
1480 /* If isolation recently failed, do not retry */
1481 if (!isolation_suitable(cc
, page
))
1484 /* Found a block suitable for isolating free pages from. */
1485 nr_isolated
= isolate_freepages_block(cc
, &isolate_start_pfn
,
1486 block_end_pfn
, freelist
, stride
, false);
1488 /* Update the skip hint if the full pageblock was scanned */
1489 if (isolate_start_pfn
== block_end_pfn
)
1490 update_pageblock_skip(cc
, page
, block_start_pfn
);
1492 /* Are enough freepages isolated? */
1493 if (cc
->nr_freepages
>= cc
->nr_migratepages
) {
1494 if (isolate_start_pfn
>= block_end_pfn
) {
1496 * Restart at previous pageblock if more
1497 * freepages can be isolated next time.
1500 block_start_pfn
- pageblock_nr_pages
;
1503 } else if (isolate_start_pfn
< block_end_pfn
) {
1505 * If isolation failed early, do not continue
1511 /* Adjust stride depending on isolation */
1516 stride
= min_t(unsigned int, COMPACT_CLUSTER_MAX
, stride
<< 1);
1520 * Record where the free scanner will restart next time. Either we
1521 * broke from the loop and set isolate_start_pfn based on the last
1522 * call to isolate_freepages_block(), or we met the migration scanner
1523 * and the loop terminated due to isolate_start_pfn < low_pfn
1525 cc
->free_pfn
= isolate_start_pfn
;
1528 /* __isolate_free_page() does not map the pages */
1529 split_map_pages(freelist
);
1533 * This is a migrate-callback that "allocates" freepages by taking pages
1534 * from the isolated freelists in the block we are migrating to.
1536 static struct page
*compaction_alloc(struct page
*migratepage
,
1539 struct compact_control
*cc
= (struct compact_control
*)data
;
1540 struct page
*freepage
;
1542 if (list_empty(&cc
->freepages
)) {
1543 isolate_freepages(cc
);
1545 if (list_empty(&cc
->freepages
))
1549 freepage
= list_entry(cc
->freepages
.next
, struct page
, lru
);
1550 list_del(&freepage
->lru
);
1557 * This is a migrate-callback that "frees" freepages back to the isolated
1558 * freelist. All pages on the freelist are from the same zone, so there is no
1559 * special handling needed for NUMA.
1561 static void compaction_free(struct page
*page
, unsigned long data
)
1563 struct compact_control
*cc
= (struct compact_control
*)data
;
1565 list_add(&page
->lru
, &cc
->freepages
);
1569 /* possible outcome of isolate_migratepages */
1571 ISOLATE_ABORT
, /* Abort compaction now */
1572 ISOLATE_NONE
, /* No pages isolated, continue scanning */
1573 ISOLATE_SUCCESS
, /* Pages isolated, migrate */
1574 } isolate_migrate_t
;
1577 * Allow userspace to control policy on scanning the unevictable LRU for
1578 * compactable pages.
1580 int sysctl_compact_unevictable_allowed __read_mostly
= 1;
1583 update_fast_start_pfn(struct compact_control
*cc
, unsigned long pfn
)
1585 if (cc
->fast_start_pfn
== ULONG_MAX
)
1588 if (!cc
->fast_start_pfn
)
1589 cc
->fast_start_pfn
= pfn
;
1591 cc
->fast_start_pfn
= min(cc
->fast_start_pfn
, pfn
);
1594 static inline unsigned long
1595 reinit_migrate_pfn(struct compact_control
*cc
)
1597 if (!cc
->fast_start_pfn
|| cc
->fast_start_pfn
== ULONG_MAX
)
1598 return cc
->migrate_pfn
;
1600 cc
->migrate_pfn
= cc
->fast_start_pfn
;
1601 cc
->fast_start_pfn
= ULONG_MAX
;
1603 return cc
->migrate_pfn
;
1607 * Briefly search the free lists for a migration source that already has
1608 * some free pages to reduce the number of pages that need migration
1609 * before a pageblock is free.
1611 static unsigned long fast_find_migrateblock(struct compact_control
*cc
)
1613 unsigned int limit
= freelist_scan_limit(cc
);
1614 unsigned int nr_scanned
= 0;
1615 unsigned long distance
;
1616 unsigned long pfn
= cc
->migrate_pfn
;
1617 unsigned long high_pfn
;
1620 /* Skip hints are relied on to avoid repeats on the fast search */
1621 if (cc
->ignore_skip_hint
)
1625 * If the migrate_pfn is not at the start of a zone or the start
1626 * of a pageblock then assume this is a continuation of a previous
1627 * scan restarted due to COMPACT_CLUSTER_MAX.
1629 if (pfn
!= cc
->zone
->zone_start_pfn
&& pfn
!= pageblock_start_pfn(pfn
))
1633 * For smaller orders, just linearly scan as the number of pages
1634 * to migrate should be relatively small and does not necessarily
1635 * justify freeing up a large block for a small allocation.
1637 if (cc
->order
<= PAGE_ALLOC_COSTLY_ORDER
)
1641 * Only allow kcompactd and direct requests for movable pages to
1642 * quickly clear out a MOVABLE pageblock for allocation. This
1643 * reduces the risk that a large movable pageblock is freed for
1644 * an unmovable/reclaimable small allocation.
1646 if (cc
->direct_compaction
&& cc
->migratetype
!= MIGRATE_MOVABLE
)
1650 * When starting the migration scanner, pick any pageblock within the
1651 * first half of the search space. Otherwise try and pick a pageblock
1652 * within the first eighth to reduce the chances that a migration
1653 * target later becomes a source.
1655 distance
= (cc
->free_pfn
- cc
->migrate_pfn
) >> 1;
1656 if (cc
->migrate_pfn
!= cc
->zone
->zone_start_pfn
)
1658 high_pfn
= pageblock_start_pfn(cc
->migrate_pfn
+ distance
);
1660 for (order
= cc
->order
- 1;
1661 order
>= PAGE_ALLOC_COSTLY_ORDER
&& pfn
== cc
->migrate_pfn
&& nr_scanned
< limit
;
1663 struct free_area
*area
= &cc
->zone
->free_area
[order
];
1664 struct list_head
*freelist
;
1665 unsigned long flags
;
1666 struct page
*freepage
;
1671 spin_lock_irqsave(&cc
->zone
->lock
, flags
);
1672 freelist
= &area
->free_list
[MIGRATE_MOVABLE
];
1673 list_for_each_entry(freepage
, freelist
, lru
) {
1674 unsigned long free_pfn
;
1677 free_pfn
= page_to_pfn(freepage
);
1678 if (free_pfn
< high_pfn
) {
1680 * Avoid if skipped recently. Ideally it would
1681 * move to the tail but even safe iteration of
1682 * the list assumes an entry is deleted, not
1685 if (get_pageblock_skip(freepage
)) {
1686 if (list_is_last(freelist
, &freepage
->lru
))
1692 /* Reorder to so a future search skips recent pages */
1693 move_freelist_tail(freelist
, freepage
);
1695 update_fast_start_pfn(cc
, free_pfn
);
1696 pfn
= pageblock_start_pfn(free_pfn
);
1697 cc
->fast_search_fail
= 0;
1698 set_pageblock_skip(freepage
);
1702 if (nr_scanned
>= limit
) {
1703 cc
->fast_search_fail
++;
1704 move_freelist_tail(freelist
, freepage
);
1708 spin_unlock_irqrestore(&cc
->zone
->lock
, flags
);
1711 cc
->total_migrate_scanned
+= nr_scanned
;
1714 * If fast scanning failed then use a cached entry for a page block
1715 * that had free pages as the basis for starting a linear scan.
1717 if (pfn
== cc
->migrate_pfn
)
1718 pfn
= reinit_migrate_pfn(cc
);
1724 * Isolate all pages that can be migrated from the first suitable block,
1725 * starting at the block pointed to by the migrate scanner pfn within
1728 static isolate_migrate_t
isolate_migratepages(struct zone
*zone
,
1729 struct compact_control
*cc
)
1731 unsigned long block_start_pfn
;
1732 unsigned long block_end_pfn
;
1733 unsigned long low_pfn
;
1735 const isolate_mode_t isolate_mode
=
1736 (sysctl_compact_unevictable_allowed
? ISOLATE_UNEVICTABLE
: 0) |
1737 (cc
->mode
!= MIGRATE_SYNC
? ISOLATE_ASYNC_MIGRATE
: 0);
1738 bool fast_find_block
;
1741 * Start at where we last stopped, or beginning of the zone as
1742 * initialized by compact_zone(). The first failure will use
1743 * the lowest PFN as the starting point for linear scanning.
1745 low_pfn
= fast_find_migrateblock(cc
);
1746 block_start_pfn
= pageblock_start_pfn(low_pfn
);
1747 if (block_start_pfn
< zone
->zone_start_pfn
)
1748 block_start_pfn
= zone
->zone_start_pfn
;
1751 * fast_find_migrateblock marks a pageblock skipped so to avoid
1752 * the isolation_suitable check below, check whether the fast
1753 * search was successful.
1755 fast_find_block
= low_pfn
!= cc
->migrate_pfn
&& !cc
->fast_search_fail
;
1757 /* Only scan within a pageblock boundary */
1758 block_end_pfn
= pageblock_end_pfn(low_pfn
);
1761 * Iterate over whole pageblocks until we find the first suitable.
1762 * Do not cross the free scanner.
1764 for (; block_end_pfn
<= cc
->free_pfn
;
1765 fast_find_block
= false,
1766 low_pfn
= block_end_pfn
,
1767 block_start_pfn
= block_end_pfn
,
1768 block_end_pfn
+= pageblock_nr_pages
) {
1771 * This can potentially iterate a massively long zone with
1772 * many pageblocks unsuitable, so periodically check if we
1775 if (!(low_pfn
% (SWAP_CLUSTER_MAX
* pageblock_nr_pages
)))
1778 page
= pageblock_pfn_to_page(block_start_pfn
, block_end_pfn
,
1784 * If isolation recently failed, do not retry. Only check the
1785 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1786 * to be visited multiple times. Assume skip was checked
1787 * before making it "skip" so other compaction instances do
1788 * not scan the same block.
1790 if (IS_ALIGNED(low_pfn
, pageblock_nr_pages
) &&
1791 !fast_find_block
&& !isolation_suitable(cc
, page
))
1795 * For async compaction, also only scan in MOVABLE blocks
1796 * without huge pages. Async compaction is optimistic to see
1797 * if the minimum amount of work satisfies the allocation.
1798 * The cached PFN is updated as it's possible that all
1799 * remaining blocks between source and target are unsuitable
1800 * and the compaction scanners fail to meet.
1802 if (!suitable_migration_source(cc
, page
)) {
1803 update_cached_migrate(cc
, block_end_pfn
);
1807 /* Perform the isolation */
1808 low_pfn
= isolate_migratepages_block(cc
, low_pfn
,
1809 block_end_pfn
, isolate_mode
);
1812 return ISOLATE_ABORT
;
1815 * Either we isolated something and proceed with migration. Or
1816 * we failed and compact_zone should decide if we should
1822 /* Record where migration scanner will be restarted. */
1823 cc
->migrate_pfn
= low_pfn
;
1825 return cc
->nr_migratepages
? ISOLATE_SUCCESS
: ISOLATE_NONE
;
1829 * order == -1 is expected when compacting via
1830 * /proc/sys/vm/compact_memory
1832 static inline bool is_via_compact_memory(int order
)
1837 static enum compact_result
__compact_finished(struct compact_control
*cc
)
1840 const int migratetype
= cc
->migratetype
;
1843 /* Compaction run completes if the migrate and free scanner meet */
1844 if (compact_scanners_met(cc
)) {
1845 /* Let the next compaction start anew. */
1846 reset_cached_positions(cc
->zone
);
1849 * Mark that the PG_migrate_skip information should be cleared
1850 * by kswapd when it goes to sleep. kcompactd does not set the
1851 * flag itself as the decision to be clear should be directly
1852 * based on an allocation request.
1854 if (cc
->direct_compaction
)
1855 cc
->zone
->compact_blockskip_flush
= true;
1858 return COMPACT_COMPLETE
;
1860 return COMPACT_PARTIAL_SKIPPED
;
1863 if (is_via_compact_memory(cc
->order
))
1864 return COMPACT_CONTINUE
;
1867 * Always finish scanning a pageblock to reduce the possibility of
1868 * fallbacks in the future. This is particularly important when
1869 * migration source is unmovable/reclaimable but it's not worth
1872 if (!IS_ALIGNED(cc
->migrate_pfn
, pageblock_nr_pages
))
1873 return COMPACT_CONTINUE
;
1875 /* Direct compactor: Is a suitable page free? */
1876 ret
= COMPACT_NO_SUITABLE_PAGE
;
1877 for (order
= cc
->order
; order
< MAX_ORDER
; order
++) {
1878 struct free_area
*area
= &cc
->zone
->free_area
[order
];
1881 /* Job done if page is free of the right migratetype */
1882 if (!list_empty(&area
->free_list
[migratetype
]))
1883 return COMPACT_SUCCESS
;
1886 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1887 if (migratetype
== MIGRATE_MOVABLE
&&
1888 !list_empty(&area
->free_list
[MIGRATE_CMA
]))
1889 return COMPACT_SUCCESS
;
1892 * Job done if allocation would steal freepages from
1893 * other migratetype buddy lists.
1895 if (find_suitable_fallback(area
, order
, migratetype
,
1896 true, &can_steal
) != -1) {
1898 /* movable pages are OK in any pageblock */
1899 if (migratetype
== MIGRATE_MOVABLE
)
1900 return COMPACT_SUCCESS
;
1903 * We are stealing for a non-movable allocation. Make
1904 * sure we finish compacting the current pageblock
1905 * first so it is as free as possible and we won't
1906 * have to steal another one soon. This only applies
1907 * to sync compaction, as async compaction operates
1908 * on pageblocks of the same migratetype.
1910 if (cc
->mode
== MIGRATE_ASYNC
||
1911 IS_ALIGNED(cc
->migrate_pfn
,
1912 pageblock_nr_pages
)) {
1913 return COMPACT_SUCCESS
;
1916 ret
= COMPACT_CONTINUE
;
1921 if (cc
->contended
|| fatal_signal_pending(current
))
1922 ret
= COMPACT_CONTENDED
;
1927 static enum compact_result
compact_finished(struct compact_control
*cc
)
1931 ret
= __compact_finished(cc
);
1932 trace_mm_compaction_finished(cc
->zone
, cc
->order
, ret
);
1933 if (ret
== COMPACT_NO_SUITABLE_PAGE
)
1934 ret
= COMPACT_CONTINUE
;
1940 * compaction_suitable: Is this suitable to run compaction on this zone now?
1942 * COMPACT_SKIPPED - If there are too few free pages for compaction
1943 * COMPACT_SUCCESS - If the allocation would succeed without compaction
1944 * COMPACT_CONTINUE - If compaction should run now
1946 static enum compact_result
__compaction_suitable(struct zone
*zone
, int order
,
1947 unsigned int alloc_flags
,
1949 unsigned long wmark_target
)
1951 unsigned long watermark
;
1953 if (is_via_compact_memory(order
))
1954 return COMPACT_CONTINUE
;
1956 watermark
= wmark_pages(zone
, alloc_flags
& ALLOC_WMARK_MASK
);
1958 * If watermarks for high-order allocation are already met, there
1959 * should be no need for compaction at all.
1961 if (zone_watermark_ok(zone
, order
, watermark
, classzone_idx
,
1963 return COMPACT_SUCCESS
;
1966 * Watermarks for order-0 must be met for compaction to be able to
1967 * isolate free pages for migration targets. This means that the
1968 * watermark and alloc_flags have to match, or be more pessimistic than
1969 * the check in __isolate_free_page(). We don't use the direct
1970 * compactor's alloc_flags, as they are not relevant for freepage
1971 * isolation. We however do use the direct compactor's classzone_idx to
1972 * skip over zones where lowmem reserves would prevent allocation even
1973 * if compaction succeeds.
1974 * For costly orders, we require low watermark instead of min for
1975 * compaction to proceed to increase its chances.
1976 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1977 * suitable migration targets
1979 watermark
= (order
> PAGE_ALLOC_COSTLY_ORDER
) ?
1980 low_wmark_pages(zone
) : min_wmark_pages(zone
);
1981 watermark
+= compact_gap(order
);
1982 if (!__zone_watermark_ok(zone
, 0, watermark
, classzone_idx
,
1983 ALLOC_CMA
, wmark_target
))
1984 return COMPACT_SKIPPED
;
1986 return COMPACT_CONTINUE
;
1989 enum compact_result
compaction_suitable(struct zone
*zone
, int order
,
1990 unsigned int alloc_flags
,
1993 enum compact_result ret
;
1996 ret
= __compaction_suitable(zone
, order
, alloc_flags
, classzone_idx
,
1997 zone_page_state(zone
, NR_FREE_PAGES
));
1999 * fragmentation index determines if allocation failures are due to
2000 * low memory or external fragmentation
2002 * index of -1000 would imply allocations might succeed depending on
2003 * watermarks, but we already failed the high-order watermark check
2004 * index towards 0 implies failure is due to lack of memory
2005 * index towards 1000 implies failure is due to fragmentation
2007 * Only compact if a failure would be due to fragmentation. Also
2008 * ignore fragindex for non-costly orders where the alternative to
2009 * a successful reclaim/compaction is OOM. Fragindex and the
2010 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2011 * excessive compaction for costly orders, but it should not be at the
2012 * expense of system stability.
2014 if (ret
== COMPACT_CONTINUE
&& (order
> PAGE_ALLOC_COSTLY_ORDER
)) {
2015 fragindex
= fragmentation_index(zone
, order
);
2016 if (fragindex
>= 0 && fragindex
<= sysctl_extfrag_threshold
)
2017 ret
= COMPACT_NOT_SUITABLE_ZONE
;
2020 trace_mm_compaction_suitable(zone
, order
, ret
);
2021 if (ret
== COMPACT_NOT_SUITABLE_ZONE
)
2022 ret
= COMPACT_SKIPPED
;
2027 bool compaction_zonelist_suitable(struct alloc_context
*ac
, int order
,
2034 * Make sure at least one zone would pass __compaction_suitable if we continue
2035 * retrying the reclaim.
2037 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
2039 unsigned long available
;
2040 enum compact_result compact_result
;
2043 * Do not consider all the reclaimable memory because we do not
2044 * want to trash just for a single high order allocation which
2045 * is even not guaranteed to appear even if __compaction_suitable
2046 * is happy about the watermark check.
2048 available
= zone_reclaimable_pages(zone
) / order
;
2049 available
+= zone_page_state_snapshot(zone
, NR_FREE_PAGES
);
2050 compact_result
= __compaction_suitable(zone
, order
, alloc_flags
,
2051 ac_classzone_idx(ac
), available
);
2052 if (compact_result
!= COMPACT_SKIPPED
)
2059 static enum compact_result
2060 compact_zone(struct compact_control
*cc
, struct capture_control
*capc
)
2062 enum compact_result ret
;
2063 unsigned long start_pfn
= cc
->zone
->zone_start_pfn
;
2064 unsigned long end_pfn
= zone_end_pfn(cc
->zone
);
2065 unsigned long last_migrated_pfn
;
2066 const bool sync
= cc
->mode
!= MIGRATE_ASYNC
;
2069 cc
->migratetype
= gfpflags_to_migratetype(cc
->gfp_mask
);
2070 ret
= compaction_suitable(cc
->zone
, cc
->order
, cc
->alloc_flags
,
2072 /* Compaction is likely to fail */
2073 if (ret
== COMPACT_SUCCESS
|| ret
== COMPACT_SKIPPED
)
2076 /* huh, compaction_suitable is returning something unexpected */
2077 VM_BUG_ON(ret
!= COMPACT_CONTINUE
);
2080 * Clear pageblock skip if there were failures recently and compaction
2081 * is about to be retried after being deferred.
2083 if (compaction_restarting(cc
->zone
, cc
->order
))
2084 __reset_isolation_suitable(cc
->zone
);
2087 * Setup to move all movable pages to the end of the zone. Used cached
2088 * information on where the scanners should start (unless we explicitly
2089 * want to compact the whole zone), but check that it is initialised
2090 * by ensuring the values are within zone boundaries.
2092 cc
->fast_start_pfn
= 0;
2093 if (cc
->whole_zone
) {
2094 cc
->migrate_pfn
= start_pfn
;
2095 cc
->free_pfn
= pageblock_start_pfn(end_pfn
- 1);
2097 cc
->migrate_pfn
= cc
->zone
->compact_cached_migrate_pfn
[sync
];
2098 cc
->free_pfn
= cc
->zone
->compact_cached_free_pfn
;
2099 if (cc
->free_pfn
< start_pfn
|| cc
->free_pfn
>= end_pfn
) {
2100 cc
->free_pfn
= pageblock_start_pfn(end_pfn
- 1);
2101 cc
->zone
->compact_cached_free_pfn
= cc
->free_pfn
;
2103 if (cc
->migrate_pfn
< start_pfn
|| cc
->migrate_pfn
>= end_pfn
) {
2104 cc
->migrate_pfn
= start_pfn
;
2105 cc
->zone
->compact_cached_migrate_pfn
[0] = cc
->migrate_pfn
;
2106 cc
->zone
->compact_cached_migrate_pfn
[1] = cc
->migrate_pfn
;
2109 if (cc
->migrate_pfn
<= cc
->zone
->compact_init_migrate_pfn
)
2110 cc
->whole_zone
= true;
2113 last_migrated_pfn
= 0;
2116 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2117 * the basis that some migrations will fail in ASYNC mode. However,
2118 * if the cached PFNs match and pageblocks are skipped due to having
2119 * no isolation candidates, then the sync state does not matter.
2120 * Until a pageblock with isolation candidates is found, keep the
2121 * cached PFNs in sync to avoid revisiting the same blocks.
2123 update_cached
= !sync
&&
2124 cc
->zone
->compact_cached_migrate_pfn
[0] == cc
->zone
->compact_cached_migrate_pfn
[1];
2126 trace_mm_compaction_begin(start_pfn
, cc
->migrate_pfn
,
2127 cc
->free_pfn
, end_pfn
, sync
);
2129 migrate_prep_local();
2131 while ((ret
= compact_finished(cc
)) == COMPACT_CONTINUE
) {
2133 unsigned long start_pfn
= cc
->migrate_pfn
;
2136 * Avoid multiple rescans which can happen if a page cannot be
2137 * isolated (dirty/writeback in async mode) or if the migrated
2138 * pages are being allocated before the pageblock is cleared.
2139 * The first rescan will capture the entire pageblock for
2140 * migration. If it fails, it'll be marked skip and scanning
2141 * will proceed as normal.
2144 if (pageblock_start_pfn(last_migrated_pfn
) ==
2145 pageblock_start_pfn(start_pfn
)) {
2149 switch (isolate_migratepages(cc
->zone
, cc
)) {
2151 ret
= COMPACT_CONTENDED
;
2152 putback_movable_pages(&cc
->migratepages
);
2153 cc
->nr_migratepages
= 0;
2154 last_migrated_pfn
= 0;
2157 if (update_cached
) {
2158 cc
->zone
->compact_cached_migrate_pfn
[1] =
2159 cc
->zone
->compact_cached_migrate_pfn
[0];
2163 * We haven't isolated and migrated anything, but
2164 * there might still be unflushed migrations from
2165 * previous cc->order aligned block.
2168 case ISOLATE_SUCCESS
:
2169 update_cached
= false;
2170 last_migrated_pfn
= start_pfn
;
2174 err
= migrate_pages(&cc
->migratepages
, compaction_alloc
,
2175 compaction_free
, (unsigned long)cc
, cc
->mode
,
2178 trace_mm_compaction_migratepages(cc
->nr_migratepages
, err
,
2181 /* All pages were either migrated or will be released */
2182 cc
->nr_migratepages
= 0;
2184 putback_movable_pages(&cc
->migratepages
);
2186 * migrate_pages() may return -ENOMEM when scanners meet
2187 * and we want compact_finished() to detect it
2189 if (err
== -ENOMEM
&& !compact_scanners_met(cc
)) {
2190 ret
= COMPACT_CONTENDED
;
2194 * We failed to migrate at least one page in the current
2195 * order-aligned block, so skip the rest of it.
2197 if (cc
->direct_compaction
&&
2198 (cc
->mode
== MIGRATE_ASYNC
)) {
2199 cc
->migrate_pfn
= block_end_pfn(
2200 cc
->migrate_pfn
- 1, cc
->order
);
2201 /* Draining pcplists is useless in this case */
2202 last_migrated_pfn
= 0;
2208 * Has the migration scanner moved away from the previous
2209 * cc->order aligned block where we migrated from? If yes,
2210 * flush the pages that were freed, so that they can merge and
2211 * compact_finished() can detect immediately if allocation
2214 if (cc
->order
> 0 && last_migrated_pfn
) {
2216 unsigned long current_block_start
=
2217 block_start_pfn(cc
->migrate_pfn
, cc
->order
);
2219 if (last_migrated_pfn
< current_block_start
) {
2221 lru_add_drain_cpu(cpu
);
2222 drain_local_pages(cc
->zone
);
2224 /* No more flushing until we migrate again */
2225 last_migrated_pfn
= 0;
2229 /* Stop if a page has been captured */
2230 if (capc
&& capc
->page
) {
2231 ret
= COMPACT_SUCCESS
;
2238 * Release free pages and update where the free scanner should restart,
2239 * so we don't leave any returned pages behind in the next attempt.
2241 if (cc
->nr_freepages
> 0) {
2242 unsigned long free_pfn
= release_freepages(&cc
->freepages
);
2244 cc
->nr_freepages
= 0;
2245 VM_BUG_ON(free_pfn
== 0);
2246 /* The cached pfn is always the first in a pageblock */
2247 free_pfn
= pageblock_start_pfn(free_pfn
);
2249 * Only go back, not forward. The cached pfn might have been
2250 * already reset to zone end in compact_finished()
2252 if (free_pfn
> cc
->zone
->compact_cached_free_pfn
)
2253 cc
->zone
->compact_cached_free_pfn
= free_pfn
;
2256 count_compact_events(COMPACTMIGRATE_SCANNED
, cc
->total_migrate_scanned
);
2257 count_compact_events(COMPACTFREE_SCANNED
, cc
->total_free_scanned
);
2259 trace_mm_compaction_end(start_pfn
, cc
->migrate_pfn
,
2260 cc
->free_pfn
, end_pfn
, sync
, ret
);
2265 static enum compact_result
compact_zone_order(struct zone
*zone
, int order
,
2266 gfp_t gfp_mask
, enum compact_priority prio
,
2267 unsigned int alloc_flags
, int classzone_idx
,
2268 struct page
**capture
)
2270 enum compact_result ret
;
2271 struct compact_control cc
= {
2273 .nr_migratepages
= 0,
2274 .total_migrate_scanned
= 0,
2275 .total_free_scanned
= 0,
2277 .search_order
= order
,
2278 .gfp_mask
= gfp_mask
,
2280 .mode
= (prio
== COMPACT_PRIO_ASYNC
) ?
2281 MIGRATE_ASYNC
: MIGRATE_SYNC_LIGHT
,
2282 .alloc_flags
= alloc_flags
,
2283 .classzone_idx
= classzone_idx
,
2284 .direct_compaction
= true,
2285 .whole_zone
= (prio
== MIN_COMPACT_PRIORITY
),
2286 .ignore_skip_hint
= (prio
== MIN_COMPACT_PRIORITY
),
2287 .ignore_block_suitable
= (prio
== MIN_COMPACT_PRIORITY
)
2289 struct capture_control capc
= {
2295 current
->capture_control
= &capc
;
2296 INIT_LIST_HEAD(&cc
.freepages
);
2297 INIT_LIST_HEAD(&cc
.migratepages
);
2299 ret
= compact_zone(&cc
, &capc
);
2301 VM_BUG_ON(!list_empty(&cc
.freepages
));
2302 VM_BUG_ON(!list_empty(&cc
.migratepages
));
2304 *capture
= capc
.page
;
2305 current
->capture_control
= NULL
;
2310 int sysctl_extfrag_threshold
= 500;
2313 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2314 * @gfp_mask: The GFP mask of the current allocation
2315 * @order: The order of the current allocation
2316 * @alloc_flags: The allocation flags of the current allocation
2317 * @ac: The context of current allocation
2318 * @prio: Determines how hard direct compaction should try to succeed
2320 * This is the main entry point for direct page compaction.
2322 enum compact_result
try_to_compact_pages(gfp_t gfp_mask
, unsigned int order
,
2323 unsigned int alloc_flags
, const struct alloc_context
*ac
,
2324 enum compact_priority prio
, struct page
**capture
)
2326 int may_perform_io
= gfp_mask
& __GFP_IO
;
2329 enum compact_result rc
= COMPACT_SKIPPED
;
2332 * Check if the GFP flags allow compaction - GFP_NOIO is really
2333 * tricky context because the migration might require IO
2335 if (!may_perform_io
)
2336 return COMPACT_SKIPPED
;
2338 trace_mm_compaction_try_to_compact_pages(order
, gfp_mask
, prio
);
2340 /* Compact each zone in the list */
2341 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
2343 enum compact_result status
;
2345 if (prio
> MIN_COMPACT_PRIORITY
2346 && compaction_deferred(zone
, order
)) {
2347 rc
= max_t(enum compact_result
, COMPACT_DEFERRED
, rc
);
2351 status
= compact_zone_order(zone
, order
, gfp_mask
, prio
,
2352 alloc_flags
, ac_classzone_idx(ac
), capture
);
2353 rc
= max(status
, rc
);
2355 /* The allocation should succeed, stop compacting */
2356 if (status
== COMPACT_SUCCESS
) {
2358 * We think the allocation will succeed in this zone,
2359 * but it is not certain, hence the false. The caller
2360 * will repeat this with true if allocation indeed
2361 * succeeds in this zone.
2363 compaction_defer_reset(zone
, order
, false);
2368 if (prio
!= COMPACT_PRIO_ASYNC
&& (status
== COMPACT_COMPLETE
||
2369 status
== COMPACT_PARTIAL_SKIPPED
))
2371 * We think that allocation won't succeed in this zone
2372 * so we defer compaction there. If it ends up
2373 * succeeding after all, it will be reset.
2375 defer_compaction(zone
, order
);
2378 * We might have stopped compacting due to need_resched() in
2379 * async compaction, or due to a fatal signal detected. In that
2380 * case do not try further zones
2382 if ((prio
== COMPACT_PRIO_ASYNC
&& need_resched())
2383 || fatal_signal_pending(current
))
2391 /* Compact all zones within a node */
2392 static void compact_node(int nid
)
2394 pg_data_t
*pgdat
= NODE_DATA(nid
);
2397 struct compact_control cc
= {
2399 .total_migrate_scanned
= 0,
2400 .total_free_scanned
= 0,
2401 .mode
= MIGRATE_SYNC
,
2402 .ignore_skip_hint
= true,
2404 .gfp_mask
= GFP_KERNEL
,
2408 for (zoneid
= 0; zoneid
< MAX_NR_ZONES
; zoneid
++) {
2410 zone
= &pgdat
->node_zones
[zoneid
];
2411 if (!populated_zone(zone
))
2414 cc
.nr_freepages
= 0;
2415 cc
.nr_migratepages
= 0;
2417 INIT_LIST_HEAD(&cc
.freepages
);
2418 INIT_LIST_HEAD(&cc
.migratepages
);
2420 compact_zone(&cc
, NULL
);
2422 VM_BUG_ON(!list_empty(&cc
.freepages
));
2423 VM_BUG_ON(!list_empty(&cc
.migratepages
));
2427 /* Compact all nodes in the system */
2428 static void compact_nodes(void)
2432 /* Flush pending updates to the LRU lists */
2433 lru_add_drain_all();
2435 for_each_online_node(nid
)
2439 /* The written value is actually unused, all memory is compacted */
2440 int sysctl_compact_memory
;
2443 * This is the entry point for compacting all nodes via
2444 * /proc/sys/vm/compact_memory
2446 int sysctl_compaction_handler(struct ctl_table
*table
, int write
,
2447 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2455 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2456 static ssize_t
sysfs_compact_node(struct device
*dev
,
2457 struct device_attribute
*attr
,
2458 const char *buf
, size_t count
)
2462 if (nid
>= 0 && nid
< nr_node_ids
&& node_online(nid
)) {
2463 /* Flush pending updates to the LRU lists */
2464 lru_add_drain_all();
2471 static DEVICE_ATTR(compact
, 0200, NULL
, sysfs_compact_node
);
2473 int compaction_register_node(struct node
*node
)
2475 return device_create_file(&node
->dev
, &dev_attr_compact
);
2478 void compaction_unregister_node(struct node
*node
)
2480 return device_remove_file(&node
->dev
, &dev_attr_compact
);
2482 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2484 static inline bool kcompactd_work_requested(pg_data_t
*pgdat
)
2486 return pgdat
->kcompactd_max_order
> 0 || kthread_should_stop();
2489 static bool kcompactd_node_suitable(pg_data_t
*pgdat
)
2493 enum zone_type classzone_idx
= pgdat
->kcompactd_classzone_idx
;
2495 for (zoneid
= 0; zoneid
<= classzone_idx
; zoneid
++) {
2496 zone
= &pgdat
->node_zones
[zoneid
];
2498 if (!populated_zone(zone
))
2501 if (compaction_suitable(zone
, pgdat
->kcompactd_max_order
, 0,
2502 classzone_idx
) == COMPACT_CONTINUE
)
2509 static void kcompactd_do_work(pg_data_t
*pgdat
)
2512 * With no special task, compact all zones so that a page of requested
2513 * order is allocatable.
2517 struct compact_control cc
= {
2518 .order
= pgdat
->kcompactd_max_order
,
2519 .search_order
= pgdat
->kcompactd_max_order
,
2520 .total_migrate_scanned
= 0,
2521 .total_free_scanned
= 0,
2522 .classzone_idx
= pgdat
->kcompactd_classzone_idx
,
2523 .mode
= MIGRATE_SYNC_LIGHT
,
2524 .ignore_skip_hint
= false,
2525 .gfp_mask
= GFP_KERNEL
,
2527 trace_mm_compaction_kcompactd_wake(pgdat
->node_id
, cc
.order
,
2529 count_compact_event(KCOMPACTD_WAKE
);
2531 for (zoneid
= 0; zoneid
<= cc
.classzone_idx
; zoneid
++) {
2534 zone
= &pgdat
->node_zones
[zoneid
];
2535 if (!populated_zone(zone
))
2538 if (compaction_deferred(zone
, cc
.order
))
2541 if (compaction_suitable(zone
, cc
.order
, 0, zoneid
) !=
2545 cc
.nr_freepages
= 0;
2546 cc
.nr_migratepages
= 0;
2547 cc
.total_migrate_scanned
= 0;
2548 cc
.total_free_scanned
= 0;
2550 INIT_LIST_HEAD(&cc
.freepages
);
2551 INIT_LIST_HEAD(&cc
.migratepages
);
2553 if (kthread_should_stop())
2555 status
= compact_zone(&cc
, NULL
);
2557 if (status
== COMPACT_SUCCESS
) {
2558 compaction_defer_reset(zone
, cc
.order
, false);
2559 } else if (status
== COMPACT_PARTIAL_SKIPPED
|| status
== COMPACT_COMPLETE
) {
2561 * Buddy pages may become stranded on pcps that could
2562 * otherwise coalesce on the zone's free area for
2563 * order >= cc.order. This is ratelimited by the
2564 * upcoming deferral.
2566 drain_all_pages(zone
);
2569 * We use sync migration mode here, so we defer like
2570 * sync direct compaction does.
2572 defer_compaction(zone
, cc
.order
);
2575 count_compact_events(KCOMPACTD_MIGRATE_SCANNED
,
2576 cc
.total_migrate_scanned
);
2577 count_compact_events(KCOMPACTD_FREE_SCANNED
,
2578 cc
.total_free_scanned
);
2580 VM_BUG_ON(!list_empty(&cc
.freepages
));
2581 VM_BUG_ON(!list_empty(&cc
.migratepages
));
2585 * Regardless of success, we are done until woken up next. But remember
2586 * the requested order/classzone_idx in case it was higher/tighter than
2589 if (pgdat
->kcompactd_max_order
<= cc
.order
)
2590 pgdat
->kcompactd_max_order
= 0;
2591 if (pgdat
->kcompactd_classzone_idx
>= cc
.classzone_idx
)
2592 pgdat
->kcompactd_classzone_idx
= pgdat
->nr_zones
- 1;
2595 void wakeup_kcompactd(pg_data_t
*pgdat
, int order
, int classzone_idx
)
2600 if (pgdat
->kcompactd_max_order
< order
)
2601 pgdat
->kcompactd_max_order
= order
;
2603 if (pgdat
->kcompactd_classzone_idx
> classzone_idx
)
2604 pgdat
->kcompactd_classzone_idx
= classzone_idx
;
2607 * Pairs with implicit barrier in wait_event_freezable()
2608 * such that wakeups are not missed.
2610 if (!wq_has_sleeper(&pgdat
->kcompactd_wait
))
2613 if (!kcompactd_node_suitable(pgdat
))
2616 trace_mm_compaction_wakeup_kcompactd(pgdat
->node_id
, order
,
2618 wake_up_interruptible(&pgdat
->kcompactd_wait
);
2622 * The background compaction daemon, started as a kernel thread
2623 * from the init process.
2625 static int kcompactd(void *p
)
2627 pg_data_t
*pgdat
= (pg_data_t
*)p
;
2628 struct task_struct
*tsk
= current
;
2630 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
2632 if (!cpumask_empty(cpumask
))
2633 set_cpus_allowed_ptr(tsk
, cpumask
);
2637 pgdat
->kcompactd_max_order
= 0;
2638 pgdat
->kcompactd_classzone_idx
= pgdat
->nr_zones
- 1;
2640 while (!kthread_should_stop()) {
2641 unsigned long pflags
;
2643 trace_mm_compaction_kcompactd_sleep(pgdat
->node_id
);
2644 wait_event_freezable(pgdat
->kcompactd_wait
,
2645 kcompactd_work_requested(pgdat
));
2647 psi_memstall_enter(&pflags
);
2648 kcompactd_do_work(pgdat
);
2649 psi_memstall_leave(&pflags
);
2656 * This kcompactd start function will be called by init and node-hot-add.
2657 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2659 int kcompactd_run(int nid
)
2661 pg_data_t
*pgdat
= NODE_DATA(nid
);
2664 if (pgdat
->kcompactd
)
2667 pgdat
->kcompactd
= kthread_run(kcompactd
, pgdat
, "kcompactd%d", nid
);
2668 if (IS_ERR(pgdat
->kcompactd
)) {
2669 pr_err("Failed to start kcompactd on node %d\n", nid
);
2670 ret
= PTR_ERR(pgdat
->kcompactd
);
2671 pgdat
->kcompactd
= NULL
;
2677 * Called by memory hotplug when all memory in a node is offlined. Caller must
2678 * hold mem_hotplug_begin/end().
2680 void kcompactd_stop(int nid
)
2682 struct task_struct
*kcompactd
= NODE_DATA(nid
)->kcompactd
;
2685 kthread_stop(kcompactd
);
2686 NODE_DATA(nid
)->kcompactd
= NULL
;
2691 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2692 * not required for correctness. So if the last cpu in a node goes
2693 * away, we get changed to run anywhere: as the first one comes back,
2694 * restore their cpu bindings.
2696 static int kcompactd_cpu_online(unsigned int cpu
)
2700 for_each_node_state(nid
, N_MEMORY
) {
2701 pg_data_t
*pgdat
= NODE_DATA(nid
);
2702 const struct cpumask
*mask
;
2704 mask
= cpumask_of_node(pgdat
->node_id
);
2706 if (cpumask_any_and(cpu_online_mask
, mask
) < nr_cpu_ids
)
2707 /* One of our CPUs online: restore mask */
2708 set_cpus_allowed_ptr(pgdat
->kcompactd
, mask
);
2713 static int __init
kcompactd_init(void)
2718 ret
= cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN
,
2719 "mm/compaction:online",
2720 kcompactd_cpu_online
, NULL
);
2722 pr_err("kcompactd: failed to register hotplug callbacks.\n");
2726 for_each_node_state(nid
, N_MEMORY
)
2730 subsys_initcall(kcompactd_init
)
2732 #endif /* CONFIG_COMPACTION */