2 * Driver for the Cirrus Logic EP93xx DMA Controller
4 * Copyright (C) 2011 Mika Westerberg
6 * DMA M2P implementation is based on the original
7 * arch/arm/mach-ep93xx/dma-m2p.c which has following copyrights:
9 * Copyright (C) 2006 Lennert Buytenhek <buytenh@wantstofly.org>
10 * Copyright (C) 2006 Applied Data Systems
11 * Copyright (C) 2009 Ryan Mallon <rmallon@gmail.com>
13 * This driver is based on dw_dmac and amba-pl08x drivers.
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
21 #include <linux/clk.h>
22 #include <linux/init.h>
23 #include <linux/interrupt.h>
24 #include <linux/dmaengine.h>
25 #include <linux/module.h>
26 #include <linux/platform_device.h>
27 #include <linux/slab.h>
32 #define M2P_CONTROL 0x0000
33 #define M2P_CONTROL_STALLINT BIT(0)
34 #define M2P_CONTROL_NFBINT BIT(1)
35 #define M2P_CONTROL_CH_ERROR_INT BIT(3)
36 #define M2P_CONTROL_ENABLE BIT(4)
37 #define M2P_CONTROL_ICE BIT(6)
39 #define M2P_INTERRUPT 0x0004
40 #define M2P_INTERRUPT_STALL BIT(0)
41 #define M2P_INTERRUPT_NFB BIT(1)
42 #define M2P_INTERRUPT_ERROR BIT(3)
44 #define M2P_PPALLOC 0x0008
45 #define M2P_STATUS 0x000c
47 #define M2P_MAXCNT0 0x0020
48 #define M2P_BASE0 0x0024
49 #define M2P_MAXCNT1 0x0030
50 #define M2P_BASE1 0x0034
52 #define M2P_STATE_IDLE 0
53 #define M2P_STATE_STALL 1
54 #define M2P_STATE_ON 2
55 #define M2P_STATE_NEXT 3
58 #define M2M_CONTROL 0x0000
59 #define M2M_CONTROL_DONEINT BIT(2)
60 #define M2M_CONTROL_ENABLE BIT(3)
61 #define M2M_CONTROL_START BIT(4)
62 #define M2M_CONTROL_DAH BIT(11)
63 #define M2M_CONTROL_SAH BIT(12)
64 #define M2M_CONTROL_PW_SHIFT 9
65 #define M2M_CONTROL_PW_8 (0 << M2M_CONTROL_PW_SHIFT)
66 #define M2M_CONTROL_PW_16 (1 << M2M_CONTROL_PW_SHIFT)
67 #define M2M_CONTROL_PW_32 (2 << M2M_CONTROL_PW_SHIFT)
68 #define M2M_CONTROL_PW_MASK (3 << M2M_CONTROL_PW_SHIFT)
69 #define M2M_CONTROL_TM_SHIFT 13
70 #define M2M_CONTROL_TM_TX (1 << M2M_CONTROL_TM_SHIFT)
71 #define M2M_CONTROL_TM_RX (2 << M2M_CONTROL_TM_SHIFT)
72 #define M2M_CONTROL_RSS_SHIFT 22
73 #define M2M_CONTROL_RSS_SSPRX (1 << M2M_CONTROL_RSS_SHIFT)
74 #define M2M_CONTROL_RSS_SSPTX (2 << M2M_CONTROL_RSS_SHIFT)
75 #define M2M_CONTROL_RSS_IDE (3 << M2M_CONTROL_RSS_SHIFT)
76 #define M2M_CONTROL_NO_HDSK BIT(24)
77 #define M2M_CONTROL_PWSC_SHIFT 25
79 #define M2M_INTERRUPT 0x0004
80 #define M2M_INTERRUPT_DONEINT BIT(1)
82 #define M2M_BCR0 0x0010
83 #define M2M_BCR1 0x0014
84 #define M2M_SAR_BASE0 0x0018
85 #define M2M_SAR_BASE1 0x001c
86 #define M2M_DAR_BASE0 0x002c
87 #define M2M_DAR_BASE1 0x0030
89 #define DMA_MAX_CHAN_BYTES 0xffff
90 #define DMA_MAX_CHAN_DESCRIPTORS 32
92 struct ep93xx_dma_engine
;
95 * struct ep93xx_dma_desc - EP93xx specific transaction descriptor
96 * @src_addr: source address of the transaction
97 * @dst_addr: destination address of the transaction
98 * @size: size of the transaction (in bytes)
99 * @complete: this descriptor is completed
100 * @txd: dmaengine API descriptor
101 * @tx_list: list of linked descriptors
102 * @node: link used for putting this into a channel queue
104 struct ep93xx_dma_desc
{
109 struct dma_async_tx_descriptor txd
;
110 struct list_head tx_list
;
111 struct list_head node
;
115 * struct ep93xx_dma_chan - an EP93xx DMA M2P/M2M channel
116 * @chan: dmaengine API channel
117 * @edma: pointer to to the engine device
118 * @regs: memory mapped registers
119 * @irq: interrupt number of the channel
120 * @clk: clock used by this channel
121 * @tasklet: channel specific tasklet used for callbacks
122 * @lock: lock protecting the fields following
123 * @flags: flags for the channel
124 * @buffer: which buffer to use next (0/1)
125 * @last_completed: last completed cookie value
126 * @active: flattened chain of descriptors currently being processed
127 * @queue: pending descriptors which are handled next
128 * @free_list: list of free descriptors which can be used
129 * @runtime_addr: physical address currently used as dest/src (M2M only). This
130 * is set via %DMA_SLAVE_CONFIG before slave operation is
132 * @runtime_ctrl: M2M runtime values for the control register.
134 * As EP93xx DMA controller doesn't support real chained DMA descriptors we
135 * will have slightly different scheme here: @active points to a head of
136 * flattened DMA descriptor chain.
138 * @queue holds pending transactions. These are linked through the first
139 * descriptor in the chain. When a descriptor is moved to the @active queue,
140 * the first and chained descriptors are flattened into a single list.
142 * @chan.private holds pointer to &struct ep93xx_dma_data which contains
143 * necessary channel configuration information. For memcpy channels this must
146 struct ep93xx_dma_chan
{
147 struct dma_chan chan
;
148 const struct ep93xx_dma_engine
*edma
;
152 struct tasklet_struct tasklet
;
153 /* protects the fields following */
156 /* Channel is configured for cyclic transfers */
157 #define EP93XX_DMA_IS_CYCLIC 0
160 dma_cookie_t last_completed
;
161 struct list_head active
;
162 struct list_head queue
;
163 struct list_head free_list
;
169 * struct ep93xx_dma_engine - the EP93xx DMA engine instance
170 * @dma_dev: holds the dmaengine device
171 * @m2m: is this an M2M or M2P device
172 * @hw_setup: method which sets the channel up for operation
173 * @hw_shutdown: shuts the channel down and flushes whatever is left
174 * @hw_submit: pushes active descriptor(s) to the hardware
175 * @hw_interrupt: handle the interrupt
176 * @num_channels: number of channels for this instance
177 * @channels: array of channels
179 * There is one instance of this struct for the M2P channels and one for the
180 * M2M channels. hw_xxx() methods are used to perform operations which are
181 * different on M2M and M2P channels. These methods are called with channel
182 * lock held and interrupts disabled so they cannot sleep.
184 struct ep93xx_dma_engine
{
185 struct dma_device dma_dev
;
187 int (*hw_setup
)(struct ep93xx_dma_chan
*);
188 void (*hw_shutdown
)(struct ep93xx_dma_chan
*);
189 void (*hw_submit
)(struct ep93xx_dma_chan
*);
190 int (*hw_interrupt
)(struct ep93xx_dma_chan
*);
191 #define INTERRUPT_UNKNOWN 0
192 #define INTERRUPT_DONE 1
193 #define INTERRUPT_NEXT_BUFFER 2
196 struct ep93xx_dma_chan channels
[];
199 static inline struct device
*chan2dev(struct ep93xx_dma_chan
*edmac
)
201 return &edmac
->chan
.dev
->device
;
204 static struct ep93xx_dma_chan
*to_ep93xx_dma_chan(struct dma_chan
*chan
)
206 return container_of(chan
, struct ep93xx_dma_chan
, chan
);
210 * ep93xx_dma_set_active - set new active descriptor chain
212 * @desc: head of the new active descriptor chain
214 * Sets @desc to be the head of the new active descriptor chain. This is the
215 * chain which is processed next. The active list must be empty before calling
218 * Called with @edmac->lock held and interrupts disabled.
220 static void ep93xx_dma_set_active(struct ep93xx_dma_chan
*edmac
,
221 struct ep93xx_dma_desc
*desc
)
223 BUG_ON(!list_empty(&edmac
->active
));
225 list_add_tail(&desc
->node
, &edmac
->active
);
227 /* Flatten the @desc->tx_list chain into @edmac->active list */
228 while (!list_empty(&desc
->tx_list
)) {
229 struct ep93xx_dma_desc
*d
= list_first_entry(&desc
->tx_list
,
230 struct ep93xx_dma_desc
, node
);
233 * We copy the callback parameters from the first descriptor
234 * to all the chained descriptors. This way we can call the
235 * callback without having to find out the first descriptor in
236 * the chain. Useful for cyclic transfers.
238 d
->txd
.callback
= desc
->txd
.callback
;
239 d
->txd
.callback_param
= desc
->txd
.callback_param
;
241 list_move_tail(&d
->node
, &edmac
->active
);
245 /* Called with @edmac->lock held and interrupts disabled */
246 static struct ep93xx_dma_desc
*
247 ep93xx_dma_get_active(struct ep93xx_dma_chan
*edmac
)
249 if (list_empty(&edmac
->active
))
252 return list_first_entry(&edmac
->active
, struct ep93xx_dma_desc
, node
);
256 * ep93xx_dma_advance_active - advances to the next active descriptor
259 * Function advances active descriptor to the next in the @edmac->active and
260 * returns %true if we still have descriptors in the chain to process.
261 * Otherwise returns %false.
263 * When the channel is in cyclic mode always returns %true.
265 * Called with @edmac->lock held and interrupts disabled.
267 static bool ep93xx_dma_advance_active(struct ep93xx_dma_chan
*edmac
)
269 struct ep93xx_dma_desc
*desc
;
271 list_rotate_left(&edmac
->active
);
273 if (test_bit(EP93XX_DMA_IS_CYCLIC
, &edmac
->flags
))
276 desc
= ep93xx_dma_get_active(edmac
);
281 * If txd.cookie is set it means that we are back in the first
282 * descriptor in the chain and hence done with it.
284 return !desc
->txd
.cookie
;
288 * M2P DMA implementation
291 static void m2p_set_control(struct ep93xx_dma_chan
*edmac
, u32 control
)
293 writel(control
, edmac
->regs
+ M2P_CONTROL
);
295 * EP93xx User's Guide states that we must perform a dummy read after
296 * write to the control register.
298 readl(edmac
->regs
+ M2P_CONTROL
);
301 static int m2p_hw_setup(struct ep93xx_dma_chan
*edmac
)
303 struct ep93xx_dma_data
*data
= edmac
->chan
.private;
306 writel(data
->port
& 0xf, edmac
->regs
+ M2P_PPALLOC
);
308 control
= M2P_CONTROL_CH_ERROR_INT
| M2P_CONTROL_ICE
309 | M2P_CONTROL_ENABLE
;
310 m2p_set_control(edmac
, control
);
315 static inline u32
m2p_channel_state(struct ep93xx_dma_chan
*edmac
)
317 return (readl(edmac
->regs
+ M2P_STATUS
) >> 4) & 0x3;
320 static void m2p_hw_shutdown(struct ep93xx_dma_chan
*edmac
)
324 control
= readl(edmac
->regs
+ M2P_CONTROL
);
325 control
&= ~(M2P_CONTROL_STALLINT
| M2P_CONTROL_NFBINT
);
326 m2p_set_control(edmac
, control
);
328 while (m2p_channel_state(edmac
) >= M2P_STATE_ON
)
331 m2p_set_control(edmac
, 0);
333 while (m2p_channel_state(edmac
) == M2P_STATE_STALL
)
337 static void m2p_fill_desc(struct ep93xx_dma_chan
*edmac
)
339 struct ep93xx_dma_desc
*desc
;
342 desc
= ep93xx_dma_get_active(edmac
);
344 dev_warn(chan2dev(edmac
), "M2P: empty descriptor list\n");
348 if (ep93xx_dma_chan_direction(&edmac
->chan
) == DMA_MEM_TO_DEV
)
349 bus_addr
= desc
->src_addr
;
351 bus_addr
= desc
->dst_addr
;
353 if (edmac
->buffer
== 0) {
354 writel(desc
->size
, edmac
->regs
+ M2P_MAXCNT0
);
355 writel(bus_addr
, edmac
->regs
+ M2P_BASE0
);
357 writel(desc
->size
, edmac
->regs
+ M2P_MAXCNT1
);
358 writel(bus_addr
, edmac
->regs
+ M2P_BASE1
);
364 static void m2p_hw_submit(struct ep93xx_dma_chan
*edmac
)
366 u32 control
= readl(edmac
->regs
+ M2P_CONTROL
);
368 m2p_fill_desc(edmac
);
369 control
|= M2P_CONTROL_STALLINT
;
371 if (ep93xx_dma_advance_active(edmac
)) {
372 m2p_fill_desc(edmac
);
373 control
|= M2P_CONTROL_NFBINT
;
376 m2p_set_control(edmac
, control
);
379 static int m2p_hw_interrupt(struct ep93xx_dma_chan
*edmac
)
381 u32 irq_status
= readl(edmac
->regs
+ M2P_INTERRUPT
);
384 if (irq_status
& M2P_INTERRUPT_ERROR
) {
385 struct ep93xx_dma_desc
*desc
= ep93xx_dma_get_active(edmac
);
387 /* Clear the error interrupt */
388 writel(1, edmac
->regs
+ M2P_INTERRUPT
);
391 * It seems that there is no easy way of reporting errors back
392 * to client so we just report the error here and continue as
395 * Revisit this when there is a mechanism to report back the
398 dev_err(chan2dev(edmac
),
399 "DMA transfer failed! Details:\n"
401 "\tsrc_addr : 0x%08x\n"
402 "\tdst_addr : 0x%08x\n"
404 desc
->txd
.cookie
, desc
->src_addr
, desc
->dst_addr
,
408 switch (irq_status
& (M2P_INTERRUPT_STALL
| M2P_INTERRUPT_NFB
)) {
409 case M2P_INTERRUPT_STALL
:
410 /* Disable interrupts */
411 control
= readl(edmac
->regs
+ M2P_CONTROL
);
412 control
&= ~(M2P_CONTROL_STALLINT
| M2P_CONTROL_NFBINT
);
413 m2p_set_control(edmac
, control
);
415 return INTERRUPT_DONE
;
417 case M2P_INTERRUPT_NFB
:
418 if (ep93xx_dma_advance_active(edmac
))
419 m2p_fill_desc(edmac
);
421 return INTERRUPT_NEXT_BUFFER
;
424 return INTERRUPT_UNKNOWN
;
428 * M2M DMA implementation
430 * For the M2M transfers we don't use NFB at all. This is because it simply
431 * doesn't work well with memcpy transfers. When you submit both buffers it is
432 * extremely unlikely that you get an NFB interrupt, but it instead reports
433 * DONE interrupt and both buffers are already transferred which means that we
434 * weren't able to update the next buffer.
436 * So for now we "simulate" NFB by just submitting buffer after buffer
437 * without double buffering.
440 static int m2m_hw_setup(struct ep93xx_dma_chan
*edmac
)
442 const struct ep93xx_dma_data
*data
= edmac
->chan
.private;
446 /* This is memcpy channel, nothing to configure */
447 writel(control
, edmac
->regs
+ M2M_CONTROL
);
451 switch (data
->port
) {
454 * This was found via experimenting - anything less than 5
455 * causes the channel to perform only a partial transfer which
456 * leads to problems since we don't get DONE interrupt then.
458 control
= (5 << M2M_CONTROL_PWSC_SHIFT
);
459 control
|= M2M_CONTROL_NO_HDSK
;
461 if (data
->direction
== DMA_MEM_TO_DEV
) {
462 control
|= M2M_CONTROL_DAH
;
463 control
|= M2M_CONTROL_TM_TX
;
464 control
|= M2M_CONTROL_RSS_SSPTX
;
466 control
|= M2M_CONTROL_SAH
;
467 control
|= M2M_CONTROL_TM_RX
;
468 control
|= M2M_CONTROL_RSS_SSPRX
;
474 * This IDE part is totally untested. Values below are taken
475 * from the EP93xx Users's Guide and might not be correct.
477 if (data
->direction
== DMA_MEM_TO_DEV
) {
478 /* Worst case from the UG */
479 control
= (3 << M2M_CONTROL_PWSC_SHIFT
);
480 control
|= M2M_CONTROL_DAH
;
481 control
|= M2M_CONTROL_TM_TX
;
483 control
= (2 << M2M_CONTROL_PWSC_SHIFT
);
484 control
|= M2M_CONTROL_SAH
;
485 control
|= M2M_CONTROL_TM_RX
;
488 control
|= M2M_CONTROL_NO_HDSK
;
489 control
|= M2M_CONTROL_RSS_IDE
;
490 control
|= M2M_CONTROL_PW_16
;
497 writel(control
, edmac
->regs
+ M2M_CONTROL
);
501 static void m2m_hw_shutdown(struct ep93xx_dma_chan
*edmac
)
503 /* Just disable the channel */
504 writel(0, edmac
->regs
+ M2M_CONTROL
);
507 static void m2m_fill_desc(struct ep93xx_dma_chan
*edmac
)
509 struct ep93xx_dma_desc
*desc
;
511 desc
= ep93xx_dma_get_active(edmac
);
513 dev_warn(chan2dev(edmac
), "M2M: empty descriptor list\n");
517 if (edmac
->buffer
== 0) {
518 writel(desc
->src_addr
, edmac
->regs
+ M2M_SAR_BASE0
);
519 writel(desc
->dst_addr
, edmac
->regs
+ M2M_DAR_BASE0
);
520 writel(desc
->size
, edmac
->regs
+ M2M_BCR0
);
522 writel(desc
->src_addr
, edmac
->regs
+ M2M_SAR_BASE1
);
523 writel(desc
->dst_addr
, edmac
->regs
+ M2M_DAR_BASE1
);
524 writel(desc
->size
, edmac
->regs
+ M2M_BCR1
);
530 static void m2m_hw_submit(struct ep93xx_dma_chan
*edmac
)
532 struct ep93xx_dma_data
*data
= edmac
->chan
.private;
533 u32 control
= readl(edmac
->regs
+ M2M_CONTROL
);
536 * Since we allow clients to configure PW (peripheral width) we always
537 * clear PW bits here and then set them according what is given in
538 * the runtime configuration.
540 control
&= ~M2M_CONTROL_PW_MASK
;
541 control
|= edmac
->runtime_ctrl
;
543 m2m_fill_desc(edmac
);
544 control
|= M2M_CONTROL_DONEINT
;
547 * Now we can finally enable the channel. For M2M channel this must be
548 * done _after_ the BCRx registers are programmed.
550 control
|= M2M_CONTROL_ENABLE
;
551 writel(control
, edmac
->regs
+ M2M_CONTROL
);
555 * For memcpy channels the software trigger must be asserted
556 * in order to start the memcpy operation.
558 control
|= M2M_CONTROL_START
;
559 writel(control
, edmac
->regs
+ M2M_CONTROL
);
563 static int m2m_hw_interrupt(struct ep93xx_dma_chan
*edmac
)
567 if (!(readl(edmac
->regs
+ M2M_INTERRUPT
) & M2M_INTERRUPT_DONEINT
))
568 return INTERRUPT_UNKNOWN
;
570 /* Clear the DONE bit */
571 writel(0, edmac
->regs
+ M2M_INTERRUPT
);
573 /* Disable interrupts and the channel */
574 control
= readl(edmac
->regs
+ M2M_CONTROL
);
575 control
&= ~(M2M_CONTROL_DONEINT
| M2M_CONTROL_ENABLE
);
576 writel(control
, edmac
->regs
+ M2M_CONTROL
);
579 * Since we only get DONE interrupt we have to find out ourselves
580 * whether there still is something to process. So we try to advance
581 * the chain an see whether it succeeds.
583 if (ep93xx_dma_advance_active(edmac
)) {
584 edmac
->edma
->hw_submit(edmac
);
585 return INTERRUPT_NEXT_BUFFER
;
588 return INTERRUPT_DONE
;
592 * DMA engine API implementation
595 static struct ep93xx_dma_desc
*
596 ep93xx_dma_desc_get(struct ep93xx_dma_chan
*edmac
)
598 struct ep93xx_dma_desc
*desc
, *_desc
;
599 struct ep93xx_dma_desc
*ret
= NULL
;
602 spin_lock_irqsave(&edmac
->lock
, flags
);
603 list_for_each_entry_safe(desc
, _desc
, &edmac
->free_list
, node
) {
604 if (async_tx_test_ack(&desc
->txd
)) {
605 list_del_init(&desc
->node
);
607 /* Re-initialize the descriptor */
611 desc
->complete
= false;
612 desc
->txd
.cookie
= 0;
613 desc
->txd
.callback
= NULL
;
614 desc
->txd
.callback_param
= NULL
;
620 spin_unlock_irqrestore(&edmac
->lock
, flags
);
624 static void ep93xx_dma_desc_put(struct ep93xx_dma_chan
*edmac
,
625 struct ep93xx_dma_desc
*desc
)
630 spin_lock_irqsave(&edmac
->lock
, flags
);
631 list_splice_init(&desc
->tx_list
, &edmac
->free_list
);
632 list_add(&desc
->node
, &edmac
->free_list
);
633 spin_unlock_irqrestore(&edmac
->lock
, flags
);
638 * ep93xx_dma_advance_work - start processing the next pending transaction
641 * If we have pending transactions queued and we are currently idling, this
642 * function takes the next queued transaction from the @edmac->queue and
643 * pushes it to the hardware for execution.
645 static void ep93xx_dma_advance_work(struct ep93xx_dma_chan
*edmac
)
647 struct ep93xx_dma_desc
*new;
650 spin_lock_irqsave(&edmac
->lock
, flags
);
651 if (!list_empty(&edmac
->active
) || list_empty(&edmac
->queue
)) {
652 spin_unlock_irqrestore(&edmac
->lock
, flags
);
656 /* Take the next descriptor from the pending queue */
657 new = list_first_entry(&edmac
->queue
, struct ep93xx_dma_desc
, node
);
658 list_del_init(&new->node
);
660 ep93xx_dma_set_active(edmac
, new);
662 /* Push it to the hardware */
663 edmac
->edma
->hw_submit(edmac
);
664 spin_unlock_irqrestore(&edmac
->lock
, flags
);
667 static void ep93xx_dma_unmap_buffers(struct ep93xx_dma_desc
*desc
)
669 struct device
*dev
= desc
->txd
.chan
->device
->dev
;
671 if (!(desc
->txd
.flags
& DMA_COMPL_SKIP_SRC_UNMAP
)) {
672 if (desc
->txd
.flags
& DMA_COMPL_SRC_UNMAP_SINGLE
)
673 dma_unmap_single(dev
, desc
->src_addr
, desc
->size
,
676 dma_unmap_page(dev
, desc
->src_addr
, desc
->size
,
679 if (!(desc
->txd
.flags
& DMA_COMPL_SKIP_DEST_UNMAP
)) {
680 if (desc
->txd
.flags
& DMA_COMPL_DEST_UNMAP_SINGLE
)
681 dma_unmap_single(dev
, desc
->dst_addr
, desc
->size
,
684 dma_unmap_page(dev
, desc
->dst_addr
, desc
->size
,
689 static void ep93xx_dma_tasklet(unsigned long data
)
691 struct ep93xx_dma_chan
*edmac
= (struct ep93xx_dma_chan
*)data
;
692 struct ep93xx_dma_desc
*desc
, *d
;
693 dma_async_tx_callback callback
= NULL
;
694 void *callback_param
= NULL
;
697 spin_lock_irq(&edmac
->lock
);
699 * If dma_terminate_all() was called before we get to run, the active
700 * list has become empty. If that happens we aren't supposed to do
701 * anything more than call ep93xx_dma_advance_work().
703 desc
= ep93xx_dma_get_active(edmac
);
705 if (desc
->complete
) {
706 edmac
->last_completed
= desc
->txd
.cookie
;
707 list_splice_init(&edmac
->active
, &list
);
709 callback
= desc
->txd
.callback
;
710 callback_param
= desc
->txd
.callback_param
;
712 spin_unlock_irq(&edmac
->lock
);
714 /* Pick up the next descriptor from the queue */
715 ep93xx_dma_advance_work(edmac
);
717 /* Now we can release all the chained descriptors */
718 list_for_each_entry_safe(desc
, d
, &list
, node
) {
720 * For the memcpy channels the API requires us to unmap the
721 * buffers unless requested otherwise.
723 if (!edmac
->chan
.private)
724 ep93xx_dma_unmap_buffers(desc
);
726 ep93xx_dma_desc_put(edmac
, desc
);
730 callback(callback_param
);
733 static irqreturn_t
ep93xx_dma_interrupt(int irq
, void *dev_id
)
735 struct ep93xx_dma_chan
*edmac
= dev_id
;
736 struct ep93xx_dma_desc
*desc
;
737 irqreturn_t ret
= IRQ_HANDLED
;
739 spin_lock(&edmac
->lock
);
741 desc
= ep93xx_dma_get_active(edmac
);
743 dev_warn(chan2dev(edmac
),
744 "got interrupt while active list is empty\n");
745 spin_unlock(&edmac
->lock
);
749 switch (edmac
->edma
->hw_interrupt(edmac
)) {
751 desc
->complete
= true;
752 tasklet_schedule(&edmac
->tasklet
);
755 case INTERRUPT_NEXT_BUFFER
:
756 if (test_bit(EP93XX_DMA_IS_CYCLIC
, &edmac
->flags
))
757 tasklet_schedule(&edmac
->tasklet
);
761 dev_warn(chan2dev(edmac
), "unknown interrupt!\n");
766 spin_unlock(&edmac
->lock
);
771 * ep93xx_dma_tx_submit - set the prepared descriptor(s) to be executed
772 * @tx: descriptor to be executed
774 * Function will execute given descriptor on the hardware or if the hardware
775 * is busy, queue the descriptor to be executed later on. Returns cookie which
776 * can be used to poll the status of the descriptor.
778 static dma_cookie_t
ep93xx_dma_tx_submit(struct dma_async_tx_descriptor
*tx
)
780 struct ep93xx_dma_chan
*edmac
= to_ep93xx_dma_chan(tx
->chan
);
781 struct ep93xx_dma_desc
*desc
;
785 spin_lock_irqsave(&edmac
->lock
, flags
);
787 cookie
= edmac
->chan
.cookie
;
792 desc
= container_of(tx
, struct ep93xx_dma_desc
, txd
);
794 edmac
->chan
.cookie
= cookie
;
795 desc
->txd
.cookie
= cookie
;
798 * If nothing is currently prosessed, we push this descriptor
799 * directly to the hardware. Otherwise we put the descriptor
800 * to the pending queue.
802 if (list_empty(&edmac
->active
)) {
803 ep93xx_dma_set_active(edmac
, desc
);
804 edmac
->edma
->hw_submit(edmac
);
806 list_add_tail(&desc
->node
, &edmac
->queue
);
809 spin_unlock_irqrestore(&edmac
->lock
, flags
);
814 * ep93xx_dma_alloc_chan_resources - allocate resources for the channel
815 * @chan: channel to allocate resources
817 * Function allocates necessary resources for the given DMA channel and
818 * returns number of allocated descriptors for the channel. Negative errno
819 * is returned in case of failure.
821 static int ep93xx_dma_alloc_chan_resources(struct dma_chan
*chan
)
823 struct ep93xx_dma_chan
*edmac
= to_ep93xx_dma_chan(chan
);
824 struct ep93xx_dma_data
*data
= chan
->private;
825 const char *name
= dma_chan_name(chan
);
828 /* Sanity check the channel parameters */
829 if (!edmac
->edma
->m2m
) {
832 if (data
->port
< EP93XX_DMA_I2S1
||
833 data
->port
> EP93XX_DMA_IRDA
)
835 if (data
->direction
!= ep93xx_dma_chan_direction(chan
))
839 switch (data
->port
) {
842 if (data
->direction
!= DMA_MEM_TO_DEV
&&
843 data
->direction
!= DMA_DEV_TO_MEM
)
852 if (data
&& data
->name
)
855 ret
= clk_enable(edmac
->clk
);
859 ret
= request_irq(edmac
->irq
, ep93xx_dma_interrupt
, 0, name
, edmac
);
861 goto fail_clk_disable
;
863 spin_lock_irq(&edmac
->lock
);
864 edmac
->last_completed
= 1;
865 edmac
->chan
.cookie
= 1;
866 ret
= edmac
->edma
->hw_setup(edmac
);
867 spin_unlock_irq(&edmac
->lock
);
872 for (i
= 0; i
< DMA_MAX_CHAN_DESCRIPTORS
; i
++) {
873 struct ep93xx_dma_desc
*desc
;
875 desc
= kzalloc(sizeof(*desc
), GFP_KERNEL
);
877 dev_warn(chan2dev(edmac
), "not enough descriptors\n");
881 INIT_LIST_HEAD(&desc
->tx_list
);
883 dma_async_tx_descriptor_init(&desc
->txd
, chan
);
884 desc
->txd
.flags
= DMA_CTRL_ACK
;
885 desc
->txd
.tx_submit
= ep93xx_dma_tx_submit
;
887 ep93xx_dma_desc_put(edmac
, desc
);
893 free_irq(edmac
->irq
, edmac
);
895 clk_disable(edmac
->clk
);
901 * ep93xx_dma_free_chan_resources - release resources for the channel
904 * Function releases all the resources allocated for the given channel.
905 * The channel must be idle when this is called.
907 static void ep93xx_dma_free_chan_resources(struct dma_chan
*chan
)
909 struct ep93xx_dma_chan
*edmac
= to_ep93xx_dma_chan(chan
);
910 struct ep93xx_dma_desc
*desc
, *d
;
914 BUG_ON(!list_empty(&edmac
->active
));
915 BUG_ON(!list_empty(&edmac
->queue
));
917 spin_lock_irqsave(&edmac
->lock
, flags
);
918 edmac
->edma
->hw_shutdown(edmac
);
919 edmac
->runtime_addr
= 0;
920 edmac
->runtime_ctrl
= 0;
922 list_splice_init(&edmac
->free_list
, &list
);
923 spin_unlock_irqrestore(&edmac
->lock
, flags
);
925 list_for_each_entry_safe(desc
, d
, &list
, node
)
928 clk_disable(edmac
->clk
);
929 free_irq(edmac
->irq
, edmac
);
933 * ep93xx_dma_prep_dma_memcpy - prepare a memcpy DMA operation
935 * @dest: destination bus address
936 * @src: source bus address
937 * @len: size of the transaction
938 * @flags: flags for the descriptor
940 * Returns a valid DMA descriptor or %NULL in case of failure.
942 static struct dma_async_tx_descriptor
*
943 ep93xx_dma_prep_dma_memcpy(struct dma_chan
*chan
, dma_addr_t dest
,
944 dma_addr_t src
, size_t len
, unsigned long flags
)
946 struct ep93xx_dma_chan
*edmac
= to_ep93xx_dma_chan(chan
);
947 struct ep93xx_dma_desc
*desc
, *first
;
948 size_t bytes
, offset
;
951 for (offset
= 0; offset
< len
; offset
+= bytes
) {
952 desc
= ep93xx_dma_desc_get(edmac
);
954 dev_warn(chan2dev(edmac
), "couln't get descriptor\n");
958 bytes
= min_t(size_t, len
- offset
, DMA_MAX_CHAN_BYTES
);
960 desc
->src_addr
= src
+ offset
;
961 desc
->dst_addr
= dest
+ offset
;
967 list_add_tail(&desc
->node
, &first
->tx_list
);
970 first
->txd
.cookie
= -EBUSY
;
971 first
->txd
.flags
= flags
;
975 ep93xx_dma_desc_put(edmac
, first
);
980 * ep93xx_dma_prep_slave_sg - prepare a slave DMA operation
982 * @sgl: list of buffers to transfer
983 * @sg_len: number of entries in @sgl
984 * @dir: direction of tha DMA transfer
985 * @flags: flags for the descriptor
987 * Returns a valid DMA descriptor or %NULL in case of failure.
989 static struct dma_async_tx_descriptor
*
990 ep93xx_dma_prep_slave_sg(struct dma_chan
*chan
, struct scatterlist
*sgl
,
991 unsigned int sg_len
, enum dma_transfer_direction dir
,
994 struct ep93xx_dma_chan
*edmac
= to_ep93xx_dma_chan(chan
);
995 struct ep93xx_dma_desc
*desc
, *first
;
996 struct scatterlist
*sg
;
999 if (!edmac
->edma
->m2m
&& dir
!= ep93xx_dma_chan_direction(chan
)) {
1000 dev_warn(chan2dev(edmac
),
1001 "channel was configured with different direction\n");
1005 if (test_bit(EP93XX_DMA_IS_CYCLIC
, &edmac
->flags
)) {
1006 dev_warn(chan2dev(edmac
),
1007 "channel is already used for cyclic transfers\n");
1012 for_each_sg(sgl
, sg
, sg_len
, i
) {
1013 size_t sg_len
= sg_dma_len(sg
);
1015 if (sg_len
> DMA_MAX_CHAN_BYTES
) {
1016 dev_warn(chan2dev(edmac
), "too big transfer size %d\n",
1021 desc
= ep93xx_dma_desc_get(edmac
);
1023 dev_warn(chan2dev(edmac
), "couln't get descriptor\n");
1027 if (dir
== DMA_MEM_TO_DEV
) {
1028 desc
->src_addr
= sg_dma_address(sg
);
1029 desc
->dst_addr
= edmac
->runtime_addr
;
1031 desc
->src_addr
= edmac
->runtime_addr
;
1032 desc
->dst_addr
= sg_dma_address(sg
);
1034 desc
->size
= sg_len
;
1039 list_add_tail(&desc
->node
, &first
->tx_list
);
1042 first
->txd
.cookie
= -EBUSY
;
1043 first
->txd
.flags
= flags
;
1048 ep93xx_dma_desc_put(edmac
, first
);
1053 * ep93xx_dma_prep_dma_cyclic - prepare a cyclic DMA operation
1055 * @dma_addr: DMA mapped address of the buffer
1056 * @buf_len: length of the buffer (in bytes)
1057 * @period_len: lenght of a single period
1058 * @dir: direction of the operation
1060 * Prepares a descriptor for cyclic DMA operation. This means that once the
1061 * descriptor is submitted, we will be submitting in a @period_len sized
1062 * buffers and calling callback once the period has been elapsed. Transfer
1063 * terminates only when client calls dmaengine_terminate_all() for this
1066 * Returns a valid DMA descriptor or %NULL in case of failure.
1068 static struct dma_async_tx_descriptor
*
1069 ep93xx_dma_prep_dma_cyclic(struct dma_chan
*chan
, dma_addr_t dma_addr
,
1070 size_t buf_len
, size_t period_len
,
1071 enum dma_transfer_direction dir
)
1073 struct ep93xx_dma_chan
*edmac
= to_ep93xx_dma_chan(chan
);
1074 struct ep93xx_dma_desc
*desc
, *first
;
1077 if (!edmac
->edma
->m2m
&& dir
!= ep93xx_dma_chan_direction(chan
)) {
1078 dev_warn(chan2dev(edmac
),
1079 "channel was configured with different direction\n");
1083 if (test_and_set_bit(EP93XX_DMA_IS_CYCLIC
, &edmac
->flags
)) {
1084 dev_warn(chan2dev(edmac
),
1085 "channel is already used for cyclic transfers\n");
1089 if (period_len
> DMA_MAX_CHAN_BYTES
) {
1090 dev_warn(chan2dev(edmac
), "too big period length %d\n",
1095 /* Split the buffer into period size chunks */
1097 for (offset
= 0; offset
< buf_len
; offset
+= period_len
) {
1098 desc
= ep93xx_dma_desc_get(edmac
);
1100 dev_warn(chan2dev(edmac
), "couln't get descriptor\n");
1104 if (dir
== DMA_MEM_TO_DEV
) {
1105 desc
->src_addr
= dma_addr
+ offset
;
1106 desc
->dst_addr
= edmac
->runtime_addr
;
1108 desc
->src_addr
= edmac
->runtime_addr
;
1109 desc
->dst_addr
= dma_addr
+ offset
;
1112 desc
->size
= period_len
;
1117 list_add_tail(&desc
->node
, &first
->tx_list
);
1120 first
->txd
.cookie
= -EBUSY
;
1125 ep93xx_dma_desc_put(edmac
, first
);
1130 * ep93xx_dma_terminate_all - terminate all transactions
1133 * Stops all DMA transactions. All descriptors are put back to the
1134 * @edmac->free_list and callbacks are _not_ called.
1136 static int ep93xx_dma_terminate_all(struct ep93xx_dma_chan
*edmac
)
1138 struct ep93xx_dma_desc
*desc
, *_d
;
1139 unsigned long flags
;
1142 spin_lock_irqsave(&edmac
->lock
, flags
);
1143 /* First we disable and flush the DMA channel */
1144 edmac
->edma
->hw_shutdown(edmac
);
1145 clear_bit(EP93XX_DMA_IS_CYCLIC
, &edmac
->flags
);
1146 list_splice_init(&edmac
->active
, &list
);
1147 list_splice_init(&edmac
->queue
, &list
);
1149 * We then re-enable the channel. This way we can continue submitting
1150 * the descriptors by just calling ->hw_submit() again.
1152 edmac
->edma
->hw_setup(edmac
);
1153 spin_unlock_irqrestore(&edmac
->lock
, flags
);
1155 list_for_each_entry_safe(desc
, _d
, &list
, node
)
1156 ep93xx_dma_desc_put(edmac
, desc
);
1161 static int ep93xx_dma_slave_config(struct ep93xx_dma_chan
*edmac
,
1162 struct dma_slave_config
*config
)
1164 enum dma_slave_buswidth width
;
1165 unsigned long flags
;
1168 if (!edmac
->edma
->m2m
)
1171 switch (config
->direction
) {
1172 case DMA_DEV_TO_MEM
:
1173 width
= config
->src_addr_width
;
1174 addr
= config
->src_addr
;
1177 case DMA_MEM_TO_DEV
:
1178 width
= config
->dst_addr_width
;
1179 addr
= config
->dst_addr
;
1187 case DMA_SLAVE_BUSWIDTH_1_BYTE
:
1190 case DMA_SLAVE_BUSWIDTH_2_BYTES
:
1191 ctrl
= M2M_CONTROL_PW_16
;
1193 case DMA_SLAVE_BUSWIDTH_4_BYTES
:
1194 ctrl
= M2M_CONTROL_PW_32
;
1200 spin_lock_irqsave(&edmac
->lock
, flags
);
1201 edmac
->runtime_addr
= addr
;
1202 edmac
->runtime_ctrl
= ctrl
;
1203 spin_unlock_irqrestore(&edmac
->lock
, flags
);
1209 * ep93xx_dma_control - manipulate all pending operations on a channel
1211 * @cmd: control command to perform
1212 * @arg: optional argument
1214 * Controls the channel. Function returns %0 in case of success or negative
1215 * error in case of failure.
1217 static int ep93xx_dma_control(struct dma_chan
*chan
, enum dma_ctrl_cmd cmd
,
1220 struct ep93xx_dma_chan
*edmac
= to_ep93xx_dma_chan(chan
);
1221 struct dma_slave_config
*config
;
1224 case DMA_TERMINATE_ALL
:
1225 return ep93xx_dma_terminate_all(edmac
);
1227 case DMA_SLAVE_CONFIG
:
1228 config
= (struct dma_slave_config
*)arg
;
1229 return ep93xx_dma_slave_config(edmac
, config
);
1239 * ep93xx_dma_tx_status - check if a transaction is completed
1241 * @cookie: transaction specific cookie
1242 * @state: state of the transaction is stored here if given
1244 * This function can be used to query state of a given transaction.
1246 static enum dma_status
ep93xx_dma_tx_status(struct dma_chan
*chan
,
1247 dma_cookie_t cookie
,
1248 struct dma_tx_state
*state
)
1250 struct ep93xx_dma_chan
*edmac
= to_ep93xx_dma_chan(chan
);
1251 dma_cookie_t last_used
, last_completed
;
1252 enum dma_status ret
;
1253 unsigned long flags
;
1255 spin_lock_irqsave(&edmac
->lock
, flags
);
1256 last_used
= chan
->cookie
;
1257 last_completed
= edmac
->last_completed
;
1258 spin_unlock_irqrestore(&edmac
->lock
, flags
);
1260 ret
= dma_async_is_complete(cookie
, last_completed
, last_used
);
1261 dma_set_tx_state(state
, last_completed
, last_used
, 0);
1267 * ep93xx_dma_issue_pending - push pending transactions to the hardware
1270 * When this function is called, all pending transactions are pushed to the
1271 * hardware and executed.
1273 static void ep93xx_dma_issue_pending(struct dma_chan
*chan
)
1275 ep93xx_dma_advance_work(to_ep93xx_dma_chan(chan
));
1278 static int __init
ep93xx_dma_probe(struct platform_device
*pdev
)
1280 struct ep93xx_dma_platform_data
*pdata
= dev_get_platdata(&pdev
->dev
);
1281 struct ep93xx_dma_engine
*edma
;
1282 struct dma_device
*dma_dev
;
1286 edma_size
= pdata
->num_channels
* sizeof(struct ep93xx_dma_chan
);
1287 edma
= kzalloc(sizeof(*edma
) + edma_size
, GFP_KERNEL
);
1291 dma_dev
= &edma
->dma_dev
;
1292 edma
->m2m
= platform_get_device_id(pdev
)->driver_data
;
1293 edma
->num_channels
= pdata
->num_channels
;
1295 INIT_LIST_HEAD(&dma_dev
->channels
);
1296 for (i
= 0; i
< pdata
->num_channels
; i
++) {
1297 const struct ep93xx_dma_chan_data
*cdata
= &pdata
->channels
[i
];
1298 struct ep93xx_dma_chan
*edmac
= &edma
->channels
[i
];
1300 edmac
->chan
.device
= dma_dev
;
1301 edmac
->regs
= cdata
->base
;
1302 edmac
->irq
= cdata
->irq
;
1305 edmac
->clk
= clk_get(NULL
, cdata
->name
);
1306 if (IS_ERR(edmac
->clk
)) {
1307 dev_warn(&pdev
->dev
, "failed to get clock for %s\n",
1312 spin_lock_init(&edmac
->lock
);
1313 INIT_LIST_HEAD(&edmac
->active
);
1314 INIT_LIST_HEAD(&edmac
->queue
);
1315 INIT_LIST_HEAD(&edmac
->free_list
);
1316 tasklet_init(&edmac
->tasklet
, ep93xx_dma_tasklet
,
1317 (unsigned long)edmac
);
1319 list_add_tail(&edmac
->chan
.device_node
,
1320 &dma_dev
->channels
);
1323 dma_cap_zero(dma_dev
->cap_mask
);
1324 dma_cap_set(DMA_SLAVE
, dma_dev
->cap_mask
);
1325 dma_cap_set(DMA_CYCLIC
, dma_dev
->cap_mask
);
1327 dma_dev
->dev
= &pdev
->dev
;
1328 dma_dev
->device_alloc_chan_resources
= ep93xx_dma_alloc_chan_resources
;
1329 dma_dev
->device_free_chan_resources
= ep93xx_dma_free_chan_resources
;
1330 dma_dev
->device_prep_slave_sg
= ep93xx_dma_prep_slave_sg
;
1331 dma_dev
->device_prep_dma_cyclic
= ep93xx_dma_prep_dma_cyclic
;
1332 dma_dev
->device_control
= ep93xx_dma_control
;
1333 dma_dev
->device_issue_pending
= ep93xx_dma_issue_pending
;
1334 dma_dev
->device_tx_status
= ep93xx_dma_tx_status
;
1336 dma_set_max_seg_size(dma_dev
->dev
, DMA_MAX_CHAN_BYTES
);
1339 dma_cap_set(DMA_MEMCPY
, dma_dev
->cap_mask
);
1340 dma_dev
->device_prep_dma_memcpy
= ep93xx_dma_prep_dma_memcpy
;
1342 edma
->hw_setup
= m2m_hw_setup
;
1343 edma
->hw_shutdown
= m2m_hw_shutdown
;
1344 edma
->hw_submit
= m2m_hw_submit
;
1345 edma
->hw_interrupt
= m2m_hw_interrupt
;
1347 dma_cap_set(DMA_PRIVATE
, dma_dev
->cap_mask
);
1349 edma
->hw_setup
= m2p_hw_setup
;
1350 edma
->hw_shutdown
= m2p_hw_shutdown
;
1351 edma
->hw_submit
= m2p_hw_submit
;
1352 edma
->hw_interrupt
= m2p_hw_interrupt
;
1355 ret
= dma_async_device_register(dma_dev
);
1356 if (unlikely(ret
)) {
1357 for (i
= 0; i
< edma
->num_channels
; i
++) {
1358 struct ep93xx_dma_chan
*edmac
= &edma
->channels
[i
];
1359 if (!IS_ERR_OR_NULL(edmac
->clk
))
1360 clk_put(edmac
->clk
);
1364 dev_info(dma_dev
->dev
, "EP93xx M2%s DMA ready\n",
1365 edma
->m2m
? "M" : "P");
1371 static struct platform_device_id ep93xx_dma_driver_ids
[] = {
1372 { "ep93xx-dma-m2p", 0 },
1373 { "ep93xx-dma-m2m", 1 },
1377 static struct platform_driver ep93xx_dma_driver
= {
1379 .name
= "ep93xx-dma",
1381 .id_table
= ep93xx_dma_driver_ids
,
1384 static int __init
ep93xx_dma_module_init(void)
1386 return platform_driver_probe(&ep93xx_dma_driver
, ep93xx_dma_probe
);
1388 subsys_initcall(ep93xx_dma_module_init
);
1390 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
1391 MODULE_DESCRIPTION("EP93xx DMA driver");
1392 MODULE_LICENSE("GPL");