pinctrl: move generic functions to the pinctrl_ namespace
[linux/fpc-iii.git] / drivers / dma / ep93xx_dma.c
blob59e7a965772bfdff900aa1d82063d6f2510dd8c4
1 /*
2 * Driver for the Cirrus Logic EP93xx DMA Controller
4 * Copyright (C) 2011 Mika Westerberg
6 * DMA M2P implementation is based on the original
7 * arch/arm/mach-ep93xx/dma-m2p.c which has following copyrights:
9 * Copyright (C) 2006 Lennert Buytenhek <buytenh@wantstofly.org>
10 * Copyright (C) 2006 Applied Data Systems
11 * Copyright (C) 2009 Ryan Mallon <rmallon@gmail.com>
13 * This driver is based on dw_dmac and amba-pl08x drivers.
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
21 #include <linux/clk.h>
22 #include <linux/init.h>
23 #include <linux/interrupt.h>
24 #include <linux/dmaengine.h>
25 #include <linux/module.h>
26 #include <linux/platform_device.h>
27 #include <linux/slab.h>
29 #include <mach/dma.h>
31 /* M2P registers */
32 #define M2P_CONTROL 0x0000
33 #define M2P_CONTROL_STALLINT BIT(0)
34 #define M2P_CONTROL_NFBINT BIT(1)
35 #define M2P_CONTROL_CH_ERROR_INT BIT(3)
36 #define M2P_CONTROL_ENABLE BIT(4)
37 #define M2P_CONTROL_ICE BIT(6)
39 #define M2P_INTERRUPT 0x0004
40 #define M2P_INTERRUPT_STALL BIT(0)
41 #define M2P_INTERRUPT_NFB BIT(1)
42 #define M2P_INTERRUPT_ERROR BIT(3)
44 #define M2P_PPALLOC 0x0008
45 #define M2P_STATUS 0x000c
47 #define M2P_MAXCNT0 0x0020
48 #define M2P_BASE0 0x0024
49 #define M2P_MAXCNT1 0x0030
50 #define M2P_BASE1 0x0034
52 #define M2P_STATE_IDLE 0
53 #define M2P_STATE_STALL 1
54 #define M2P_STATE_ON 2
55 #define M2P_STATE_NEXT 3
57 /* M2M registers */
58 #define M2M_CONTROL 0x0000
59 #define M2M_CONTROL_DONEINT BIT(2)
60 #define M2M_CONTROL_ENABLE BIT(3)
61 #define M2M_CONTROL_START BIT(4)
62 #define M2M_CONTROL_DAH BIT(11)
63 #define M2M_CONTROL_SAH BIT(12)
64 #define M2M_CONTROL_PW_SHIFT 9
65 #define M2M_CONTROL_PW_8 (0 << M2M_CONTROL_PW_SHIFT)
66 #define M2M_CONTROL_PW_16 (1 << M2M_CONTROL_PW_SHIFT)
67 #define M2M_CONTROL_PW_32 (2 << M2M_CONTROL_PW_SHIFT)
68 #define M2M_CONTROL_PW_MASK (3 << M2M_CONTROL_PW_SHIFT)
69 #define M2M_CONTROL_TM_SHIFT 13
70 #define M2M_CONTROL_TM_TX (1 << M2M_CONTROL_TM_SHIFT)
71 #define M2M_CONTROL_TM_RX (2 << M2M_CONTROL_TM_SHIFT)
72 #define M2M_CONTROL_RSS_SHIFT 22
73 #define M2M_CONTROL_RSS_SSPRX (1 << M2M_CONTROL_RSS_SHIFT)
74 #define M2M_CONTROL_RSS_SSPTX (2 << M2M_CONTROL_RSS_SHIFT)
75 #define M2M_CONTROL_RSS_IDE (3 << M2M_CONTROL_RSS_SHIFT)
76 #define M2M_CONTROL_NO_HDSK BIT(24)
77 #define M2M_CONTROL_PWSC_SHIFT 25
79 #define M2M_INTERRUPT 0x0004
80 #define M2M_INTERRUPT_DONEINT BIT(1)
82 #define M2M_BCR0 0x0010
83 #define M2M_BCR1 0x0014
84 #define M2M_SAR_BASE0 0x0018
85 #define M2M_SAR_BASE1 0x001c
86 #define M2M_DAR_BASE0 0x002c
87 #define M2M_DAR_BASE1 0x0030
89 #define DMA_MAX_CHAN_BYTES 0xffff
90 #define DMA_MAX_CHAN_DESCRIPTORS 32
92 struct ep93xx_dma_engine;
94 /**
95 * struct ep93xx_dma_desc - EP93xx specific transaction descriptor
96 * @src_addr: source address of the transaction
97 * @dst_addr: destination address of the transaction
98 * @size: size of the transaction (in bytes)
99 * @complete: this descriptor is completed
100 * @txd: dmaengine API descriptor
101 * @tx_list: list of linked descriptors
102 * @node: link used for putting this into a channel queue
104 struct ep93xx_dma_desc {
105 u32 src_addr;
106 u32 dst_addr;
107 size_t size;
108 bool complete;
109 struct dma_async_tx_descriptor txd;
110 struct list_head tx_list;
111 struct list_head node;
115 * struct ep93xx_dma_chan - an EP93xx DMA M2P/M2M channel
116 * @chan: dmaengine API channel
117 * @edma: pointer to to the engine device
118 * @regs: memory mapped registers
119 * @irq: interrupt number of the channel
120 * @clk: clock used by this channel
121 * @tasklet: channel specific tasklet used for callbacks
122 * @lock: lock protecting the fields following
123 * @flags: flags for the channel
124 * @buffer: which buffer to use next (0/1)
125 * @last_completed: last completed cookie value
126 * @active: flattened chain of descriptors currently being processed
127 * @queue: pending descriptors which are handled next
128 * @free_list: list of free descriptors which can be used
129 * @runtime_addr: physical address currently used as dest/src (M2M only). This
130 * is set via %DMA_SLAVE_CONFIG before slave operation is
131 * prepared
132 * @runtime_ctrl: M2M runtime values for the control register.
134 * As EP93xx DMA controller doesn't support real chained DMA descriptors we
135 * will have slightly different scheme here: @active points to a head of
136 * flattened DMA descriptor chain.
138 * @queue holds pending transactions. These are linked through the first
139 * descriptor in the chain. When a descriptor is moved to the @active queue,
140 * the first and chained descriptors are flattened into a single list.
142 * @chan.private holds pointer to &struct ep93xx_dma_data which contains
143 * necessary channel configuration information. For memcpy channels this must
144 * be %NULL.
146 struct ep93xx_dma_chan {
147 struct dma_chan chan;
148 const struct ep93xx_dma_engine *edma;
149 void __iomem *regs;
150 int irq;
151 struct clk *clk;
152 struct tasklet_struct tasklet;
153 /* protects the fields following */
154 spinlock_t lock;
155 unsigned long flags;
156 /* Channel is configured for cyclic transfers */
157 #define EP93XX_DMA_IS_CYCLIC 0
159 int buffer;
160 dma_cookie_t last_completed;
161 struct list_head active;
162 struct list_head queue;
163 struct list_head free_list;
164 u32 runtime_addr;
165 u32 runtime_ctrl;
169 * struct ep93xx_dma_engine - the EP93xx DMA engine instance
170 * @dma_dev: holds the dmaengine device
171 * @m2m: is this an M2M or M2P device
172 * @hw_setup: method which sets the channel up for operation
173 * @hw_shutdown: shuts the channel down and flushes whatever is left
174 * @hw_submit: pushes active descriptor(s) to the hardware
175 * @hw_interrupt: handle the interrupt
176 * @num_channels: number of channels for this instance
177 * @channels: array of channels
179 * There is one instance of this struct for the M2P channels and one for the
180 * M2M channels. hw_xxx() methods are used to perform operations which are
181 * different on M2M and M2P channels. These methods are called with channel
182 * lock held and interrupts disabled so they cannot sleep.
184 struct ep93xx_dma_engine {
185 struct dma_device dma_dev;
186 bool m2m;
187 int (*hw_setup)(struct ep93xx_dma_chan *);
188 void (*hw_shutdown)(struct ep93xx_dma_chan *);
189 void (*hw_submit)(struct ep93xx_dma_chan *);
190 int (*hw_interrupt)(struct ep93xx_dma_chan *);
191 #define INTERRUPT_UNKNOWN 0
192 #define INTERRUPT_DONE 1
193 #define INTERRUPT_NEXT_BUFFER 2
195 size_t num_channels;
196 struct ep93xx_dma_chan channels[];
199 static inline struct device *chan2dev(struct ep93xx_dma_chan *edmac)
201 return &edmac->chan.dev->device;
204 static struct ep93xx_dma_chan *to_ep93xx_dma_chan(struct dma_chan *chan)
206 return container_of(chan, struct ep93xx_dma_chan, chan);
210 * ep93xx_dma_set_active - set new active descriptor chain
211 * @edmac: channel
212 * @desc: head of the new active descriptor chain
214 * Sets @desc to be the head of the new active descriptor chain. This is the
215 * chain which is processed next. The active list must be empty before calling
216 * this function.
218 * Called with @edmac->lock held and interrupts disabled.
220 static void ep93xx_dma_set_active(struct ep93xx_dma_chan *edmac,
221 struct ep93xx_dma_desc *desc)
223 BUG_ON(!list_empty(&edmac->active));
225 list_add_tail(&desc->node, &edmac->active);
227 /* Flatten the @desc->tx_list chain into @edmac->active list */
228 while (!list_empty(&desc->tx_list)) {
229 struct ep93xx_dma_desc *d = list_first_entry(&desc->tx_list,
230 struct ep93xx_dma_desc, node);
233 * We copy the callback parameters from the first descriptor
234 * to all the chained descriptors. This way we can call the
235 * callback without having to find out the first descriptor in
236 * the chain. Useful for cyclic transfers.
238 d->txd.callback = desc->txd.callback;
239 d->txd.callback_param = desc->txd.callback_param;
241 list_move_tail(&d->node, &edmac->active);
245 /* Called with @edmac->lock held and interrupts disabled */
246 static struct ep93xx_dma_desc *
247 ep93xx_dma_get_active(struct ep93xx_dma_chan *edmac)
249 if (list_empty(&edmac->active))
250 return NULL;
252 return list_first_entry(&edmac->active, struct ep93xx_dma_desc, node);
256 * ep93xx_dma_advance_active - advances to the next active descriptor
257 * @edmac: channel
259 * Function advances active descriptor to the next in the @edmac->active and
260 * returns %true if we still have descriptors in the chain to process.
261 * Otherwise returns %false.
263 * When the channel is in cyclic mode always returns %true.
265 * Called with @edmac->lock held and interrupts disabled.
267 static bool ep93xx_dma_advance_active(struct ep93xx_dma_chan *edmac)
269 struct ep93xx_dma_desc *desc;
271 list_rotate_left(&edmac->active);
273 if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
274 return true;
276 desc = ep93xx_dma_get_active(edmac);
277 if (!desc)
278 return false;
281 * If txd.cookie is set it means that we are back in the first
282 * descriptor in the chain and hence done with it.
284 return !desc->txd.cookie;
288 * M2P DMA implementation
291 static void m2p_set_control(struct ep93xx_dma_chan *edmac, u32 control)
293 writel(control, edmac->regs + M2P_CONTROL);
295 * EP93xx User's Guide states that we must perform a dummy read after
296 * write to the control register.
298 readl(edmac->regs + M2P_CONTROL);
301 static int m2p_hw_setup(struct ep93xx_dma_chan *edmac)
303 struct ep93xx_dma_data *data = edmac->chan.private;
304 u32 control;
306 writel(data->port & 0xf, edmac->regs + M2P_PPALLOC);
308 control = M2P_CONTROL_CH_ERROR_INT | M2P_CONTROL_ICE
309 | M2P_CONTROL_ENABLE;
310 m2p_set_control(edmac, control);
312 return 0;
315 static inline u32 m2p_channel_state(struct ep93xx_dma_chan *edmac)
317 return (readl(edmac->regs + M2P_STATUS) >> 4) & 0x3;
320 static void m2p_hw_shutdown(struct ep93xx_dma_chan *edmac)
322 u32 control;
324 control = readl(edmac->regs + M2P_CONTROL);
325 control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT);
326 m2p_set_control(edmac, control);
328 while (m2p_channel_state(edmac) >= M2P_STATE_ON)
329 cpu_relax();
331 m2p_set_control(edmac, 0);
333 while (m2p_channel_state(edmac) == M2P_STATE_STALL)
334 cpu_relax();
337 static void m2p_fill_desc(struct ep93xx_dma_chan *edmac)
339 struct ep93xx_dma_desc *desc;
340 u32 bus_addr;
342 desc = ep93xx_dma_get_active(edmac);
343 if (!desc) {
344 dev_warn(chan2dev(edmac), "M2P: empty descriptor list\n");
345 return;
348 if (ep93xx_dma_chan_direction(&edmac->chan) == DMA_MEM_TO_DEV)
349 bus_addr = desc->src_addr;
350 else
351 bus_addr = desc->dst_addr;
353 if (edmac->buffer == 0) {
354 writel(desc->size, edmac->regs + M2P_MAXCNT0);
355 writel(bus_addr, edmac->regs + M2P_BASE0);
356 } else {
357 writel(desc->size, edmac->regs + M2P_MAXCNT1);
358 writel(bus_addr, edmac->regs + M2P_BASE1);
361 edmac->buffer ^= 1;
364 static void m2p_hw_submit(struct ep93xx_dma_chan *edmac)
366 u32 control = readl(edmac->regs + M2P_CONTROL);
368 m2p_fill_desc(edmac);
369 control |= M2P_CONTROL_STALLINT;
371 if (ep93xx_dma_advance_active(edmac)) {
372 m2p_fill_desc(edmac);
373 control |= M2P_CONTROL_NFBINT;
376 m2p_set_control(edmac, control);
379 static int m2p_hw_interrupt(struct ep93xx_dma_chan *edmac)
381 u32 irq_status = readl(edmac->regs + M2P_INTERRUPT);
382 u32 control;
384 if (irq_status & M2P_INTERRUPT_ERROR) {
385 struct ep93xx_dma_desc *desc = ep93xx_dma_get_active(edmac);
387 /* Clear the error interrupt */
388 writel(1, edmac->regs + M2P_INTERRUPT);
391 * It seems that there is no easy way of reporting errors back
392 * to client so we just report the error here and continue as
393 * usual.
395 * Revisit this when there is a mechanism to report back the
396 * errors.
398 dev_err(chan2dev(edmac),
399 "DMA transfer failed! Details:\n"
400 "\tcookie : %d\n"
401 "\tsrc_addr : 0x%08x\n"
402 "\tdst_addr : 0x%08x\n"
403 "\tsize : %zu\n",
404 desc->txd.cookie, desc->src_addr, desc->dst_addr,
405 desc->size);
408 switch (irq_status & (M2P_INTERRUPT_STALL | M2P_INTERRUPT_NFB)) {
409 case M2P_INTERRUPT_STALL:
410 /* Disable interrupts */
411 control = readl(edmac->regs + M2P_CONTROL);
412 control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT);
413 m2p_set_control(edmac, control);
415 return INTERRUPT_DONE;
417 case M2P_INTERRUPT_NFB:
418 if (ep93xx_dma_advance_active(edmac))
419 m2p_fill_desc(edmac);
421 return INTERRUPT_NEXT_BUFFER;
424 return INTERRUPT_UNKNOWN;
428 * M2M DMA implementation
430 * For the M2M transfers we don't use NFB at all. This is because it simply
431 * doesn't work well with memcpy transfers. When you submit both buffers it is
432 * extremely unlikely that you get an NFB interrupt, but it instead reports
433 * DONE interrupt and both buffers are already transferred which means that we
434 * weren't able to update the next buffer.
436 * So for now we "simulate" NFB by just submitting buffer after buffer
437 * without double buffering.
440 static int m2m_hw_setup(struct ep93xx_dma_chan *edmac)
442 const struct ep93xx_dma_data *data = edmac->chan.private;
443 u32 control = 0;
445 if (!data) {
446 /* This is memcpy channel, nothing to configure */
447 writel(control, edmac->regs + M2M_CONTROL);
448 return 0;
451 switch (data->port) {
452 case EP93XX_DMA_SSP:
454 * This was found via experimenting - anything less than 5
455 * causes the channel to perform only a partial transfer which
456 * leads to problems since we don't get DONE interrupt then.
458 control = (5 << M2M_CONTROL_PWSC_SHIFT);
459 control |= M2M_CONTROL_NO_HDSK;
461 if (data->direction == DMA_MEM_TO_DEV) {
462 control |= M2M_CONTROL_DAH;
463 control |= M2M_CONTROL_TM_TX;
464 control |= M2M_CONTROL_RSS_SSPTX;
465 } else {
466 control |= M2M_CONTROL_SAH;
467 control |= M2M_CONTROL_TM_RX;
468 control |= M2M_CONTROL_RSS_SSPRX;
470 break;
472 case EP93XX_DMA_IDE:
474 * This IDE part is totally untested. Values below are taken
475 * from the EP93xx Users's Guide and might not be correct.
477 if (data->direction == DMA_MEM_TO_DEV) {
478 /* Worst case from the UG */
479 control = (3 << M2M_CONTROL_PWSC_SHIFT);
480 control |= M2M_CONTROL_DAH;
481 control |= M2M_CONTROL_TM_TX;
482 } else {
483 control = (2 << M2M_CONTROL_PWSC_SHIFT);
484 control |= M2M_CONTROL_SAH;
485 control |= M2M_CONTROL_TM_RX;
488 control |= M2M_CONTROL_NO_HDSK;
489 control |= M2M_CONTROL_RSS_IDE;
490 control |= M2M_CONTROL_PW_16;
491 break;
493 default:
494 return -EINVAL;
497 writel(control, edmac->regs + M2M_CONTROL);
498 return 0;
501 static void m2m_hw_shutdown(struct ep93xx_dma_chan *edmac)
503 /* Just disable the channel */
504 writel(0, edmac->regs + M2M_CONTROL);
507 static void m2m_fill_desc(struct ep93xx_dma_chan *edmac)
509 struct ep93xx_dma_desc *desc;
511 desc = ep93xx_dma_get_active(edmac);
512 if (!desc) {
513 dev_warn(chan2dev(edmac), "M2M: empty descriptor list\n");
514 return;
517 if (edmac->buffer == 0) {
518 writel(desc->src_addr, edmac->regs + M2M_SAR_BASE0);
519 writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE0);
520 writel(desc->size, edmac->regs + M2M_BCR0);
521 } else {
522 writel(desc->src_addr, edmac->regs + M2M_SAR_BASE1);
523 writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE1);
524 writel(desc->size, edmac->regs + M2M_BCR1);
527 edmac->buffer ^= 1;
530 static void m2m_hw_submit(struct ep93xx_dma_chan *edmac)
532 struct ep93xx_dma_data *data = edmac->chan.private;
533 u32 control = readl(edmac->regs + M2M_CONTROL);
536 * Since we allow clients to configure PW (peripheral width) we always
537 * clear PW bits here and then set them according what is given in
538 * the runtime configuration.
540 control &= ~M2M_CONTROL_PW_MASK;
541 control |= edmac->runtime_ctrl;
543 m2m_fill_desc(edmac);
544 control |= M2M_CONTROL_DONEINT;
547 * Now we can finally enable the channel. For M2M channel this must be
548 * done _after_ the BCRx registers are programmed.
550 control |= M2M_CONTROL_ENABLE;
551 writel(control, edmac->regs + M2M_CONTROL);
553 if (!data) {
555 * For memcpy channels the software trigger must be asserted
556 * in order to start the memcpy operation.
558 control |= M2M_CONTROL_START;
559 writel(control, edmac->regs + M2M_CONTROL);
563 static int m2m_hw_interrupt(struct ep93xx_dma_chan *edmac)
565 u32 control;
567 if (!(readl(edmac->regs + M2M_INTERRUPT) & M2M_INTERRUPT_DONEINT))
568 return INTERRUPT_UNKNOWN;
570 /* Clear the DONE bit */
571 writel(0, edmac->regs + M2M_INTERRUPT);
573 /* Disable interrupts and the channel */
574 control = readl(edmac->regs + M2M_CONTROL);
575 control &= ~(M2M_CONTROL_DONEINT | M2M_CONTROL_ENABLE);
576 writel(control, edmac->regs + M2M_CONTROL);
579 * Since we only get DONE interrupt we have to find out ourselves
580 * whether there still is something to process. So we try to advance
581 * the chain an see whether it succeeds.
583 if (ep93xx_dma_advance_active(edmac)) {
584 edmac->edma->hw_submit(edmac);
585 return INTERRUPT_NEXT_BUFFER;
588 return INTERRUPT_DONE;
592 * DMA engine API implementation
595 static struct ep93xx_dma_desc *
596 ep93xx_dma_desc_get(struct ep93xx_dma_chan *edmac)
598 struct ep93xx_dma_desc *desc, *_desc;
599 struct ep93xx_dma_desc *ret = NULL;
600 unsigned long flags;
602 spin_lock_irqsave(&edmac->lock, flags);
603 list_for_each_entry_safe(desc, _desc, &edmac->free_list, node) {
604 if (async_tx_test_ack(&desc->txd)) {
605 list_del_init(&desc->node);
607 /* Re-initialize the descriptor */
608 desc->src_addr = 0;
609 desc->dst_addr = 0;
610 desc->size = 0;
611 desc->complete = false;
612 desc->txd.cookie = 0;
613 desc->txd.callback = NULL;
614 desc->txd.callback_param = NULL;
616 ret = desc;
617 break;
620 spin_unlock_irqrestore(&edmac->lock, flags);
621 return ret;
624 static void ep93xx_dma_desc_put(struct ep93xx_dma_chan *edmac,
625 struct ep93xx_dma_desc *desc)
627 if (desc) {
628 unsigned long flags;
630 spin_lock_irqsave(&edmac->lock, flags);
631 list_splice_init(&desc->tx_list, &edmac->free_list);
632 list_add(&desc->node, &edmac->free_list);
633 spin_unlock_irqrestore(&edmac->lock, flags);
638 * ep93xx_dma_advance_work - start processing the next pending transaction
639 * @edmac: channel
641 * If we have pending transactions queued and we are currently idling, this
642 * function takes the next queued transaction from the @edmac->queue and
643 * pushes it to the hardware for execution.
645 static void ep93xx_dma_advance_work(struct ep93xx_dma_chan *edmac)
647 struct ep93xx_dma_desc *new;
648 unsigned long flags;
650 spin_lock_irqsave(&edmac->lock, flags);
651 if (!list_empty(&edmac->active) || list_empty(&edmac->queue)) {
652 spin_unlock_irqrestore(&edmac->lock, flags);
653 return;
656 /* Take the next descriptor from the pending queue */
657 new = list_first_entry(&edmac->queue, struct ep93xx_dma_desc, node);
658 list_del_init(&new->node);
660 ep93xx_dma_set_active(edmac, new);
662 /* Push it to the hardware */
663 edmac->edma->hw_submit(edmac);
664 spin_unlock_irqrestore(&edmac->lock, flags);
667 static void ep93xx_dma_unmap_buffers(struct ep93xx_dma_desc *desc)
669 struct device *dev = desc->txd.chan->device->dev;
671 if (!(desc->txd.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
672 if (desc->txd.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
673 dma_unmap_single(dev, desc->src_addr, desc->size,
674 DMA_TO_DEVICE);
675 else
676 dma_unmap_page(dev, desc->src_addr, desc->size,
677 DMA_TO_DEVICE);
679 if (!(desc->txd.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
680 if (desc->txd.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
681 dma_unmap_single(dev, desc->dst_addr, desc->size,
682 DMA_FROM_DEVICE);
683 else
684 dma_unmap_page(dev, desc->dst_addr, desc->size,
685 DMA_FROM_DEVICE);
689 static void ep93xx_dma_tasklet(unsigned long data)
691 struct ep93xx_dma_chan *edmac = (struct ep93xx_dma_chan *)data;
692 struct ep93xx_dma_desc *desc, *d;
693 dma_async_tx_callback callback = NULL;
694 void *callback_param = NULL;
695 LIST_HEAD(list);
697 spin_lock_irq(&edmac->lock);
699 * If dma_terminate_all() was called before we get to run, the active
700 * list has become empty. If that happens we aren't supposed to do
701 * anything more than call ep93xx_dma_advance_work().
703 desc = ep93xx_dma_get_active(edmac);
704 if (desc) {
705 if (desc->complete) {
706 edmac->last_completed = desc->txd.cookie;
707 list_splice_init(&edmac->active, &list);
709 callback = desc->txd.callback;
710 callback_param = desc->txd.callback_param;
712 spin_unlock_irq(&edmac->lock);
714 /* Pick up the next descriptor from the queue */
715 ep93xx_dma_advance_work(edmac);
717 /* Now we can release all the chained descriptors */
718 list_for_each_entry_safe(desc, d, &list, node) {
720 * For the memcpy channels the API requires us to unmap the
721 * buffers unless requested otherwise.
723 if (!edmac->chan.private)
724 ep93xx_dma_unmap_buffers(desc);
726 ep93xx_dma_desc_put(edmac, desc);
729 if (callback)
730 callback(callback_param);
733 static irqreturn_t ep93xx_dma_interrupt(int irq, void *dev_id)
735 struct ep93xx_dma_chan *edmac = dev_id;
736 struct ep93xx_dma_desc *desc;
737 irqreturn_t ret = IRQ_HANDLED;
739 spin_lock(&edmac->lock);
741 desc = ep93xx_dma_get_active(edmac);
742 if (!desc) {
743 dev_warn(chan2dev(edmac),
744 "got interrupt while active list is empty\n");
745 spin_unlock(&edmac->lock);
746 return IRQ_NONE;
749 switch (edmac->edma->hw_interrupt(edmac)) {
750 case INTERRUPT_DONE:
751 desc->complete = true;
752 tasklet_schedule(&edmac->tasklet);
753 break;
755 case INTERRUPT_NEXT_BUFFER:
756 if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
757 tasklet_schedule(&edmac->tasklet);
758 break;
760 default:
761 dev_warn(chan2dev(edmac), "unknown interrupt!\n");
762 ret = IRQ_NONE;
763 break;
766 spin_unlock(&edmac->lock);
767 return ret;
771 * ep93xx_dma_tx_submit - set the prepared descriptor(s) to be executed
772 * @tx: descriptor to be executed
774 * Function will execute given descriptor on the hardware or if the hardware
775 * is busy, queue the descriptor to be executed later on. Returns cookie which
776 * can be used to poll the status of the descriptor.
778 static dma_cookie_t ep93xx_dma_tx_submit(struct dma_async_tx_descriptor *tx)
780 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(tx->chan);
781 struct ep93xx_dma_desc *desc;
782 dma_cookie_t cookie;
783 unsigned long flags;
785 spin_lock_irqsave(&edmac->lock, flags);
787 cookie = edmac->chan.cookie;
789 if (++cookie < 0)
790 cookie = 1;
792 desc = container_of(tx, struct ep93xx_dma_desc, txd);
794 edmac->chan.cookie = cookie;
795 desc->txd.cookie = cookie;
798 * If nothing is currently prosessed, we push this descriptor
799 * directly to the hardware. Otherwise we put the descriptor
800 * to the pending queue.
802 if (list_empty(&edmac->active)) {
803 ep93xx_dma_set_active(edmac, desc);
804 edmac->edma->hw_submit(edmac);
805 } else {
806 list_add_tail(&desc->node, &edmac->queue);
809 spin_unlock_irqrestore(&edmac->lock, flags);
810 return cookie;
814 * ep93xx_dma_alloc_chan_resources - allocate resources for the channel
815 * @chan: channel to allocate resources
817 * Function allocates necessary resources for the given DMA channel and
818 * returns number of allocated descriptors for the channel. Negative errno
819 * is returned in case of failure.
821 static int ep93xx_dma_alloc_chan_resources(struct dma_chan *chan)
823 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
824 struct ep93xx_dma_data *data = chan->private;
825 const char *name = dma_chan_name(chan);
826 int ret, i;
828 /* Sanity check the channel parameters */
829 if (!edmac->edma->m2m) {
830 if (!data)
831 return -EINVAL;
832 if (data->port < EP93XX_DMA_I2S1 ||
833 data->port > EP93XX_DMA_IRDA)
834 return -EINVAL;
835 if (data->direction != ep93xx_dma_chan_direction(chan))
836 return -EINVAL;
837 } else {
838 if (data) {
839 switch (data->port) {
840 case EP93XX_DMA_SSP:
841 case EP93XX_DMA_IDE:
842 if (data->direction != DMA_MEM_TO_DEV &&
843 data->direction != DMA_DEV_TO_MEM)
844 return -EINVAL;
845 break;
846 default:
847 return -EINVAL;
852 if (data && data->name)
853 name = data->name;
855 ret = clk_enable(edmac->clk);
856 if (ret)
857 return ret;
859 ret = request_irq(edmac->irq, ep93xx_dma_interrupt, 0, name, edmac);
860 if (ret)
861 goto fail_clk_disable;
863 spin_lock_irq(&edmac->lock);
864 edmac->last_completed = 1;
865 edmac->chan.cookie = 1;
866 ret = edmac->edma->hw_setup(edmac);
867 spin_unlock_irq(&edmac->lock);
869 if (ret)
870 goto fail_free_irq;
872 for (i = 0; i < DMA_MAX_CHAN_DESCRIPTORS; i++) {
873 struct ep93xx_dma_desc *desc;
875 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
876 if (!desc) {
877 dev_warn(chan2dev(edmac), "not enough descriptors\n");
878 break;
881 INIT_LIST_HEAD(&desc->tx_list);
883 dma_async_tx_descriptor_init(&desc->txd, chan);
884 desc->txd.flags = DMA_CTRL_ACK;
885 desc->txd.tx_submit = ep93xx_dma_tx_submit;
887 ep93xx_dma_desc_put(edmac, desc);
890 return i;
892 fail_free_irq:
893 free_irq(edmac->irq, edmac);
894 fail_clk_disable:
895 clk_disable(edmac->clk);
897 return ret;
901 * ep93xx_dma_free_chan_resources - release resources for the channel
902 * @chan: channel
904 * Function releases all the resources allocated for the given channel.
905 * The channel must be idle when this is called.
907 static void ep93xx_dma_free_chan_resources(struct dma_chan *chan)
909 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
910 struct ep93xx_dma_desc *desc, *d;
911 unsigned long flags;
912 LIST_HEAD(list);
914 BUG_ON(!list_empty(&edmac->active));
915 BUG_ON(!list_empty(&edmac->queue));
917 spin_lock_irqsave(&edmac->lock, flags);
918 edmac->edma->hw_shutdown(edmac);
919 edmac->runtime_addr = 0;
920 edmac->runtime_ctrl = 0;
921 edmac->buffer = 0;
922 list_splice_init(&edmac->free_list, &list);
923 spin_unlock_irqrestore(&edmac->lock, flags);
925 list_for_each_entry_safe(desc, d, &list, node)
926 kfree(desc);
928 clk_disable(edmac->clk);
929 free_irq(edmac->irq, edmac);
933 * ep93xx_dma_prep_dma_memcpy - prepare a memcpy DMA operation
934 * @chan: channel
935 * @dest: destination bus address
936 * @src: source bus address
937 * @len: size of the transaction
938 * @flags: flags for the descriptor
940 * Returns a valid DMA descriptor or %NULL in case of failure.
942 static struct dma_async_tx_descriptor *
943 ep93xx_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest,
944 dma_addr_t src, size_t len, unsigned long flags)
946 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
947 struct ep93xx_dma_desc *desc, *first;
948 size_t bytes, offset;
950 first = NULL;
951 for (offset = 0; offset < len; offset += bytes) {
952 desc = ep93xx_dma_desc_get(edmac);
953 if (!desc) {
954 dev_warn(chan2dev(edmac), "couln't get descriptor\n");
955 goto fail;
958 bytes = min_t(size_t, len - offset, DMA_MAX_CHAN_BYTES);
960 desc->src_addr = src + offset;
961 desc->dst_addr = dest + offset;
962 desc->size = bytes;
964 if (!first)
965 first = desc;
966 else
967 list_add_tail(&desc->node, &first->tx_list);
970 first->txd.cookie = -EBUSY;
971 first->txd.flags = flags;
973 return &first->txd;
974 fail:
975 ep93xx_dma_desc_put(edmac, first);
976 return NULL;
980 * ep93xx_dma_prep_slave_sg - prepare a slave DMA operation
981 * @chan: channel
982 * @sgl: list of buffers to transfer
983 * @sg_len: number of entries in @sgl
984 * @dir: direction of tha DMA transfer
985 * @flags: flags for the descriptor
987 * Returns a valid DMA descriptor or %NULL in case of failure.
989 static struct dma_async_tx_descriptor *
990 ep93xx_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
991 unsigned int sg_len, enum dma_transfer_direction dir,
992 unsigned long flags)
994 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
995 struct ep93xx_dma_desc *desc, *first;
996 struct scatterlist *sg;
997 int i;
999 if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) {
1000 dev_warn(chan2dev(edmac),
1001 "channel was configured with different direction\n");
1002 return NULL;
1005 if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) {
1006 dev_warn(chan2dev(edmac),
1007 "channel is already used for cyclic transfers\n");
1008 return NULL;
1011 first = NULL;
1012 for_each_sg(sgl, sg, sg_len, i) {
1013 size_t sg_len = sg_dma_len(sg);
1015 if (sg_len > DMA_MAX_CHAN_BYTES) {
1016 dev_warn(chan2dev(edmac), "too big transfer size %d\n",
1017 sg_len);
1018 goto fail;
1021 desc = ep93xx_dma_desc_get(edmac);
1022 if (!desc) {
1023 dev_warn(chan2dev(edmac), "couln't get descriptor\n");
1024 goto fail;
1027 if (dir == DMA_MEM_TO_DEV) {
1028 desc->src_addr = sg_dma_address(sg);
1029 desc->dst_addr = edmac->runtime_addr;
1030 } else {
1031 desc->src_addr = edmac->runtime_addr;
1032 desc->dst_addr = sg_dma_address(sg);
1034 desc->size = sg_len;
1036 if (!first)
1037 first = desc;
1038 else
1039 list_add_tail(&desc->node, &first->tx_list);
1042 first->txd.cookie = -EBUSY;
1043 first->txd.flags = flags;
1045 return &first->txd;
1047 fail:
1048 ep93xx_dma_desc_put(edmac, first);
1049 return NULL;
1053 * ep93xx_dma_prep_dma_cyclic - prepare a cyclic DMA operation
1054 * @chan: channel
1055 * @dma_addr: DMA mapped address of the buffer
1056 * @buf_len: length of the buffer (in bytes)
1057 * @period_len: lenght of a single period
1058 * @dir: direction of the operation
1060 * Prepares a descriptor for cyclic DMA operation. This means that once the
1061 * descriptor is submitted, we will be submitting in a @period_len sized
1062 * buffers and calling callback once the period has been elapsed. Transfer
1063 * terminates only when client calls dmaengine_terminate_all() for this
1064 * channel.
1066 * Returns a valid DMA descriptor or %NULL in case of failure.
1068 static struct dma_async_tx_descriptor *
1069 ep93xx_dma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
1070 size_t buf_len, size_t period_len,
1071 enum dma_transfer_direction dir)
1073 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1074 struct ep93xx_dma_desc *desc, *first;
1075 size_t offset = 0;
1077 if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) {
1078 dev_warn(chan2dev(edmac),
1079 "channel was configured with different direction\n");
1080 return NULL;
1083 if (test_and_set_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) {
1084 dev_warn(chan2dev(edmac),
1085 "channel is already used for cyclic transfers\n");
1086 return NULL;
1089 if (period_len > DMA_MAX_CHAN_BYTES) {
1090 dev_warn(chan2dev(edmac), "too big period length %d\n",
1091 period_len);
1092 return NULL;
1095 /* Split the buffer into period size chunks */
1096 first = NULL;
1097 for (offset = 0; offset < buf_len; offset += period_len) {
1098 desc = ep93xx_dma_desc_get(edmac);
1099 if (!desc) {
1100 dev_warn(chan2dev(edmac), "couln't get descriptor\n");
1101 goto fail;
1104 if (dir == DMA_MEM_TO_DEV) {
1105 desc->src_addr = dma_addr + offset;
1106 desc->dst_addr = edmac->runtime_addr;
1107 } else {
1108 desc->src_addr = edmac->runtime_addr;
1109 desc->dst_addr = dma_addr + offset;
1112 desc->size = period_len;
1114 if (!first)
1115 first = desc;
1116 else
1117 list_add_tail(&desc->node, &first->tx_list);
1120 first->txd.cookie = -EBUSY;
1122 return &first->txd;
1124 fail:
1125 ep93xx_dma_desc_put(edmac, first);
1126 return NULL;
1130 * ep93xx_dma_terminate_all - terminate all transactions
1131 * @edmac: channel
1133 * Stops all DMA transactions. All descriptors are put back to the
1134 * @edmac->free_list and callbacks are _not_ called.
1136 static int ep93xx_dma_terminate_all(struct ep93xx_dma_chan *edmac)
1138 struct ep93xx_dma_desc *desc, *_d;
1139 unsigned long flags;
1140 LIST_HEAD(list);
1142 spin_lock_irqsave(&edmac->lock, flags);
1143 /* First we disable and flush the DMA channel */
1144 edmac->edma->hw_shutdown(edmac);
1145 clear_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags);
1146 list_splice_init(&edmac->active, &list);
1147 list_splice_init(&edmac->queue, &list);
1149 * We then re-enable the channel. This way we can continue submitting
1150 * the descriptors by just calling ->hw_submit() again.
1152 edmac->edma->hw_setup(edmac);
1153 spin_unlock_irqrestore(&edmac->lock, flags);
1155 list_for_each_entry_safe(desc, _d, &list, node)
1156 ep93xx_dma_desc_put(edmac, desc);
1158 return 0;
1161 static int ep93xx_dma_slave_config(struct ep93xx_dma_chan *edmac,
1162 struct dma_slave_config *config)
1164 enum dma_slave_buswidth width;
1165 unsigned long flags;
1166 u32 addr, ctrl;
1168 if (!edmac->edma->m2m)
1169 return -EINVAL;
1171 switch (config->direction) {
1172 case DMA_DEV_TO_MEM:
1173 width = config->src_addr_width;
1174 addr = config->src_addr;
1175 break;
1177 case DMA_MEM_TO_DEV:
1178 width = config->dst_addr_width;
1179 addr = config->dst_addr;
1180 break;
1182 default:
1183 return -EINVAL;
1186 switch (width) {
1187 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1188 ctrl = 0;
1189 break;
1190 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1191 ctrl = M2M_CONTROL_PW_16;
1192 break;
1193 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1194 ctrl = M2M_CONTROL_PW_32;
1195 break;
1196 default:
1197 return -EINVAL;
1200 spin_lock_irqsave(&edmac->lock, flags);
1201 edmac->runtime_addr = addr;
1202 edmac->runtime_ctrl = ctrl;
1203 spin_unlock_irqrestore(&edmac->lock, flags);
1205 return 0;
1209 * ep93xx_dma_control - manipulate all pending operations on a channel
1210 * @chan: channel
1211 * @cmd: control command to perform
1212 * @arg: optional argument
1214 * Controls the channel. Function returns %0 in case of success or negative
1215 * error in case of failure.
1217 static int ep93xx_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1218 unsigned long arg)
1220 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1221 struct dma_slave_config *config;
1223 switch (cmd) {
1224 case DMA_TERMINATE_ALL:
1225 return ep93xx_dma_terminate_all(edmac);
1227 case DMA_SLAVE_CONFIG:
1228 config = (struct dma_slave_config *)arg;
1229 return ep93xx_dma_slave_config(edmac, config);
1231 default:
1232 break;
1235 return -ENOSYS;
1239 * ep93xx_dma_tx_status - check if a transaction is completed
1240 * @chan: channel
1241 * @cookie: transaction specific cookie
1242 * @state: state of the transaction is stored here if given
1244 * This function can be used to query state of a given transaction.
1246 static enum dma_status ep93xx_dma_tx_status(struct dma_chan *chan,
1247 dma_cookie_t cookie,
1248 struct dma_tx_state *state)
1250 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1251 dma_cookie_t last_used, last_completed;
1252 enum dma_status ret;
1253 unsigned long flags;
1255 spin_lock_irqsave(&edmac->lock, flags);
1256 last_used = chan->cookie;
1257 last_completed = edmac->last_completed;
1258 spin_unlock_irqrestore(&edmac->lock, flags);
1260 ret = dma_async_is_complete(cookie, last_completed, last_used);
1261 dma_set_tx_state(state, last_completed, last_used, 0);
1263 return ret;
1267 * ep93xx_dma_issue_pending - push pending transactions to the hardware
1268 * @chan: channel
1270 * When this function is called, all pending transactions are pushed to the
1271 * hardware and executed.
1273 static void ep93xx_dma_issue_pending(struct dma_chan *chan)
1275 ep93xx_dma_advance_work(to_ep93xx_dma_chan(chan));
1278 static int __init ep93xx_dma_probe(struct platform_device *pdev)
1280 struct ep93xx_dma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1281 struct ep93xx_dma_engine *edma;
1282 struct dma_device *dma_dev;
1283 size_t edma_size;
1284 int ret, i;
1286 edma_size = pdata->num_channels * sizeof(struct ep93xx_dma_chan);
1287 edma = kzalloc(sizeof(*edma) + edma_size, GFP_KERNEL);
1288 if (!edma)
1289 return -ENOMEM;
1291 dma_dev = &edma->dma_dev;
1292 edma->m2m = platform_get_device_id(pdev)->driver_data;
1293 edma->num_channels = pdata->num_channels;
1295 INIT_LIST_HEAD(&dma_dev->channels);
1296 for (i = 0; i < pdata->num_channels; i++) {
1297 const struct ep93xx_dma_chan_data *cdata = &pdata->channels[i];
1298 struct ep93xx_dma_chan *edmac = &edma->channels[i];
1300 edmac->chan.device = dma_dev;
1301 edmac->regs = cdata->base;
1302 edmac->irq = cdata->irq;
1303 edmac->edma = edma;
1305 edmac->clk = clk_get(NULL, cdata->name);
1306 if (IS_ERR(edmac->clk)) {
1307 dev_warn(&pdev->dev, "failed to get clock for %s\n",
1308 cdata->name);
1309 continue;
1312 spin_lock_init(&edmac->lock);
1313 INIT_LIST_HEAD(&edmac->active);
1314 INIT_LIST_HEAD(&edmac->queue);
1315 INIT_LIST_HEAD(&edmac->free_list);
1316 tasklet_init(&edmac->tasklet, ep93xx_dma_tasklet,
1317 (unsigned long)edmac);
1319 list_add_tail(&edmac->chan.device_node,
1320 &dma_dev->channels);
1323 dma_cap_zero(dma_dev->cap_mask);
1324 dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
1325 dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask);
1327 dma_dev->dev = &pdev->dev;
1328 dma_dev->device_alloc_chan_resources = ep93xx_dma_alloc_chan_resources;
1329 dma_dev->device_free_chan_resources = ep93xx_dma_free_chan_resources;
1330 dma_dev->device_prep_slave_sg = ep93xx_dma_prep_slave_sg;
1331 dma_dev->device_prep_dma_cyclic = ep93xx_dma_prep_dma_cyclic;
1332 dma_dev->device_control = ep93xx_dma_control;
1333 dma_dev->device_issue_pending = ep93xx_dma_issue_pending;
1334 dma_dev->device_tx_status = ep93xx_dma_tx_status;
1336 dma_set_max_seg_size(dma_dev->dev, DMA_MAX_CHAN_BYTES);
1338 if (edma->m2m) {
1339 dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
1340 dma_dev->device_prep_dma_memcpy = ep93xx_dma_prep_dma_memcpy;
1342 edma->hw_setup = m2m_hw_setup;
1343 edma->hw_shutdown = m2m_hw_shutdown;
1344 edma->hw_submit = m2m_hw_submit;
1345 edma->hw_interrupt = m2m_hw_interrupt;
1346 } else {
1347 dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);
1349 edma->hw_setup = m2p_hw_setup;
1350 edma->hw_shutdown = m2p_hw_shutdown;
1351 edma->hw_submit = m2p_hw_submit;
1352 edma->hw_interrupt = m2p_hw_interrupt;
1355 ret = dma_async_device_register(dma_dev);
1356 if (unlikely(ret)) {
1357 for (i = 0; i < edma->num_channels; i++) {
1358 struct ep93xx_dma_chan *edmac = &edma->channels[i];
1359 if (!IS_ERR_OR_NULL(edmac->clk))
1360 clk_put(edmac->clk);
1362 kfree(edma);
1363 } else {
1364 dev_info(dma_dev->dev, "EP93xx M2%s DMA ready\n",
1365 edma->m2m ? "M" : "P");
1368 return ret;
1371 static struct platform_device_id ep93xx_dma_driver_ids[] = {
1372 { "ep93xx-dma-m2p", 0 },
1373 { "ep93xx-dma-m2m", 1 },
1374 { },
1377 static struct platform_driver ep93xx_dma_driver = {
1378 .driver = {
1379 .name = "ep93xx-dma",
1381 .id_table = ep93xx_dma_driver_ids,
1384 static int __init ep93xx_dma_module_init(void)
1386 return platform_driver_probe(&ep93xx_dma_driver, ep93xx_dma_probe);
1388 subsys_initcall(ep93xx_dma_module_init);
1390 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
1391 MODULE_DESCRIPTION("EP93xx DMA driver");
1392 MODULE_LICENSE("GPL");