Input: twl6040-vibra - fix DT node memory management
[linux/fpc-iii.git] / fs / fs-writeback.c
bloba07634599cd74a2249c15f019d30424280ee94f0
1 /*
2 * fs/fs-writeback.c
4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include "internal.h"
33 * 4MB minimal write chunk size
35 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
38 * Passed into wb_writeback(), essentially a subset of writeback_control
40 struct wb_writeback_work {
41 long nr_pages;
42 struct super_block *sb;
43 unsigned long *older_than_this;
44 enum writeback_sync_modes sync_mode;
45 unsigned int tagged_writepages:1;
46 unsigned int for_kupdate:1;
47 unsigned int range_cyclic:1;
48 unsigned int for_background:1;
49 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
50 enum wb_reason reason; /* why was writeback initiated? */
52 struct list_head list; /* pending work list */
53 struct completion *done; /* set if the caller waits */
56 /**
57 * writeback_in_progress - determine whether there is writeback in progress
58 * @bdi: the device's backing_dev_info structure.
60 * Determine whether there is writeback waiting to be handled against a
61 * backing device.
63 int writeback_in_progress(struct backing_dev_info *bdi)
65 return test_bit(BDI_writeback_running, &bdi->state);
67 EXPORT_SYMBOL(writeback_in_progress);
69 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
71 struct super_block *sb = inode->i_sb;
73 if (sb_is_blkdev_sb(sb))
74 return inode->i_mapping->backing_dev_info;
76 return sb->s_bdi;
79 static inline struct inode *wb_inode(struct list_head *head)
81 return list_entry(head, struct inode, i_wb_list);
85 * Include the creation of the trace points after defining the
86 * wb_writeback_work structure and inline functions so that the definition
87 * remains local to this file.
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/writeback.h>
92 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
94 static void bdi_wakeup_thread(struct backing_dev_info *bdi)
96 spin_lock_bh(&bdi->wb_lock);
97 if (test_bit(BDI_registered, &bdi->state))
98 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
99 spin_unlock_bh(&bdi->wb_lock);
102 static void bdi_queue_work(struct backing_dev_info *bdi,
103 struct wb_writeback_work *work)
105 trace_writeback_queue(bdi, work);
107 spin_lock_bh(&bdi->wb_lock);
108 if (!test_bit(BDI_registered, &bdi->state)) {
109 if (work->done)
110 complete(work->done);
111 goto out_unlock;
113 list_add_tail(&work->list, &bdi->work_list);
114 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
115 out_unlock:
116 spin_unlock_bh(&bdi->wb_lock);
119 static void
120 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
121 bool range_cyclic, enum wb_reason reason)
123 struct wb_writeback_work *work;
126 * This is WB_SYNC_NONE writeback, so if allocation fails just
127 * wakeup the thread for old dirty data writeback
129 work = kzalloc(sizeof(*work), GFP_ATOMIC);
130 if (!work) {
131 trace_writeback_nowork(bdi);
132 bdi_wakeup_thread(bdi);
133 return;
136 work->sync_mode = WB_SYNC_NONE;
137 work->nr_pages = nr_pages;
138 work->range_cyclic = range_cyclic;
139 work->reason = reason;
141 bdi_queue_work(bdi, work);
145 * bdi_start_writeback - start writeback
146 * @bdi: the backing device to write from
147 * @nr_pages: the number of pages to write
148 * @reason: reason why some writeback work was initiated
150 * Description:
151 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
152 * started when this function returns, we make no guarantees on
153 * completion. Caller need not hold sb s_umount semaphore.
156 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
157 enum wb_reason reason)
159 __bdi_start_writeback(bdi, nr_pages, true, reason);
163 * bdi_start_background_writeback - start background writeback
164 * @bdi: the backing device to write from
166 * Description:
167 * This makes sure WB_SYNC_NONE background writeback happens. When
168 * this function returns, it is only guaranteed that for given BDI
169 * some IO is happening if we are over background dirty threshold.
170 * Caller need not hold sb s_umount semaphore.
172 void bdi_start_background_writeback(struct backing_dev_info *bdi)
175 * We just wake up the flusher thread. It will perform background
176 * writeback as soon as there is no other work to do.
178 trace_writeback_wake_background(bdi);
179 bdi_wakeup_thread(bdi);
183 * Remove the inode from the writeback list it is on.
185 void inode_wb_list_del(struct inode *inode)
187 struct backing_dev_info *bdi = inode_to_bdi(inode);
189 spin_lock(&bdi->wb.list_lock);
190 list_del_init(&inode->i_wb_list);
191 spin_unlock(&bdi->wb.list_lock);
195 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
196 * furthest end of its superblock's dirty-inode list.
198 * Before stamping the inode's ->dirtied_when, we check to see whether it is
199 * already the most-recently-dirtied inode on the b_dirty list. If that is
200 * the case then the inode must have been redirtied while it was being written
201 * out and we don't reset its dirtied_when.
203 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
205 assert_spin_locked(&wb->list_lock);
206 if (!list_empty(&wb->b_dirty)) {
207 struct inode *tail;
209 tail = wb_inode(wb->b_dirty.next);
210 if (time_before(inode->dirtied_when, tail->dirtied_when))
211 inode->dirtied_when = jiffies;
213 list_move(&inode->i_wb_list, &wb->b_dirty);
217 * requeue inode for re-scanning after bdi->b_io list is exhausted.
219 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
221 assert_spin_locked(&wb->list_lock);
222 list_move(&inode->i_wb_list, &wb->b_more_io);
225 static void inode_sync_complete(struct inode *inode)
227 inode->i_state &= ~I_SYNC;
228 /* If inode is clean an unused, put it into LRU now... */
229 inode_add_lru(inode);
230 /* Waiters must see I_SYNC cleared before being woken up */
231 smp_mb();
232 wake_up_bit(&inode->i_state, __I_SYNC);
235 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
237 bool ret = time_after(inode->dirtied_when, t);
238 #ifndef CONFIG_64BIT
240 * For inodes being constantly redirtied, dirtied_when can get stuck.
241 * It _appears_ to be in the future, but is actually in distant past.
242 * This test is necessary to prevent such wrapped-around relative times
243 * from permanently stopping the whole bdi writeback.
245 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
246 #endif
247 return ret;
251 * Move expired (dirtied before work->older_than_this) dirty inodes from
252 * @delaying_queue to @dispatch_queue.
254 static int move_expired_inodes(struct list_head *delaying_queue,
255 struct list_head *dispatch_queue,
256 struct wb_writeback_work *work)
258 LIST_HEAD(tmp);
259 struct list_head *pos, *node;
260 struct super_block *sb = NULL;
261 struct inode *inode;
262 int do_sb_sort = 0;
263 int moved = 0;
265 while (!list_empty(delaying_queue)) {
266 inode = wb_inode(delaying_queue->prev);
267 if (work->older_than_this &&
268 inode_dirtied_after(inode, *work->older_than_this))
269 break;
270 list_move(&inode->i_wb_list, &tmp);
271 moved++;
272 if (sb_is_blkdev_sb(inode->i_sb))
273 continue;
274 if (sb && sb != inode->i_sb)
275 do_sb_sort = 1;
276 sb = inode->i_sb;
279 /* just one sb in list, splice to dispatch_queue and we're done */
280 if (!do_sb_sort) {
281 list_splice(&tmp, dispatch_queue);
282 goto out;
285 /* Move inodes from one superblock together */
286 while (!list_empty(&tmp)) {
287 sb = wb_inode(tmp.prev)->i_sb;
288 list_for_each_prev_safe(pos, node, &tmp) {
289 inode = wb_inode(pos);
290 if (inode->i_sb == sb)
291 list_move(&inode->i_wb_list, dispatch_queue);
294 out:
295 return moved;
299 * Queue all expired dirty inodes for io, eldest first.
300 * Before
301 * newly dirtied b_dirty b_io b_more_io
302 * =============> gf edc BA
303 * After
304 * newly dirtied b_dirty b_io b_more_io
305 * =============> g fBAedc
307 * +--> dequeue for IO
309 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
311 int moved;
312 assert_spin_locked(&wb->list_lock);
313 list_splice_init(&wb->b_more_io, &wb->b_io);
314 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
315 trace_writeback_queue_io(wb, work, moved);
318 static int write_inode(struct inode *inode, struct writeback_control *wbc)
320 int ret;
322 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
323 trace_writeback_write_inode_start(inode, wbc);
324 ret = inode->i_sb->s_op->write_inode(inode, wbc);
325 trace_writeback_write_inode(inode, wbc);
326 return ret;
328 return 0;
332 * Wait for writeback on an inode to complete. Called with i_lock held.
333 * Caller must make sure inode cannot go away when we drop i_lock.
335 static void __inode_wait_for_writeback(struct inode *inode)
336 __releases(inode->i_lock)
337 __acquires(inode->i_lock)
339 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
340 wait_queue_head_t *wqh;
342 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
343 while (inode->i_state & I_SYNC) {
344 spin_unlock(&inode->i_lock);
345 __wait_on_bit(wqh, &wq, bit_wait,
346 TASK_UNINTERRUPTIBLE);
347 spin_lock(&inode->i_lock);
352 * Wait for writeback on an inode to complete. Caller must have inode pinned.
354 void inode_wait_for_writeback(struct inode *inode)
356 spin_lock(&inode->i_lock);
357 __inode_wait_for_writeback(inode);
358 spin_unlock(&inode->i_lock);
362 * Sleep until I_SYNC is cleared. This function must be called with i_lock
363 * held and drops it. It is aimed for callers not holding any inode reference
364 * so once i_lock is dropped, inode can go away.
366 static void inode_sleep_on_writeback(struct inode *inode)
367 __releases(inode->i_lock)
369 DEFINE_WAIT(wait);
370 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
371 int sleep;
373 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
374 sleep = inode->i_state & I_SYNC;
375 spin_unlock(&inode->i_lock);
376 if (sleep)
377 schedule();
378 finish_wait(wqh, &wait);
382 * Find proper writeback list for the inode depending on its current state and
383 * possibly also change of its state while we were doing writeback. Here we
384 * handle things such as livelock prevention or fairness of writeback among
385 * inodes. This function can be called only by flusher thread - noone else
386 * processes all inodes in writeback lists and requeueing inodes behind flusher
387 * thread's back can have unexpected consequences.
389 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
390 struct writeback_control *wbc)
392 if (inode->i_state & I_FREEING)
393 return;
396 * Sync livelock prevention. Each inode is tagged and synced in one
397 * shot. If still dirty, it will be redirty_tail()'ed below. Update
398 * the dirty time to prevent enqueue and sync it again.
400 if ((inode->i_state & I_DIRTY) &&
401 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
402 inode->dirtied_when = jiffies;
404 if (wbc->pages_skipped) {
406 * writeback is not making progress due to locked
407 * buffers. Skip this inode for now.
409 redirty_tail(inode, wb);
410 return;
413 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
415 * We didn't write back all the pages. nfs_writepages()
416 * sometimes bales out without doing anything.
418 if (wbc->nr_to_write <= 0) {
419 /* Slice used up. Queue for next turn. */
420 requeue_io(inode, wb);
421 } else {
423 * Writeback blocked by something other than
424 * congestion. Delay the inode for some time to
425 * avoid spinning on the CPU (100% iowait)
426 * retrying writeback of the dirty page/inode
427 * that cannot be performed immediately.
429 redirty_tail(inode, wb);
431 } else if (inode->i_state & I_DIRTY) {
433 * Filesystems can dirty the inode during writeback operations,
434 * such as delayed allocation during submission or metadata
435 * updates after data IO completion.
437 redirty_tail(inode, wb);
438 } else {
439 /* The inode is clean. Remove from writeback lists. */
440 list_del_init(&inode->i_wb_list);
445 * Write out an inode and its dirty pages. Do not update the writeback list
446 * linkage. That is left to the caller. The caller is also responsible for
447 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
449 static int
450 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
452 struct address_space *mapping = inode->i_mapping;
453 long nr_to_write = wbc->nr_to_write;
454 unsigned dirty;
455 int ret;
457 WARN_ON(!(inode->i_state & I_SYNC));
459 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
461 ret = do_writepages(mapping, wbc);
464 * Make sure to wait on the data before writing out the metadata.
465 * This is important for filesystems that modify metadata on data
466 * I/O completion. We don't do it for sync(2) writeback because it has a
467 * separate, external IO completion path and ->sync_fs for guaranteeing
468 * inode metadata is written back correctly.
470 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
471 int err = filemap_fdatawait(mapping);
472 if (ret == 0)
473 ret = err;
477 * Some filesystems may redirty the inode during the writeback
478 * due to delalloc, clear dirty metadata flags right before
479 * write_inode()
481 spin_lock(&inode->i_lock);
483 dirty = inode->i_state & I_DIRTY;
484 inode->i_state &= ~I_DIRTY;
487 * Paired with smp_mb() in __mark_inode_dirty(). This allows
488 * __mark_inode_dirty() to test i_state without grabbing i_lock -
489 * either they see the I_DIRTY bits cleared or we see the dirtied
490 * inode.
492 * I_DIRTY_PAGES is always cleared together above even if @mapping
493 * still has dirty pages. The flag is reinstated after smp_mb() if
494 * necessary. This guarantees that either __mark_inode_dirty()
495 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
497 smp_mb();
499 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
500 inode->i_state |= I_DIRTY_PAGES;
502 spin_unlock(&inode->i_lock);
504 /* Don't write the inode if only I_DIRTY_PAGES was set */
505 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
506 int err = write_inode(inode, wbc);
507 if (ret == 0)
508 ret = err;
510 trace_writeback_single_inode(inode, wbc, nr_to_write);
511 return ret;
515 * Write out an inode's dirty pages. Either the caller has an active reference
516 * on the inode or the inode has I_WILL_FREE set.
518 * This function is designed to be called for writing back one inode which
519 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
520 * and does more profound writeback list handling in writeback_sb_inodes().
522 static int
523 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
524 struct writeback_control *wbc)
526 int ret = 0;
528 spin_lock(&inode->i_lock);
529 if (!atomic_read(&inode->i_count))
530 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
531 else
532 WARN_ON(inode->i_state & I_WILL_FREE);
534 if (inode->i_state & I_SYNC) {
535 if (wbc->sync_mode != WB_SYNC_ALL)
536 goto out;
538 * It's a data-integrity sync. We must wait. Since callers hold
539 * inode reference or inode has I_WILL_FREE set, it cannot go
540 * away under us.
542 __inode_wait_for_writeback(inode);
544 WARN_ON(inode->i_state & I_SYNC);
546 * Skip inode if it is clean and we have no outstanding writeback in
547 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
548 * function since flusher thread may be doing for example sync in
549 * parallel and if we move the inode, it could get skipped. So here we
550 * make sure inode is on some writeback list and leave it there unless
551 * we have completely cleaned the inode.
553 if (!(inode->i_state & I_DIRTY) &&
554 (wbc->sync_mode != WB_SYNC_ALL ||
555 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
556 goto out;
557 inode->i_state |= I_SYNC;
558 spin_unlock(&inode->i_lock);
560 ret = __writeback_single_inode(inode, wbc);
562 spin_lock(&wb->list_lock);
563 spin_lock(&inode->i_lock);
565 * If inode is clean, remove it from writeback lists. Otherwise don't
566 * touch it. See comment above for explanation.
568 if (!(inode->i_state & I_DIRTY))
569 list_del_init(&inode->i_wb_list);
570 spin_unlock(&wb->list_lock);
571 inode_sync_complete(inode);
572 out:
573 spin_unlock(&inode->i_lock);
574 return ret;
577 static long writeback_chunk_size(struct backing_dev_info *bdi,
578 struct wb_writeback_work *work)
580 long pages;
583 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
584 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
585 * here avoids calling into writeback_inodes_wb() more than once.
587 * The intended call sequence for WB_SYNC_ALL writeback is:
589 * wb_writeback()
590 * writeback_sb_inodes() <== called only once
591 * write_cache_pages() <== called once for each inode
592 * (quickly) tag currently dirty pages
593 * (maybe slowly) sync all tagged pages
595 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
596 pages = LONG_MAX;
597 else {
598 pages = min(bdi->avg_write_bandwidth / 2,
599 global_dirty_limit / DIRTY_SCOPE);
600 pages = min(pages, work->nr_pages);
601 pages = round_down(pages + MIN_WRITEBACK_PAGES,
602 MIN_WRITEBACK_PAGES);
605 return pages;
609 * Write a portion of b_io inodes which belong to @sb.
611 * Return the number of pages and/or inodes written.
613 static long writeback_sb_inodes(struct super_block *sb,
614 struct bdi_writeback *wb,
615 struct wb_writeback_work *work)
617 struct writeback_control wbc = {
618 .sync_mode = work->sync_mode,
619 .tagged_writepages = work->tagged_writepages,
620 .for_kupdate = work->for_kupdate,
621 .for_background = work->for_background,
622 .for_sync = work->for_sync,
623 .range_cyclic = work->range_cyclic,
624 .range_start = 0,
625 .range_end = LLONG_MAX,
627 unsigned long start_time = jiffies;
628 long write_chunk;
629 long wrote = 0; /* count both pages and inodes */
631 while (!list_empty(&wb->b_io)) {
632 struct inode *inode = wb_inode(wb->b_io.prev);
634 if (inode->i_sb != sb) {
635 if (work->sb) {
637 * We only want to write back data for this
638 * superblock, move all inodes not belonging
639 * to it back onto the dirty list.
641 redirty_tail(inode, wb);
642 continue;
646 * The inode belongs to a different superblock.
647 * Bounce back to the caller to unpin this and
648 * pin the next superblock.
650 break;
654 * Don't bother with new inodes or inodes being freed, first
655 * kind does not need periodic writeout yet, and for the latter
656 * kind writeout is handled by the freer.
658 spin_lock(&inode->i_lock);
659 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
660 spin_unlock(&inode->i_lock);
661 redirty_tail(inode, wb);
662 continue;
664 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
666 * If this inode is locked for writeback and we are not
667 * doing writeback-for-data-integrity, move it to
668 * b_more_io so that writeback can proceed with the
669 * other inodes on s_io.
671 * We'll have another go at writing back this inode
672 * when we completed a full scan of b_io.
674 spin_unlock(&inode->i_lock);
675 requeue_io(inode, wb);
676 trace_writeback_sb_inodes_requeue(inode);
677 continue;
679 spin_unlock(&wb->list_lock);
682 * We already requeued the inode if it had I_SYNC set and we
683 * are doing WB_SYNC_NONE writeback. So this catches only the
684 * WB_SYNC_ALL case.
686 if (inode->i_state & I_SYNC) {
687 /* Wait for I_SYNC. This function drops i_lock... */
688 inode_sleep_on_writeback(inode);
689 /* Inode may be gone, start again */
690 spin_lock(&wb->list_lock);
691 continue;
693 inode->i_state |= I_SYNC;
694 spin_unlock(&inode->i_lock);
696 write_chunk = writeback_chunk_size(wb->bdi, work);
697 wbc.nr_to_write = write_chunk;
698 wbc.pages_skipped = 0;
701 * We use I_SYNC to pin the inode in memory. While it is set
702 * evict_inode() will wait so the inode cannot be freed.
704 __writeback_single_inode(inode, &wbc);
706 work->nr_pages -= write_chunk - wbc.nr_to_write;
707 wrote += write_chunk - wbc.nr_to_write;
709 if (need_resched()) {
711 * We're trying to balance between building up a nice
712 * long list of IOs to improve our merge rate, and
713 * getting those IOs out quickly for anyone throttling
714 * in balance_dirty_pages(). cond_resched() doesn't
715 * unplug, so get our IOs out the door before we
716 * give up the CPU.
718 blk_flush_plug(current);
719 cond_resched();
723 spin_lock(&wb->list_lock);
724 spin_lock(&inode->i_lock);
725 if (!(inode->i_state & I_DIRTY))
726 wrote++;
727 requeue_inode(inode, wb, &wbc);
728 inode_sync_complete(inode);
729 spin_unlock(&inode->i_lock);
732 * bail out to wb_writeback() often enough to check
733 * background threshold and other termination conditions.
735 if (wrote) {
736 if (time_is_before_jiffies(start_time + HZ / 10UL))
737 break;
738 if (work->nr_pages <= 0)
739 break;
742 return wrote;
745 static long __writeback_inodes_wb(struct bdi_writeback *wb,
746 struct wb_writeback_work *work)
748 unsigned long start_time = jiffies;
749 long wrote = 0;
751 while (!list_empty(&wb->b_io)) {
752 struct inode *inode = wb_inode(wb->b_io.prev);
753 struct super_block *sb = inode->i_sb;
755 if (!grab_super_passive(sb)) {
757 * grab_super_passive() may fail consistently due to
758 * s_umount being grabbed by someone else. Don't use
759 * requeue_io() to avoid busy retrying the inode/sb.
761 redirty_tail(inode, wb);
762 continue;
764 wrote += writeback_sb_inodes(sb, wb, work);
765 drop_super(sb);
767 /* refer to the same tests at the end of writeback_sb_inodes */
768 if (wrote) {
769 if (time_is_before_jiffies(start_time + HZ / 10UL))
770 break;
771 if (work->nr_pages <= 0)
772 break;
775 /* Leave any unwritten inodes on b_io */
776 return wrote;
779 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
780 enum wb_reason reason)
782 struct wb_writeback_work work = {
783 .nr_pages = nr_pages,
784 .sync_mode = WB_SYNC_NONE,
785 .range_cyclic = 1,
786 .reason = reason,
789 spin_lock(&wb->list_lock);
790 if (list_empty(&wb->b_io))
791 queue_io(wb, &work);
792 __writeback_inodes_wb(wb, &work);
793 spin_unlock(&wb->list_lock);
795 return nr_pages - work.nr_pages;
798 static bool over_bground_thresh(struct backing_dev_info *bdi)
800 unsigned long background_thresh, dirty_thresh;
802 global_dirty_limits(&background_thresh, &dirty_thresh);
804 if (global_page_state(NR_FILE_DIRTY) +
805 global_page_state(NR_UNSTABLE_NFS) > background_thresh)
806 return true;
808 if (bdi_stat(bdi, BDI_RECLAIMABLE) >
809 bdi_dirty_limit(bdi, background_thresh))
810 return true;
812 return false;
816 * Called under wb->list_lock. If there are multiple wb per bdi,
817 * only the flusher working on the first wb should do it.
819 static void wb_update_bandwidth(struct bdi_writeback *wb,
820 unsigned long start_time)
822 __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
826 * Explicit flushing or periodic writeback of "old" data.
828 * Define "old": the first time one of an inode's pages is dirtied, we mark the
829 * dirtying-time in the inode's address_space. So this periodic writeback code
830 * just walks the superblock inode list, writing back any inodes which are
831 * older than a specific point in time.
833 * Try to run once per dirty_writeback_interval. But if a writeback event
834 * takes longer than a dirty_writeback_interval interval, then leave a
835 * one-second gap.
837 * older_than_this takes precedence over nr_to_write. So we'll only write back
838 * all dirty pages if they are all attached to "old" mappings.
840 static long wb_writeback(struct bdi_writeback *wb,
841 struct wb_writeback_work *work)
843 unsigned long wb_start = jiffies;
844 long nr_pages = work->nr_pages;
845 unsigned long oldest_jif;
846 struct inode *inode;
847 long progress;
849 oldest_jif = jiffies;
850 work->older_than_this = &oldest_jif;
852 spin_lock(&wb->list_lock);
853 for (;;) {
855 * Stop writeback when nr_pages has been consumed
857 if (work->nr_pages <= 0)
858 break;
861 * Background writeout and kupdate-style writeback may
862 * run forever. Stop them if there is other work to do
863 * so that e.g. sync can proceed. They'll be restarted
864 * after the other works are all done.
866 if ((work->for_background || work->for_kupdate) &&
867 !list_empty(&wb->bdi->work_list))
868 break;
871 * For background writeout, stop when we are below the
872 * background dirty threshold
874 if (work->for_background && !over_bground_thresh(wb->bdi))
875 break;
878 * Kupdate and background works are special and we want to
879 * include all inodes that need writing. Livelock avoidance is
880 * handled by these works yielding to any other work so we are
881 * safe.
883 if (work->for_kupdate) {
884 oldest_jif = jiffies -
885 msecs_to_jiffies(dirty_expire_interval * 10);
886 } else if (work->for_background)
887 oldest_jif = jiffies;
889 trace_writeback_start(wb->bdi, work);
890 if (list_empty(&wb->b_io))
891 queue_io(wb, work);
892 if (work->sb)
893 progress = writeback_sb_inodes(work->sb, wb, work);
894 else
895 progress = __writeback_inodes_wb(wb, work);
896 trace_writeback_written(wb->bdi, work);
898 wb_update_bandwidth(wb, wb_start);
901 * Did we write something? Try for more
903 * Dirty inodes are moved to b_io for writeback in batches.
904 * The completion of the current batch does not necessarily
905 * mean the overall work is done. So we keep looping as long
906 * as made some progress on cleaning pages or inodes.
908 if (progress)
909 continue;
911 * No more inodes for IO, bail
913 if (list_empty(&wb->b_more_io))
914 break;
916 * Nothing written. Wait for some inode to
917 * become available for writeback. Otherwise
918 * we'll just busyloop.
920 if (!list_empty(&wb->b_more_io)) {
921 trace_writeback_wait(wb->bdi, work);
922 inode = wb_inode(wb->b_more_io.prev);
923 spin_lock(&inode->i_lock);
924 spin_unlock(&wb->list_lock);
925 /* This function drops i_lock... */
926 inode_sleep_on_writeback(inode);
927 spin_lock(&wb->list_lock);
930 spin_unlock(&wb->list_lock);
932 return nr_pages - work->nr_pages;
936 * Return the next wb_writeback_work struct that hasn't been processed yet.
938 static struct wb_writeback_work *
939 get_next_work_item(struct backing_dev_info *bdi)
941 struct wb_writeback_work *work = NULL;
943 spin_lock_bh(&bdi->wb_lock);
944 if (!list_empty(&bdi->work_list)) {
945 work = list_entry(bdi->work_list.next,
946 struct wb_writeback_work, list);
947 list_del_init(&work->list);
949 spin_unlock_bh(&bdi->wb_lock);
950 return work;
954 * Add in the number of potentially dirty inodes, because each inode
955 * write can dirty pagecache in the underlying blockdev.
957 static unsigned long get_nr_dirty_pages(void)
959 return global_page_state(NR_FILE_DIRTY) +
960 global_page_state(NR_UNSTABLE_NFS) +
961 get_nr_dirty_inodes();
964 static long wb_check_background_flush(struct bdi_writeback *wb)
966 if (over_bground_thresh(wb->bdi)) {
968 struct wb_writeback_work work = {
969 .nr_pages = LONG_MAX,
970 .sync_mode = WB_SYNC_NONE,
971 .for_background = 1,
972 .range_cyclic = 1,
973 .reason = WB_REASON_BACKGROUND,
976 return wb_writeback(wb, &work);
979 return 0;
982 static long wb_check_old_data_flush(struct bdi_writeback *wb)
984 unsigned long expired;
985 long nr_pages;
988 * When set to zero, disable periodic writeback
990 if (!dirty_writeback_interval)
991 return 0;
993 expired = wb->last_old_flush +
994 msecs_to_jiffies(dirty_writeback_interval * 10);
995 if (time_before(jiffies, expired))
996 return 0;
998 wb->last_old_flush = jiffies;
999 nr_pages = get_nr_dirty_pages();
1001 if (nr_pages) {
1002 struct wb_writeback_work work = {
1003 .nr_pages = nr_pages,
1004 .sync_mode = WB_SYNC_NONE,
1005 .for_kupdate = 1,
1006 .range_cyclic = 1,
1007 .reason = WB_REASON_PERIODIC,
1010 return wb_writeback(wb, &work);
1013 return 0;
1017 * Retrieve work items and do the writeback they describe
1019 static long wb_do_writeback(struct bdi_writeback *wb)
1021 struct backing_dev_info *bdi = wb->bdi;
1022 struct wb_writeback_work *work;
1023 long wrote = 0;
1025 set_bit(BDI_writeback_running, &wb->bdi->state);
1026 while ((work = get_next_work_item(bdi)) != NULL) {
1028 trace_writeback_exec(bdi, work);
1030 wrote += wb_writeback(wb, work);
1033 * Notify the caller of completion if this is a synchronous
1034 * work item, otherwise just free it.
1036 if (work->done)
1037 complete(work->done);
1038 else
1039 kfree(work);
1043 * Check for periodic writeback, kupdated() style
1045 wrote += wb_check_old_data_flush(wb);
1046 wrote += wb_check_background_flush(wb);
1047 clear_bit(BDI_writeback_running, &wb->bdi->state);
1049 return wrote;
1053 * Handle writeback of dirty data for the device backed by this bdi. Also
1054 * reschedules periodically and does kupdated style flushing.
1056 void bdi_writeback_workfn(struct work_struct *work)
1058 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1059 struct bdi_writeback, dwork);
1060 struct backing_dev_info *bdi = wb->bdi;
1061 long pages_written;
1063 set_worker_desc("flush-%s", dev_name(bdi->dev));
1064 current->flags |= PF_SWAPWRITE;
1066 if (likely(!current_is_workqueue_rescuer() ||
1067 !test_bit(BDI_registered, &bdi->state))) {
1069 * The normal path. Keep writing back @bdi until its
1070 * work_list is empty. Note that this path is also taken
1071 * if @bdi is shutting down even when we're running off the
1072 * rescuer as work_list needs to be drained.
1074 do {
1075 pages_written = wb_do_writeback(wb);
1076 trace_writeback_pages_written(pages_written);
1077 } while (!list_empty(&bdi->work_list));
1078 } else {
1080 * bdi_wq can't get enough workers and we're running off
1081 * the emergency worker. Don't hog it. Hopefully, 1024 is
1082 * enough for efficient IO.
1084 pages_written = writeback_inodes_wb(&bdi->wb, 1024,
1085 WB_REASON_FORKER_THREAD);
1086 trace_writeback_pages_written(pages_written);
1089 if (!list_empty(&bdi->work_list))
1090 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1091 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1092 bdi_wakeup_thread_delayed(bdi);
1094 current->flags &= ~PF_SWAPWRITE;
1098 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1099 * the whole world.
1101 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1103 struct backing_dev_info *bdi;
1105 if (!nr_pages)
1106 nr_pages = get_nr_dirty_pages();
1108 rcu_read_lock();
1109 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1110 if (!bdi_has_dirty_io(bdi))
1111 continue;
1112 __bdi_start_writeback(bdi, nr_pages, false, reason);
1114 rcu_read_unlock();
1117 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1119 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1120 struct dentry *dentry;
1121 const char *name = "?";
1123 dentry = d_find_alias(inode);
1124 if (dentry) {
1125 spin_lock(&dentry->d_lock);
1126 name = (const char *) dentry->d_name.name;
1128 printk(KERN_DEBUG
1129 "%s(%d): dirtied inode %lu (%s) on %s\n",
1130 current->comm, task_pid_nr(current), inode->i_ino,
1131 name, inode->i_sb->s_id);
1132 if (dentry) {
1133 spin_unlock(&dentry->d_lock);
1134 dput(dentry);
1140 * __mark_inode_dirty - internal function
1141 * @inode: inode to mark
1142 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1143 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1144 * mark_inode_dirty_sync.
1146 * Put the inode on the super block's dirty list.
1148 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1149 * dirty list only if it is hashed or if it refers to a blockdev.
1150 * If it was not hashed, it will never be added to the dirty list
1151 * even if it is later hashed, as it will have been marked dirty already.
1153 * In short, make sure you hash any inodes _before_ you start marking
1154 * them dirty.
1156 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1157 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1158 * the kernel-internal blockdev inode represents the dirtying time of the
1159 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1160 * page->mapping->host, so the page-dirtying time is recorded in the internal
1161 * blockdev inode.
1163 void __mark_inode_dirty(struct inode *inode, int flags)
1165 struct super_block *sb = inode->i_sb;
1166 struct backing_dev_info *bdi = NULL;
1169 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1170 * dirty the inode itself
1172 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1173 trace_writeback_dirty_inode_start(inode, flags);
1175 if (sb->s_op->dirty_inode)
1176 sb->s_op->dirty_inode(inode, flags);
1178 trace_writeback_dirty_inode(inode, flags);
1182 * Paired with smp_mb() in __writeback_single_inode() for the
1183 * following lockless i_state test. See there for details.
1185 smp_mb();
1187 if ((inode->i_state & flags) == flags)
1188 return;
1190 if (unlikely(block_dump))
1191 block_dump___mark_inode_dirty(inode);
1193 spin_lock(&inode->i_lock);
1194 if ((inode->i_state & flags) != flags) {
1195 const int was_dirty = inode->i_state & I_DIRTY;
1197 inode->i_state |= flags;
1200 * If the inode is being synced, just update its dirty state.
1201 * The unlocker will place the inode on the appropriate
1202 * superblock list, based upon its state.
1204 if (inode->i_state & I_SYNC)
1205 goto out_unlock_inode;
1208 * Only add valid (hashed) inodes to the superblock's
1209 * dirty list. Add blockdev inodes as well.
1211 if (!S_ISBLK(inode->i_mode)) {
1212 if (inode_unhashed(inode))
1213 goto out_unlock_inode;
1215 if (inode->i_state & I_FREEING)
1216 goto out_unlock_inode;
1219 * If the inode was already on b_dirty/b_io/b_more_io, don't
1220 * reposition it (that would break b_dirty time-ordering).
1222 if (!was_dirty) {
1223 bool wakeup_bdi = false;
1224 bdi = inode_to_bdi(inode);
1226 spin_unlock(&inode->i_lock);
1227 spin_lock(&bdi->wb.list_lock);
1228 if (bdi_cap_writeback_dirty(bdi)) {
1229 WARN(!test_bit(BDI_registered, &bdi->state),
1230 "bdi-%s not registered\n", bdi->name);
1233 * If this is the first dirty inode for this
1234 * bdi, we have to wake-up the corresponding
1235 * bdi thread to make sure background
1236 * write-back happens later.
1238 if (!wb_has_dirty_io(&bdi->wb))
1239 wakeup_bdi = true;
1242 inode->dirtied_when = jiffies;
1243 list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1244 spin_unlock(&bdi->wb.list_lock);
1246 if (wakeup_bdi)
1247 bdi_wakeup_thread_delayed(bdi);
1248 return;
1251 out_unlock_inode:
1252 spin_unlock(&inode->i_lock);
1255 EXPORT_SYMBOL(__mark_inode_dirty);
1257 static void wait_sb_inodes(struct super_block *sb)
1259 struct inode *inode, *old_inode = NULL;
1262 * We need to be protected against the filesystem going from
1263 * r/o to r/w or vice versa.
1265 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1267 spin_lock(&inode_sb_list_lock);
1270 * Data integrity sync. Must wait for all pages under writeback,
1271 * because there may have been pages dirtied before our sync
1272 * call, but which had writeout started before we write it out.
1273 * In which case, the inode may not be on the dirty list, but
1274 * we still have to wait for that writeout.
1276 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1277 struct address_space *mapping = inode->i_mapping;
1279 spin_lock(&inode->i_lock);
1280 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1281 (mapping->nrpages == 0)) {
1282 spin_unlock(&inode->i_lock);
1283 continue;
1285 __iget(inode);
1286 spin_unlock(&inode->i_lock);
1287 spin_unlock(&inode_sb_list_lock);
1290 * We hold a reference to 'inode' so it couldn't have been
1291 * removed from s_inodes list while we dropped the
1292 * inode_sb_list_lock. We cannot iput the inode now as we can
1293 * be holding the last reference and we cannot iput it under
1294 * inode_sb_list_lock. So we keep the reference and iput it
1295 * later.
1297 iput(old_inode);
1298 old_inode = inode;
1300 filemap_fdatawait(mapping);
1302 cond_resched();
1304 spin_lock(&inode_sb_list_lock);
1306 spin_unlock(&inode_sb_list_lock);
1307 iput(old_inode);
1311 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1312 * @sb: the superblock
1313 * @nr: the number of pages to write
1314 * @reason: reason why some writeback work initiated
1316 * Start writeback on some inodes on this super_block. No guarantees are made
1317 * on how many (if any) will be written, and this function does not wait
1318 * for IO completion of submitted IO.
1320 void writeback_inodes_sb_nr(struct super_block *sb,
1321 unsigned long nr,
1322 enum wb_reason reason)
1324 DECLARE_COMPLETION_ONSTACK(done);
1325 struct wb_writeback_work work = {
1326 .sb = sb,
1327 .sync_mode = WB_SYNC_NONE,
1328 .tagged_writepages = 1,
1329 .done = &done,
1330 .nr_pages = nr,
1331 .reason = reason,
1334 if (sb->s_bdi == &noop_backing_dev_info)
1335 return;
1336 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1337 bdi_queue_work(sb->s_bdi, &work);
1338 wait_for_completion(&done);
1340 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1343 * writeback_inodes_sb - writeback dirty inodes from given super_block
1344 * @sb: the superblock
1345 * @reason: reason why some writeback work was initiated
1347 * Start writeback on some inodes on this super_block. No guarantees are made
1348 * on how many (if any) will be written, and this function does not wait
1349 * for IO completion of submitted IO.
1351 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1353 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1355 EXPORT_SYMBOL(writeback_inodes_sb);
1358 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1359 * @sb: the superblock
1360 * @nr: the number of pages to write
1361 * @reason: the reason of writeback
1363 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1364 * Returns 1 if writeback was started, 0 if not.
1366 int try_to_writeback_inodes_sb_nr(struct super_block *sb,
1367 unsigned long nr,
1368 enum wb_reason reason)
1370 if (writeback_in_progress(sb->s_bdi))
1371 return 1;
1373 if (!down_read_trylock(&sb->s_umount))
1374 return 0;
1376 writeback_inodes_sb_nr(sb, nr, reason);
1377 up_read(&sb->s_umount);
1378 return 1;
1380 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1383 * try_to_writeback_inodes_sb - try to start writeback if none underway
1384 * @sb: the superblock
1385 * @reason: reason why some writeback work was initiated
1387 * Implement by try_to_writeback_inodes_sb_nr()
1388 * Returns 1 if writeback was started, 0 if not.
1390 int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1392 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1394 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1397 * sync_inodes_sb - sync sb inode pages
1398 * @sb: the superblock
1400 * This function writes and waits on any dirty inode belonging to this
1401 * super_block.
1403 void sync_inodes_sb(struct super_block *sb)
1405 DECLARE_COMPLETION_ONSTACK(done);
1406 struct wb_writeback_work work = {
1407 .sb = sb,
1408 .sync_mode = WB_SYNC_ALL,
1409 .nr_pages = LONG_MAX,
1410 .range_cyclic = 0,
1411 .done = &done,
1412 .reason = WB_REASON_SYNC,
1413 .for_sync = 1,
1416 /* Nothing to do? */
1417 if (sb->s_bdi == &noop_backing_dev_info)
1418 return;
1419 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1421 bdi_queue_work(sb->s_bdi, &work);
1422 wait_for_completion(&done);
1424 wait_sb_inodes(sb);
1426 EXPORT_SYMBOL(sync_inodes_sb);
1429 * write_inode_now - write an inode to disk
1430 * @inode: inode to write to disk
1431 * @sync: whether the write should be synchronous or not
1433 * This function commits an inode to disk immediately if it is dirty. This is
1434 * primarily needed by knfsd.
1436 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1438 int write_inode_now(struct inode *inode, int sync)
1440 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1441 struct writeback_control wbc = {
1442 .nr_to_write = LONG_MAX,
1443 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1444 .range_start = 0,
1445 .range_end = LLONG_MAX,
1448 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1449 wbc.nr_to_write = 0;
1451 might_sleep();
1452 return writeback_single_inode(inode, wb, &wbc);
1454 EXPORT_SYMBOL(write_inode_now);
1457 * sync_inode - write an inode and its pages to disk.
1458 * @inode: the inode to sync
1459 * @wbc: controls the writeback mode
1461 * sync_inode() will write an inode and its pages to disk. It will also
1462 * correctly update the inode on its superblock's dirty inode lists and will
1463 * update inode->i_state.
1465 * The caller must have a ref on the inode.
1467 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1469 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1471 EXPORT_SYMBOL(sync_inode);
1474 * sync_inode_metadata - write an inode to disk
1475 * @inode: the inode to sync
1476 * @wait: wait for I/O to complete.
1478 * Write an inode to disk and adjust its dirty state after completion.
1480 * Note: only writes the actual inode, no associated data or other metadata.
1482 int sync_inode_metadata(struct inode *inode, int wait)
1484 struct writeback_control wbc = {
1485 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1486 .nr_to_write = 0, /* metadata-only */
1489 return sync_inode(inode, &wbc);
1491 EXPORT_SYMBOL(sync_inode_metadata);