Merge branch 'fix/hda' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound-2.6
[linux/fpc-iii.git] / net / ipv4 / tcp_input.c
blob28e029632493629ca409b02d094c18de56279eaf
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 #include <linux/mm.h>
65 #include <linux/module.h>
66 #include <linux/sysctl.h>
67 #include <linux/kernel.h>
68 #include <net/dst.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly = 2;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly = 2;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
95 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
96 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
97 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
99 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
100 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
101 #define FLAG_ECE 0x40 /* ECE in this ACK */
102 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
103 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
105 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
106 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
107 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
108 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
110 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
111 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
112 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
113 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
114 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
116 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
117 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
119 /* Adapt the MSS value used to make delayed ack decision to the
120 * real world.
122 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
124 struct inet_connection_sock *icsk = inet_csk(sk);
125 const unsigned int lss = icsk->icsk_ack.last_seg_size;
126 unsigned int len;
128 icsk->icsk_ack.last_seg_size = 0;
130 /* skb->len may jitter because of SACKs, even if peer
131 * sends good full-sized frames.
133 len = skb_shinfo(skb)->gso_size ? : skb->len;
134 if (len >= icsk->icsk_ack.rcv_mss) {
135 icsk->icsk_ack.rcv_mss = len;
136 } else {
137 /* Otherwise, we make more careful check taking into account,
138 * that SACKs block is variable.
140 * "len" is invariant segment length, including TCP header.
142 len += skb->data - skb_transport_header(skb);
143 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
144 /* If PSH is not set, packet should be
145 * full sized, provided peer TCP is not badly broken.
146 * This observation (if it is correct 8)) allows
147 * to handle super-low mtu links fairly.
149 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
150 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
151 /* Subtract also invariant (if peer is RFC compliant),
152 * tcp header plus fixed timestamp option length.
153 * Resulting "len" is MSS free of SACK jitter.
155 len -= tcp_sk(sk)->tcp_header_len;
156 icsk->icsk_ack.last_seg_size = len;
157 if (len == lss) {
158 icsk->icsk_ack.rcv_mss = len;
159 return;
162 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
163 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
164 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
168 static void tcp_incr_quickack(struct sock *sk)
170 struct inet_connection_sock *icsk = inet_csk(sk);
171 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
173 if (quickacks == 0)
174 quickacks = 2;
175 if (quickacks > icsk->icsk_ack.quick)
176 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
179 void tcp_enter_quickack_mode(struct sock *sk)
181 struct inet_connection_sock *icsk = inet_csk(sk);
182 tcp_incr_quickack(sk);
183 icsk->icsk_ack.pingpong = 0;
184 icsk->icsk_ack.ato = TCP_ATO_MIN;
187 /* Send ACKs quickly, if "quick" count is not exhausted
188 * and the session is not interactive.
191 static inline int tcp_in_quickack_mode(const struct sock *sk)
193 const struct inet_connection_sock *icsk = inet_csk(sk);
194 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
197 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
199 if (tp->ecn_flags & TCP_ECN_OK)
200 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
203 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
205 if (tcp_hdr(skb)->cwr)
206 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
209 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
211 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
216 if (tp->ecn_flags & TCP_ECN_OK) {
217 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
218 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
219 /* Funny extension: if ECT is not set on a segment,
220 * it is surely retransmit. It is not in ECN RFC,
221 * but Linux follows this rule. */
222 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
223 tcp_enter_quickack_mode((struct sock *)tp);
227 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
229 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
230 tp->ecn_flags &= ~TCP_ECN_OK;
233 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
235 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
236 tp->ecn_flags &= ~TCP_ECN_OK;
239 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
241 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
242 return 1;
243 return 0;
246 /* Buffer size and advertised window tuning.
248 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
251 static void tcp_fixup_sndbuf(struct sock *sk)
253 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
254 sizeof(struct sk_buff);
256 if (sk->sk_sndbuf < 3 * sndmem)
257 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
260 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
262 * All tcp_full_space() is split to two parts: "network" buffer, allocated
263 * forward and advertised in receiver window (tp->rcv_wnd) and
264 * "application buffer", required to isolate scheduling/application
265 * latencies from network.
266 * window_clamp is maximal advertised window. It can be less than
267 * tcp_full_space(), in this case tcp_full_space() - window_clamp
268 * is reserved for "application" buffer. The less window_clamp is
269 * the smoother our behaviour from viewpoint of network, but the lower
270 * throughput and the higher sensitivity of the connection to losses. 8)
272 * rcv_ssthresh is more strict window_clamp used at "slow start"
273 * phase to predict further behaviour of this connection.
274 * It is used for two goals:
275 * - to enforce header prediction at sender, even when application
276 * requires some significant "application buffer". It is check #1.
277 * - to prevent pruning of receive queue because of misprediction
278 * of receiver window. Check #2.
280 * The scheme does not work when sender sends good segments opening
281 * window and then starts to feed us spaghetti. But it should work
282 * in common situations. Otherwise, we have to rely on queue collapsing.
285 /* Slow part of check#2. */
286 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
288 struct tcp_sock *tp = tcp_sk(sk);
289 /* Optimize this! */
290 int truesize = tcp_win_from_space(skb->truesize) >> 1;
291 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
293 while (tp->rcv_ssthresh <= window) {
294 if (truesize <= skb->len)
295 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
297 truesize >>= 1;
298 window >>= 1;
300 return 0;
303 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
305 struct tcp_sock *tp = tcp_sk(sk);
307 /* Check #1 */
308 if (tp->rcv_ssthresh < tp->window_clamp &&
309 (int)tp->rcv_ssthresh < tcp_space(sk) &&
310 !tcp_memory_pressure) {
311 int incr;
313 /* Check #2. Increase window, if skb with such overhead
314 * will fit to rcvbuf in future.
316 if (tcp_win_from_space(skb->truesize) <= skb->len)
317 incr = 2 * tp->advmss;
318 else
319 incr = __tcp_grow_window(sk, skb);
321 if (incr) {
322 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
323 tp->window_clamp);
324 inet_csk(sk)->icsk_ack.quick |= 1;
329 /* 3. Tuning rcvbuf, when connection enters established state. */
331 static void tcp_fixup_rcvbuf(struct sock *sk)
333 struct tcp_sock *tp = tcp_sk(sk);
334 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
336 /* Try to select rcvbuf so that 4 mss-sized segments
337 * will fit to window and corresponding skbs will fit to our rcvbuf.
338 * (was 3; 4 is minimum to allow fast retransmit to work.)
340 while (tcp_win_from_space(rcvmem) < tp->advmss)
341 rcvmem += 128;
342 if (sk->sk_rcvbuf < 4 * rcvmem)
343 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
346 /* 4. Try to fixup all. It is made immediately after connection enters
347 * established state.
349 static void tcp_init_buffer_space(struct sock *sk)
351 struct tcp_sock *tp = tcp_sk(sk);
352 int maxwin;
354 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
355 tcp_fixup_rcvbuf(sk);
356 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
357 tcp_fixup_sndbuf(sk);
359 tp->rcvq_space.space = tp->rcv_wnd;
361 maxwin = tcp_full_space(sk);
363 if (tp->window_clamp >= maxwin) {
364 tp->window_clamp = maxwin;
366 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
367 tp->window_clamp = max(maxwin -
368 (maxwin >> sysctl_tcp_app_win),
369 4 * tp->advmss);
372 /* Force reservation of one segment. */
373 if (sysctl_tcp_app_win &&
374 tp->window_clamp > 2 * tp->advmss &&
375 tp->window_clamp + tp->advmss > maxwin)
376 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
378 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
379 tp->snd_cwnd_stamp = tcp_time_stamp;
382 /* 5. Recalculate window clamp after socket hit its memory bounds. */
383 static void tcp_clamp_window(struct sock *sk)
385 struct tcp_sock *tp = tcp_sk(sk);
386 struct inet_connection_sock *icsk = inet_csk(sk);
388 icsk->icsk_ack.quick = 0;
390 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
391 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
392 !tcp_memory_pressure &&
393 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
394 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
395 sysctl_tcp_rmem[2]);
397 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
398 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
401 /* Initialize RCV_MSS value.
402 * RCV_MSS is an our guess about MSS used by the peer.
403 * We haven't any direct information about the MSS.
404 * It's better to underestimate the RCV_MSS rather than overestimate.
405 * Overestimations make us ACKing less frequently than needed.
406 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
408 void tcp_initialize_rcv_mss(struct sock *sk)
410 struct tcp_sock *tp = tcp_sk(sk);
411 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
413 hint = min(hint, tp->rcv_wnd / 2);
414 hint = min(hint, TCP_MSS_DEFAULT);
415 hint = max(hint, TCP_MIN_MSS);
417 inet_csk(sk)->icsk_ack.rcv_mss = hint;
420 /* Receiver "autotuning" code.
422 * The algorithm for RTT estimation w/o timestamps is based on
423 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
424 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
426 * More detail on this code can be found at
427 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
428 * though this reference is out of date. A new paper
429 * is pending.
431 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
433 u32 new_sample = tp->rcv_rtt_est.rtt;
434 long m = sample;
436 if (m == 0)
437 m = 1;
439 if (new_sample != 0) {
440 /* If we sample in larger samples in the non-timestamp
441 * case, we could grossly overestimate the RTT especially
442 * with chatty applications or bulk transfer apps which
443 * are stalled on filesystem I/O.
445 * Also, since we are only going for a minimum in the
446 * non-timestamp case, we do not smooth things out
447 * else with timestamps disabled convergence takes too
448 * long.
450 if (!win_dep) {
451 m -= (new_sample >> 3);
452 new_sample += m;
453 } else if (m < new_sample)
454 new_sample = m << 3;
455 } else {
456 /* No previous measure. */
457 new_sample = m << 3;
460 if (tp->rcv_rtt_est.rtt != new_sample)
461 tp->rcv_rtt_est.rtt = new_sample;
464 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
466 if (tp->rcv_rtt_est.time == 0)
467 goto new_measure;
468 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
469 return;
470 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
472 new_measure:
473 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
474 tp->rcv_rtt_est.time = tcp_time_stamp;
477 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
478 const struct sk_buff *skb)
480 struct tcp_sock *tp = tcp_sk(sk);
481 if (tp->rx_opt.rcv_tsecr &&
482 (TCP_SKB_CB(skb)->end_seq -
483 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
484 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
488 * This function should be called every time data is copied to user space.
489 * It calculates the appropriate TCP receive buffer space.
491 void tcp_rcv_space_adjust(struct sock *sk)
493 struct tcp_sock *tp = tcp_sk(sk);
494 int time;
495 int space;
497 if (tp->rcvq_space.time == 0)
498 goto new_measure;
500 time = tcp_time_stamp - tp->rcvq_space.time;
501 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
502 return;
504 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
506 space = max(tp->rcvq_space.space, space);
508 if (tp->rcvq_space.space != space) {
509 int rcvmem;
511 tp->rcvq_space.space = space;
513 if (sysctl_tcp_moderate_rcvbuf &&
514 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
515 int new_clamp = space;
517 /* Receive space grows, normalize in order to
518 * take into account packet headers and sk_buff
519 * structure overhead.
521 space /= tp->advmss;
522 if (!space)
523 space = 1;
524 rcvmem = (tp->advmss + MAX_TCP_HEADER +
525 16 + sizeof(struct sk_buff));
526 while (tcp_win_from_space(rcvmem) < tp->advmss)
527 rcvmem += 128;
528 space *= rcvmem;
529 space = min(space, sysctl_tcp_rmem[2]);
530 if (space > sk->sk_rcvbuf) {
531 sk->sk_rcvbuf = space;
533 /* Make the window clamp follow along. */
534 tp->window_clamp = new_clamp;
539 new_measure:
540 tp->rcvq_space.seq = tp->copied_seq;
541 tp->rcvq_space.time = tcp_time_stamp;
544 /* There is something which you must keep in mind when you analyze the
545 * behavior of the tp->ato delayed ack timeout interval. When a
546 * connection starts up, we want to ack as quickly as possible. The
547 * problem is that "good" TCP's do slow start at the beginning of data
548 * transmission. The means that until we send the first few ACK's the
549 * sender will sit on his end and only queue most of his data, because
550 * he can only send snd_cwnd unacked packets at any given time. For
551 * each ACK we send, he increments snd_cwnd and transmits more of his
552 * queue. -DaveM
554 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
556 struct tcp_sock *tp = tcp_sk(sk);
557 struct inet_connection_sock *icsk = inet_csk(sk);
558 u32 now;
560 inet_csk_schedule_ack(sk);
562 tcp_measure_rcv_mss(sk, skb);
564 tcp_rcv_rtt_measure(tp);
566 now = tcp_time_stamp;
568 if (!icsk->icsk_ack.ato) {
569 /* The _first_ data packet received, initialize
570 * delayed ACK engine.
572 tcp_incr_quickack(sk);
573 icsk->icsk_ack.ato = TCP_ATO_MIN;
574 } else {
575 int m = now - icsk->icsk_ack.lrcvtime;
577 if (m <= TCP_ATO_MIN / 2) {
578 /* The fastest case is the first. */
579 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
580 } else if (m < icsk->icsk_ack.ato) {
581 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
582 if (icsk->icsk_ack.ato > icsk->icsk_rto)
583 icsk->icsk_ack.ato = icsk->icsk_rto;
584 } else if (m > icsk->icsk_rto) {
585 /* Too long gap. Apparently sender failed to
586 * restart window, so that we send ACKs quickly.
588 tcp_incr_quickack(sk);
589 sk_mem_reclaim(sk);
592 icsk->icsk_ack.lrcvtime = now;
594 TCP_ECN_check_ce(tp, skb);
596 if (skb->len >= 128)
597 tcp_grow_window(sk, skb);
600 /* Called to compute a smoothed rtt estimate. The data fed to this
601 * routine either comes from timestamps, or from segments that were
602 * known _not_ to have been retransmitted [see Karn/Partridge
603 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
604 * piece by Van Jacobson.
605 * NOTE: the next three routines used to be one big routine.
606 * To save cycles in the RFC 1323 implementation it was better to break
607 * it up into three procedures. -- erics
609 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
611 struct tcp_sock *tp = tcp_sk(sk);
612 long m = mrtt; /* RTT */
614 /* The following amusing code comes from Jacobson's
615 * article in SIGCOMM '88. Note that rtt and mdev
616 * are scaled versions of rtt and mean deviation.
617 * This is designed to be as fast as possible
618 * m stands for "measurement".
620 * On a 1990 paper the rto value is changed to:
621 * RTO = rtt + 4 * mdev
623 * Funny. This algorithm seems to be very broken.
624 * These formulae increase RTO, when it should be decreased, increase
625 * too slowly, when it should be increased quickly, decrease too quickly
626 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
627 * does not matter how to _calculate_ it. Seems, it was trap
628 * that VJ failed to avoid. 8)
630 if (m == 0)
631 m = 1;
632 if (tp->srtt != 0) {
633 m -= (tp->srtt >> 3); /* m is now error in rtt est */
634 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
635 if (m < 0) {
636 m = -m; /* m is now abs(error) */
637 m -= (tp->mdev >> 2); /* similar update on mdev */
638 /* This is similar to one of Eifel findings.
639 * Eifel blocks mdev updates when rtt decreases.
640 * This solution is a bit different: we use finer gain
641 * for mdev in this case (alpha*beta).
642 * Like Eifel it also prevents growth of rto,
643 * but also it limits too fast rto decreases,
644 * happening in pure Eifel.
646 if (m > 0)
647 m >>= 3;
648 } else {
649 m -= (tp->mdev >> 2); /* similar update on mdev */
651 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
652 if (tp->mdev > tp->mdev_max) {
653 tp->mdev_max = tp->mdev;
654 if (tp->mdev_max > tp->rttvar)
655 tp->rttvar = tp->mdev_max;
657 if (after(tp->snd_una, tp->rtt_seq)) {
658 if (tp->mdev_max < tp->rttvar)
659 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
660 tp->rtt_seq = tp->snd_nxt;
661 tp->mdev_max = tcp_rto_min(sk);
663 } else {
664 /* no previous measure. */
665 tp->srtt = m << 3; /* take the measured time to be rtt */
666 tp->mdev = m << 1; /* make sure rto = 3*rtt */
667 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
668 tp->rtt_seq = tp->snd_nxt;
672 /* Calculate rto without backoff. This is the second half of Van Jacobson's
673 * routine referred to above.
675 static inline void tcp_set_rto(struct sock *sk)
677 const struct tcp_sock *tp = tcp_sk(sk);
678 /* Old crap is replaced with new one. 8)
680 * More seriously:
681 * 1. If rtt variance happened to be less 50msec, it is hallucination.
682 * It cannot be less due to utterly erratic ACK generation made
683 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
684 * to do with delayed acks, because at cwnd>2 true delack timeout
685 * is invisible. Actually, Linux-2.4 also generates erratic
686 * ACKs in some circumstances.
688 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
690 /* 2. Fixups made earlier cannot be right.
691 * If we do not estimate RTO correctly without them,
692 * all the algo is pure shit and should be replaced
693 * with correct one. It is exactly, which we pretend to do.
696 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
697 * guarantees that rto is higher.
699 tcp_bound_rto(sk);
702 /* Save metrics learned by this TCP session.
703 This function is called only, when TCP finishes successfully
704 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
706 void tcp_update_metrics(struct sock *sk)
708 struct tcp_sock *tp = tcp_sk(sk);
709 struct dst_entry *dst = __sk_dst_get(sk);
711 if (sysctl_tcp_nometrics_save)
712 return;
714 dst_confirm(dst);
716 if (dst && (dst->flags & DST_HOST)) {
717 const struct inet_connection_sock *icsk = inet_csk(sk);
718 int m;
719 unsigned long rtt;
721 if (icsk->icsk_backoff || !tp->srtt) {
722 /* This session failed to estimate rtt. Why?
723 * Probably, no packets returned in time.
724 * Reset our results.
726 if (!(dst_metric_locked(dst, RTAX_RTT)))
727 dst->metrics[RTAX_RTT - 1] = 0;
728 return;
731 rtt = dst_metric_rtt(dst, RTAX_RTT);
732 m = rtt - tp->srtt;
734 /* If newly calculated rtt larger than stored one,
735 * store new one. Otherwise, use EWMA. Remember,
736 * rtt overestimation is always better than underestimation.
738 if (!(dst_metric_locked(dst, RTAX_RTT))) {
739 if (m <= 0)
740 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
741 else
742 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
745 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
746 unsigned long var;
747 if (m < 0)
748 m = -m;
750 /* Scale deviation to rttvar fixed point */
751 m >>= 1;
752 if (m < tp->mdev)
753 m = tp->mdev;
755 var = dst_metric_rtt(dst, RTAX_RTTVAR);
756 if (m >= var)
757 var = m;
758 else
759 var -= (var - m) >> 2;
761 set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
764 if (tcp_in_initial_slowstart(tp)) {
765 /* Slow start still did not finish. */
766 if (dst_metric(dst, RTAX_SSTHRESH) &&
767 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
768 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
769 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
770 if (!dst_metric_locked(dst, RTAX_CWND) &&
771 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
772 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
773 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
774 icsk->icsk_ca_state == TCP_CA_Open) {
775 /* Cong. avoidance phase, cwnd is reliable. */
776 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
777 dst->metrics[RTAX_SSTHRESH-1] =
778 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
779 if (!dst_metric_locked(dst, RTAX_CWND))
780 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
781 } else {
782 /* Else slow start did not finish, cwnd is non-sense,
783 ssthresh may be also invalid.
785 if (!dst_metric_locked(dst, RTAX_CWND))
786 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
787 if (dst_metric(dst, RTAX_SSTHRESH) &&
788 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
789 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
790 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
793 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
794 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
795 tp->reordering != sysctl_tcp_reordering)
796 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
801 /* Numbers are taken from RFC3390.
803 * John Heffner states:
805 * The RFC specifies a window of no more than 4380 bytes
806 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
807 * is a bit misleading because they use a clamp at 4380 bytes
808 * rather than use a multiplier in the relevant range.
810 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
812 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
814 if (!cwnd) {
815 if (tp->mss_cache > 1460)
816 cwnd = 2;
817 else
818 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
820 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
823 /* Set slow start threshold and cwnd not falling to slow start */
824 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
826 struct tcp_sock *tp = tcp_sk(sk);
827 const struct inet_connection_sock *icsk = inet_csk(sk);
829 tp->prior_ssthresh = 0;
830 tp->bytes_acked = 0;
831 if (icsk->icsk_ca_state < TCP_CA_CWR) {
832 tp->undo_marker = 0;
833 if (set_ssthresh)
834 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
835 tp->snd_cwnd = min(tp->snd_cwnd,
836 tcp_packets_in_flight(tp) + 1U);
837 tp->snd_cwnd_cnt = 0;
838 tp->high_seq = tp->snd_nxt;
839 tp->snd_cwnd_stamp = tcp_time_stamp;
840 TCP_ECN_queue_cwr(tp);
842 tcp_set_ca_state(sk, TCP_CA_CWR);
847 * Packet counting of FACK is based on in-order assumptions, therefore TCP
848 * disables it when reordering is detected
850 static void tcp_disable_fack(struct tcp_sock *tp)
852 /* RFC3517 uses different metric in lost marker => reset on change */
853 if (tcp_is_fack(tp))
854 tp->lost_skb_hint = NULL;
855 tp->rx_opt.sack_ok &= ~2;
858 /* Take a notice that peer is sending D-SACKs */
859 static void tcp_dsack_seen(struct tcp_sock *tp)
861 tp->rx_opt.sack_ok |= 4;
864 /* Initialize metrics on socket. */
866 static void tcp_init_metrics(struct sock *sk)
868 struct tcp_sock *tp = tcp_sk(sk);
869 struct dst_entry *dst = __sk_dst_get(sk);
871 if (dst == NULL)
872 goto reset;
874 dst_confirm(dst);
876 if (dst_metric_locked(dst, RTAX_CWND))
877 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
878 if (dst_metric(dst, RTAX_SSTHRESH)) {
879 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
880 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
881 tp->snd_ssthresh = tp->snd_cwnd_clamp;
883 if (dst_metric(dst, RTAX_REORDERING) &&
884 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
885 tcp_disable_fack(tp);
886 tp->reordering = dst_metric(dst, RTAX_REORDERING);
889 if (dst_metric(dst, RTAX_RTT) == 0)
890 goto reset;
892 if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
893 goto reset;
895 /* Initial rtt is determined from SYN,SYN-ACK.
896 * The segment is small and rtt may appear much
897 * less than real one. Use per-dst memory
898 * to make it more realistic.
900 * A bit of theory. RTT is time passed after "normal" sized packet
901 * is sent until it is ACKed. In normal circumstances sending small
902 * packets force peer to delay ACKs and calculation is correct too.
903 * The algorithm is adaptive and, provided we follow specs, it
904 * NEVER underestimate RTT. BUT! If peer tries to make some clever
905 * tricks sort of "quick acks" for time long enough to decrease RTT
906 * to low value, and then abruptly stops to do it and starts to delay
907 * ACKs, wait for troubles.
909 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
910 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
911 tp->rtt_seq = tp->snd_nxt;
913 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
914 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
915 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
917 tcp_set_rto(sk);
918 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
919 goto reset;
921 cwnd:
922 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
923 tp->snd_cwnd_stamp = tcp_time_stamp;
924 return;
926 reset:
927 /* Play conservative. If timestamps are not
928 * supported, TCP will fail to recalculate correct
929 * rtt, if initial rto is too small. FORGET ALL AND RESET!
931 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
932 tp->srtt = 0;
933 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
934 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
936 goto cwnd;
939 static void tcp_update_reordering(struct sock *sk, const int metric,
940 const int ts)
942 struct tcp_sock *tp = tcp_sk(sk);
943 if (metric > tp->reordering) {
944 int mib_idx;
946 tp->reordering = min(TCP_MAX_REORDERING, metric);
948 /* This exciting event is worth to be remembered. 8) */
949 if (ts)
950 mib_idx = LINUX_MIB_TCPTSREORDER;
951 else if (tcp_is_reno(tp))
952 mib_idx = LINUX_MIB_TCPRENOREORDER;
953 else if (tcp_is_fack(tp))
954 mib_idx = LINUX_MIB_TCPFACKREORDER;
955 else
956 mib_idx = LINUX_MIB_TCPSACKREORDER;
958 NET_INC_STATS_BH(sock_net(sk), mib_idx);
959 #if FASTRETRANS_DEBUG > 1
960 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
961 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
962 tp->reordering,
963 tp->fackets_out,
964 tp->sacked_out,
965 tp->undo_marker ? tp->undo_retrans : 0);
966 #endif
967 tcp_disable_fack(tp);
971 /* This must be called before lost_out is incremented */
972 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
974 if ((tp->retransmit_skb_hint == NULL) ||
975 before(TCP_SKB_CB(skb)->seq,
976 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
977 tp->retransmit_skb_hint = skb;
979 if (!tp->lost_out ||
980 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
981 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
984 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
986 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
987 tcp_verify_retransmit_hint(tp, skb);
989 tp->lost_out += tcp_skb_pcount(skb);
990 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
994 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
995 struct sk_buff *skb)
997 tcp_verify_retransmit_hint(tp, skb);
999 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1000 tp->lost_out += tcp_skb_pcount(skb);
1001 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1005 /* This procedure tags the retransmission queue when SACKs arrive.
1007 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1008 * Packets in queue with these bits set are counted in variables
1009 * sacked_out, retrans_out and lost_out, correspondingly.
1011 * Valid combinations are:
1012 * Tag InFlight Description
1013 * 0 1 - orig segment is in flight.
1014 * S 0 - nothing flies, orig reached receiver.
1015 * L 0 - nothing flies, orig lost by net.
1016 * R 2 - both orig and retransmit are in flight.
1017 * L|R 1 - orig is lost, retransmit is in flight.
1018 * S|R 1 - orig reached receiver, retrans is still in flight.
1019 * (L|S|R is logically valid, it could occur when L|R is sacked,
1020 * but it is equivalent to plain S and code short-curcuits it to S.
1021 * L|S is logically invalid, it would mean -1 packet in flight 8))
1023 * These 6 states form finite state machine, controlled by the following events:
1024 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1025 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1026 * 3. Loss detection event of one of three flavors:
1027 * A. Scoreboard estimator decided the packet is lost.
1028 * A'. Reno "three dupacks" marks head of queue lost.
1029 * A''. Its FACK modfication, head until snd.fack is lost.
1030 * B. SACK arrives sacking data transmitted after never retransmitted
1031 * hole was sent out.
1032 * C. SACK arrives sacking SND.NXT at the moment, when the
1033 * segment was retransmitted.
1034 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1036 * It is pleasant to note, that state diagram turns out to be commutative,
1037 * so that we are allowed not to be bothered by order of our actions,
1038 * when multiple events arrive simultaneously. (see the function below).
1040 * Reordering detection.
1041 * --------------------
1042 * Reordering metric is maximal distance, which a packet can be displaced
1043 * in packet stream. With SACKs we can estimate it:
1045 * 1. SACK fills old hole and the corresponding segment was not
1046 * ever retransmitted -> reordering. Alas, we cannot use it
1047 * when segment was retransmitted.
1048 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1049 * for retransmitted and already SACKed segment -> reordering..
1050 * Both of these heuristics are not used in Loss state, when we cannot
1051 * account for retransmits accurately.
1053 * SACK block validation.
1054 * ----------------------
1056 * SACK block range validation checks that the received SACK block fits to
1057 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1058 * Note that SND.UNA is not included to the range though being valid because
1059 * it means that the receiver is rather inconsistent with itself reporting
1060 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1061 * perfectly valid, however, in light of RFC2018 which explicitly states
1062 * that "SACK block MUST reflect the newest segment. Even if the newest
1063 * segment is going to be discarded ...", not that it looks very clever
1064 * in case of head skb. Due to potentional receiver driven attacks, we
1065 * choose to avoid immediate execution of a walk in write queue due to
1066 * reneging and defer head skb's loss recovery to standard loss recovery
1067 * procedure that will eventually trigger (nothing forbids us doing this).
1069 * Implements also blockage to start_seq wrap-around. Problem lies in the
1070 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1071 * there's no guarantee that it will be before snd_nxt (n). The problem
1072 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1073 * wrap (s_w):
1075 * <- outs wnd -> <- wrapzone ->
1076 * u e n u_w e_w s n_w
1077 * | | | | | | |
1078 * |<------------+------+----- TCP seqno space --------------+---------->|
1079 * ...-- <2^31 ->| |<--------...
1080 * ...---- >2^31 ------>| |<--------...
1082 * Current code wouldn't be vulnerable but it's better still to discard such
1083 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1084 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1085 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1086 * equal to the ideal case (infinite seqno space without wrap caused issues).
1088 * With D-SACK the lower bound is extended to cover sequence space below
1089 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1090 * again, D-SACK block must not to go across snd_una (for the same reason as
1091 * for the normal SACK blocks, explained above). But there all simplicity
1092 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1093 * fully below undo_marker they do not affect behavior in anyway and can
1094 * therefore be safely ignored. In rare cases (which are more or less
1095 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1096 * fragmentation and packet reordering past skb's retransmission. To consider
1097 * them correctly, the acceptable range must be extended even more though
1098 * the exact amount is rather hard to quantify. However, tp->max_window can
1099 * be used as an exaggerated estimate.
1101 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1102 u32 start_seq, u32 end_seq)
1104 /* Too far in future, or reversed (interpretation is ambiguous) */
1105 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1106 return 0;
1108 /* Nasty start_seq wrap-around check (see comments above) */
1109 if (!before(start_seq, tp->snd_nxt))
1110 return 0;
1112 /* In outstanding window? ...This is valid exit for D-SACKs too.
1113 * start_seq == snd_una is non-sensical (see comments above)
1115 if (after(start_seq, tp->snd_una))
1116 return 1;
1118 if (!is_dsack || !tp->undo_marker)
1119 return 0;
1121 /* ...Then it's D-SACK, and must reside below snd_una completely */
1122 if (!after(end_seq, tp->snd_una))
1123 return 0;
1125 if (!before(start_seq, tp->undo_marker))
1126 return 1;
1128 /* Too old */
1129 if (!after(end_seq, tp->undo_marker))
1130 return 0;
1132 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1133 * start_seq < undo_marker and end_seq >= undo_marker.
1135 return !before(start_seq, end_seq - tp->max_window);
1138 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1139 * Event "C". Later note: FACK people cheated me again 8), we have to account
1140 * for reordering! Ugly, but should help.
1142 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1143 * less than what is now known to be received by the other end (derived from
1144 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1145 * retransmitted skbs to avoid some costly processing per ACKs.
1147 static void tcp_mark_lost_retrans(struct sock *sk)
1149 const struct inet_connection_sock *icsk = inet_csk(sk);
1150 struct tcp_sock *tp = tcp_sk(sk);
1151 struct sk_buff *skb;
1152 int cnt = 0;
1153 u32 new_low_seq = tp->snd_nxt;
1154 u32 received_upto = tcp_highest_sack_seq(tp);
1156 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1157 !after(received_upto, tp->lost_retrans_low) ||
1158 icsk->icsk_ca_state != TCP_CA_Recovery)
1159 return;
1161 tcp_for_write_queue(skb, sk) {
1162 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1164 if (skb == tcp_send_head(sk))
1165 break;
1166 if (cnt == tp->retrans_out)
1167 break;
1168 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1169 continue;
1171 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1172 continue;
1174 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1175 * constraint here (see above) but figuring out that at
1176 * least tp->reordering SACK blocks reside between ack_seq
1177 * and received_upto is not easy task to do cheaply with
1178 * the available datastructures.
1180 * Whether FACK should check here for tp->reordering segs
1181 * in-between one could argue for either way (it would be
1182 * rather simple to implement as we could count fack_count
1183 * during the walk and do tp->fackets_out - fack_count).
1185 if (after(received_upto, ack_seq)) {
1186 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1187 tp->retrans_out -= tcp_skb_pcount(skb);
1189 tcp_skb_mark_lost_uncond_verify(tp, skb);
1190 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1191 } else {
1192 if (before(ack_seq, new_low_seq))
1193 new_low_seq = ack_seq;
1194 cnt += tcp_skb_pcount(skb);
1198 if (tp->retrans_out)
1199 tp->lost_retrans_low = new_low_seq;
1202 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1203 struct tcp_sack_block_wire *sp, int num_sacks,
1204 u32 prior_snd_una)
1206 struct tcp_sock *tp = tcp_sk(sk);
1207 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1208 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1209 int dup_sack = 0;
1211 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1212 dup_sack = 1;
1213 tcp_dsack_seen(tp);
1214 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1215 } else if (num_sacks > 1) {
1216 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1217 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1219 if (!after(end_seq_0, end_seq_1) &&
1220 !before(start_seq_0, start_seq_1)) {
1221 dup_sack = 1;
1222 tcp_dsack_seen(tp);
1223 NET_INC_STATS_BH(sock_net(sk),
1224 LINUX_MIB_TCPDSACKOFORECV);
1228 /* D-SACK for already forgotten data... Do dumb counting. */
1229 if (dup_sack &&
1230 !after(end_seq_0, prior_snd_una) &&
1231 after(end_seq_0, tp->undo_marker))
1232 tp->undo_retrans--;
1234 return dup_sack;
1237 struct tcp_sacktag_state {
1238 int reord;
1239 int fack_count;
1240 int flag;
1243 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1244 * the incoming SACK may not exactly match but we can find smaller MSS
1245 * aligned portion of it that matches. Therefore we might need to fragment
1246 * which may fail and creates some hassle (caller must handle error case
1247 * returns).
1249 * FIXME: this could be merged to shift decision code
1251 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1252 u32 start_seq, u32 end_seq)
1254 int in_sack, err;
1255 unsigned int pkt_len;
1256 unsigned int mss;
1258 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1259 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1261 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1262 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1263 mss = tcp_skb_mss(skb);
1264 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1266 if (!in_sack) {
1267 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1268 if (pkt_len < mss)
1269 pkt_len = mss;
1270 } else {
1271 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1272 if (pkt_len < mss)
1273 return -EINVAL;
1276 /* Round if necessary so that SACKs cover only full MSSes
1277 * and/or the remaining small portion (if present)
1279 if (pkt_len > mss) {
1280 unsigned int new_len = (pkt_len / mss) * mss;
1281 if (!in_sack && new_len < pkt_len) {
1282 new_len += mss;
1283 if (new_len > skb->len)
1284 return 0;
1286 pkt_len = new_len;
1288 err = tcp_fragment(sk, skb, pkt_len, mss);
1289 if (err < 0)
1290 return err;
1293 return in_sack;
1296 static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1297 struct tcp_sacktag_state *state,
1298 int dup_sack, int pcount)
1300 struct tcp_sock *tp = tcp_sk(sk);
1301 u8 sacked = TCP_SKB_CB(skb)->sacked;
1302 int fack_count = state->fack_count;
1304 /* Account D-SACK for retransmitted packet. */
1305 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1306 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1307 tp->undo_retrans--;
1308 if (sacked & TCPCB_SACKED_ACKED)
1309 state->reord = min(fack_count, state->reord);
1312 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1313 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1314 return sacked;
1316 if (!(sacked & TCPCB_SACKED_ACKED)) {
1317 if (sacked & TCPCB_SACKED_RETRANS) {
1318 /* If the segment is not tagged as lost,
1319 * we do not clear RETRANS, believing
1320 * that retransmission is still in flight.
1322 if (sacked & TCPCB_LOST) {
1323 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1324 tp->lost_out -= pcount;
1325 tp->retrans_out -= pcount;
1327 } else {
1328 if (!(sacked & TCPCB_RETRANS)) {
1329 /* New sack for not retransmitted frame,
1330 * which was in hole. It is reordering.
1332 if (before(TCP_SKB_CB(skb)->seq,
1333 tcp_highest_sack_seq(tp)))
1334 state->reord = min(fack_count,
1335 state->reord);
1337 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1338 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1339 state->flag |= FLAG_ONLY_ORIG_SACKED;
1342 if (sacked & TCPCB_LOST) {
1343 sacked &= ~TCPCB_LOST;
1344 tp->lost_out -= pcount;
1348 sacked |= TCPCB_SACKED_ACKED;
1349 state->flag |= FLAG_DATA_SACKED;
1350 tp->sacked_out += pcount;
1352 fack_count += pcount;
1354 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1355 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1356 before(TCP_SKB_CB(skb)->seq,
1357 TCP_SKB_CB(tp->lost_skb_hint)->seq))
1358 tp->lost_cnt_hint += pcount;
1360 if (fack_count > tp->fackets_out)
1361 tp->fackets_out = fack_count;
1364 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1365 * frames and clear it. undo_retrans is decreased above, L|R frames
1366 * are accounted above as well.
1368 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1369 sacked &= ~TCPCB_SACKED_RETRANS;
1370 tp->retrans_out -= pcount;
1373 return sacked;
1376 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1377 struct tcp_sacktag_state *state,
1378 unsigned int pcount, int shifted, int mss,
1379 int dup_sack)
1381 struct tcp_sock *tp = tcp_sk(sk);
1382 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1384 BUG_ON(!pcount);
1386 /* Tweak before seqno plays */
1387 if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
1388 !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
1389 tp->lost_cnt_hint += pcount;
1391 TCP_SKB_CB(prev)->end_seq += shifted;
1392 TCP_SKB_CB(skb)->seq += shifted;
1394 skb_shinfo(prev)->gso_segs += pcount;
1395 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1396 skb_shinfo(skb)->gso_segs -= pcount;
1398 /* When we're adding to gso_segs == 1, gso_size will be zero,
1399 * in theory this shouldn't be necessary but as long as DSACK
1400 * code can come after this skb later on it's better to keep
1401 * setting gso_size to something.
1403 if (!skb_shinfo(prev)->gso_size) {
1404 skb_shinfo(prev)->gso_size = mss;
1405 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1408 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1409 if (skb_shinfo(skb)->gso_segs <= 1) {
1410 skb_shinfo(skb)->gso_size = 0;
1411 skb_shinfo(skb)->gso_type = 0;
1414 /* We discard results */
1415 tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
1417 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1418 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1420 if (skb->len > 0) {
1421 BUG_ON(!tcp_skb_pcount(skb));
1422 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1423 return 0;
1426 /* Whole SKB was eaten :-) */
1428 if (skb == tp->retransmit_skb_hint)
1429 tp->retransmit_skb_hint = prev;
1430 if (skb == tp->scoreboard_skb_hint)
1431 tp->scoreboard_skb_hint = prev;
1432 if (skb == tp->lost_skb_hint) {
1433 tp->lost_skb_hint = prev;
1434 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1437 TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1438 if (skb == tcp_highest_sack(sk))
1439 tcp_advance_highest_sack(sk, skb);
1441 tcp_unlink_write_queue(skb, sk);
1442 sk_wmem_free_skb(sk, skb);
1444 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1446 return 1;
1449 /* I wish gso_size would have a bit more sane initialization than
1450 * something-or-zero which complicates things
1452 static int tcp_skb_seglen(struct sk_buff *skb)
1454 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1457 /* Shifting pages past head area doesn't work */
1458 static int skb_can_shift(struct sk_buff *skb)
1460 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1463 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1464 * skb.
1466 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1467 struct tcp_sacktag_state *state,
1468 u32 start_seq, u32 end_seq,
1469 int dup_sack)
1471 struct tcp_sock *tp = tcp_sk(sk);
1472 struct sk_buff *prev;
1473 int mss;
1474 int pcount = 0;
1475 int len;
1476 int in_sack;
1478 if (!sk_can_gso(sk))
1479 goto fallback;
1481 /* Normally R but no L won't result in plain S */
1482 if (!dup_sack &&
1483 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1484 goto fallback;
1485 if (!skb_can_shift(skb))
1486 goto fallback;
1487 /* This frame is about to be dropped (was ACKed). */
1488 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1489 goto fallback;
1491 /* Can only happen with delayed DSACK + discard craziness */
1492 if (unlikely(skb == tcp_write_queue_head(sk)))
1493 goto fallback;
1494 prev = tcp_write_queue_prev(sk, skb);
1496 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1497 goto fallback;
1499 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1500 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1502 if (in_sack) {
1503 len = skb->len;
1504 pcount = tcp_skb_pcount(skb);
1505 mss = tcp_skb_seglen(skb);
1507 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1508 * drop this restriction as unnecessary
1510 if (mss != tcp_skb_seglen(prev))
1511 goto fallback;
1512 } else {
1513 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1514 goto noop;
1515 /* CHECKME: This is non-MSS split case only?, this will
1516 * cause skipped skbs due to advancing loop btw, original
1517 * has that feature too
1519 if (tcp_skb_pcount(skb) <= 1)
1520 goto noop;
1522 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1523 if (!in_sack) {
1524 /* TODO: head merge to next could be attempted here
1525 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1526 * though it might not be worth of the additional hassle
1528 * ...we can probably just fallback to what was done
1529 * previously. We could try merging non-SACKed ones
1530 * as well but it probably isn't going to buy off
1531 * because later SACKs might again split them, and
1532 * it would make skb timestamp tracking considerably
1533 * harder problem.
1535 goto fallback;
1538 len = end_seq - TCP_SKB_CB(skb)->seq;
1539 BUG_ON(len < 0);
1540 BUG_ON(len > skb->len);
1542 /* MSS boundaries should be honoured or else pcount will
1543 * severely break even though it makes things bit trickier.
1544 * Optimize common case to avoid most of the divides
1546 mss = tcp_skb_mss(skb);
1548 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1549 * drop this restriction as unnecessary
1551 if (mss != tcp_skb_seglen(prev))
1552 goto fallback;
1554 if (len == mss) {
1555 pcount = 1;
1556 } else if (len < mss) {
1557 goto noop;
1558 } else {
1559 pcount = len / mss;
1560 len = pcount * mss;
1564 if (!skb_shift(prev, skb, len))
1565 goto fallback;
1566 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1567 goto out;
1569 /* Hole filled allows collapsing with the next as well, this is very
1570 * useful when hole on every nth skb pattern happens
1572 if (prev == tcp_write_queue_tail(sk))
1573 goto out;
1574 skb = tcp_write_queue_next(sk, prev);
1576 if (!skb_can_shift(skb) ||
1577 (skb == tcp_send_head(sk)) ||
1578 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1579 (mss != tcp_skb_seglen(skb)))
1580 goto out;
1582 len = skb->len;
1583 if (skb_shift(prev, skb, len)) {
1584 pcount += tcp_skb_pcount(skb);
1585 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1588 out:
1589 state->fack_count += pcount;
1590 return prev;
1592 noop:
1593 return skb;
1595 fallback:
1596 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1597 return NULL;
1600 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1601 struct tcp_sack_block *next_dup,
1602 struct tcp_sacktag_state *state,
1603 u32 start_seq, u32 end_seq,
1604 int dup_sack_in)
1606 struct tcp_sock *tp = tcp_sk(sk);
1607 struct sk_buff *tmp;
1609 tcp_for_write_queue_from(skb, sk) {
1610 int in_sack = 0;
1611 int dup_sack = dup_sack_in;
1613 if (skb == tcp_send_head(sk))
1614 break;
1616 /* queue is in-order => we can short-circuit the walk early */
1617 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1618 break;
1620 if ((next_dup != NULL) &&
1621 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1622 in_sack = tcp_match_skb_to_sack(sk, skb,
1623 next_dup->start_seq,
1624 next_dup->end_seq);
1625 if (in_sack > 0)
1626 dup_sack = 1;
1629 /* skb reference here is a bit tricky to get right, since
1630 * shifting can eat and free both this skb and the next,
1631 * so not even _safe variant of the loop is enough.
1633 if (in_sack <= 0) {
1634 tmp = tcp_shift_skb_data(sk, skb, state,
1635 start_seq, end_seq, dup_sack);
1636 if (tmp != NULL) {
1637 if (tmp != skb) {
1638 skb = tmp;
1639 continue;
1642 in_sack = 0;
1643 } else {
1644 in_sack = tcp_match_skb_to_sack(sk, skb,
1645 start_seq,
1646 end_seq);
1650 if (unlikely(in_sack < 0))
1651 break;
1653 if (in_sack) {
1654 TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1655 state,
1656 dup_sack,
1657 tcp_skb_pcount(skb));
1659 if (!before(TCP_SKB_CB(skb)->seq,
1660 tcp_highest_sack_seq(tp)))
1661 tcp_advance_highest_sack(sk, skb);
1664 state->fack_count += tcp_skb_pcount(skb);
1666 return skb;
1669 /* Avoid all extra work that is being done by sacktag while walking in
1670 * a normal way
1672 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1673 struct tcp_sacktag_state *state,
1674 u32 skip_to_seq)
1676 tcp_for_write_queue_from(skb, sk) {
1677 if (skb == tcp_send_head(sk))
1678 break;
1680 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1681 break;
1683 state->fack_count += tcp_skb_pcount(skb);
1685 return skb;
1688 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1689 struct sock *sk,
1690 struct tcp_sack_block *next_dup,
1691 struct tcp_sacktag_state *state,
1692 u32 skip_to_seq)
1694 if (next_dup == NULL)
1695 return skb;
1697 if (before(next_dup->start_seq, skip_to_seq)) {
1698 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1699 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1700 next_dup->start_seq, next_dup->end_seq,
1704 return skb;
1707 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1709 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1712 static int
1713 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1714 u32 prior_snd_una)
1716 const struct inet_connection_sock *icsk = inet_csk(sk);
1717 struct tcp_sock *tp = tcp_sk(sk);
1718 unsigned char *ptr = (skb_transport_header(ack_skb) +
1719 TCP_SKB_CB(ack_skb)->sacked);
1720 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1721 struct tcp_sack_block sp[TCP_NUM_SACKS];
1722 struct tcp_sack_block *cache;
1723 struct tcp_sacktag_state state;
1724 struct sk_buff *skb;
1725 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1726 int used_sacks;
1727 int found_dup_sack = 0;
1728 int i, j;
1729 int first_sack_index;
1731 state.flag = 0;
1732 state.reord = tp->packets_out;
1734 if (!tp->sacked_out) {
1735 if (WARN_ON(tp->fackets_out))
1736 tp->fackets_out = 0;
1737 tcp_highest_sack_reset(sk);
1740 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1741 num_sacks, prior_snd_una);
1742 if (found_dup_sack)
1743 state.flag |= FLAG_DSACKING_ACK;
1745 /* Eliminate too old ACKs, but take into
1746 * account more or less fresh ones, they can
1747 * contain valid SACK info.
1749 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1750 return 0;
1752 if (!tp->packets_out)
1753 goto out;
1755 used_sacks = 0;
1756 first_sack_index = 0;
1757 for (i = 0; i < num_sacks; i++) {
1758 int dup_sack = !i && found_dup_sack;
1760 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1761 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1763 if (!tcp_is_sackblock_valid(tp, dup_sack,
1764 sp[used_sacks].start_seq,
1765 sp[used_sacks].end_seq)) {
1766 int mib_idx;
1768 if (dup_sack) {
1769 if (!tp->undo_marker)
1770 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1771 else
1772 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1773 } else {
1774 /* Don't count olds caused by ACK reordering */
1775 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1776 !after(sp[used_sacks].end_seq, tp->snd_una))
1777 continue;
1778 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1781 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1782 if (i == 0)
1783 first_sack_index = -1;
1784 continue;
1787 /* Ignore very old stuff early */
1788 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1789 continue;
1791 used_sacks++;
1794 /* order SACK blocks to allow in order walk of the retrans queue */
1795 for (i = used_sacks - 1; i > 0; i--) {
1796 for (j = 0; j < i; j++) {
1797 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1798 swap(sp[j], sp[j + 1]);
1800 /* Track where the first SACK block goes to */
1801 if (j == first_sack_index)
1802 first_sack_index = j + 1;
1807 skb = tcp_write_queue_head(sk);
1808 state.fack_count = 0;
1809 i = 0;
1811 if (!tp->sacked_out) {
1812 /* It's already past, so skip checking against it */
1813 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1814 } else {
1815 cache = tp->recv_sack_cache;
1816 /* Skip empty blocks in at head of the cache */
1817 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1818 !cache->end_seq)
1819 cache++;
1822 while (i < used_sacks) {
1823 u32 start_seq = sp[i].start_seq;
1824 u32 end_seq = sp[i].end_seq;
1825 int dup_sack = (found_dup_sack && (i == first_sack_index));
1826 struct tcp_sack_block *next_dup = NULL;
1828 if (found_dup_sack && ((i + 1) == first_sack_index))
1829 next_dup = &sp[i + 1];
1831 /* Event "B" in the comment above. */
1832 if (after(end_seq, tp->high_seq))
1833 state.flag |= FLAG_DATA_LOST;
1835 /* Skip too early cached blocks */
1836 while (tcp_sack_cache_ok(tp, cache) &&
1837 !before(start_seq, cache->end_seq))
1838 cache++;
1840 /* Can skip some work by looking recv_sack_cache? */
1841 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1842 after(end_seq, cache->start_seq)) {
1844 /* Head todo? */
1845 if (before(start_seq, cache->start_seq)) {
1846 skb = tcp_sacktag_skip(skb, sk, &state,
1847 start_seq);
1848 skb = tcp_sacktag_walk(skb, sk, next_dup,
1849 &state,
1850 start_seq,
1851 cache->start_seq,
1852 dup_sack);
1855 /* Rest of the block already fully processed? */
1856 if (!after(end_seq, cache->end_seq))
1857 goto advance_sp;
1859 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1860 &state,
1861 cache->end_seq);
1863 /* ...tail remains todo... */
1864 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1865 /* ...but better entrypoint exists! */
1866 skb = tcp_highest_sack(sk);
1867 if (skb == NULL)
1868 break;
1869 state.fack_count = tp->fackets_out;
1870 cache++;
1871 goto walk;
1874 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1875 /* Check overlap against next cached too (past this one already) */
1876 cache++;
1877 continue;
1880 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1881 skb = tcp_highest_sack(sk);
1882 if (skb == NULL)
1883 break;
1884 state.fack_count = tp->fackets_out;
1886 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1888 walk:
1889 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1890 start_seq, end_seq, dup_sack);
1892 advance_sp:
1893 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1894 * due to in-order walk
1896 if (after(end_seq, tp->frto_highmark))
1897 state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1899 i++;
1902 /* Clear the head of the cache sack blocks so we can skip it next time */
1903 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1904 tp->recv_sack_cache[i].start_seq = 0;
1905 tp->recv_sack_cache[i].end_seq = 0;
1907 for (j = 0; j < used_sacks; j++)
1908 tp->recv_sack_cache[i++] = sp[j];
1910 tcp_mark_lost_retrans(sk);
1912 tcp_verify_left_out(tp);
1914 if ((state.reord < tp->fackets_out) &&
1915 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1916 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1917 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1919 out:
1921 #if FASTRETRANS_DEBUG > 0
1922 WARN_ON((int)tp->sacked_out < 0);
1923 WARN_ON((int)tp->lost_out < 0);
1924 WARN_ON((int)tp->retrans_out < 0);
1925 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1926 #endif
1927 return state.flag;
1930 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1931 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1933 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1935 u32 holes;
1937 holes = max(tp->lost_out, 1U);
1938 holes = min(holes, tp->packets_out);
1940 if ((tp->sacked_out + holes) > tp->packets_out) {
1941 tp->sacked_out = tp->packets_out - holes;
1942 return 1;
1944 return 0;
1947 /* If we receive more dupacks than we expected counting segments
1948 * in assumption of absent reordering, interpret this as reordering.
1949 * The only another reason could be bug in receiver TCP.
1951 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1953 struct tcp_sock *tp = tcp_sk(sk);
1954 if (tcp_limit_reno_sacked(tp))
1955 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1958 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1960 static void tcp_add_reno_sack(struct sock *sk)
1962 struct tcp_sock *tp = tcp_sk(sk);
1963 tp->sacked_out++;
1964 tcp_check_reno_reordering(sk, 0);
1965 tcp_verify_left_out(tp);
1968 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1970 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1972 struct tcp_sock *tp = tcp_sk(sk);
1974 if (acked > 0) {
1975 /* One ACK acked hole. The rest eat duplicate ACKs. */
1976 if (acked - 1 >= tp->sacked_out)
1977 tp->sacked_out = 0;
1978 else
1979 tp->sacked_out -= acked - 1;
1981 tcp_check_reno_reordering(sk, acked);
1982 tcp_verify_left_out(tp);
1985 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1987 tp->sacked_out = 0;
1990 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1992 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1995 /* F-RTO can only be used if TCP has never retransmitted anything other than
1996 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1998 int tcp_use_frto(struct sock *sk)
2000 const struct tcp_sock *tp = tcp_sk(sk);
2001 const struct inet_connection_sock *icsk = inet_csk(sk);
2002 struct sk_buff *skb;
2004 if (!sysctl_tcp_frto)
2005 return 0;
2007 /* MTU probe and F-RTO won't really play nicely along currently */
2008 if (icsk->icsk_mtup.probe_size)
2009 return 0;
2011 if (tcp_is_sackfrto(tp))
2012 return 1;
2014 /* Avoid expensive walking of rexmit queue if possible */
2015 if (tp->retrans_out > 1)
2016 return 0;
2018 skb = tcp_write_queue_head(sk);
2019 if (tcp_skb_is_last(sk, skb))
2020 return 1;
2021 skb = tcp_write_queue_next(sk, skb); /* Skips head */
2022 tcp_for_write_queue_from(skb, sk) {
2023 if (skb == tcp_send_head(sk))
2024 break;
2025 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2026 return 0;
2027 /* Short-circuit when first non-SACKed skb has been checked */
2028 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2029 break;
2031 return 1;
2034 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2035 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2036 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2037 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2038 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2039 * bits are handled if the Loss state is really to be entered (in
2040 * tcp_enter_frto_loss).
2042 * Do like tcp_enter_loss() would; when RTO expires the second time it
2043 * does:
2044 * "Reduce ssthresh if it has not yet been made inside this window."
2046 void tcp_enter_frto(struct sock *sk)
2048 const struct inet_connection_sock *icsk = inet_csk(sk);
2049 struct tcp_sock *tp = tcp_sk(sk);
2050 struct sk_buff *skb;
2052 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2053 tp->snd_una == tp->high_seq ||
2054 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2055 !icsk->icsk_retransmits)) {
2056 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2057 /* Our state is too optimistic in ssthresh() call because cwnd
2058 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2059 * recovery has not yet completed. Pattern would be this: RTO,
2060 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2061 * up here twice).
2062 * RFC4138 should be more specific on what to do, even though
2063 * RTO is quite unlikely to occur after the first Cumulative ACK
2064 * due to back-off and complexity of triggering events ...
2066 if (tp->frto_counter) {
2067 u32 stored_cwnd;
2068 stored_cwnd = tp->snd_cwnd;
2069 tp->snd_cwnd = 2;
2070 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2071 tp->snd_cwnd = stored_cwnd;
2072 } else {
2073 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2075 /* ... in theory, cong.control module could do "any tricks" in
2076 * ssthresh(), which means that ca_state, lost bits and lost_out
2077 * counter would have to be faked before the call occurs. We
2078 * consider that too expensive, unlikely and hacky, so modules
2079 * using these in ssthresh() must deal these incompatibility
2080 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2082 tcp_ca_event(sk, CA_EVENT_FRTO);
2085 tp->undo_marker = tp->snd_una;
2086 tp->undo_retrans = 0;
2088 skb = tcp_write_queue_head(sk);
2089 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2090 tp->undo_marker = 0;
2091 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2092 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2093 tp->retrans_out -= tcp_skb_pcount(skb);
2095 tcp_verify_left_out(tp);
2097 /* Too bad if TCP was application limited */
2098 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2100 /* Earlier loss recovery underway (see RFC4138; Appendix B).
2101 * The last condition is necessary at least in tp->frto_counter case.
2103 if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2104 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2105 after(tp->high_seq, tp->snd_una)) {
2106 tp->frto_highmark = tp->high_seq;
2107 } else {
2108 tp->frto_highmark = tp->snd_nxt;
2110 tcp_set_ca_state(sk, TCP_CA_Disorder);
2111 tp->high_seq = tp->snd_nxt;
2112 tp->frto_counter = 1;
2115 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2116 * which indicates that we should follow the traditional RTO recovery,
2117 * i.e. mark everything lost and do go-back-N retransmission.
2119 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2121 struct tcp_sock *tp = tcp_sk(sk);
2122 struct sk_buff *skb;
2124 tp->lost_out = 0;
2125 tp->retrans_out = 0;
2126 if (tcp_is_reno(tp))
2127 tcp_reset_reno_sack(tp);
2129 tcp_for_write_queue(skb, sk) {
2130 if (skb == tcp_send_head(sk))
2131 break;
2133 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2135 * Count the retransmission made on RTO correctly (only when
2136 * waiting for the first ACK and did not get it)...
2138 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2139 /* For some reason this R-bit might get cleared? */
2140 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2141 tp->retrans_out += tcp_skb_pcount(skb);
2142 /* ...enter this if branch just for the first segment */
2143 flag |= FLAG_DATA_ACKED;
2144 } else {
2145 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2146 tp->undo_marker = 0;
2147 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2150 /* Marking forward transmissions that were made after RTO lost
2151 * can cause unnecessary retransmissions in some scenarios,
2152 * SACK blocks will mitigate that in some but not in all cases.
2153 * We used to not mark them but it was causing break-ups with
2154 * receivers that do only in-order receival.
2156 * TODO: we could detect presence of such receiver and select
2157 * different behavior per flow.
2159 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2160 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2161 tp->lost_out += tcp_skb_pcount(skb);
2162 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2165 tcp_verify_left_out(tp);
2167 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2168 tp->snd_cwnd_cnt = 0;
2169 tp->snd_cwnd_stamp = tcp_time_stamp;
2170 tp->frto_counter = 0;
2171 tp->bytes_acked = 0;
2173 tp->reordering = min_t(unsigned int, tp->reordering,
2174 sysctl_tcp_reordering);
2175 tcp_set_ca_state(sk, TCP_CA_Loss);
2176 tp->high_seq = tp->snd_nxt;
2177 TCP_ECN_queue_cwr(tp);
2179 tcp_clear_all_retrans_hints(tp);
2182 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2184 tp->retrans_out = 0;
2185 tp->lost_out = 0;
2187 tp->undo_marker = 0;
2188 tp->undo_retrans = 0;
2191 void tcp_clear_retrans(struct tcp_sock *tp)
2193 tcp_clear_retrans_partial(tp);
2195 tp->fackets_out = 0;
2196 tp->sacked_out = 0;
2199 /* Enter Loss state. If "how" is not zero, forget all SACK information
2200 * and reset tags completely, otherwise preserve SACKs. If receiver
2201 * dropped its ofo queue, we will know this due to reneging detection.
2203 void tcp_enter_loss(struct sock *sk, int how)
2205 const struct inet_connection_sock *icsk = inet_csk(sk);
2206 struct tcp_sock *tp = tcp_sk(sk);
2207 struct sk_buff *skb;
2209 /* Reduce ssthresh if it has not yet been made inside this window. */
2210 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2211 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2212 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2213 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2214 tcp_ca_event(sk, CA_EVENT_LOSS);
2216 tp->snd_cwnd = 1;
2217 tp->snd_cwnd_cnt = 0;
2218 tp->snd_cwnd_stamp = tcp_time_stamp;
2220 tp->bytes_acked = 0;
2221 tcp_clear_retrans_partial(tp);
2223 if (tcp_is_reno(tp))
2224 tcp_reset_reno_sack(tp);
2226 if (!how) {
2227 /* Push undo marker, if it was plain RTO and nothing
2228 * was retransmitted. */
2229 tp->undo_marker = tp->snd_una;
2230 } else {
2231 tp->sacked_out = 0;
2232 tp->fackets_out = 0;
2234 tcp_clear_all_retrans_hints(tp);
2236 tcp_for_write_queue(skb, sk) {
2237 if (skb == tcp_send_head(sk))
2238 break;
2240 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2241 tp->undo_marker = 0;
2242 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2243 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2244 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2245 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2246 tp->lost_out += tcp_skb_pcount(skb);
2247 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2250 tcp_verify_left_out(tp);
2252 tp->reordering = min_t(unsigned int, tp->reordering,
2253 sysctl_tcp_reordering);
2254 tcp_set_ca_state(sk, TCP_CA_Loss);
2255 tp->high_seq = tp->snd_nxt;
2256 TCP_ECN_queue_cwr(tp);
2257 /* Abort F-RTO algorithm if one is in progress */
2258 tp->frto_counter = 0;
2261 /* If ACK arrived pointing to a remembered SACK, it means that our
2262 * remembered SACKs do not reflect real state of receiver i.e.
2263 * receiver _host_ is heavily congested (or buggy).
2265 * Do processing similar to RTO timeout.
2267 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2269 if (flag & FLAG_SACK_RENEGING) {
2270 struct inet_connection_sock *icsk = inet_csk(sk);
2271 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2273 tcp_enter_loss(sk, 1);
2274 icsk->icsk_retransmits++;
2275 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2276 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2277 icsk->icsk_rto, TCP_RTO_MAX);
2278 return 1;
2280 return 0;
2283 static inline int tcp_fackets_out(struct tcp_sock *tp)
2285 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2288 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2289 * counter when SACK is enabled (without SACK, sacked_out is used for
2290 * that purpose).
2292 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2293 * segments up to the highest received SACK block so far and holes in
2294 * between them.
2296 * With reordering, holes may still be in flight, so RFC3517 recovery
2297 * uses pure sacked_out (total number of SACKed segments) even though
2298 * it violates the RFC that uses duplicate ACKs, often these are equal
2299 * but when e.g. out-of-window ACKs or packet duplication occurs,
2300 * they differ. Since neither occurs due to loss, TCP should really
2301 * ignore them.
2303 static inline int tcp_dupack_heuristics(struct tcp_sock *tp)
2305 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2308 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2310 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2313 static inline int tcp_head_timedout(struct sock *sk)
2315 struct tcp_sock *tp = tcp_sk(sk);
2317 return tp->packets_out &&
2318 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2321 /* Linux NewReno/SACK/FACK/ECN state machine.
2322 * --------------------------------------
2324 * "Open" Normal state, no dubious events, fast path.
2325 * "Disorder" In all the respects it is "Open",
2326 * but requires a bit more attention. It is entered when
2327 * we see some SACKs or dupacks. It is split of "Open"
2328 * mainly to move some processing from fast path to slow one.
2329 * "CWR" CWND was reduced due to some Congestion Notification event.
2330 * It can be ECN, ICMP source quench, local device congestion.
2331 * "Recovery" CWND was reduced, we are fast-retransmitting.
2332 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2334 * tcp_fastretrans_alert() is entered:
2335 * - each incoming ACK, if state is not "Open"
2336 * - when arrived ACK is unusual, namely:
2337 * * SACK
2338 * * Duplicate ACK.
2339 * * ECN ECE.
2341 * Counting packets in flight is pretty simple.
2343 * in_flight = packets_out - left_out + retrans_out
2345 * packets_out is SND.NXT-SND.UNA counted in packets.
2347 * retrans_out is number of retransmitted segments.
2349 * left_out is number of segments left network, but not ACKed yet.
2351 * left_out = sacked_out + lost_out
2353 * sacked_out: Packets, which arrived to receiver out of order
2354 * and hence not ACKed. With SACKs this number is simply
2355 * amount of SACKed data. Even without SACKs
2356 * it is easy to give pretty reliable estimate of this number,
2357 * counting duplicate ACKs.
2359 * lost_out: Packets lost by network. TCP has no explicit
2360 * "loss notification" feedback from network (for now).
2361 * It means that this number can be only _guessed_.
2362 * Actually, it is the heuristics to predict lossage that
2363 * distinguishes different algorithms.
2365 * F.e. after RTO, when all the queue is considered as lost,
2366 * lost_out = packets_out and in_flight = retrans_out.
2368 * Essentially, we have now two algorithms counting
2369 * lost packets.
2371 * FACK: It is the simplest heuristics. As soon as we decided
2372 * that something is lost, we decide that _all_ not SACKed
2373 * packets until the most forward SACK are lost. I.e.
2374 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2375 * It is absolutely correct estimate, if network does not reorder
2376 * packets. And it loses any connection to reality when reordering
2377 * takes place. We use FACK by default until reordering
2378 * is suspected on the path to this destination.
2380 * NewReno: when Recovery is entered, we assume that one segment
2381 * is lost (classic Reno). While we are in Recovery and
2382 * a partial ACK arrives, we assume that one more packet
2383 * is lost (NewReno). This heuristics are the same in NewReno
2384 * and SACK.
2386 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2387 * deflation etc. CWND is real congestion window, never inflated, changes
2388 * only according to classic VJ rules.
2390 * Really tricky (and requiring careful tuning) part of algorithm
2391 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2392 * The first determines the moment _when_ we should reduce CWND and,
2393 * hence, slow down forward transmission. In fact, it determines the moment
2394 * when we decide that hole is caused by loss, rather than by a reorder.
2396 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2397 * holes, caused by lost packets.
2399 * And the most logically complicated part of algorithm is undo
2400 * heuristics. We detect false retransmits due to both too early
2401 * fast retransmit (reordering) and underestimated RTO, analyzing
2402 * timestamps and D-SACKs. When we detect that some segments were
2403 * retransmitted by mistake and CWND reduction was wrong, we undo
2404 * window reduction and abort recovery phase. This logic is hidden
2405 * inside several functions named tcp_try_undo_<something>.
2408 /* This function decides, when we should leave Disordered state
2409 * and enter Recovery phase, reducing congestion window.
2411 * Main question: may we further continue forward transmission
2412 * with the same cwnd?
2414 static int tcp_time_to_recover(struct sock *sk)
2416 struct tcp_sock *tp = tcp_sk(sk);
2417 __u32 packets_out;
2419 /* Do not perform any recovery during F-RTO algorithm */
2420 if (tp->frto_counter)
2421 return 0;
2423 /* Trick#1: The loss is proven. */
2424 if (tp->lost_out)
2425 return 1;
2427 /* Not-A-Trick#2 : Classic rule... */
2428 if (tcp_dupack_heuristics(tp) > tp->reordering)
2429 return 1;
2431 /* Trick#3 : when we use RFC2988 timer restart, fast
2432 * retransmit can be triggered by timeout of queue head.
2434 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2435 return 1;
2437 /* Trick#4: It is still not OK... But will it be useful to delay
2438 * recovery more?
2440 packets_out = tp->packets_out;
2441 if (packets_out <= tp->reordering &&
2442 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2443 !tcp_may_send_now(sk)) {
2444 /* We have nothing to send. This connection is limited
2445 * either by receiver window or by application.
2447 return 1;
2450 return 0;
2453 /* New heuristics: it is possible only after we switched to restart timer
2454 * each time when something is ACKed. Hence, we can detect timed out packets
2455 * during fast retransmit without falling to slow start.
2457 * Usefulness of this as is very questionable, since we should know which of
2458 * the segments is the next to timeout which is relatively expensive to find
2459 * in general case unless we add some data structure just for that. The
2460 * current approach certainly won't find the right one too often and when it
2461 * finally does find _something_ it usually marks large part of the window
2462 * right away (because a retransmission with a larger timestamp blocks the
2463 * loop from advancing). -ij
2465 static void tcp_timeout_skbs(struct sock *sk)
2467 struct tcp_sock *tp = tcp_sk(sk);
2468 struct sk_buff *skb;
2470 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2471 return;
2473 skb = tp->scoreboard_skb_hint;
2474 if (tp->scoreboard_skb_hint == NULL)
2475 skb = tcp_write_queue_head(sk);
2477 tcp_for_write_queue_from(skb, sk) {
2478 if (skb == tcp_send_head(sk))
2479 break;
2480 if (!tcp_skb_timedout(sk, skb))
2481 break;
2483 tcp_skb_mark_lost(tp, skb);
2486 tp->scoreboard_skb_hint = skb;
2488 tcp_verify_left_out(tp);
2491 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2492 * is against sacked "cnt", otherwise it's against facked "cnt"
2494 static void tcp_mark_head_lost(struct sock *sk, int packets)
2496 struct tcp_sock *tp = tcp_sk(sk);
2497 struct sk_buff *skb;
2498 int cnt, oldcnt;
2499 int err;
2500 unsigned int mss;
2502 WARN_ON(packets > tp->packets_out);
2503 if (tp->lost_skb_hint) {
2504 skb = tp->lost_skb_hint;
2505 cnt = tp->lost_cnt_hint;
2506 } else {
2507 skb = tcp_write_queue_head(sk);
2508 cnt = 0;
2511 tcp_for_write_queue_from(skb, sk) {
2512 if (skb == tcp_send_head(sk))
2513 break;
2514 /* TODO: do this better */
2515 /* this is not the most efficient way to do this... */
2516 tp->lost_skb_hint = skb;
2517 tp->lost_cnt_hint = cnt;
2519 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2520 break;
2522 oldcnt = cnt;
2523 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2524 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2525 cnt += tcp_skb_pcount(skb);
2527 if (cnt > packets) {
2528 if (tcp_is_sack(tp) || (oldcnt >= packets))
2529 break;
2531 mss = skb_shinfo(skb)->gso_size;
2532 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2533 if (err < 0)
2534 break;
2535 cnt = packets;
2538 tcp_skb_mark_lost(tp, skb);
2540 tcp_verify_left_out(tp);
2543 /* Account newly detected lost packet(s) */
2545 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2547 struct tcp_sock *tp = tcp_sk(sk);
2549 if (tcp_is_reno(tp)) {
2550 tcp_mark_head_lost(sk, 1);
2551 } else if (tcp_is_fack(tp)) {
2552 int lost = tp->fackets_out - tp->reordering;
2553 if (lost <= 0)
2554 lost = 1;
2555 tcp_mark_head_lost(sk, lost);
2556 } else {
2557 int sacked_upto = tp->sacked_out - tp->reordering;
2558 if (sacked_upto < fast_rexmit)
2559 sacked_upto = fast_rexmit;
2560 tcp_mark_head_lost(sk, sacked_upto);
2563 tcp_timeout_skbs(sk);
2566 /* CWND moderation, preventing bursts due to too big ACKs
2567 * in dubious situations.
2569 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2571 tp->snd_cwnd = min(tp->snd_cwnd,
2572 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2573 tp->snd_cwnd_stamp = tcp_time_stamp;
2576 /* Lower bound on congestion window is slow start threshold
2577 * unless congestion avoidance choice decides to overide it.
2579 static inline u32 tcp_cwnd_min(const struct sock *sk)
2581 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2583 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2586 /* Decrease cwnd each second ack. */
2587 static void tcp_cwnd_down(struct sock *sk, int flag)
2589 struct tcp_sock *tp = tcp_sk(sk);
2590 int decr = tp->snd_cwnd_cnt + 1;
2592 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2593 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2594 tp->snd_cwnd_cnt = decr & 1;
2595 decr >>= 1;
2597 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2598 tp->snd_cwnd -= decr;
2600 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2601 tp->snd_cwnd_stamp = tcp_time_stamp;
2605 /* Nothing was retransmitted or returned timestamp is less
2606 * than timestamp of the first retransmission.
2608 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2610 return !tp->retrans_stamp ||
2611 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2612 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2615 /* Undo procedures. */
2617 #if FASTRETRANS_DEBUG > 1
2618 static void DBGUNDO(struct sock *sk, const char *msg)
2620 struct tcp_sock *tp = tcp_sk(sk);
2621 struct inet_sock *inet = inet_sk(sk);
2623 if (sk->sk_family == AF_INET) {
2624 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2625 msg,
2626 &inet->daddr, ntohs(inet->dport),
2627 tp->snd_cwnd, tcp_left_out(tp),
2628 tp->snd_ssthresh, tp->prior_ssthresh,
2629 tp->packets_out);
2631 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2632 else if (sk->sk_family == AF_INET6) {
2633 struct ipv6_pinfo *np = inet6_sk(sk);
2634 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2635 msg,
2636 &np->daddr, ntohs(inet->dport),
2637 tp->snd_cwnd, tcp_left_out(tp),
2638 tp->snd_ssthresh, tp->prior_ssthresh,
2639 tp->packets_out);
2641 #endif
2643 #else
2644 #define DBGUNDO(x...) do { } while (0)
2645 #endif
2647 static void tcp_undo_cwr(struct sock *sk, const int undo)
2649 struct tcp_sock *tp = tcp_sk(sk);
2651 if (tp->prior_ssthresh) {
2652 const struct inet_connection_sock *icsk = inet_csk(sk);
2654 if (icsk->icsk_ca_ops->undo_cwnd)
2655 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2656 else
2657 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2659 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2660 tp->snd_ssthresh = tp->prior_ssthresh;
2661 TCP_ECN_withdraw_cwr(tp);
2663 } else {
2664 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2666 tcp_moderate_cwnd(tp);
2667 tp->snd_cwnd_stamp = tcp_time_stamp;
2670 static inline int tcp_may_undo(struct tcp_sock *tp)
2672 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2675 /* People celebrate: "We love our President!" */
2676 static int tcp_try_undo_recovery(struct sock *sk)
2678 struct tcp_sock *tp = tcp_sk(sk);
2680 if (tcp_may_undo(tp)) {
2681 int mib_idx;
2683 /* Happy end! We did not retransmit anything
2684 * or our original transmission succeeded.
2686 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2687 tcp_undo_cwr(sk, 1);
2688 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2689 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2690 else
2691 mib_idx = LINUX_MIB_TCPFULLUNDO;
2693 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2694 tp->undo_marker = 0;
2696 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2697 /* Hold old state until something *above* high_seq
2698 * is ACKed. For Reno it is MUST to prevent false
2699 * fast retransmits (RFC2582). SACK TCP is safe. */
2700 tcp_moderate_cwnd(tp);
2701 return 1;
2703 tcp_set_ca_state(sk, TCP_CA_Open);
2704 return 0;
2707 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2708 static void tcp_try_undo_dsack(struct sock *sk)
2710 struct tcp_sock *tp = tcp_sk(sk);
2712 if (tp->undo_marker && !tp->undo_retrans) {
2713 DBGUNDO(sk, "D-SACK");
2714 tcp_undo_cwr(sk, 1);
2715 tp->undo_marker = 0;
2716 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2720 /* We can clear retrans_stamp when there are no retransmissions in the
2721 * window. It would seem that it is trivially available for us in
2722 * tp->retrans_out, however, that kind of assumptions doesn't consider
2723 * what will happen if errors occur when sending retransmission for the
2724 * second time. ...It could the that such segment has only
2725 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2726 * the head skb is enough except for some reneging corner cases that
2727 * are not worth the effort.
2729 * Main reason for all this complexity is the fact that connection dying
2730 * time now depends on the validity of the retrans_stamp, in particular,
2731 * that successive retransmissions of a segment must not advance
2732 * retrans_stamp under any conditions.
2734 static int tcp_any_retrans_done(struct sock *sk)
2736 struct tcp_sock *tp = tcp_sk(sk);
2737 struct sk_buff *skb;
2739 if (tp->retrans_out)
2740 return 1;
2742 skb = tcp_write_queue_head(sk);
2743 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2744 return 1;
2746 return 0;
2749 /* Undo during fast recovery after partial ACK. */
2751 static int tcp_try_undo_partial(struct sock *sk, int acked)
2753 struct tcp_sock *tp = tcp_sk(sk);
2754 /* Partial ACK arrived. Force Hoe's retransmit. */
2755 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2757 if (tcp_may_undo(tp)) {
2758 /* Plain luck! Hole if filled with delayed
2759 * packet, rather than with a retransmit.
2761 if (!tcp_any_retrans_done(sk))
2762 tp->retrans_stamp = 0;
2764 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2766 DBGUNDO(sk, "Hoe");
2767 tcp_undo_cwr(sk, 0);
2768 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2770 /* So... Do not make Hoe's retransmit yet.
2771 * If the first packet was delayed, the rest
2772 * ones are most probably delayed as well.
2774 failed = 0;
2776 return failed;
2779 /* Undo during loss recovery after partial ACK. */
2780 static int tcp_try_undo_loss(struct sock *sk)
2782 struct tcp_sock *tp = tcp_sk(sk);
2784 if (tcp_may_undo(tp)) {
2785 struct sk_buff *skb;
2786 tcp_for_write_queue(skb, sk) {
2787 if (skb == tcp_send_head(sk))
2788 break;
2789 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2792 tcp_clear_all_retrans_hints(tp);
2794 DBGUNDO(sk, "partial loss");
2795 tp->lost_out = 0;
2796 tcp_undo_cwr(sk, 1);
2797 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2798 inet_csk(sk)->icsk_retransmits = 0;
2799 tp->undo_marker = 0;
2800 if (tcp_is_sack(tp))
2801 tcp_set_ca_state(sk, TCP_CA_Open);
2802 return 1;
2804 return 0;
2807 static inline void tcp_complete_cwr(struct sock *sk)
2809 struct tcp_sock *tp = tcp_sk(sk);
2810 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2811 tp->snd_cwnd_stamp = tcp_time_stamp;
2812 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2815 static void tcp_try_keep_open(struct sock *sk)
2817 struct tcp_sock *tp = tcp_sk(sk);
2818 int state = TCP_CA_Open;
2820 if (tcp_left_out(tp) || tcp_any_retrans_done(sk) || tp->undo_marker)
2821 state = TCP_CA_Disorder;
2823 if (inet_csk(sk)->icsk_ca_state != state) {
2824 tcp_set_ca_state(sk, state);
2825 tp->high_seq = tp->snd_nxt;
2829 static void tcp_try_to_open(struct sock *sk, int flag)
2831 struct tcp_sock *tp = tcp_sk(sk);
2833 tcp_verify_left_out(tp);
2835 if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2836 tp->retrans_stamp = 0;
2838 if (flag & FLAG_ECE)
2839 tcp_enter_cwr(sk, 1);
2841 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2842 tcp_try_keep_open(sk);
2843 tcp_moderate_cwnd(tp);
2844 } else {
2845 tcp_cwnd_down(sk, flag);
2849 static void tcp_mtup_probe_failed(struct sock *sk)
2851 struct inet_connection_sock *icsk = inet_csk(sk);
2853 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2854 icsk->icsk_mtup.probe_size = 0;
2857 static void tcp_mtup_probe_success(struct sock *sk)
2859 struct tcp_sock *tp = tcp_sk(sk);
2860 struct inet_connection_sock *icsk = inet_csk(sk);
2862 /* FIXME: breaks with very large cwnd */
2863 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2864 tp->snd_cwnd = tp->snd_cwnd *
2865 tcp_mss_to_mtu(sk, tp->mss_cache) /
2866 icsk->icsk_mtup.probe_size;
2867 tp->snd_cwnd_cnt = 0;
2868 tp->snd_cwnd_stamp = tcp_time_stamp;
2869 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2871 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2872 icsk->icsk_mtup.probe_size = 0;
2873 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2876 /* Do a simple retransmit without using the backoff mechanisms in
2877 * tcp_timer. This is used for path mtu discovery.
2878 * The socket is already locked here.
2880 void tcp_simple_retransmit(struct sock *sk)
2882 const struct inet_connection_sock *icsk = inet_csk(sk);
2883 struct tcp_sock *tp = tcp_sk(sk);
2884 struct sk_buff *skb;
2885 unsigned int mss = tcp_current_mss(sk);
2886 u32 prior_lost = tp->lost_out;
2888 tcp_for_write_queue(skb, sk) {
2889 if (skb == tcp_send_head(sk))
2890 break;
2891 if (tcp_skb_seglen(skb) > mss &&
2892 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2893 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2894 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2895 tp->retrans_out -= tcp_skb_pcount(skb);
2897 tcp_skb_mark_lost_uncond_verify(tp, skb);
2901 tcp_clear_retrans_hints_partial(tp);
2903 if (prior_lost == tp->lost_out)
2904 return;
2906 if (tcp_is_reno(tp))
2907 tcp_limit_reno_sacked(tp);
2909 tcp_verify_left_out(tp);
2911 /* Don't muck with the congestion window here.
2912 * Reason is that we do not increase amount of _data_
2913 * in network, but units changed and effective
2914 * cwnd/ssthresh really reduced now.
2916 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2917 tp->high_seq = tp->snd_nxt;
2918 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2919 tp->prior_ssthresh = 0;
2920 tp->undo_marker = 0;
2921 tcp_set_ca_state(sk, TCP_CA_Loss);
2923 tcp_xmit_retransmit_queue(sk);
2926 /* Process an event, which can update packets-in-flight not trivially.
2927 * Main goal of this function is to calculate new estimate for left_out,
2928 * taking into account both packets sitting in receiver's buffer and
2929 * packets lost by network.
2931 * Besides that it does CWND reduction, when packet loss is detected
2932 * and changes state of machine.
2934 * It does _not_ decide what to send, it is made in function
2935 * tcp_xmit_retransmit_queue().
2937 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2939 struct inet_connection_sock *icsk = inet_csk(sk);
2940 struct tcp_sock *tp = tcp_sk(sk);
2941 int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2942 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2943 (tcp_fackets_out(tp) > tp->reordering));
2944 int fast_rexmit = 0, mib_idx;
2946 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2947 tp->sacked_out = 0;
2948 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2949 tp->fackets_out = 0;
2951 /* Now state machine starts.
2952 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2953 if (flag & FLAG_ECE)
2954 tp->prior_ssthresh = 0;
2956 /* B. In all the states check for reneging SACKs. */
2957 if (tcp_check_sack_reneging(sk, flag))
2958 return;
2960 /* C. Process data loss notification, provided it is valid. */
2961 if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2962 before(tp->snd_una, tp->high_seq) &&
2963 icsk->icsk_ca_state != TCP_CA_Open &&
2964 tp->fackets_out > tp->reordering) {
2965 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2966 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2969 /* D. Check consistency of the current state. */
2970 tcp_verify_left_out(tp);
2972 /* E. Check state exit conditions. State can be terminated
2973 * when high_seq is ACKed. */
2974 if (icsk->icsk_ca_state == TCP_CA_Open) {
2975 WARN_ON(tp->retrans_out != 0);
2976 tp->retrans_stamp = 0;
2977 } else if (!before(tp->snd_una, tp->high_seq)) {
2978 switch (icsk->icsk_ca_state) {
2979 case TCP_CA_Loss:
2980 icsk->icsk_retransmits = 0;
2981 if (tcp_try_undo_recovery(sk))
2982 return;
2983 break;
2985 case TCP_CA_CWR:
2986 /* CWR is to be held something *above* high_seq
2987 * is ACKed for CWR bit to reach receiver. */
2988 if (tp->snd_una != tp->high_seq) {
2989 tcp_complete_cwr(sk);
2990 tcp_set_ca_state(sk, TCP_CA_Open);
2992 break;
2994 case TCP_CA_Disorder:
2995 tcp_try_undo_dsack(sk);
2996 if (!tp->undo_marker ||
2997 /* For SACK case do not Open to allow to undo
2998 * catching for all duplicate ACKs. */
2999 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
3000 tp->undo_marker = 0;
3001 tcp_set_ca_state(sk, TCP_CA_Open);
3003 break;
3005 case TCP_CA_Recovery:
3006 if (tcp_is_reno(tp))
3007 tcp_reset_reno_sack(tp);
3008 if (tcp_try_undo_recovery(sk))
3009 return;
3010 tcp_complete_cwr(sk);
3011 break;
3015 /* F. Process state. */
3016 switch (icsk->icsk_ca_state) {
3017 case TCP_CA_Recovery:
3018 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3019 if (tcp_is_reno(tp) && is_dupack)
3020 tcp_add_reno_sack(sk);
3021 } else
3022 do_lost = tcp_try_undo_partial(sk, pkts_acked);
3023 break;
3024 case TCP_CA_Loss:
3025 if (flag & FLAG_DATA_ACKED)
3026 icsk->icsk_retransmits = 0;
3027 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3028 tcp_reset_reno_sack(tp);
3029 if (!tcp_try_undo_loss(sk)) {
3030 tcp_moderate_cwnd(tp);
3031 tcp_xmit_retransmit_queue(sk);
3032 return;
3034 if (icsk->icsk_ca_state != TCP_CA_Open)
3035 return;
3036 /* Loss is undone; fall through to processing in Open state. */
3037 default:
3038 if (tcp_is_reno(tp)) {
3039 if (flag & FLAG_SND_UNA_ADVANCED)
3040 tcp_reset_reno_sack(tp);
3041 if (is_dupack)
3042 tcp_add_reno_sack(sk);
3045 if (icsk->icsk_ca_state == TCP_CA_Disorder)
3046 tcp_try_undo_dsack(sk);
3048 if (!tcp_time_to_recover(sk)) {
3049 tcp_try_to_open(sk, flag);
3050 return;
3053 /* MTU probe failure: don't reduce cwnd */
3054 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3055 icsk->icsk_mtup.probe_size &&
3056 tp->snd_una == tp->mtu_probe.probe_seq_start) {
3057 tcp_mtup_probe_failed(sk);
3058 /* Restores the reduction we did in tcp_mtup_probe() */
3059 tp->snd_cwnd++;
3060 tcp_simple_retransmit(sk);
3061 return;
3064 /* Otherwise enter Recovery state */
3066 if (tcp_is_reno(tp))
3067 mib_idx = LINUX_MIB_TCPRENORECOVERY;
3068 else
3069 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3071 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3073 tp->high_seq = tp->snd_nxt;
3074 tp->prior_ssthresh = 0;
3075 tp->undo_marker = tp->snd_una;
3076 tp->undo_retrans = tp->retrans_out;
3078 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3079 if (!(flag & FLAG_ECE))
3080 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3081 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3082 TCP_ECN_queue_cwr(tp);
3085 tp->bytes_acked = 0;
3086 tp->snd_cwnd_cnt = 0;
3087 tcp_set_ca_state(sk, TCP_CA_Recovery);
3088 fast_rexmit = 1;
3091 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3092 tcp_update_scoreboard(sk, fast_rexmit);
3093 tcp_cwnd_down(sk, flag);
3094 tcp_xmit_retransmit_queue(sk);
3097 static void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3099 tcp_rtt_estimator(sk, seq_rtt);
3100 tcp_set_rto(sk);
3101 inet_csk(sk)->icsk_backoff = 0;
3104 /* Read draft-ietf-tcplw-high-performance before mucking
3105 * with this code. (Supersedes RFC1323)
3107 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3109 /* RTTM Rule: A TSecr value received in a segment is used to
3110 * update the averaged RTT measurement only if the segment
3111 * acknowledges some new data, i.e., only if it advances the
3112 * left edge of the send window.
3114 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3115 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3117 * Changed: reset backoff as soon as we see the first valid sample.
3118 * If we do not, we get strongly overestimated rto. With timestamps
3119 * samples are accepted even from very old segments: f.e., when rtt=1
3120 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3121 * answer arrives rto becomes 120 seconds! If at least one of segments
3122 * in window is lost... Voila. --ANK (010210)
3124 struct tcp_sock *tp = tcp_sk(sk);
3126 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3129 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3131 /* We don't have a timestamp. Can only use
3132 * packets that are not retransmitted to determine
3133 * rtt estimates. Also, we must not reset the
3134 * backoff for rto until we get a non-retransmitted
3135 * packet. This allows us to deal with a situation
3136 * where the network delay has increased suddenly.
3137 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3140 if (flag & FLAG_RETRANS_DATA_ACKED)
3141 return;
3143 tcp_valid_rtt_meas(sk, seq_rtt);
3146 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3147 const s32 seq_rtt)
3149 const struct tcp_sock *tp = tcp_sk(sk);
3150 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3151 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3152 tcp_ack_saw_tstamp(sk, flag);
3153 else if (seq_rtt >= 0)
3154 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3157 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3159 const struct inet_connection_sock *icsk = inet_csk(sk);
3160 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3161 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3164 /* Restart timer after forward progress on connection.
3165 * RFC2988 recommends to restart timer to now+rto.
3167 static void tcp_rearm_rto(struct sock *sk)
3169 struct tcp_sock *tp = tcp_sk(sk);
3171 if (!tp->packets_out) {
3172 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3173 } else {
3174 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3175 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3179 /* If we get here, the whole TSO packet has not been acked. */
3180 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3182 struct tcp_sock *tp = tcp_sk(sk);
3183 u32 packets_acked;
3185 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3187 packets_acked = tcp_skb_pcount(skb);
3188 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3189 return 0;
3190 packets_acked -= tcp_skb_pcount(skb);
3192 if (packets_acked) {
3193 BUG_ON(tcp_skb_pcount(skb) == 0);
3194 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3197 return packets_acked;
3200 /* Remove acknowledged frames from the retransmission queue. If our packet
3201 * is before the ack sequence we can discard it as it's confirmed to have
3202 * arrived at the other end.
3204 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3205 u32 prior_snd_una)
3207 struct tcp_sock *tp = tcp_sk(sk);
3208 const struct inet_connection_sock *icsk = inet_csk(sk);
3209 struct sk_buff *skb;
3210 u32 now = tcp_time_stamp;
3211 int fully_acked = 1;
3212 int flag = 0;
3213 u32 pkts_acked = 0;
3214 u32 reord = tp->packets_out;
3215 u32 prior_sacked = tp->sacked_out;
3216 s32 seq_rtt = -1;
3217 s32 ca_seq_rtt = -1;
3218 ktime_t last_ackt = net_invalid_timestamp();
3220 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3221 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3222 u32 acked_pcount;
3223 u8 sacked = scb->sacked;
3225 /* Determine how many packets and what bytes were acked, tso and else */
3226 if (after(scb->end_seq, tp->snd_una)) {
3227 if (tcp_skb_pcount(skb) == 1 ||
3228 !after(tp->snd_una, scb->seq))
3229 break;
3231 acked_pcount = tcp_tso_acked(sk, skb);
3232 if (!acked_pcount)
3233 break;
3235 fully_acked = 0;
3236 } else {
3237 acked_pcount = tcp_skb_pcount(skb);
3240 if (sacked & TCPCB_RETRANS) {
3241 if (sacked & TCPCB_SACKED_RETRANS)
3242 tp->retrans_out -= acked_pcount;
3243 flag |= FLAG_RETRANS_DATA_ACKED;
3244 ca_seq_rtt = -1;
3245 seq_rtt = -1;
3246 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3247 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3248 } else {
3249 ca_seq_rtt = now - scb->when;
3250 last_ackt = skb->tstamp;
3251 if (seq_rtt < 0) {
3252 seq_rtt = ca_seq_rtt;
3254 if (!(sacked & TCPCB_SACKED_ACKED))
3255 reord = min(pkts_acked, reord);
3258 if (sacked & TCPCB_SACKED_ACKED)
3259 tp->sacked_out -= acked_pcount;
3260 if (sacked & TCPCB_LOST)
3261 tp->lost_out -= acked_pcount;
3263 tp->packets_out -= acked_pcount;
3264 pkts_acked += acked_pcount;
3266 /* Initial outgoing SYN's get put onto the write_queue
3267 * just like anything else we transmit. It is not
3268 * true data, and if we misinform our callers that
3269 * this ACK acks real data, we will erroneously exit
3270 * connection startup slow start one packet too
3271 * quickly. This is severely frowned upon behavior.
3273 if (!(scb->flags & TCPCB_FLAG_SYN)) {
3274 flag |= FLAG_DATA_ACKED;
3275 } else {
3276 flag |= FLAG_SYN_ACKED;
3277 tp->retrans_stamp = 0;
3280 if (!fully_acked)
3281 break;
3283 tcp_unlink_write_queue(skb, sk);
3284 sk_wmem_free_skb(sk, skb);
3285 tp->scoreboard_skb_hint = NULL;
3286 if (skb == tp->retransmit_skb_hint)
3287 tp->retransmit_skb_hint = NULL;
3288 if (skb == tp->lost_skb_hint)
3289 tp->lost_skb_hint = NULL;
3292 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3293 tp->snd_up = tp->snd_una;
3295 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3296 flag |= FLAG_SACK_RENEGING;
3298 if (flag & FLAG_ACKED) {
3299 const struct tcp_congestion_ops *ca_ops
3300 = inet_csk(sk)->icsk_ca_ops;
3302 if (unlikely(icsk->icsk_mtup.probe_size &&
3303 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3304 tcp_mtup_probe_success(sk);
3307 tcp_ack_update_rtt(sk, flag, seq_rtt);
3308 tcp_rearm_rto(sk);
3310 if (tcp_is_reno(tp)) {
3311 tcp_remove_reno_sacks(sk, pkts_acked);
3312 } else {
3313 int delta;
3315 /* Non-retransmitted hole got filled? That's reordering */
3316 if (reord < prior_fackets)
3317 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3319 delta = tcp_is_fack(tp) ? pkts_acked :
3320 prior_sacked - tp->sacked_out;
3321 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3324 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3326 if (ca_ops->pkts_acked) {
3327 s32 rtt_us = -1;
3329 /* Is the ACK triggering packet unambiguous? */
3330 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3331 /* High resolution needed and available? */
3332 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3333 !ktime_equal(last_ackt,
3334 net_invalid_timestamp()))
3335 rtt_us = ktime_us_delta(ktime_get_real(),
3336 last_ackt);
3337 else if (ca_seq_rtt > 0)
3338 rtt_us = jiffies_to_usecs(ca_seq_rtt);
3341 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3345 #if FASTRETRANS_DEBUG > 0
3346 WARN_ON((int)tp->sacked_out < 0);
3347 WARN_ON((int)tp->lost_out < 0);
3348 WARN_ON((int)tp->retrans_out < 0);
3349 if (!tp->packets_out && tcp_is_sack(tp)) {
3350 icsk = inet_csk(sk);
3351 if (tp->lost_out) {
3352 printk(KERN_DEBUG "Leak l=%u %d\n",
3353 tp->lost_out, icsk->icsk_ca_state);
3354 tp->lost_out = 0;
3356 if (tp->sacked_out) {
3357 printk(KERN_DEBUG "Leak s=%u %d\n",
3358 tp->sacked_out, icsk->icsk_ca_state);
3359 tp->sacked_out = 0;
3361 if (tp->retrans_out) {
3362 printk(KERN_DEBUG "Leak r=%u %d\n",
3363 tp->retrans_out, icsk->icsk_ca_state);
3364 tp->retrans_out = 0;
3367 #endif
3368 return flag;
3371 static void tcp_ack_probe(struct sock *sk)
3373 const struct tcp_sock *tp = tcp_sk(sk);
3374 struct inet_connection_sock *icsk = inet_csk(sk);
3376 /* Was it a usable window open? */
3378 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3379 icsk->icsk_backoff = 0;
3380 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3381 /* Socket must be waked up by subsequent tcp_data_snd_check().
3382 * This function is not for random using!
3384 } else {
3385 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3386 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3387 TCP_RTO_MAX);
3391 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3393 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3394 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3397 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3399 const struct tcp_sock *tp = tcp_sk(sk);
3400 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3401 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3404 /* Check that window update is acceptable.
3405 * The function assumes that snd_una<=ack<=snd_next.
3407 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3408 const u32 ack, const u32 ack_seq,
3409 const u32 nwin)
3411 return (after(ack, tp->snd_una) ||
3412 after(ack_seq, tp->snd_wl1) ||
3413 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3416 /* Update our send window.
3418 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3419 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3421 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3422 u32 ack_seq)
3424 struct tcp_sock *tp = tcp_sk(sk);
3425 int flag = 0;
3426 u32 nwin = ntohs(tcp_hdr(skb)->window);
3428 if (likely(!tcp_hdr(skb)->syn))
3429 nwin <<= tp->rx_opt.snd_wscale;
3431 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3432 flag |= FLAG_WIN_UPDATE;
3433 tcp_update_wl(tp, ack_seq);
3435 if (tp->snd_wnd != nwin) {
3436 tp->snd_wnd = nwin;
3438 /* Note, it is the only place, where
3439 * fast path is recovered for sending TCP.
3441 tp->pred_flags = 0;
3442 tcp_fast_path_check(sk);
3444 if (nwin > tp->max_window) {
3445 tp->max_window = nwin;
3446 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3451 tp->snd_una = ack;
3453 return flag;
3456 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3457 * continue in congestion avoidance.
3459 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3461 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3462 tp->snd_cwnd_cnt = 0;
3463 tp->bytes_acked = 0;
3464 TCP_ECN_queue_cwr(tp);
3465 tcp_moderate_cwnd(tp);
3468 /* A conservative spurious RTO response algorithm: reduce cwnd using
3469 * rate halving and continue in congestion avoidance.
3471 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3473 tcp_enter_cwr(sk, 0);
3476 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3478 if (flag & FLAG_ECE)
3479 tcp_ratehalving_spur_to_response(sk);
3480 else
3481 tcp_undo_cwr(sk, 1);
3484 /* F-RTO spurious RTO detection algorithm (RFC4138)
3486 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3487 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3488 * window (but not to or beyond highest sequence sent before RTO):
3489 * On First ACK, send two new segments out.
3490 * On Second ACK, RTO was likely spurious. Do spurious response (response
3491 * algorithm is not part of the F-RTO detection algorithm
3492 * given in RFC4138 but can be selected separately).
3493 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3494 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3495 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3496 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3498 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3499 * original window even after we transmit two new data segments.
3501 * SACK version:
3502 * on first step, wait until first cumulative ACK arrives, then move to
3503 * the second step. In second step, the next ACK decides.
3505 * F-RTO is implemented (mainly) in four functions:
3506 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3507 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3508 * called when tcp_use_frto() showed green light
3509 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3510 * - tcp_enter_frto_loss() is called if there is not enough evidence
3511 * to prove that the RTO is indeed spurious. It transfers the control
3512 * from F-RTO to the conventional RTO recovery
3514 static int tcp_process_frto(struct sock *sk, int flag)
3516 struct tcp_sock *tp = tcp_sk(sk);
3518 tcp_verify_left_out(tp);
3520 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3521 if (flag & FLAG_DATA_ACKED)
3522 inet_csk(sk)->icsk_retransmits = 0;
3524 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3525 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3526 tp->undo_marker = 0;
3528 if (!before(tp->snd_una, tp->frto_highmark)) {
3529 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3530 return 1;
3533 if (!tcp_is_sackfrto(tp)) {
3534 /* RFC4138 shortcoming in step 2; should also have case c):
3535 * ACK isn't duplicate nor advances window, e.g., opposite dir
3536 * data, winupdate
3538 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3539 return 1;
3541 if (!(flag & FLAG_DATA_ACKED)) {
3542 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3543 flag);
3544 return 1;
3546 } else {
3547 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3548 /* Prevent sending of new data. */
3549 tp->snd_cwnd = min(tp->snd_cwnd,
3550 tcp_packets_in_flight(tp));
3551 return 1;
3554 if ((tp->frto_counter >= 2) &&
3555 (!(flag & FLAG_FORWARD_PROGRESS) ||
3556 ((flag & FLAG_DATA_SACKED) &&
3557 !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3558 /* RFC4138 shortcoming (see comment above) */
3559 if (!(flag & FLAG_FORWARD_PROGRESS) &&
3560 (flag & FLAG_NOT_DUP))
3561 return 1;
3563 tcp_enter_frto_loss(sk, 3, flag);
3564 return 1;
3568 if (tp->frto_counter == 1) {
3569 /* tcp_may_send_now needs to see updated state */
3570 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3571 tp->frto_counter = 2;
3573 if (!tcp_may_send_now(sk))
3574 tcp_enter_frto_loss(sk, 2, flag);
3576 return 1;
3577 } else {
3578 switch (sysctl_tcp_frto_response) {
3579 case 2:
3580 tcp_undo_spur_to_response(sk, flag);
3581 break;
3582 case 1:
3583 tcp_conservative_spur_to_response(tp);
3584 break;
3585 default:
3586 tcp_ratehalving_spur_to_response(sk);
3587 break;
3589 tp->frto_counter = 0;
3590 tp->undo_marker = 0;
3591 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3593 return 0;
3596 /* This routine deals with incoming acks, but not outgoing ones. */
3597 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3599 struct inet_connection_sock *icsk = inet_csk(sk);
3600 struct tcp_sock *tp = tcp_sk(sk);
3601 u32 prior_snd_una = tp->snd_una;
3602 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3603 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3604 u32 prior_in_flight;
3605 u32 prior_fackets;
3606 int prior_packets;
3607 int frto_cwnd = 0;
3609 /* If the ack is older than previous acks
3610 * then we can probably ignore it.
3612 if (before(ack, prior_snd_una))
3613 goto old_ack;
3615 /* If the ack includes data we haven't sent yet, discard
3616 * this segment (RFC793 Section 3.9).
3618 if (after(ack, tp->snd_nxt))
3619 goto invalid_ack;
3621 if (after(ack, prior_snd_una))
3622 flag |= FLAG_SND_UNA_ADVANCED;
3624 if (sysctl_tcp_abc) {
3625 if (icsk->icsk_ca_state < TCP_CA_CWR)
3626 tp->bytes_acked += ack - prior_snd_una;
3627 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3628 /* we assume just one segment left network */
3629 tp->bytes_acked += min(ack - prior_snd_una,
3630 tp->mss_cache);
3633 prior_fackets = tp->fackets_out;
3634 prior_in_flight = tcp_packets_in_flight(tp);
3636 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3637 /* Window is constant, pure forward advance.
3638 * No more checks are required.
3639 * Note, we use the fact that SND.UNA>=SND.WL2.
3641 tcp_update_wl(tp, ack_seq);
3642 tp->snd_una = ack;
3643 flag |= FLAG_WIN_UPDATE;
3645 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3647 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3648 } else {
3649 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3650 flag |= FLAG_DATA;
3651 else
3652 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3654 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3656 if (TCP_SKB_CB(skb)->sacked)
3657 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3659 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3660 flag |= FLAG_ECE;
3662 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3665 /* We passed data and got it acked, remove any soft error
3666 * log. Something worked...
3668 sk->sk_err_soft = 0;
3669 icsk->icsk_probes_out = 0;
3670 tp->rcv_tstamp = tcp_time_stamp;
3671 prior_packets = tp->packets_out;
3672 if (!prior_packets)
3673 goto no_queue;
3675 /* See if we can take anything off of the retransmit queue. */
3676 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3678 if (tp->frto_counter)
3679 frto_cwnd = tcp_process_frto(sk, flag);
3680 /* Guarantee sacktag reordering detection against wrap-arounds */
3681 if (before(tp->frto_highmark, tp->snd_una))
3682 tp->frto_highmark = 0;
3684 if (tcp_ack_is_dubious(sk, flag)) {
3685 /* Advance CWND, if state allows this. */
3686 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3687 tcp_may_raise_cwnd(sk, flag))
3688 tcp_cong_avoid(sk, ack, prior_in_flight);
3689 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3690 flag);
3691 } else {
3692 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3693 tcp_cong_avoid(sk, ack, prior_in_flight);
3696 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3697 dst_confirm(sk->sk_dst_cache);
3699 return 1;
3701 no_queue:
3702 /* If this ack opens up a zero window, clear backoff. It was
3703 * being used to time the probes, and is probably far higher than
3704 * it needs to be for normal retransmission.
3706 if (tcp_send_head(sk))
3707 tcp_ack_probe(sk);
3708 return 1;
3710 invalid_ack:
3711 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3712 return -1;
3714 old_ack:
3715 if (TCP_SKB_CB(skb)->sacked) {
3716 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3717 if (icsk->icsk_ca_state == TCP_CA_Open)
3718 tcp_try_keep_open(sk);
3721 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3722 return 0;
3725 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3726 * But, this can also be called on packets in the established flow when
3727 * the fast version below fails.
3729 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3730 u8 **hvpp, int estab)
3732 unsigned char *ptr;
3733 struct tcphdr *th = tcp_hdr(skb);
3734 int length = (th->doff * 4) - sizeof(struct tcphdr);
3736 ptr = (unsigned char *)(th + 1);
3737 opt_rx->saw_tstamp = 0;
3739 while (length > 0) {
3740 int opcode = *ptr++;
3741 int opsize;
3743 switch (opcode) {
3744 case TCPOPT_EOL:
3745 return;
3746 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3747 length--;
3748 continue;
3749 default:
3750 opsize = *ptr++;
3751 if (opsize < 2) /* "silly options" */
3752 return;
3753 if (opsize > length)
3754 return; /* don't parse partial options */
3755 switch (opcode) {
3756 case TCPOPT_MSS:
3757 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3758 u16 in_mss = get_unaligned_be16(ptr);
3759 if (in_mss) {
3760 if (opt_rx->user_mss &&
3761 opt_rx->user_mss < in_mss)
3762 in_mss = opt_rx->user_mss;
3763 opt_rx->mss_clamp = in_mss;
3766 break;
3767 case TCPOPT_WINDOW:
3768 if (opsize == TCPOLEN_WINDOW && th->syn &&
3769 !estab && sysctl_tcp_window_scaling) {
3770 __u8 snd_wscale = *(__u8 *)ptr;
3771 opt_rx->wscale_ok = 1;
3772 if (snd_wscale > 14) {
3773 if (net_ratelimit())
3774 printk(KERN_INFO "tcp_parse_options: Illegal window "
3775 "scaling value %d >14 received.\n",
3776 snd_wscale);
3777 snd_wscale = 14;
3779 opt_rx->snd_wscale = snd_wscale;
3781 break;
3782 case TCPOPT_TIMESTAMP:
3783 if ((opsize == TCPOLEN_TIMESTAMP) &&
3784 ((estab && opt_rx->tstamp_ok) ||
3785 (!estab && sysctl_tcp_timestamps))) {
3786 opt_rx->saw_tstamp = 1;
3787 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3788 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3790 break;
3791 case TCPOPT_SACK_PERM:
3792 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3793 !estab && sysctl_tcp_sack) {
3794 opt_rx->sack_ok = 1;
3795 tcp_sack_reset(opt_rx);
3797 break;
3799 case TCPOPT_SACK:
3800 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3801 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3802 opt_rx->sack_ok) {
3803 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3805 break;
3806 #ifdef CONFIG_TCP_MD5SIG
3807 case TCPOPT_MD5SIG:
3809 * The MD5 Hash has already been
3810 * checked (see tcp_v{4,6}_do_rcv()).
3812 break;
3813 #endif
3814 case TCPOPT_COOKIE:
3815 /* This option is variable length.
3817 switch (opsize) {
3818 case TCPOLEN_COOKIE_BASE:
3819 /* not yet implemented */
3820 break;
3821 case TCPOLEN_COOKIE_PAIR:
3822 /* not yet implemented */
3823 break;
3824 case TCPOLEN_COOKIE_MIN+0:
3825 case TCPOLEN_COOKIE_MIN+2:
3826 case TCPOLEN_COOKIE_MIN+4:
3827 case TCPOLEN_COOKIE_MIN+6:
3828 case TCPOLEN_COOKIE_MAX:
3829 /* 16-bit multiple */
3830 opt_rx->cookie_plus = opsize;
3831 *hvpp = ptr;
3832 default:
3833 /* ignore option */
3834 break;
3836 break;
3839 ptr += opsize-2;
3840 length -= opsize;
3845 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3847 __be32 *ptr = (__be32 *)(th + 1);
3849 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3850 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3851 tp->rx_opt.saw_tstamp = 1;
3852 ++ptr;
3853 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3854 ++ptr;
3855 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3856 return 1;
3858 return 0;
3861 /* Fast parse options. This hopes to only see timestamps.
3862 * If it is wrong it falls back on tcp_parse_options().
3864 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3865 struct tcp_sock *tp, u8 **hvpp)
3867 /* In the spirit of fast parsing, compare doff directly to constant
3868 * values. Because equality is used, short doff can be ignored here.
3870 if (th->doff == (sizeof(*th) / 4)) {
3871 tp->rx_opt.saw_tstamp = 0;
3872 return 0;
3873 } else if (tp->rx_opt.tstamp_ok &&
3874 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3875 if (tcp_parse_aligned_timestamp(tp, th))
3876 return 1;
3878 tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
3879 return 1;
3882 #ifdef CONFIG_TCP_MD5SIG
3884 * Parse MD5 Signature option
3886 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3888 int length = (th->doff << 2) - sizeof (*th);
3889 u8 *ptr = (u8*)(th + 1);
3891 /* If the TCP option is too short, we can short cut */
3892 if (length < TCPOLEN_MD5SIG)
3893 return NULL;
3895 while (length > 0) {
3896 int opcode = *ptr++;
3897 int opsize;
3899 switch(opcode) {
3900 case TCPOPT_EOL:
3901 return NULL;
3902 case TCPOPT_NOP:
3903 length--;
3904 continue;
3905 default:
3906 opsize = *ptr++;
3907 if (opsize < 2 || opsize > length)
3908 return NULL;
3909 if (opcode == TCPOPT_MD5SIG)
3910 return ptr;
3912 ptr += opsize - 2;
3913 length -= opsize;
3915 return NULL;
3917 #endif
3919 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3921 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3922 tp->rx_opt.ts_recent_stamp = get_seconds();
3925 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3927 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3928 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3929 * extra check below makes sure this can only happen
3930 * for pure ACK frames. -DaveM
3932 * Not only, also it occurs for expired timestamps.
3935 if (tcp_paws_check(&tp->rx_opt, 0))
3936 tcp_store_ts_recent(tp);
3940 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3942 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3943 * it can pass through stack. So, the following predicate verifies that
3944 * this segment is not used for anything but congestion avoidance or
3945 * fast retransmit. Moreover, we even are able to eliminate most of such
3946 * second order effects, if we apply some small "replay" window (~RTO)
3947 * to timestamp space.
3949 * All these measures still do not guarantee that we reject wrapped ACKs
3950 * on networks with high bandwidth, when sequence space is recycled fastly,
3951 * but it guarantees that such events will be very rare and do not affect
3952 * connection seriously. This doesn't look nice, but alas, PAWS is really
3953 * buggy extension.
3955 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3956 * states that events when retransmit arrives after original data are rare.
3957 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3958 * the biggest problem on large power networks even with minor reordering.
3959 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3960 * up to bandwidth of 18Gigabit/sec. 8) ]
3963 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3965 struct tcp_sock *tp = tcp_sk(sk);
3966 struct tcphdr *th = tcp_hdr(skb);
3967 u32 seq = TCP_SKB_CB(skb)->seq;
3968 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3970 return (/* 1. Pure ACK with correct sequence number. */
3971 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3973 /* 2. ... and duplicate ACK. */
3974 ack == tp->snd_una &&
3976 /* 3. ... and does not update window. */
3977 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3979 /* 4. ... and sits in replay window. */
3980 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3983 static inline int tcp_paws_discard(const struct sock *sk,
3984 const struct sk_buff *skb)
3986 const struct tcp_sock *tp = tcp_sk(sk);
3988 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3989 !tcp_disordered_ack(sk, skb);
3992 /* Check segment sequence number for validity.
3994 * Segment controls are considered valid, if the segment
3995 * fits to the window after truncation to the window. Acceptability
3996 * of data (and SYN, FIN, of course) is checked separately.
3997 * See tcp_data_queue(), for example.
3999 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4000 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4001 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4002 * (borrowed from freebsd)
4005 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
4007 return !before(end_seq, tp->rcv_wup) &&
4008 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4011 /* When we get a reset we do this. */
4012 static void tcp_reset(struct sock *sk)
4014 /* We want the right error as BSD sees it (and indeed as we do). */
4015 switch (sk->sk_state) {
4016 case TCP_SYN_SENT:
4017 sk->sk_err = ECONNREFUSED;
4018 break;
4019 case TCP_CLOSE_WAIT:
4020 sk->sk_err = EPIPE;
4021 break;
4022 case TCP_CLOSE:
4023 return;
4024 default:
4025 sk->sk_err = ECONNRESET;
4028 if (!sock_flag(sk, SOCK_DEAD))
4029 sk->sk_error_report(sk);
4031 tcp_done(sk);
4035 * Process the FIN bit. This now behaves as it is supposed to work
4036 * and the FIN takes effect when it is validly part of sequence
4037 * space. Not before when we get holes.
4039 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4040 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4041 * TIME-WAIT)
4043 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4044 * close and we go into CLOSING (and later onto TIME-WAIT)
4046 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4048 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
4050 struct tcp_sock *tp = tcp_sk(sk);
4052 inet_csk_schedule_ack(sk);
4054 sk->sk_shutdown |= RCV_SHUTDOWN;
4055 sock_set_flag(sk, SOCK_DONE);
4057 switch (sk->sk_state) {
4058 case TCP_SYN_RECV:
4059 case TCP_ESTABLISHED:
4060 /* Move to CLOSE_WAIT */
4061 tcp_set_state(sk, TCP_CLOSE_WAIT);
4062 inet_csk(sk)->icsk_ack.pingpong = 1;
4063 break;
4065 case TCP_CLOSE_WAIT:
4066 case TCP_CLOSING:
4067 /* Received a retransmission of the FIN, do
4068 * nothing.
4070 break;
4071 case TCP_LAST_ACK:
4072 /* RFC793: Remain in the LAST-ACK state. */
4073 break;
4075 case TCP_FIN_WAIT1:
4076 /* This case occurs when a simultaneous close
4077 * happens, we must ack the received FIN and
4078 * enter the CLOSING state.
4080 tcp_send_ack(sk);
4081 tcp_set_state(sk, TCP_CLOSING);
4082 break;
4083 case TCP_FIN_WAIT2:
4084 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4085 tcp_send_ack(sk);
4086 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4087 break;
4088 default:
4089 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4090 * cases we should never reach this piece of code.
4092 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4093 __func__, sk->sk_state);
4094 break;
4097 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4098 * Probably, we should reset in this case. For now drop them.
4100 __skb_queue_purge(&tp->out_of_order_queue);
4101 if (tcp_is_sack(tp))
4102 tcp_sack_reset(&tp->rx_opt);
4103 sk_mem_reclaim(sk);
4105 if (!sock_flag(sk, SOCK_DEAD)) {
4106 sk->sk_state_change(sk);
4108 /* Do not send POLL_HUP for half duplex close. */
4109 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4110 sk->sk_state == TCP_CLOSE)
4111 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4112 else
4113 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4117 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4118 u32 end_seq)
4120 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4121 if (before(seq, sp->start_seq))
4122 sp->start_seq = seq;
4123 if (after(end_seq, sp->end_seq))
4124 sp->end_seq = end_seq;
4125 return 1;
4127 return 0;
4130 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4132 struct tcp_sock *tp = tcp_sk(sk);
4134 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4135 int mib_idx;
4137 if (before(seq, tp->rcv_nxt))
4138 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4139 else
4140 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4142 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4144 tp->rx_opt.dsack = 1;
4145 tp->duplicate_sack[0].start_seq = seq;
4146 tp->duplicate_sack[0].end_seq = end_seq;
4150 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4152 struct tcp_sock *tp = tcp_sk(sk);
4154 if (!tp->rx_opt.dsack)
4155 tcp_dsack_set(sk, seq, end_seq);
4156 else
4157 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4160 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
4162 struct tcp_sock *tp = tcp_sk(sk);
4164 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4165 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4166 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4167 tcp_enter_quickack_mode(sk);
4169 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4170 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4172 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4173 end_seq = tp->rcv_nxt;
4174 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4178 tcp_send_ack(sk);
4181 /* These routines update the SACK block as out-of-order packets arrive or
4182 * in-order packets close up the sequence space.
4184 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4186 int this_sack;
4187 struct tcp_sack_block *sp = &tp->selective_acks[0];
4188 struct tcp_sack_block *swalk = sp + 1;
4190 /* See if the recent change to the first SACK eats into
4191 * or hits the sequence space of other SACK blocks, if so coalesce.
4193 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4194 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4195 int i;
4197 /* Zap SWALK, by moving every further SACK up by one slot.
4198 * Decrease num_sacks.
4200 tp->rx_opt.num_sacks--;
4201 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4202 sp[i] = sp[i + 1];
4203 continue;
4205 this_sack++, swalk++;
4209 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4211 struct tcp_sock *tp = tcp_sk(sk);
4212 struct tcp_sack_block *sp = &tp->selective_acks[0];
4213 int cur_sacks = tp->rx_opt.num_sacks;
4214 int this_sack;
4216 if (!cur_sacks)
4217 goto new_sack;
4219 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4220 if (tcp_sack_extend(sp, seq, end_seq)) {
4221 /* Rotate this_sack to the first one. */
4222 for (; this_sack > 0; this_sack--, sp--)
4223 swap(*sp, *(sp - 1));
4224 if (cur_sacks > 1)
4225 tcp_sack_maybe_coalesce(tp);
4226 return;
4230 /* Could not find an adjacent existing SACK, build a new one,
4231 * put it at the front, and shift everyone else down. We
4232 * always know there is at least one SACK present already here.
4234 * If the sack array is full, forget about the last one.
4236 if (this_sack >= TCP_NUM_SACKS) {
4237 this_sack--;
4238 tp->rx_opt.num_sacks--;
4239 sp--;
4241 for (; this_sack > 0; this_sack--, sp--)
4242 *sp = *(sp - 1);
4244 new_sack:
4245 /* Build the new head SACK, and we're done. */
4246 sp->start_seq = seq;
4247 sp->end_seq = end_seq;
4248 tp->rx_opt.num_sacks++;
4251 /* RCV.NXT advances, some SACKs should be eaten. */
4253 static void tcp_sack_remove(struct tcp_sock *tp)
4255 struct tcp_sack_block *sp = &tp->selective_acks[0];
4256 int num_sacks = tp->rx_opt.num_sacks;
4257 int this_sack;
4259 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4260 if (skb_queue_empty(&tp->out_of_order_queue)) {
4261 tp->rx_opt.num_sacks = 0;
4262 return;
4265 for (this_sack = 0; this_sack < num_sacks;) {
4266 /* Check if the start of the sack is covered by RCV.NXT. */
4267 if (!before(tp->rcv_nxt, sp->start_seq)) {
4268 int i;
4270 /* RCV.NXT must cover all the block! */
4271 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4273 /* Zap this SACK, by moving forward any other SACKS. */
4274 for (i=this_sack+1; i < num_sacks; i++)
4275 tp->selective_acks[i-1] = tp->selective_acks[i];
4276 num_sacks--;
4277 continue;
4279 this_sack++;
4280 sp++;
4282 tp->rx_opt.num_sacks = num_sacks;
4285 /* This one checks to see if we can put data from the
4286 * out_of_order queue into the receive_queue.
4288 static void tcp_ofo_queue(struct sock *sk)
4290 struct tcp_sock *tp = tcp_sk(sk);
4291 __u32 dsack_high = tp->rcv_nxt;
4292 struct sk_buff *skb;
4294 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4295 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4296 break;
4298 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4299 __u32 dsack = dsack_high;
4300 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4301 dsack_high = TCP_SKB_CB(skb)->end_seq;
4302 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4305 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4306 SOCK_DEBUG(sk, "ofo packet was already received \n");
4307 __skb_unlink(skb, &tp->out_of_order_queue);
4308 __kfree_skb(skb);
4309 continue;
4311 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4312 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4313 TCP_SKB_CB(skb)->end_seq);
4315 __skb_unlink(skb, &tp->out_of_order_queue);
4316 __skb_queue_tail(&sk->sk_receive_queue, skb);
4317 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4318 if (tcp_hdr(skb)->fin)
4319 tcp_fin(skb, sk, tcp_hdr(skb));
4323 static int tcp_prune_ofo_queue(struct sock *sk);
4324 static int tcp_prune_queue(struct sock *sk);
4326 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4328 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4329 !sk_rmem_schedule(sk, size)) {
4331 if (tcp_prune_queue(sk) < 0)
4332 return -1;
4334 if (!sk_rmem_schedule(sk, size)) {
4335 if (!tcp_prune_ofo_queue(sk))
4336 return -1;
4338 if (!sk_rmem_schedule(sk, size))
4339 return -1;
4342 return 0;
4345 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4347 struct tcphdr *th = tcp_hdr(skb);
4348 struct tcp_sock *tp = tcp_sk(sk);
4349 int eaten = -1;
4351 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4352 goto drop;
4354 __skb_pull(skb, th->doff * 4);
4356 TCP_ECN_accept_cwr(tp, skb);
4358 tp->rx_opt.dsack = 0;
4360 /* Queue data for delivery to the user.
4361 * Packets in sequence go to the receive queue.
4362 * Out of sequence packets to the out_of_order_queue.
4364 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4365 if (tcp_receive_window(tp) == 0)
4366 goto out_of_window;
4368 /* Ok. In sequence. In window. */
4369 if (tp->ucopy.task == current &&
4370 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4371 sock_owned_by_user(sk) && !tp->urg_data) {
4372 int chunk = min_t(unsigned int, skb->len,
4373 tp->ucopy.len);
4375 __set_current_state(TASK_RUNNING);
4377 local_bh_enable();
4378 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4379 tp->ucopy.len -= chunk;
4380 tp->copied_seq += chunk;
4381 eaten = (chunk == skb->len && !th->fin);
4382 tcp_rcv_space_adjust(sk);
4384 local_bh_disable();
4387 if (eaten <= 0) {
4388 queue_and_out:
4389 if (eaten < 0 &&
4390 tcp_try_rmem_schedule(sk, skb->truesize))
4391 goto drop;
4393 skb_set_owner_r(skb, sk);
4394 __skb_queue_tail(&sk->sk_receive_queue, skb);
4396 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4397 if (skb->len)
4398 tcp_event_data_recv(sk, skb);
4399 if (th->fin)
4400 tcp_fin(skb, sk, th);
4402 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4403 tcp_ofo_queue(sk);
4405 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4406 * gap in queue is filled.
4408 if (skb_queue_empty(&tp->out_of_order_queue))
4409 inet_csk(sk)->icsk_ack.pingpong = 0;
4412 if (tp->rx_opt.num_sacks)
4413 tcp_sack_remove(tp);
4415 tcp_fast_path_check(sk);
4417 if (eaten > 0)
4418 __kfree_skb(skb);
4419 else if (!sock_flag(sk, SOCK_DEAD))
4420 sk->sk_data_ready(sk, 0);
4421 return;
4424 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4425 /* A retransmit, 2nd most common case. Force an immediate ack. */
4426 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4427 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4429 out_of_window:
4430 tcp_enter_quickack_mode(sk);
4431 inet_csk_schedule_ack(sk);
4432 drop:
4433 __kfree_skb(skb);
4434 return;
4437 /* Out of window. F.e. zero window probe. */
4438 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4439 goto out_of_window;
4441 tcp_enter_quickack_mode(sk);
4443 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4444 /* Partial packet, seq < rcv_next < end_seq */
4445 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4446 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4447 TCP_SKB_CB(skb)->end_seq);
4449 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4451 /* If window is closed, drop tail of packet. But after
4452 * remembering D-SACK for its head made in previous line.
4454 if (!tcp_receive_window(tp))
4455 goto out_of_window;
4456 goto queue_and_out;
4459 TCP_ECN_check_ce(tp, skb);
4461 if (tcp_try_rmem_schedule(sk, skb->truesize))
4462 goto drop;
4464 /* Disable header prediction. */
4465 tp->pred_flags = 0;
4466 inet_csk_schedule_ack(sk);
4468 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4469 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4471 skb_set_owner_r(skb, sk);
4473 if (!skb_peek(&tp->out_of_order_queue)) {
4474 /* Initial out of order segment, build 1 SACK. */
4475 if (tcp_is_sack(tp)) {
4476 tp->rx_opt.num_sacks = 1;
4477 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4478 tp->selective_acks[0].end_seq =
4479 TCP_SKB_CB(skb)->end_seq;
4481 __skb_queue_head(&tp->out_of_order_queue, skb);
4482 } else {
4483 struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
4484 u32 seq = TCP_SKB_CB(skb)->seq;
4485 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4487 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4488 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4490 if (!tp->rx_opt.num_sacks ||
4491 tp->selective_acks[0].end_seq != seq)
4492 goto add_sack;
4494 /* Common case: data arrive in order after hole. */
4495 tp->selective_acks[0].end_seq = end_seq;
4496 return;
4499 /* Find place to insert this segment. */
4500 while (1) {
4501 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4502 break;
4503 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4504 skb1 = NULL;
4505 break;
4507 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4510 /* Do skb overlap to previous one? */
4511 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4512 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4513 /* All the bits are present. Drop. */
4514 __kfree_skb(skb);
4515 tcp_dsack_set(sk, seq, end_seq);
4516 goto add_sack;
4518 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4519 /* Partial overlap. */
4520 tcp_dsack_set(sk, seq,
4521 TCP_SKB_CB(skb1)->end_seq);
4522 } else {
4523 if (skb_queue_is_first(&tp->out_of_order_queue,
4524 skb1))
4525 skb1 = NULL;
4526 else
4527 skb1 = skb_queue_prev(
4528 &tp->out_of_order_queue,
4529 skb1);
4532 if (!skb1)
4533 __skb_queue_head(&tp->out_of_order_queue, skb);
4534 else
4535 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4537 /* And clean segments covered by new one as whole. */
4538 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4539 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4541 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4542 break;
4543 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4544 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4545 end_seq);
4546 break;
4548 __skb_unlink(skb1, &tp->out_of_order_queue);
4549 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4550 TCP_SKB_CB(skb1)->end_seq);
4551 __kfree_skb(skb1);
4554 add_sack:
4555 if (tcp_is_sack(tp))
4556 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4560 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4561 struct sk_buff_head *list)
4563 struct sk_buff *next = NULL;
4565 if (!skb_queue_is_last(list, skb))
4566 next = skb_queue_next(list, skb);
4568 __skb_unlink(skb, list);
4569 __kfree_skb(skb);
4570 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4572 return next;
4575 /* Collapse contiguous sequence of skbs head..tail with
4576 * sequence numbers start..end.
4578 * If tail is NULL, this means until the end of the list.
4580 * Segments with FIN/SYN are not collapsed (only because this
4581 * simplifies code)
4583 static void
4584 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4585 struct sk_buff *head, struct sk_buff *tail,
4586 u32 start, u32 end)
4588 struct sk_buff *skb, *n;
4589 bool end_of_skbs;
4591 /* First, check that queue is collapsible and find
4592 * the point where collapsing can be useful. */
4593 skb = head;
4594 restart:
4595 end_of_skbs = true;
4596 skb_queue_walk_from_safe(list, skb, n) {
4597 if (skb == tail)
4598 break;
4599 /* No new bits? It is possible on ofo queue. */
4600 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4601 skb = tcp_collapse_one(sk, skb, list);
4602 if (!skb)
4603 break;
4604 goto restart;
4607 /* The first skb to collapse is:
4608 * - not SYN/FIN and
4609 * - bloated or contains data before "start" or
4610 * overlaps to the next one.
4612 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4613 (tcp_win_from_space(skb->truesize) > skb->len ||
4614 before(TCP_SKB_CB(skb)->seq, start))) {
4615 end_of_skbs = false;
4616 break;
4619 if (!skb_queue_is_last(list, skb)) {
4620 struct sk_buff *next = skb_queue_next(list, skb);
4621 if (next != tail &&
4622 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4623 end_of_skbs = false;
4624 break;
4628 /* Decided to skip this, advance start seq. */
4629 start = TCP_SKB_CB(skb)->end_seq;
4631 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4632 return;
4634 while (before(start, end)) {
4635 struct sk_buff *nskb;
4636 unsigned int header = skb_headroom(skb);
4637 int copy = SKB_MAX_ORDER(header, 0);
4639 /* Too big header? This can happen with IPv6. */
4640 if (copy < 0)
4641 return;
4642 if (end - start < copy)
4643 copy = end - start;
4644 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4645 if (!nskb)
4646 return;
4648 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4649 skb_set_network_header(nskb, (skb_network_header(skb) -
4650 skb->head));
4651 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4652 skb->head));
4653 skb_reserve(nskb, header);
4654 memcpy(nskb->head, skb->head, header);
4655 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4656 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4657 __skb_queue_before(list, skb, nskb);
4658 skb_set_owner_r(nskb, sk);
4660 /* Copy data, releasing collapsed skbs. */
4661 while (copy > 0) {
4662 int offset = start - TCP_SKB_CB(skb)->seq;
4663 int size = TCP_SKB_CB(skb)->end_seq - start;
4665 BUG_ON(offset < 0);
4666 if (size > 0) {
4667 size = min(copy, size);
4668 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4669 BUG();
4670 TCP_SKB_CB(nskb)->end_seq += size;
4671 copy -= size;
4672 start += size;
4674 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4675 skb = tcp_collapse_one(sk, skb, list);
4676 if (!skb ||
4677 skb == tail ||
4678 tcp_hdr(skb)->syn ||
4679 tcp_hdr(skb)->fin)
4680 return;
4686 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4687 * and tcp_collapse() them until all the queue is collapsed.
4689 static void tcp_collapse_ofo_queue(struct sock *sk)
4691 struct tcp_sock *tp = tcp_sk(sk);
4692 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4693 struct sk_buff *head;
4694 u32 start, end;
4696 if (skb == NULL)
4697 return;
4699 start = TCP_SKB_CB(skb)->seq;
4700 end = TCP_SKB_CB(skb)->end_seq;
4701 head = skb;
4703 for (;;) {
4704 struct sk_buff *next = NULL;
4706 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4707 next = skb_queue_next(&tp->out_of_order_queue, skb);
4708 skb = next;
4710 /* Segment is terminated when we see gap or when
4711 * we are at the end of all the queue. */
4712 if (!skb ||
4713 after(TCP_SKB_CB(skb)->seq, end) ||
4714 before(TCP_SKB_CB(skb)->end_seq, start)) {
4715 tcp_collapse(sk, &tp->out_of_order_queue,
4716 head, skb, start, end);
4717 head = skb;
4718 if (!skb)
4719 break;
4720 /* Start new segment */
4721 start = TCP_SKB_CB(skb)->seq;
4722 end = TCP_SKB_CB(skb)->end_seq;
4723 } else {
4724 if (before(TCP_SKB_CB(skb)->seq, start))
4725 start = TCP_SKB_CB(skb)->seq;
4726 if (after(TCP_SKB_CB(skb)->end_seq, end))
4727 end = TCP_SKB_CB(skb)->end_seq;
4733 * Purge the out-of-order queue.
4734 * Return true if queue was pruned.
4736 static int tcp_prune_ofo_queue(struct sock *sk)
4738 struct tcp_sock *tp = tcp_sk(sk);
4739 int res = 0;
4741 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4742 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4743 __skb_queue_purge(&tp->out_of_order_queue);
4745 /* Reset SACK state. A conforming SACK implementation will
4746 * do the same at a timeout based retransmit. When a connection
4747 * is in a sad state like this, we care only about integrity
4748 * of the connection not performance.
4750 if (tp->rx_opt.sack_ok)
4751 tcp_sack_reset(&tp->rx_opt);
4752 sk_mem_reclaim(sk);
4753 res = 1;
4755 return res;
4758 /* Reduce allocated memory if we can, trying to get
4759 * the socket within its memory limits again.
4761 * Return less than zero if we should start dropping frames
4762 * until the socket owning process reads some of the data
4763 * to stabilize the situation.
4765 static int tcp_prune_queue(struct sock *sk)
4767 struct tcp_sock *tp = tcp_sk(sk);
4769 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4771 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4773 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4774 tcp_clamp_window(sk);
4775 else if (tcp_memory_pressure)
4776 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4778 tcp_collapse_ofo_queue(sk);
4779 if (!skb_queue_empty(&sk->sk_receive_queue))
4780 tcp_collapse(sk, &sk->sk_receive_queue,
4781 skb_peek(&sk->sk_receive_queue),
4782 NULL,
4783 tp->copied_seq, tp->rcv_nxt);
4784 sk_mem_reclaim(sk);
4786 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4787 return 0;
4789 /* Collapsing did not help, destructive actions follow.
4790 * This must not ever occur. */
4792 tcp_prune_ofo_queue(sk);
4794 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4795 return 0;
4797 /* If we are really being abused, tell the caller to silently
4798 * drop receive data on the floor. It will get retransmitted
4799 * and hopefully then we'll have sufficient space.
4801 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4803 /* Massive buffer overcommit. */
4804 tp->pred_flags = 0;
4805 return -1;
4808 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4809 * As additional protections, we do not touch cwnd in retransmission phases,
4810 * and if application hit its sndbuf limit recently.
4812 void tcp_cwnd_application_limited(struct sock *sk)
4814 struct tcp_sock *tp = tcp_sk(sk);
4816 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4817 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4818 /* Limited by application or receiver window. */
4819 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4820 u32 win_used = max(tp->snd_cwnd_used, init_win);
4821 if (win_used < tp->snd_cwnd) {
4822 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4823 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4825 tp->snd_cwnd_used = 0;
4827 tp->snd_cwnd_stamp = tcp_time_stamp;
4830 static int tcp_should_expand_sndbuf(struct sock *sk)
4832 struct tcp_sock *tp = tcp_sk(sk);
4834 /* If the user specified a specific send buffer setting, do
4835 * not modify it.
4837 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4838 return 0;
4840 /* If we are under global TCP memory pressure, do not expand. */
4841 if (tcp_memory_pressure)
4842 return 0;
4844 /* If we are under soft global TCP memory pressure, do not expand. */
4845 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4846 return 0;
4848 /* If we filled the congestion window, do not expand. */
4849 if (tp->packets_out >= tp->snd_cwnd)
4850 return 0;
4852 return 1;
4855 /* When incoming ACK allowed to free some skb from write_queue,
4856 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4857 * on the exit from tcp input handler.
4859 * PROBLEM: sndbuf expansion does not work well with largesend.
4861 static void tcp_new_space(struct sock *sk)
4863 struct tcp_sock *tp = tcp_sk(sk);
4865 if (tcp_should_expand_sndbuf(sk)) {
4866 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4867 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4868 int demanded = max_t(unsigned int, tp->snd_cwnd,
4869 tp->reordering + 1);
4870 sndmem *= 2 * demanded;
4871 if (sndmem > sk->sk_sndbuf)
4872 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4873 tp->snd_cwnd_stamp = tcp_time_stamp;
4876 sk->sk_write_space(sk);
4879 static void tcp_check_space(struct sock *sk)
4881 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4882 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4883 if (sk->sk_socket &&
4884 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4885 tcp_new_space(sk);
4889 static inline void tcp_data_snd_check(struct sock *sk)
4891 tcp_push_pending_frames(sk);
4892 tcp_check_space(sk);
4896 * Check if sending an ack is needed.
4898 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4900 struct tcp_sock *tp = tcp_sk(sk);
4902 /* More than one full frame received... */
4903 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4904 /* ... and right edge of window advances far enough.
4905 * (tcp_recvmsg() will send ACK otherwise). Or...
4907 __tcp_select_window(sk) >= tp->rcv_wnd) ||
4908 /* We ACK each frame or... */
4909 tcp_in_quickack_mode(sk) ||
4910 /* We have out of order data. */
4911 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4912 /* Then ack it now */
4913 tcp_send_ack(sk);
4914 } else {
4915 /* Else, send delayed ack. */
4916 tcp_send_delayed_ack(sk);
4920 static inline void tcp_ack_snd_check(struct sock *sk)
4922 if (!inet_csk_ack_scheduled(sk)) {
4923 /* We sent a data segment already. */
4924 return;
4926 __tcp_ack_snd_check(sk, 1);
4930 * This routine is only called when we have urgent data
4931 * signaled. Its the 'slow' part of tcp_urg. It could be
4932 * moved inline now as tcp_urg is only called from one
4933 * place. We handle URGent data wrong. We have to - as
4934 * BSD still doesn't use the correction from RFC961.
4935 * For 1003.1g we should support a new option TCP_STDURG to permit
4936 * either form (or just set the sysctl tcp_stdurg).
4939 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4941 struct tcp_sock *tp = tcp_sk(sk);
4942 u32 ptr = ntohs(th->urg_ptr);
4944 if (ptr && !sysctl_tcp_stdurg)
4945 ptr--;
4946 ptr += ntohl(th->seq);
4948 /* Ignore urgent data that we've already seen and read. */
4949 if (after(tp->copied_seq, ptr))
4950 return;
4952 /* Do not replay urg ptr.
4954 * NOTE: interesting situation not covered by specs.
4955 * Misbehaving sender may send urg ptr, pointing to segment,
4956 * which we already have in ofo queue. We are not able to fetch
4957 * such data and will stay in TCP_URG_NOTYET until will be eaten
4958 * by recvmsg(). Seems, we are not obliged to handle such wicked
4959 * situations. But it is worth to think about possibility of some
4960 * DoSes using some hypothetical application level deadlock.
4962 if (before(ptr, tp->rcv_nxt))
4963 return;
4965 /* Do we already have a newer (or duplicate) urgent pointer? */
4966 if (tp->urg_data && !after(ptr, tp->urg_seq))
4967 return;
4969 /* Tell the world about our new urgent pointer. */
4970 sk_send_sigurg(sk);
4972 /* We may be adding urgent data when the last byte read was
4973 * urgent. To do this requires some care. We cannot just ignore
4974 * tp->copied_seq since we would read the last urgent byte again
4975 * as data, nor can we alter copied_seq until this data arrives
4976 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4978 * NOTE. Double Dutch. Rendering to plain English: author of comment
4979 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4980 * and expect that both A and B disappear from stream. This is _wrong_.
4981 * Though this happens in BSD with high probability, this is occasional.
4982 * Any application relying on this is buggy. Note also, that fix "works"
4983 * only in this artificial test. Insert some normal data between A and B and we will
4984 * decline of BSD again. Verdict: it is better to remove to trap
4985 * buggy users.
4987 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4988 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4989 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4990 tp->copied_seq++;
4991 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4992 __skb_unlink(skb, &sk->sk_receive_queue);
4993 __kfree_skb(skb);
4997 tp->urg_data = TCP_URG_NOTYET;
4998 tp->urg_seq = ptr;
5000 /* Disable header prediction. */
5001 tp->pred_flags = 0;
5004 /* This is the 'fast' part of urgent handling. */
5005 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
5007 struct tcp_sock *tp = tcp_sk(sk);
5009 /* Check if we get a new urgent pointer - normally not. */
5010 if (th->urg)
5011 tcp_check_urg(sk, th);
5013 /* Do we wait for any urgent data? - normally not... */
5014 if (tp->urg_data == TCP_URG_NOTYET) {
5015 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5016 th->syn;
5018 /* Is the urgent pointer pointing into this packet? */
5019 if (ptr < skb->len) {
5020 u8 tmp;
5021 if (skb_copy_bits(skb, ptr, &tmp, 1))
5022 BUG();
5023 tp->urg_data = TCP_URG_VALID | tmp;
5024 if (!sock_flag(sk, SOCK_DEAD))
5025 sk->sk_data_ready(sk, 0);
5030 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5032 struct tcp_sock *tp = tcp_sk(sk);
5033 int chunk = skb->len - hlen;
5034 int err;
5036 local_bh_enable();
5037 if (skb_csum_unnecessary(skb))
5038 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5039 else
5040 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5041 tp->ucopy.iov);
5043 if (!err) {
5044 tp->ucopy.len -= chunk;
5045 tp->copied_seq += chunk;
5046 tcp_rcv_space_adjust(sk);
5049 local_bh_disable();
5050 return err;
5053 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5054 struct sk_buff *skb)
5056 __sum16 result;
5058 if (sock_owned_by_user(sk)) {
5059 local_bh_enable();
5060 result = __tcp_checksum_complete(skb);
5061 local_bh_disable();
5062 } else {
5063 result = __tcp_checksum_complete(skb);
5065 return result;
5068 static inline int tcp_checksum_complete_user(struct sock *sk,
5069 struct sk_buff *skb)
5071 return !skb_csum_unnecessary(skb) &&
5072 __tcp_checksum_complete_user(sk, skb);
5075 #ifdef CONFIG_NET_DMA
5076 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5077 int hlen)
5079 struct tcp_sock *tp = tcp_sk(sk);
5080 int chunk = skb->len - hlen;
5081 int dma_cookie;
5082 int copied_early = 0;
5084 if (tp->ucopy.wakeup)
5085 return 0;
5087 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5088 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5090 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5092 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5093 skb, hlen,
5094 tp->ucopy.iov, chunk,
5095 tp->ucopy.pinned_list);
5097 if (dma_cookie < 0)
5098 goto out;
5100 tp->ucopy.dma_cookie = dma_cookie;
5101 copied_early = 1;
5103 tp->ucopy.len -= chunk;
5104 tp->copied_seq += chunk;
5105 tcp_rcv_space_adjust(sk);
5107 if ((tp->ucopy.len == 0) ||
5108 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5109 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5110 tp->ucopy.wakeup = 1;
5111 sk->sk_data_ready(sk, 0);
5113 } else if (chunk > 0) {
5114 tp->ucopy.wakeup = 1;
5115 sk->sk_data_ready(sk, 0);
5117 out:
5118 return copied_early;
5120 #endif /* CONFIG_NET_DMA */
5122 /* Does PAWS and seqno based validation of an incoming segment, flags will
5123 * play significant role here.
5125 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5126 struct tcphdr *th, int syn_inerr)
5128 u8 *hash_location;
5129 struct tcp_sock *tp = tcp_sk(sk);
5131 /* RFC1323: H1. Apply PAWS check first. */
5132 if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5133 tp->rx_opt.saw_tstamp &&
5134 tcp_paws_discard(sk, skb)) {
5135 if (!th->rst) {
5136 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5137 tcp_send_dupack(sk, skb);
5138 goto discard;
5140 /* Reset is accepted even if it did not pass PAWS. */
5143 /* Step 1: check sequence number */
5144 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5145 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5146 * (RST) segments are validated by checking their SEQ-fields."
5147 * And page 69: "If an incoming segment is not acceptable,
5148 * an acknowledgment should be sent in reply (unless the RST
5149 * bit is set, if so drop the segment and return)".
5151 if (!th->rst)
5152 tcp_send_dupack(sk, skb);
5153 goto discard;
5156 /* Step 2: check RST bit */
5157 if (th->rst) {
5158 tcp_reset(sk);
5159 goto discard;
5162 /* ts_recent update must be made after we are sure that the packet
5163 * is in window.
5165 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5167 /* step 3: check security and precedence [ignored] */
5169 /* step 4: Check for a SYN in window. */
5170 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5171 if (syn_inerr)
5172 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5173 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5174 tcp_reset(sk);
5175 return -1;
5178 return 1;
5180 discard:
5181 __kfree_skb(skb);
5182 return 0;
5186 * TCP receive function for the ESTABLISHED state.
5188 * It is split into a fast path and a slow path. The fast path is
5189 * disabled when:
5190 * - A zero window was announced from us - zero window probing
5191 * is only handled properly in the slow path.
5192 * - Out of order segments arrived.
5193 * - Urgent data is expected.
5194 * - There is no buffer space left
5195 * - Unexpected TCP flags/window values/header lengths are received
5196 * (detected by checking the TCP header against pred_flags)
5197 * - Data is sent in both directions. Fast path only supports pure senders
5198 * or pure receivers (this means either the sequence number or the ack
5199 * value must stay constant)
5200 * - Unexpected TCP option.
5202 * When these conditions are not satisfied it drops into a standard
5203 * receive procedure patterned after RFC793 to handle all cases.
5204 * The first three cases are guaranteed by proper pred_flags setting,
5205 * the rest is checked inline. Fast processing is turned on in
5206 * tcp_data_queue when everything is OK.
5208 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5209 struct tcphdr *th, unsigned len)
5211 struct tcp_sock *tp = tcp_sk(sk);
5212 int res;
5215 * Header prediction.
5216 * The code loosely follows the one in the famous
5217 * "30 instruction TCP receive" Van Jacobson mail.
5219 * Van's trick is to deposit buffers into socket queue
5220 * on a device interrupt, to call tcp_recv function
5221 * on the receive process context and checksum and copy
5222 * the buffer to user space. smart...
5224 * Our current scheme is not silly either but we take the
5225 * extra cost of the net_bh soft interrupt processing...
5226 * We do checksum and copy also but from device to kernel.
5229 tp->rx_opt.saw_tstamp = 0;
5231 /* pred_flags is 0xS?10 << 16 + snd_wnd
5232 * if header_prediction is to be made
5233 * 'S' will always be tp->tcp_header_len >> 2
5234 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5235 * turn it off (when there are holes in the receive
5236 * space for instance)
5237 * PSH flag is ignored.
5240 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5241 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5242 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5243 int tcp_header_len = tp->tcp_header_len;
5245 /* Timestamp header prediction: tcp_header_len
5246 * is automatically equal to th->doff*4 due to pred_flags
5247 * match.
5250 /* Check timestamp */
5251 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5252 /* No? Slow path! */
5253 if (!tcp_parse_aligned_timestamp(tp, th))
5254 goto slow_path;
5256 /* If PAWS failed, check it more carefully in slow path */
5257 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5258 goto slow_path;
5260 /* DO NOT update ts_recent here, if checksum fails
5261 * and timestamp was corrupted part, it will result
5262 * in a hung connection since we will drop all
5263 * future packets due to the PAWS test.
5267 if (len <= tcp_header_len) {
5268 /* Bulk data transfer: sender */
5269 if (len == tcp_header_len) {
5270 /* Predicted packet is in window by definition.
5271 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5272 * Hence, check seq<=rcv_wup reduces to:
5274 if (tcp_header_len ==
5275 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5276 tp->rcv_nxt == tp->rcv_wup)
5277 tcp_store_ts_recent(tp);
5279 /* We know that such packets are checksummed
5280 * on entry.
5282 tcp_ack(sk, skb, 0);
5283 __kfree_skb(skb);
5284 tcp_data_snd_check(sk);
5285 return 0;
5286 } else { /* Header too small */
5287 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5288 goto discard;
5290 } else {
5291 int eaten = 0;
5292 int copied_early = 0;
5294 if (tp->copied_seq == tp->rcv_nxt &&
5295 len - tcp_header_len <= tp->ucopy.len) {
5296 #ifdef CONFIG_NET_DMA
5297 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5298 copied_early = 1;
5299 eaten = 1;
5301 #endif
5302 if (tp->ucopy.task == current &&
5303 sock_owned_by_user(sk) && !copied_early) {
5304 __set_current_state(TASK_RUNNING);
5306 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5307 eaten = 1;
5309 if (eaten) {
5310 /* Predicted packet is in window by definition.
5311 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5312 * Hence, check seq<=rcv_wup reduces to:
5314 if (tcp_header_len ==
5315 (sizeof(struct tcphdr) +
5316 TCPOLEN_TSTAMP_ALIGNED) &&
5317 tp->rcv_nxt == tp->rcv_wup)
5318 tcp_store_ts_recent(tp);
5320 tcp_rcv_rtt_measure_ts(sk, skb);
5322 __skb_pull(skb, tcp_header_len);
5323 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5324 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5326 if (copied_early)
5327 tcp_cleanup_rbuf(sk, skb->len);
5329 if (!eaten) {
5330 if (tcp_checksum_complete_user(sk, skb))
5331 goto csum_error;
5333 /* Predicted packet is in window by definition.
5334 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5335 * Hence, check seq<=rcv_wup reduces to:
5337 if (tcp_header_len ==
5338 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5339 tp->rcv_nxt == tp->rcv_wup)
5340 tcp_store_ts_recent(tp);
5342 tcp_rcv_rtt_measure_ts(sk, skb);
5344 if ((int)skb->truesize > sk->sk_forward_alloc)
5345 goto step5;
5347 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5349 /* Bulk data transfer: receiver */
5350 __skb_pull(skb, tcp_header_len);
5351 __skb_queue_tail(&sk->sk_receive_queue, skb);
5352 skb_set_owner_r(skb, sk);
5353 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5356 tcp_event_data_recv(sk, skb);
5358 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5359 /* Well, only one small jumplet in fast path... */
5360 tcp_ack(sk, skb, FLAG_DATA);
5361 tcp_data_snd_check(sk);
5362 if (!inet_csk_ack_scheduled(sk))
5363 goto no_ack;
5366 if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5367 __tcp_ack_snd_check(sk, 0);
5368 no_ack:
5369 #ifdef CONFIG_NET_DMA
5370 if (copied_early)
5371 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5372 else
5373 #endif
5374 if (eaten)
5375 __kfree_skb(skb);
5376 else
5377 sk->sk_data_ready(sk, 0);
5378 return 0;
5382 slow_path:
5383 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5384 goto csum_error;
5387 * Standard slow path.
5390 res = tcp_validate_incoming(sk, skb, th, 1);
5391 if (res <= 0)
5392 return -res;
5394 step5:
5395 if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5396 goto discard;
5398 tcp_rcv_rtt_measure_ts(sk, skb);
5400 /* Process urgent data. */
5401 tcp_urg(sk, skb, th);
5403 /* step 7: process the segment text */
5404 tcp_data_queue(sk, skb);
5406 tcp_data_snd_check(sk);
5407 tcp_ack_snd_check(sk);
5408 return 0;
5410 csum_error:
5411 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5413 discard:
5414 __kfree_skb(skb);
5415 return 0;
5418 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5419 struct tcphdr *th, unsigned len)
5421 u8 *hash_location;
5422 struct inet_connection_sock *icsk = inet_csk(sk);
5423 struct tcp_sock *tp = tcp_sk(sk);
5424 struct tcp_cookie_values *cvp = tp->cookie_values;
5425 int saved_clamp = tp->rx_opt.mss_clamp;
5427 tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5429 if (th->ack) {
5430 /* rfc793:
5431 * "If the state is SYN-SENT then
5432 * first check the ACK bit
5433 * If the ACK bit is set
5434 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5435 * a reset (unless the RST bit is set, if so drop
5436 * the segment and return)"
5438 * We do not send data with SYN, so that RFC-correct
5439 * test reduces to:
5441 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5442 goto reset_and_undo;
5444 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5445 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5446 tcp_time_stamp)) {
5447 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5448 goto reset_and_undo;
5451 /* Now ACK is acceptable.
5453 * "If the RST bit is set
5454 * If the ACK was acceptable then signal the user "error:
5455 * connection reset", drop the segment, enter CLOSED state,
5456 * delete TCB, and return."
5459 if (th->rst) {
5460 tcp_reset(sk);
5461 goto discard;
5464 /* rfc793:
5465 * "fifth, if neither of the SYN or RST bits is set then
5466 * drop the segment and return."
5468 * See note below!
5469 * --ANK(990513)
5471 if (!th->syn)
5472 goto discard_and_undo;
5474 /* rfc793:
5475 * "If the SYN bit is on ...
5476 * are acceptable then ...
5477 * (our SYN has been ACKed), change the connection
5478 * state to ESTABLISHED..."
5481 TCP_ECN_rcv_synack(tp, th);
5483 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5484 tcp_ack(sk, skb, FLAG_SLOWPATH);
5486 /* Ok.. it's good. Set up sequence numbers and
5487 * move to established.
5489 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5490 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5492 /* RFC1323: The window in SYN & SYN/ACK segments is
5493 * never scaled.
5495 tp->snd_wnd = ntohs(th->window);
5496 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5498 if (!tp->rx_opt.wscale_ok) {
5499 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5500 tp->window_clamp = min(tp->window_clamp, 65535U);
5503 if (tp->rx_opt.saw_tstamp) {
5504 tp->rx_opt.tstamp_ok = 1;
5505 tp->tcp_header_len =
5506 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5507 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5508 tcp_store_ts_recent(tp);
5509 } else {
5510 tp->tcp_header_len = sizeof(struct tcphdr);
5513 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5514 tcp_enable_fack(tp);
5516 tcp_mtup_init(sk);
5517 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5518 tcp_initialize_rcv_mss(sk);
5520 /* Remember, tcp_poll() does not lock socket!
5521 * Change state from SYN-SENT only after copied_seq
5522 * is initialized. */
5523 tp->copied_seq = tp->rcv_nxt;
5525 if (cvp != NULL &&
5526 cvp->cookie_pair_size > 0 &&
5527 tp->rx_opt.cookie_plus > 0) {
5528 int cookie_size = tp->rx_opt.cookie_plus
5529 - TCPOLEN_COOKIE_BASE;
5530 int cookie_pair_size = cookie_size
5531 + cvp->cookie_desired;
5533 /* A cookie extension option was sent and returned.
5534 * Note that each incoming SYNACK replaces the
5535 * Responder cookie. The initial exchange is most
5536 * fragile, as protection against spoofing relies
5537 * entirely upon the sequence and timestamp (above).
5538 * This replacement strategy allows the correct pair to
5539 * pass through, while any others will be filtered via
5540 * Responder verification later.
5542 if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5543 memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5544 hash_location, cookie_size);
5545 cvp->cookie_pair_size = cookie_pair_size;
5549 smp_mb();
5550 tcp_set_state(sk, TCP_ESTABLISHED);
5552 security_inet_conn_established(sk, skb);
5554 /* Make sure socket is routed, for correct metrics. */
5555 icsk->icsk_af_ops->rebuild_header(sk);
5557 tcp_init_metrics(sk);
5559 tcp_init_congestion_control(sk);
5561 /* Prevent spurious tcp_cwnd_restart() on first data
5562 * packet.
5564 tp->lsndtime = tcp_time_stamp;
5566 tcp_init_buffer_space(sk);
5568 if (sock_flag(sk, SOCK_KEEPOPEN))
5569 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5571 if (!tp->rx_opt.snd_wscale)
5572 __tcp_fast_path_on(tp, tp->snd_wnd);
5573 else
5574 tp->pred_flags = 0;
5576 if (!sock_flag(sk, SOCK_DEAD)) {
5577 sk->sk_state_change(sk);
5578 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5581 if (sk->sk_write_pending ||
5582 icsk->icsk_accept_queue.rskq_defer_accept ||
5583 icsk->icsk_ack.pingpong) {
5584 /* Save one ACK. Data will be ready after
5585 * several ticks, if write_pending is set.
5587 * It may be deleted, but with this feature tcpdumps
5588 * look so _wonderfully_ clever, that I was not able
5589 * to stand against the temptation 8) --ANK
5591 inet_csk_schedule_ack(sk);
5592 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5593 icsk->icsk_ack.ato = TCP_ATO_MIN;
5594 tcp_incr_quickack(sk);
5595 tcp_enter_quickack_mode(sk);
5596 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5597 TCP_DELACK_MAX, TCP_RTO_MAX);
5599 discard:
5600 __kfree_skb(skb);
5601 return 0;
5602 } else {
5603 tcp_send_ack(sk);
5605 return -1;
5608 /* No ACK in the segment */
5610 if (th->rst) {
5611 /* rfc793:
5612 * "If the RST bit is set
5614 * Otherwise (no ACK) drop the segment and return."
5617 goto discard_and_undo;
5620 /* PAWS check. */
5621 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5622 tcp_paws_reject(&tp->rx_opt, 0))
5623 goto discard_and_undo;
5625 if (th->syn) {
5626 /* We see SYN without ACK. It is attempt of
5627 * simultaneous connect with crossed SYNs.
5628 * Particularly, it can be connect to self.
5630 tcp_set_state(sk, TCP_SYN_RECV);
5632 if (tp->rx_opt.saw_tstamp) {
5633 tp->rx_opt.tstamp_ok = 1;
5634 tcp_store_ts_recent(tp);
5635 tp->tcp_header_len =
5636 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5637 } else {
5638 tp->tcp_header_len = sizeof(struct tcphdr);
5641 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5642 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5644 /* RFC1323: The window in SYN & SYN/ACK segments is
5645 * never scaled.
5647 tp->snd_wnd = ntohs(th->window);
5648 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5649 tp->max_window = tp->snd_wnd;
5651 TCP_ECN_rcv_syn(tp, th);
5653 tcp_mtup_init(sk);
5654 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5655 tcp_initialize_rcv_mss(sk);
5657 tcp_send_synack(sk);
5658 #if 0
5659 /* Note, we could accept data and URG from this segment.
5660 * There are no obstacles to make this.
5662 * However, if we ignore data in ACKless segments sometimes,
5663 * we have no reasons to accept it sometimes.
5664 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5665 * is not flawless. So, discard packet for sanity.
5666 * Uncomment this return to process the data.
5668 return -1;
5669 #else
5670 goto discard;
5671 #endif
5673 /* "fifth, if neither of the SYN or RST bits is set then
5674 * drop the segment and return."
5677 discard_and_undo:
5678 tcp_clear_options(&tp->rx_opt);
5679 tp->rx_opt.mss_clamp = saved_clamp;
5680 goto discard;
5682 reset_and_undo:
5683 tcp_clear_options(&tp->rx_opt);
5684 tp->rx_opt.mss_clamp = saved_clamp;
5685 return 1;
5689 * This function implements the receiving procedure of RFC 793 for
5690 * all states except ESTABLISHED and TIME_WAIT.
5691 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5692 * address independent.
5695 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5696 struct tcphdr *th, unsigned len)
5698 struct tcp_sock *tp = tcp_sk(sk);
5699 struct inet_connection_sock *icsk = inet_csk(sk);
5700 int queued = 0;
5701 int res;
5703 tp->rx_opt.saw_tstamp = 0;
5705 switch (sk->sk_state) {
5706 case TCP_CLOSE:
5707 goto discard;
5709 case TCP_LISTEN:
5710 if (th->ack)
5711 return 1;
5713 if (th->rst)
5714 goto discard;
5716 if (th->syn) {
5717 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5718 return 1;
5720 /* Now we have several options: In theory there is
5721 * nothing else in the frame. KA9Q has an option to
5722 * send data with the syn, BSD accepts data with the
5723 * syn up to the [to be] advertised window and
5724 * Solaris 2.1 gives you a protocol error. For now
5725 * we just ignore it, that fits the spec precisely
5726 * and avoids incompatibilities. It would be nice in
5727 * future to drop through and process the data.
5729 * Now that TTCP is starting to be used we ought to
5730 * queue this data.
5731 * But, this leaves one open to an easy denial of
5732 * service attack, and SYN cookies can't defend
5733 * against this problem. So, we drop the data
5734 * in the interest of security over speed unless
5735 * it's still in use.
5737 kfree_skb(skb);
5738 return 0;
5740 goto discard;
5742 case TCP_SYN_SENT:
5743 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5744 if (queued >= 0)
5745 return queued;
5747 /* Do step6 onward by hand. */
5748 tcp_urg(sk, skb, th);
5749 __kfree_skb(skb);
5750 tcp_data_snd_check(sk);
5751 return 0;
5754 res = tcp_validate_incoming(sk, skb, th, 0);
5755 if (res <= 0)
5756 return -res;
5758 /* step 5: check the ACK field */
5759 if (th->ack) {
5760 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5762 switch (sk->sk_state) {
5763 case TCP_SYN_RECV:
5764 if (acceptable) {
5765 tp->copied_seq = tp->rcv_nxt;
5766 smp_mb();
5767 tcp_set_state(sk, TCP_ESTABLISHED);
5768 sk->sk_state_change(sk);
5770 /* Note, that this wakeup is only for marginal
5771 * crossed SYN case. Passively open sockets
5772 * are not waked up, because sk->sk_sleep ==
5773 * NULL and sk->sk_socket == NULL.
5775 if (sk->sk_socket)
5776 sk_wake_async(sk,
5777 SOCK_WAKE_IO, POLL_OUT);
5779 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5780 tp->snd_wnd = ntohs(th->window) <<
5781 tp->rx_opt.snd_wscale;
5782 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5784 /* tcp_ack considers this ACK as duplicate
5785 * and does not calculate rtt.
5786 * Fix it at least with timestamps.
5788 if (tp->rx_opt.saw_tstamp &&
5789 tp->rx_opt.rcv_tsecr && !tp->srtt)
5790 tcp_ack_saw_tstamp(sk, 0);
5792 if (tp->rx_opt.tstamp_ok)
5793 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5795 /* Make sure socket is routed, for
5796 * correct metrics.
5798 icsk->icsk_af_ops->rebuild_header(sk);
5800 tcp_init_metrics(sk);
5802 tcp_init_congestion_control(sk);
5804 /* Prevent spurious tcp_cwnd_restart() on
5805 * first data packet.
5807 tp->lsndtime = tcp_time_stamp;
5809 tcp_mtup_init(sk);
5810 tcp_initialize_rcv_mss(sk);
5811 tcp_init_buffer_space(sk);
5812 tcp_fast_path_on(tp);
5813 } else {
5814 return 1;
5816 break;
5818 case TCP_FIN_WAIT1:
5819 if (tp->snd_una == tp->write_seq) {
5820 tcp_set_state(sk, TCP_FIN_WAIT2);
5821 sk->sk_shutdown |= SEND_SHUTDOWN;
5822 dst_confirm(sk->sk_dst_cache);
5824 if (!sock_flag(sk, SOCK_DEAD))
5825 /* Wake up lingering close() */
5826 sk->sk_state_change(sk);
5827 else {
5828 int tmo;
5830 if (tp->linger2 < 0 ||
5831 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5832 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5833 tcp_done(sk);
5834 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5835 return 1;
5838 tmo = tcp_fin_time(sk);
5839 if (tmo > TCP_TIMEWAIT_LEN) {
5840 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5841 } else if (th->fin || sock_owned_by_user(sk)) {
5842 /* Bad case. We could lose such FIN otherwise.
5843 * It is not a big problem, but it looks confusing
5844 * and not so rare event. We still can lose it now,
5845 * if it spins in bh_lock_sock(), but it is really
5846 * marginal case.
5848 inet_csk_reset_keepalive_timer(sk, tmo);
5849 } else {
5850 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5851 goto discard;
5855 break;
5857 case TCP_CLOSING:
5858 if (tp->snd_una == tp->write_seq) {
5859 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5860 goto discard;
5862 break;
5864 case TCP_LAST_ACK:
5865 if (tp->snd_una == tp->write_seq) {
5866 tcp_update_metrics(sk);
5867 tcp_done(sk);
5868 goto discard;
5870 break;
5872 } else
5873 goto discard;
5875 /* step 6: check the URG bit */
5876 tcp_urg(sk, skb, th);
5878 /* step 7: process the segment text */
5879 switch (sk->sk_state) {
5880 case TCP_CLOSE_WAIT:
5881 case TCP_CLOSING:
5882 case TCP_LAST_ACK:
5883 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5884 break;
5885 case TCP_FIN_WAIT1:
5886 case TCP_FIN_WAIT2:
5887 /* RFC 793 says to queue data in these states,
5888 * RFC 1122 says we MUST send a reset.
5889 * BSD 4.4 also does reset.
5891 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5892 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5893 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5894 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5895 tcp_reset(sk);
5896 return 1;
5899 /* Fall through */
5900 case TCP_ESTABLISHED:
5901 tcp_data_queue(sk, skb);
5902 queued = 1;
5903 break;
5906 /* tcp_data could move socket to TIME-WAIT */
5907 if (sk->sk_state != TCP_CLOSE) {
5908 tcp_data_snd_check(sk);
5909 tcp_ack_snd_check(sk);
5912 if (!queued) {
5913 discard:
5914 __kfree_skb(skb);
5916 return 0;
5919 EXPORT_SYMBOL(sysctl_tcp_ecn);
5920 EXPORT_SYMBOL(sysctl_tcp_reordering);
5921 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5922 EXPORT_SYMBOL(tcp_parse_options);
5923 #ifdef CONFIG_TCP_MD5SIG
5924 EXPORT_SYMBOL(tcp_parse_md5sig_option);
5925 #endif
5926 EXPORT_SYMBOL(tcp_rcv_established);
5927 EXPORT_SYMBOL(tcp_rcv_state_process);
5928 EXPORT_SYMBOL(tcp_initialize_rcv_mss);