block: Add default switch case to blk_pm_allow_request() to kill warning
[linux/fpc-iii.git] / kernel / audit.c
blobe7478cb580792b2d829f41052c729355bd977453
1 /* audit.c -- Auditing support
2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3 * System-call specific features have moved to auditsc.c
5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6 * All Rights Reserved.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 * Goals: 1) Integrate fully with Security Modules.
25 * 2) Minimal run-time overhead:
26 * a) Minimal when syscall auditing is disabled (audit_enable=0).
27 * b) Small when syscall auditing is enabled and no audit record
28 * is generated (defer as much work as possible to record
29 * generation time):
30 * i) context is allocated,
31 * ii) names from getname are stored without a copy, and
32 * iii) inode information stored from path_lookup.
33 * 3) Ability to disable syscall auditing at boot time (audit=0).
34 * 4) Usable by other parts of the kernel (if audit_log* is called,
35 * then a syscall record will be generated automatically for the
36 * current syscall).
37 * 5) Netlink interface to user-space.
38 * 6) Support low-overhead kernel-based filtering to minimize the
39 * information that must be passed to user-space.
41 * Audit userspace, documentation, tests, and bug/issue trackers:
42 * https://github.com/linux-audit
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47 #include <linux/file.h>
48 #include <linux/init.h>
49 #include <linux/types.h>
50 #include <linux/atomic.h>
51 #include <linux/mm.h>
52 #include <linux/export.h>
53 #include <linux/slab.h>
54 #include <linux/err.h>
55 #include <linux/kthread.h>
56 #include <linux/kernel.h>
57 #include <linux/syscalls.h>
58 #include <linux/spinlock.h>
59 #include <linux/rcupdate.h>
60 #include <linux/mutex.h>
61 #include <linux/gfp.h>
62 #include <linux/pid.h>
63 #include <linux/slab.h>
65 #include <linux/audit.h>
67 #include <net/sock.h>
68 #include <net/netlink.h>
69 #include <linux/skbuff.h>
70 #ifdef CONFIG_SECURITY
71 #include <linux/security.h>
72 #endif
73 #include <linux/freezer.h>
74 #include <linux/pid_namespace.h>
75 #include <net/netns/generic.h>
77 #include "audit.h"
79 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
80 * (Initialization happens after skb_init is called.) */
81 #define AUDIT_DISABLED -1
82 #define AUDIT_UNINITIALIZED 0
83 #define AUDIT_INITIALIZED 1
84 static int audit_initialized;
86 #define AUDIT_OFF 0
87 #define AUDIT_ON 1
88 #define AUDIT_LOCKED 2
89 u32 audit_enabled = AUDIT_OFF;
90 bool audit_ever_enabled = !!AUDIT_OFF;
92 EXPORT_SYMBOL_GPL(audit_enabled);
94 /* Default state when kernel boots without any parameters. */
95 static u32 audit_default = AUDIT_OFF;
97 /* If auditing cannot proceed, audit_failure selects what happens. */
98 static u32 audit_failure = AUDIT_FAIL_PRINTK;
100 /* private audit network namespace index */
101 static unsigned int audit_net_id;
104 * struct audit_net - audit private network namespace data
105 * @sk: communication socket
107 struct audit_net {
108 struct sock *sk;
112 * struct auditd_connection - kernel/auditd connection state
113 * @pid: auditd PID
114 * @portid: netlink portid
115 * @net: the associated network namespace
116 * @rcu: RCU head
118 * Description:
119 * This struct is RCU protected; you must either hold the RCU lock for reading
120 * or the associated spinlock for writing.
122 static struct auditd_connection {
123 struct pid *pid;
124 u32 portid;
125 struct net *net;
126 struct rcu_head rcu;
127 } *auditd_conn = NULL;
128 static DEFINE_SPINLOCK(auditd_conn_lock);
130 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
131 * to that number per second. This prevents DoS attacks, but results in
132 * audit records being dropped. */
133 static u32 audit_rate_limit;
135 /* Number of outstanding audit_buffers allowed.
136 * When set to zero, this means unlimited. */
137 static u32 audit_backlog_limit = 64;
138 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
139 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
141 /* The identity of the user shutting down the audit system. */
142 kuid_t audit_sig_uid = INVALID_UID;
143 pid_t audit_sig_pid = -1;
144 u32 audit_sig_sid = 0;
146 /* Records can be lost in several ways:
147 0) [suppressed in audit_alloc]
148 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
149 2) out of memory in audit_log_move [alloc_skb]
150 3) suppressed due to audit_rate_limit
151 4) suppressed due to audit_backlog_limit
153 static atomic_t audit_lost = ATOMIC_INIT(0);
155 /* Hash for inode-based rules */
156 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
158 static struct kmem_cache *audit_buffer_cache;
160 /* queue msgs to send via kauditd_task */
161 static struct sk_buff_head audit_queue;
162 /* queue msgs due to temporary unicast send problems */
163 static struct sk_buff_head audit_retry_queue;
164 /* queue msgs waiting for new auditd connection */
165 static struct sk_buff_head audit_hold_queue;
167 /* queue servicing thread */
168 static struct task_struct *kauditd_task;
169 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
171 /* waitqueue for callers who are blocked on the audit backlog */
172 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
174 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
175 .mask = -1,
176 .features = 0,
177 .lock = 0,};
179 static char *audit_feature_names[2] = {
180 "only_unset_loginuid",
181 "loginuid_immutable",
185 * struct audit_ctl_mutex - serialize requests from userspace
186 * @lock: the mutex used for locking
187 * @owner: the task which owns the lock
189 * Description:
190 * This is the lock struct used to ensure we only process userspace requests
191 * in an orderly fashion. We can't simply use a mutex/lock here because we
192 * need to track lock ownership so we don't end up blocking the lock owner in
193 * audit_log_start() or similar.
195 static struct audit_ctl_mutex {
196 struct mutex lock;
197 void *owner;
198 } audit_cmd_mutex;
200 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
201 * audit records. Since printk uses a 1024 byte buffer, this buffer
202 * should be at least that large. */
203 #define AUDIT_BUFSIZ 1024
205 /* The audit_buffer is used when formatting an audit record. The caller
206 * locks briefly to get the record off the freelist or to allocate the
207 * buffer, and locks briefly to send the buffer to the netlink layer or
208 * to place it on a transmit queue. Multiple audit_buffers can be in
209 * use simultaneously. */
210 struct audit_buffer {
211 struct sk_buff *skb; /* formatted skb ready to send */
212 struct audit_context *ctx; /* NULL or associated context */
213 gfp_t gfp_mask;
216 struct audit_reply {
217 __u32 portid;
218 struct net *net;
219 struct sk_buff *skb;
223 * auditd_test_task - Check to see if a given task is an audit daemon
224 * @task: the task to check
226 * Description:
227 * Return 1 if the task is a registered audit daemon, 0 otherwise.
229 int auditd_test_task(struct task_struct *task)
231 int rc;
232 struct auditd_connection *ac;
234 rcu_read_lock();
235 ac = rcu_dereference(auditd_conn);
236 rc = (ac && ac->pid == task_tgid(task) ? 1 : 0);
237 rcu_read_unlock();
239 return rc;
243 * audit_ctl_lock - Take the audit control lock
245 void audit_ctl_lock(void)
247 mutex_lock(&audit_cmd_mutex.lock);
248 audit_cmd_mutex.owner = current;
252 * audit_ctl_unlock - Drop the audit control lock
254 void audit_ctl_unlock(void)
256 audit_cmd_mutex.owner = NULL;
257 mutex_unlock(&audit_cmd_mutex.lock);
261 * audit_ctl_owner_current - Test to see if the current task owns the lock
263 * Description:
264 * Return true if the current task owns the audit control lock, false if it
265 * doesn't own the lock.
267 static bool audit_ctl_owner_current(void)
269 return (current == audit_cmd_mutex.owner);
273 * auditd_pid_vnr - Return the auditd PID relative to the namespace
275 * Description:
276 * Returns the PID in relation to the namespace, 0 on failure.
278 static pid_t auditd_pid_vnr(void)
280 pid_t pid;
281 const struct auditd_connection *ac;
283 rcu_read_lock();
284 ac = rcu_dereference(auditd_conn);
285 if (!ac || !ac->pid)
286 pid = 0;
287 else
288 pid = pid_vnr(ac->pid);
289 rcu_read_unlock();
291 return pid;
295 * audit_get_sk - Return the audit socket for the given network namespace
296 * @net: the destination network namespace
298 * Description:
299 * Returns the sock pointer if valid, NULL otherwise. The caller must ensure
300 * that a reference is held for the network namespace while the sock is in use.
302 static struct sock *audit_get_sk(const struct net *net)
304 struct audit_net *aunet;
306 if (!net)
307 return NULL;
309 aunet = net_generic(net, audit_net_id);
310 return aunet->sk;
313 void audit_panic(const char *message)
315 switch (audit_failure) {
316 case AUDIT_FAIL_SILENT:
317 break;
318 case AUDIT_FAIL_PRINTK:
319 if (printk_ratelimit())
320 pr_err("%s\n", message);
321 break;
322 case AUDIT_FAIL_PANIC:
323 panic("audit: %s\n", message);
324 break;
328 static inline int audit_rate_check(void)
330 static unsigned long last_check = 0;
331 static int messages = 0;
332 static DEFINE_SPINLOCK(lock);
333 unsigned long flags;
334 unsigned long now;
335 unsigned long elapsed;
336 int retval = 0;
338 if (!audit_rate_limit) return 1;
340 spin_lock_irqsave(&lock, flags);
341 if (++messages < audit_rate_limit) {
342 retval = 1;
343 } else {
344 now = jiffies;
345 elapsed = now - last_check;
346 if (elapsed > HZ) {
347 last_check = now;
348 messages = 0;
349 retval = 1;
352 spin_unlock_irqrestore(&lock, flags);
354 return retval;
358 * audit_log_lost - conditionally log lost audit message event
359 * @message: the message stating reason for lost audit message
361 * Emit at least 1 message per second, even if audit_rate_check is
362 * throttling.
363 * Always increment the lost messages counter.
365 void audit_log_lost(const char *message)
367 static unsigned long last_msg = 0;
368 static DEFINE_SPINLOCK(lock);
369 unsigned long flags;
370 unsigned long now;
371 int print;
373 atomic_inc(&audit_lost);
375 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
377 if (!print) {
378 spin_lock_irqsave(&lock, flags);
379 now = jiffies;
380 if (now - last_msg > HZ) {
381 print = 1;
382 last_msg = now;
384 spin_unlock_irqrestore(&lock, flags);
387 if (print) {
388 if (printk_ratelimit())
389 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
390 atomic_read(&audit_lost),
391 audit_rate_limit,
392 audit_backlog_limit);
393 audit_panic(message);
397 static int audit_log_config_change(char *function_name, u32 new, u32 old,
398 int allow_changes)
400 struct audit_buffer *ab;
401 int rc = 0;
403 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
404 if (unlikely(!ab))
405 return rc;
406 audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
407 audit_log_session_info(ab);
408 rc = audit_log_task_context(ab);
409 if (rc)
410 allow_changes = 0; /* Something weird, deny request */
411 audit_log_format(ab, " res=%d", allow_changes);
412 audit_log_end(ab);
413 return rc;
416 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
418 int allow_changes, rc = 0;
419 u32 old = *to_change;
421 /* check if we are locked */
422 if (audit_enabled == AUDIT_LOCKED)
423 allow_changes = 0;
424 else
425 allow_changes = 1;
427 if (audit_enabled != AUDIT_OFF) {
428 rc = audit_log_config_change(function_name, new, old, allow_changes);
429 if (rc)
430 allow_changes = 0;
433 /* If we are allowed, make the change */
434 if (allow_changes == 1)
435 *to_change = new;
436 /* Not allowed, update reason */
437 else if (rc == 0)
438 rc = -EPERM;
439 return rc;
442 static int audit_set_rate_limit(u32 limit)
444 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
447 static int audit_set_backlog_limit(u32 limit)
449 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
452 static int audit_set_backlog_wait_time(u32 timeout)
454 return audit_do_config_change("audit_backlog_wait_time",
455 &audit_backlog_wait_time, timeout);
458 static int audit_set_enabled(u32 state)
460 int rc;
461 if (state > AUDIT_LOCKED)
462 return -EINVAL;
464 rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
465 if (!rc)
466 audit_ever_enabled |= !!state;
468 return rc;
471 static int audit_set_failure(u32 state)
473 if (state != AUDIT_FAIL_SILENT
474 && state != AUDIT_FAIL_PRINTK
475 && state != AUDIT_FAIL_PANIC)
476 return -EINVAL;
478 return audit_do_config_change("audit_failure", &audit_failure, state);
482 * auditd_conn_free - RCU helper to release an auditd connection struct
483 * @rcu: RCU head
485 * Description:
486 * Drop any references inside the auditd connection tracking struct and free
487 * the memory.
489 static void auditd_conn_free(struct rcu_head *rcu)
491 struct auditd_connection *ac;
493 ac = container_of(rcu, struct auditd_connection, rcu);
494 put_pid(ac->pid);
495 put_net(ac->net);
496 kfree(ac);
500 * auditd_set - Set/Reset the auditd connection state
501 * @pid: auditd PID
502 * @portid: auditd netlink portid
503 * @net: auditd network namespace pointer
505 * Description:
506 * This function will obtain and drop network namespace references as
507 * necessary. Returns zero on success, negative values on failure.
509 static int auditd_set(struct pid *pid, u32 portid, struct net *net)
511 unsigned long flags;
512 struct auditd_connection *ac_old, *ac_new;
514 if (!pid || !net)
515 return -EINVAL;
517 ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL);
518 if (!ac_new)
519 return -ENOMEM;
520 ac_new->pid = get_pid(pid);
521 ac_new->portid = portid;
522 ac_new->net = get_net(net);
524 spin_lock_irqsave(&auditd_conn_lock, flags);
525 ac_old = rcu_dereference_protected(auditd_conn,
526 lockdep_is_held(&auditd_conn_lock));
527 rcu_assign_pointer(auditd_conn, ac_new);
528 spin_unlock_irqrestore(&auditd_conn_lock, flags);
530 if (ac_old)
531 call_rcu(&ac_old->rcu, auditd_conn_free);
533 return 0;
537 * kauditd_print_skb - Print the audit record to the ring buffer
538 * @skb: audit record
540 * Whatever the reason, this packet may not make it to the auditd connection
541 * so write it via printk so the information isn't completely lost.
543 static void kauditd_printk_skb(struct sk_buff *skb)
545 struct nlmsghdr *nlh = nlmsg_hdr(skb);
546 char *data = nlmsg_data(nlh);
548 if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
549 pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
553 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
554 * @skb: audit record
556 * Description:
557 * This should only be used by the kauditd_thread when it fails to flush the
558 * hold queue.
560 static void kauditd_rehold_skb(struct sk_buff *skb)
562 /* put the record back in the queue at the same place */
563 skb_queue_head(&audit_hold_queue, skb);
567 * kauditd_hold_skb - Queue an audit record, waiting for auditd
568 * @skb: audit record
570 * Description:
571 * Queue the audit record, waiting for an instance of auditd. When this
572 * function is called we haven't given up yet on sending the record, but things
573 * are not looking good. The first thing we want to do is try to write the
574 * record via printk and then see if we want to try and hold on to the record
575 * and queue it, if we have room. If we want to hold on to the record, but we
576 * don't have room, record a record lost message.
578 static void kauditd_hold_skb(struct sk_buff *skb)
580 /* at this point it is uncertain if we will ever send this to auditd so
581 * try to send the message via printk before we go any further */
582 kauditd_printk_skb(skb);
584 /* can we just silently drop the message? */
585 if (!audit_default) {
586 kfree_skb(skb);
587 return;
590 /* if we have room, queue the message */
591 if (!audit_backlog_limit ||
592 skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
593 skb_queue_tail(&audit_hold_queue, skb);
594 return;
597 /* we have no other options - drop the message */
598 audit_log_lost("kauditd hold queue overflow");
599 kfree_skb(skb);
603 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
604 * @skb: audit record
606 * Description:
607 * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
608 * but for some reason we are having problems sending it audit records so
609 * queue the given record and attempt to resend.
611 static void kauditd_retry_skb(struct sk_buff *skb)
613 /* NOTE: because records should only live in the retry queue for a
614 * short period of time, before either being sent or moved to the hold
615 * queue, we don't currently enforce a limit on this queue */
616 skb_queue_tail(&audit_retry_queue, skb);
620 * auditd_reset - Disconnect the auditd connection
621 * @ac: auditd connection state
623 * Description:
624 * Break the auditd/kauditd connection and move all the queued records into the
625 * hold queue in case auditd reconnects. It is important to note that the @ac
626 * pointer should never be dereferenced inside this function as it may be NULL
627 * or invalid, you can only compare the memory address! If @ac is NULL then
628 * the connection will always be reset.
630 static void auditd_reset(const struct auditd_connection *ac)
632 unsigned long flags;
633 struct sk_buff *skb;
634 struct auditd_connection *ac_old;
636 /* if it isn't already broken, break the connection */
637 spin_lock_irqsave(&auditd_conn_lock, flags);
638 ac_old = rcu_dereference_protected(auditd_conn,
639 lockdep_is_held(&auditd_conn_lock));
640 if (ac && ac != ac_old) {
641 /* someone already registered a new auditd connection */
642 spin_unlock_irqrestore(&auditd_conn_lock, flags);
643 return;
645 rcu_assign_pointer(auditd_conn, NULL);
646 spin_unlock_irqrestore(&auditd_conn_lock, flags);
648 if (ac_old)
649 call_rcu(&ac_old->rcu, auditd_conn_free);
651 /* flush the retry queue to the hold queue, but don't touch the main
652 * queue since we need to process that normally for multicast */
653 while ((skb = skb_dequeue(&audit_retry_queue)))
654 kauditd_hold_skb(skb);
658 * auditd_send_unicast_skb - Send a record via unicast to auditd
659 * @skb: audit record
661 * Description:
662 * Send a skb to the audit daemon, returns positive/zero values on success and
663 * negative values on failure; in all cases the skb will be consumed by this
664 * function. If the send results in -ECONNREFUSED the connection with auditd
665 * will be reset. This function may sleep so callers should not hold any locks
666 * where this would cause a problem.
668 static int auditd_send_unicast_skb(struct sk_buff *skb)
670 int rc;
671 u32 portid;
672 struct net *net;
673 struct sock *sk;
674 struct auditd_connection *ac;
676 /* NOTE: we can't call netlink_unicast while in the RCU section so
677 * take a reference to the network namespace and grab local
678 * copies of the namespace, the sock, and the portid; the
679 * namespace and sock aren't going to go away while we hold a
680 * reference and if the portid does become invalid after the RCU
681 * section netlink_unicast() should safely return an error */
683 rcu_read_lock();
684 ac = rcu_dereference(auditd_conn);
685 if (!ac) {
686 rcu_read_unlock();
687 kfree_skb(skb);
688 rc = -ECONNREFUSED;
689 goto err;
691 net = get_net(ac->net);
692 sk = audit_get_sk(net);
693 portid = ac->portid;
694 rcu_read_unlock();
696 rc = netlink_unicast(sk, skb, portid, 0);
697 put_net(net);
698 if (rc < 0)
699 goto err;
701 return rc;
703 err:
704 if (ac && rc == -ECONNREFUSED)
705 auditd_reset(ac);
706 return rc;
710 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
711 * @sk: the sending sock
712 * @portid: the netlink destination
713 * @queue: the skb queue to process
714 * @retry_limit: limit on number of netlink unicast failures
715 * @skb_hook: per-skb hook for additional processing
716 * @err_hook: hook called if the skb fails the netlink unicast send
718 * Description:
719 * Run through the given queue and attempt to send the audit records to auditd,
720 * returns zero on success, negative values on failure. It is up to the caller
721 * to ensure that the @sk is valid for the duration of this function.
724 static int kauditd_send_queue(struct sock *sk, u32 portid,
725 struct sk_buff_head *queue,
726 unsigned int retry_limit,
727 void (*skb_hook)(struct sk_buff *skb),
728 void (*err_hook)(struct sk_buff *skb))
730 int rc = 0;
731 struct sk_buff *skb;
732 static unsigned int failed = 0;
734 /* NOTE: kauditd_thread takes care of all our locking, we just use
735 * the netlink info passed to us (e.g. sk and portid) */
737 while ((skb = skb_dequeue(queue))) {
738 /* call the skb_hook for each skb we touch */
739 if (skb_hook)
740 (*skb_hook)(skb);
742 /* can we send to anyone via unicast? */
743 if (!sk) {
744 if (err_hook)
745 (*err_hook)(skb);
746 continue;
749 /* grab an extra skb reference in case of error */
750 skb_get(skb);
751 rc = netlink_unicast(sk, skb, portid, 0);
752 if (rc < 0) {
753 /* fatal failure for our queue flush attempt? */
754 if (++failed >= retry_limit ||
755 rc == -ECONNREFUSED || rc == -EPERM) {
756 /* yes - error processing for the queue */
757 sk = NULL;
758 if (err_hook)
759 (*err_hook)(skb);
760 if (!skb_hook)
761 goto out;
762 /* keep processing with the skb_hook */
763 continue;
764 } else
765 /* no - requeue to preserve ordering */
766 skb_queue_head(queue, skb);
767 } else {
768 /* it worked - drop the extra reference and continue */
769 consume_skb(skb);
770 failed = 0;
774 out:
775 return (rc >= 0 ? 0 : rc);
779 * kauditd_send_multicast_skb - Send a record to any multicast listeners
780 * @skb: audit record
782 * Description:
783 * Write a multicast message to anyone listening in the initial network
784 * namespace. This function doesn't consume an skb as might be expected since
785 * it has to copy it anyways.
787 static void kauditd_send_multicast_skb(struct sk_buff *skb)
789 struct sk_buff *copy;
790 struct sock *sock = audit_get_sk(&init_net);
791 struct nlmsghdr *nlh;
793 /* NOTE: we are not taking an additional reference for init_net since
794 * we don't have to worry about it going away */
796 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
797 return;
800 * The seemingly wasteful skb_copy() rather than bumping the refcount
801 * using skb_get() is necessary because non-standard mods are made to
802 * the skb by the original kaudit unicast socket send routine. The
803 * existing auditd daemon assumes this breakage. Fixing this would
804 * require co-ordinating a change in the established protocol between
805 * the kaudit kernel subsystem and the auditd userspace code. There is
806 * no reason for new multicast clients to continue with this
807 * non-compliance.
809 copy = skb_copy(skb, GFP_KERNEL);
810 if (!copy)
811 return;
812 nlh = nlmsg_hdr(copy);
813 nlh->nlmsg_len = skb->len;
815 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
819 * kauditd_thread - Worker thread to send audit records to userspace
820 * @dummy: unused
822 static int kauditd_thread(void *dummy)
824 int rc;
825 u32 portid = 0;
826 struct net *net = NULL;
827 struct sock *sk = NULL;
828 struct auditd_connection *ac;
830 #define UNICAST_RETRIES 5
832 set_freezable();
833 while (!kthread_should_stop()) {
834 /* NOTE: see the lock comments in auditd_send_unicast_skb() */
835 rcu_read_lock();
836 ac = rcu_dereference(auditd_conn);
837 if (!ac) {
838 rcu_read_unlock();
839 goto main_queue;
841 net = get_net(ac->net);
842 sk = audit_get_sk(net);
843 portid = ac->portid;
844 rcu_read_unlock();
846 /* attempt to flush the hold queue */
847 rc = kauditd_send_queue(sk, portid,
848 &audit_hold_queue, UNICAST_RETRIES,
849 NULL, kauditd_rehold_skb);
850 if (ac && rc < 0) {
851 sk = NULL;
852 auditd_reset(ac);
853 goto main_queue;
856 /* attempt to flush the retry queue */
857 rc = kauditd_send_queue(sk, portid,
858 &audit_retry_queue, UNICAST_RETRIES,
859 NULL, kauditd_hold_skb);
860 if (ac && rc < 0) {
861 sk = NULL;
862 auditd_reset(ac);
863 goto main_queue;
866 main_queue:
867 /* process the main queue - do the multicast send and attempt
868 * unicast, dump failed record sends to the retry queue; if
869 * sk == NULL due to previous failures we will just do the
870 * multicast send and move the record to the hold queue */
871 rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
872 kauditd_send_multicast_skb,
873 (sk ?
874 kauditd_retry_skb : kauditd_hold_skb));
875 if (ac && rc < 0)
876 auditd_reset(ac);
877 sk = NULL;
879 /* drop our netns reference, no auditd sends past this line */
880 if (net) {
881 put_net(net);
882 net = NULL;
885 /* we have processed all the queues so wake everyone */
886 wake_up(&audit_backlog_wait);
888 /* NOTE: we want to wake up if there is anything on the queue,
889 * regardless of if an auditd is connected, as we need to
890 * do the multicast send and rotate records from the
891 * main queue to the retry/hold queues */
892 wait_event_freezable(kauditd_wait,
893 (skb_queue_len(&audit_queue) ? 1 : 0));
896 return 0;
899 int audit_send_list(void *_dest)
901 struct audit_netlink_list *dest = _dest;
902 struct sk_buff *skb;
903 struct sock *sk = audit_get_sk(dest->net);
905 /* wait for parent to finish and send an ACK */
906 audit_ctl_lock();
907 audit_ctl_unlock();
909 while ((skb = __skb_dequeue(&dest->q)) != NULL)
910 netlink_unicast(sk, skb, dest->portid, 0);
912 put_net(dest->net);
913 kfree(dest);
915 return 0;
918 struct sk_buff *audit_make_reply(int seq, int type, int done,
919 int multi, const void *payload, int size)
921 struct sk_buff *skb;
922 struct nlmsghdr *nlh;
923 void *data;
924 int flags = multi ? NLM_F_MULTI : 0;
925 int t = done ? NLMSG_DONE : type;
927 skb = nlmsg_new(size, GFP_KERNEL);
928 if (!skb)
929 return NULL;
931 nlh = nlmsg_put(skb, 0, seq, t, size, flags);
932 if (!nlh)
933 goto out_kfree_skb;
934 data = nlmsg_data(nlh);
935 memcpy(data, payload, size);
936 return skb;
938 out_kfree_skb:
939 kfree_skb(skb);
940 return NULL;
943 static int audit_send_reply_thread(void *arg)
945 struct audit_reply *reply = (struct audit_reply *)arg;
946 struct sock *sk = audit_get_sk(reply->net);
948 audit_ctl_lock();
949 audit_ctl_unlock();
951 /* Ignore failure. It'll only happen if the sender goes away,
952 because our timeout is set to infinite. */
953 netlink_unicast(sk, reply->skb, reply->portid, 0);
954 put_net(reply->net);
955 kfree(reply);
956 return 0;
960 * audit_send_reply - send an audit reply message via netlink
961 * @request_skb: skb of request we are replying to (used to target the reply)
962 * @seq: sequence number
963 * @type: audit message type
964 * @done: done (last) flag
965 * @multi: multi-part message flag
966 * @payload: payload data
967 * @size: payload size
969 * Allocates an skb, builds the netlink message, and sends it to the port id.
970 * No failure notifications.
972 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
973 int multi, const void *payload, int size)
975 struct net *net = sock_net(NETLINK_CB(request_skb).sk);
976 struct sk_buff *skb;
977 struct task_struct *tsk;
978 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
979 GFP_KERNEL);
981 if (!reply)
982 return;
984 skb = audit_make_reply(seq, type, done, multi, payload, size);
985 if (!skb)
986 goto out;
988 reply->net = get_net(net);
989 reply->portid = NETLINK_CB(request_skb).portid;
990 reply->skb = skb;
992 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
993 if (!IS_ERR(tsk))
994 return;
995 kfree_skb(skb);
996 out:
997 kfree(reply);
1001 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
1002 * control messages.
1004 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
1006 int err = 0;
1008 /* Only support initial user namespace for now. */
1010 * We return ECONNREFUSED because it tricks userspace into thinking
1011 * that audit was not configured into the kernel. Lots of users
1012 * configure their PAM stack (because that's what the distro does)
1013 * to reject login if unable to send messages to audit. If we return
1014 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
1015 * configured in and will let login proceed. If we return EPERM
1016 * userspace will reject all logins. This should be removed when we
1017 * support non init namespaces!!
1019 if (current_user_ns() != &init_user_ns)
1020 return -ECONNREFUSED;
1022 switch (msg_type) {
1023 case AUDIT_LIST:
1024 case AUDIT_ADD:
1025 case AUDIT_DEL:
1026 return -EOPNOTSUPP;
1027 case AUDIT_GET:
1028 case AUDIT_SET:
1029 case AUDIT_GET_FEATURE:
1030 case AUDIT_SET_FEATURE:
1031 case AUDIT_LIST_RULES:
1032 case AUDIT_ADD_RULE:
1033 case AUDIT_DEL_RULE:
1034 case AUDIT_SIGNAL_INFO:
1035 case AUDIT_TTY_GET:
1036 case AUDIT_TTY_SET:
1037 case AUDIT_TRIM:
1038 case AUDIT_MAKE_EQUIV:
1039 /* Only support auditd and auditctl in initial pid namespace
1040 * for now. */
1041 if (task_active_pid_ns(current) != &init_pid_ns)
1042 return -EPERM;
1044 if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
1045 err = -EPERM;
1046 break;
1047 case AUDIT_USER:
1048 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1049 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1050 if (!netlink_capable(skb, CAP_AUDIT_WRITE))
1051 err = -EPERM;
1052 break;
1053 default: /* bad msg */
1054 err = -EINVAL;
1057 return err;
1060 static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
1062 uid_t uid = from_kuid(&init_user_ns, current_uid());
1063 pid_t pid = task_tgid_nr(current);
1065 if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
1066 *ab = NULL;
1067 return;
1070 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
1071 if (unlikely(!*ab))
1072 return;
1073 audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
1074 audit_log_session_info(*ab);
1075 audit_log_task_context(*ab);
1078 int is_audit_feature_set(int i)
1080 return af.features & AUDIT_FEATURE_TO_MASK(i);
1084 static int audit_get_feature(struct sk_buff *skb)
1086 u32 seq;
1088 seq = nlmsg_hdr(skb)->nlmsg_seq;
1090 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
1092 return 0;
1095 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
1096 u32 old_lock, u32 new_lock, int res)
1098 struct audit_buffer *ab;
1100 if (audit_enabled == AUDIT_OFF)
1101 return;
1102 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE);
1103 if (!ab)
1104 return;
1105 audit_log_task_info(ab, current);
1106 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
1107 audit_feature_names[which], !!old_feature, !!new_feature,
1108 !!old_lock, !!new_lock, res);
1109 audit_log_end(ab);
1112 static int audit_set_feature(struct sk_buff *skb)
1114 struct audit_features *uaf;
1115 int i;
1117 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
1118 uaf = nlmsg_data(nlmsg_hdr(skb));
1120 /* if there is ever a version 2 we should handle that here */
1122 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1123 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1124 u32 old_feature, new_feature, old_lock, new_lock;
1126 /* if we are not changing this feature, move along */
1127 if (!(feature & uaf->mask))
1128 continue;
1130 old_feature = af.features & feature;
1131 new_feature = uaf->features & feature;
1132 new_lock = (uaf->lock | af.lock) & feature;
1133 old_lock = af.lock & feature;
1135 /* are we changing a locked feature? */
1136 if (old_lock && (new_feature != old_feature)) {
1137 audit_log_feature_change(i, old_feature, new_feature,
1138 old_lock, new_lock, 0);
1139 return -EPERM;
1142 /* nothing invalid, do the changes */
1143 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1144 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1145 u32 old_feature, new_feature, old_lock, new_lock;
1147 /* if we are not changing this feature, move along */
1148 if (!(feature & uaf->mask))
1149 continue;
1151 old_feature = af.features & feature;
1152 new_feature = uaf->features & feature;
1153 old_lock = af.lock & feature;
1154 new_lock = (uaf->lock | af.lock) & feature;
1156 if (new_feature != old_feature)
1157 audit_log_feature_change(i, old_feature, new_feature,
1158 old_lock, new_lock, 1);
1160 if (new_feature)
1161 af.features |= feature;
1162 else
1163 af.features &= ~feature;
1164 af.lock |= new_lock;
1167 return 0;
1170 static int audit_replace(struct pid *pid)
1172 pid_t pvnr;
1173 struct sk_buff *skb;
1175 pvnr = pid_vnr(pid);
1176 skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr));
1177 if (!skb)
1178 return -ENOMEM;
1179 return auditd_send_unicast_skb(skb);
1182 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
1184 u32 seq;
1185 void *data;
1186 int err;
1187 struct audit_buffer *ab;
1188 u16 msg_type = nlh->nlmsg_type;
1189 struct audit_sig_info *sig_data;
1190 char *ctx = NULL;
1191 u32 len;
1193 err = audit_netlink_ok(skb, msg_type);
1194 if (err)
1195 return err;
1197 seq = nlh->nlmsg_seq;
1198 data = nlmsg_data(nlh);
1200 switch (msg_type) {
1201 case AUDIT_GET: {
1202 struct audit_status s;
1203 memset(&s, 0, sizeof(s));
1204 s.enabled = audit_enabled;
1205 s.failure = audit_failure;
1206 /* NOTE: use pid_vnr() so the PID is relative to the current
1207 * namespace */
1208 s.pid = auditd_pid_vnr();
1209 s.rate_limit = audit_rate_limit;
1210 s.backlog_limit = audit_backlog_limit;
1211 s.lost = atomic_read(&audit_lost);
1212 s.backlog = skb_queue_len(&audit_queue);
1213 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL;
1214 s.backlog_wait_time = audit_backlog_wait_time;
1215 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1216 break;
1218 case AUDIT_SET: {
1219 struct audit_status s;
1220 memset(&s, 0, sizeof(s));
1221 /* guard against past and future API changes */
1222 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1223 if (s.mask & AUDIT_STATUS_ENABLED) {
1224 err = audit_set_enabled(s.enabled);
1225 if (err < 0)
1226 return err;
1228 if (s.mask & AUDIT_STATUS_FAILURE) {
1229 err = audit_set_failure(s.failure);
1230 if (err < 0)
1231 return err;
1233 if (s.mask & AUDIT_STATUS_PID) {
1234 /* NOTE: we are using the vnr PID functions below
1235 * because the s.pid value is relative to the
1236 * namespace of the caller; at present this
1237 * doesn't matter much since you can really only
1238 * run auditd from the initial pid namespace, but
1239 * something to keep in mind if this changes */
1240 pid_t new_pid = s.pid;
1241 pid_t auditd_pid;
1242 struct pid *req_pid = task_tgid(current);
1244 /* Sanity check - PID values must match. Setting
1245 * pid to 0 is how auditd ends auditing. */
1246 if (new_pid && (new_pid != pid_vnr(req_pid)))
1247 return -EINVAL;
1249 /* test the auditd connection */
1250 audit_replace(req_pid);
1252 auditd_pid = auditd_pid_vnr();
1253 if (auditd_pid) {
1254 /* replacing a healthy auditd is not allowed */
1255 if (new_pid) {
1256 audit_log_config_change("audit_pid",
1257 new_pid, auditd_pid, 0);
1258 return -EEXIST;
1260 /* only current auditd can unregister itself */
1261 if (pid_vnr(req_pid) != auditd_pid) {
1262 audit_log_config_change("audit_pid",
1263 new_pid, auditd_pid, 0);
1264 return -EACCES;
1268 if (new_pid) {
1269 /* register a new auditd connection */
1270 err = auditd_set(req_pid,
1271 NETLINK_CB(skb).portid,
1272 sock_net(NETLINK_CB(skb).sk));
1273 if (audit_enabled != AUDIT_OFF)
1274 audit_log_config_change("audit_pid",
1275 new_pid,
1276 auditd_pid,
1277 err ? 0 : 1);
1278 if (err)
1279 return err;
1281 /* try to process any backlog */
1282 wake_up_interruptible(&kauditd_wait);
1283 } else {
1284 if (audit_enabled != AUDIT_OFF)
1285 audit_log_config_change("audit_pid",
1286 new_pid,
1287 auditd_pid, 1);
1289 /* unregister the auditd connection */
1290 auditd_reset(NULL);
1293 if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1294 err = audit_set_rate_limit(s.rate_limit);
1295 if (err < 0)
1296 return err;
1298 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1299 err = audit_set_backlog_limit(s.backlog_limit);
1300 if (err < 0)
1301 return err;
1303 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1304 if (sizeof(s) > (size_t)nlh->nlmsg_len)
1305 return -EINVAL;
1306 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
1307 return -EINVAL;
1308 err = audit_set_backlog_wait_time(s.backlog_wait_time);
1309 if (err < 0)
1310 return err;
1312 if (s.mask == AUDIT_STATUS_LOST) {
1313 u32 lost = atomic_xchg(&audit_lost, 0);
1315 audit_log_config_change("lost", 0, lost, 1);
1316 return lost;
1318 break;
1320 case AUDIT_GET_FEATURE:
1321 err = audit_get_feature(skb);
1322 if (err)
1323 return err;
1324 break;
1325 case AUDIT_SET_FEATURE:
1326 err = audit_set_feature(skb);
1327 if (err)
1328 return err;
1329 break;
1330 case AUDIT_USER:
1331 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1332 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1333 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1334 return 0;
1336 err = audit_filter(msg_type, AUDIT_FILTER_USER);
1337 if (err == 1) { /* match or error */
1338 err = 0;
1339 if (msg_type == AUDIT_USER_TTY) {
1340 err = tty_audit_push();
1341 if (err)
1342 break;
1344 audit_log_common_recv_msg(&ab, msg_type);
1345 if (msg_type != AUDIT_USER_TTY)
1346 audit_log_format(ab, " msg='%.*s'",
1347 AUDIT_MESSAGE_TEXT_MAX,
1348 (char *)data);
1349 else {
1350 int size;
1352 audit_log_format(ab, " data=");
1353 size = nlmsg_len(nlh);
1354 if (size > 0 &&
1355 ((unsigned char *)data)[size - 1] == '\0')
1356 size--;
1357 audit_log_n_untrustedstring(ab, data, size);
1359 audit_log_end(ab);
1361 break;
1362 case AUDIT_ADD_RULE:
1363 case AUDIT_DEL_RULE:
1364 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
1365 return -EINVAL;
1366 if (audit_enabled == AUDIT_LOCKED) {
1367 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1368 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
1369 audit_log_end(ab);
1370 return -EPERM;
1372 err = audit_rule_change(msg_type, seq, data, nlmsg_len(nlh));
1373 break;
1374 case AUDIT_LIST_RULES:
1375 err = audit_list_rules_send(skb, seq);
1376 break;
1377 case AUDIT_TRIM:
1378 audit_trim_trees();
1379 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1380 audit_log_format(ab, " op=trim res=1");
1381 audit_log_end(ab);
1382 break;
1383 case AUDIT_MAKE_EQUIV: {
1384 void *bufp = data;
1385 u32 sizes[2];
1386 size_t msglen = nlmsg_len(nlh);
1387 char *old, *new;
1389 err = -EINVAL;
1390 if (msglen < 2 * sizeof(u32))
1391 break;
1392 memcpy(sizes, bufp, 2 * sizeof(u32));
1393 bufp += 2 * sizeof(u32);
1394 msglen -= 2 * sizeof(u32);
1395 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1396 if (IS_ERR(old)) {
1397 err = PTR_ERR(old);
1398 break;
1400 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1401 if (IS_ERR(new)) {
1402 err = PTR_ERR(new);
1403 kfree(old);
1404 break;
1406 /* OK, here comes... */
1407 err = audit_tag_tree(old, new);
1409 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1411 audit_log_format(ab, " op=make_equiv old=");
1412 audit_log_untrustedstring(ab, old);
1413 audit_log_format(ab, " new=");
1414 audit_log_untrustedstring(ab, new);
1415 audit_log_format(ab, " res=%d", !err);
1416 audit_log_end(ab);
1417 kfree(old);
1418 kfree(new);
1419 break;
1421 case AUDIT_SIGNAL_INFO:
1422 len = 0;
1423 if (audit_sig_sid) {
1424 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1425 if (err)
1426 return err;
1428 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1429 if (!sig_data) {
1430 if (audit_sig_sid)
1431 security_release_secctx(ctx, len);
1432 return -ENOMEM;
1434 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1435 sig_data->pid = audit_sig_pid;
1436 if (audit_sig_sid) {
1437 memcpy(sig_data->ctx, ctx, len);
1438 security_release_secctx(ctx, len);
1440 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1441 sig_data, sizeof(*sig_data) + len);
1442 kfree(sig_data);
1443 break;
1444 case AUDIT_TTY_GET: {
1445 struct audit_tty_status s;
1446 unsigned int t;
1448 t = READ_ONCE(current->signal->audit_tty);
1449 s.enabled = t & AUDIT_TTY_ENABLE;
1450 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1452 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1453 break;
1455 case AUDIT_TTY_SET: {
1456 struct audit_tty_status s, old;
1457 struct audit_buffer *ab;
1458 unsigned int t;
1460 memset(&s, 0, sizeof(s));
1461 /* guard against past and future API changes */
1462 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1463 /* check if new data is valid */
1464 if ((s.enabled != 0 && s.enabled != 1) ||
1465 (s.log_passwd != 0 && s.log_passwd != 1))
1466 err = -EINVAL;
1468 if (err)
1469 t = READ_ONCE(current->signal->audit_tty);
1470 else {
1471 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1472 t = xchg(&current->signal->audit_tty, t);
1474 old.enabled = t & AUDIT_TTY_ENABLE;
1475 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1477 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1478 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1479 " old-log_passwd=%d new-log_passwd=%d res=%d",
1480 old.enabled, s.enabled, old.log_passwd,
1481 s.log_passwd, !err);
1482 audit_log_end(ab);
1483 break;
1485 default:
1486 err = -EINVAL;
1487 break;
1490 return err < 0 ? err : 0;
1494 * audit_receive - receive messages from a netlink control socket
1495 * @skb: the message buffer
1497 * Parse the provided skb and deal with any messages that may be present,
1498 * malformed skbs are discarded.
1500 static void audit_receive(struct sk_buff *skb)
1502 struct nlmsghdr *nlh;
1504 * len MUST be signed for nlmsg_next to be able to dec it below 0
1505 * if the nlmsg_len was not aligned
1507 int len;
1508 int err;
1510 nlh = nlmsg_hdr(skb);
1511 len = skb->len;
1513 audit_ctl_lock();
1514 while (nlmsg_ok(nlh, len)) {
1515 err = audit_receive_msg(skb, nlh);
1516 /* if err or if this message says it wants a response */
1517 if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1518 netlink_ack(skb, nlh, err, NULL);
1520 nlh = nlmsg_next(nlh, &len);
1522 audit_ctl_unlock();
1525 /* Run custom bind function on netlink socket group connect or bind requests. */
1526 static int audit_bind(struct net *net, int group)
1528 if (!capable(CAP_AUDIT_READ))
1529 return -EPERM;
1531 return 0;
1534 static int __net_init audit_net_init(struct net *net)
1536 struct netlink_kernel_cfg cfg = {
1537 .input = audit_receive,
1538 .bind = audit_bind,
1539 .flags = NL_CFG_F_NONROOT_RECV,
1540 .groups = AUDIT_NLGRP_MAX,
1543 struct audit_net *aunet = net_generic(net, audit_net_id);
1545 aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1546 if (aunet->sk == NULL) {
1547 audit_panic("cannot initialize netlink socket in namespace");
1548 return -ENOMEM;
1550 aunet->sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1552 return 0;
1555 static void __net_exit audit_net_exit(struct net *net)
1557 struct audit_net *aunet = net_generic(net, audit_net_id);
1559 /* NOTE: you would think that we would want to check the auditd
1560 * connection and potentially reset it here if it lives in this
1561 * namespace, but since the auditd connection tracking struct holds a
1562 * reference to this namespace (see auditd_set()) we are only ever
1563 * going to get here after that connection has been released */
1565 netlink_kernel_release(aunet->sk);
1568 static struct pernet_operations audit_net_ops __net_initdata = {
1569 .init = audit_net_init,
1570 .exit = audit_net_exit,
1571 .id = &audit_net_id,
1572 .size = sizeof(struct audit_net),
1575 /* Initialize audit support at boot time. */
1576 static int __init audit_init(void)
1578 int i;
1580 if (audit_initialized == AUDIT_DISABLED)
1581 return 0;
1583 audit_buffer_cache = kmem_cache_create("audit_buffer",
1584 sizeof(struct audit_buffer),
1585 0, SLAB_PANIC, NULL);
1587 skb_queue_head_init(&audit_queue);
1588 skb_queue_head_init(&audit_retry_queue);
1589 skb_queue_head_init(&audit_hold_queue);
1591 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1592 INIT_LIST_HEAD(&audit_inode_hash[i]);
1594 mutex_init(&audit_cmd_mutex.lock);
1595 audit_cmd_mutex.owner = NULL;
1597 pr_info("initializing netlink subsys (%s)\n",
1598 audit_default ? "enabled" : "disabled");
1599 register_pernet_subsys(&audit_net_ops);
1601 audit_initialized = AUDIT_INITIALIZED;
1603 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1604 if (IS_ERR(kauditd_task)) {
1605 int err = PTR_ERR(kauditd_task);
1606 panic("audit: failed to start the kauditd thread (%d)\n", err);
1609 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
1610 "state=initialized audit_enabled=%u res=1",
1611 audit_enabled);
1613 return 0;
1615 postcore_initcall(audit_init);
1618 * Process kernel command-line parameter at boot time.
1619 * audit={0|off} or audit={1|on}.
1621 static int __init audit_enable(char *str)
1623 if (!strcasecmp(str, "off") || !strcmp(str, "0"))
1624 audit_default = AUDIT_OFF;
1625 else if (!strcasecmp(str, "on") || !strcmp(str, "1"))
1626 audit_default = AUDIT_ON;
1627 else {
1628 pr_err("audit: invalid 'audit' parameter value (%s)\n", str);
1629 audit_default = AUDIT_ON;
1632 if (audit_default == AUDIT_OFF)
1633 audit_initialized = AUDIT_DISABLED;
1634 if (audit_set_enabled(audit_default))
1635 pr_err("audit: error setting audit state (%d)\n",
1636 audit_default);
1638 pr_info("%s\n", audit_default ?
1639 "enabled (after initialization)" : "disabled (until reboot)");
1641 return 1;
1643 __setup("audit=", audit_enable);
1645 /* Process kernel command-line parameter at boot time.
1646 * audit_backlog_limit=<n> */
1647 static int __init audit_backlog_limit_set(char *str)
1649 u32 audit_backlog_limit_arg;
1651 pr_info("audit_backlog_limit: ");
1652 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1653 pr_cont("using default of %u, unable to parse %s\n",
1654 audit_backlog_limit, str);
1655 return 1;
1658 audit_backlog_limit = audit_backlog_limit_arg;
1659 pr_cont("%d\n", audit_backlog_limit);
1661 return 1;
1663 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1665 static void audit_buffer_free(struct audit_buffer *ab)
1667 if (!ab)
1668 return;
1670 kfree_skb(ab->skb);
1671 kmem_cache_free(audit_buffer_cache, ab);
1674 static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx,
1675 gfp_t gfp_mask, int type)
1677 struct audit_buffer *ab;
1679 ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask);
1680 if (!ab)
1681 return NULL;
1683 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1684 if (!ab->skb)
1685 goto err;
1686 if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
1687 goto err;
1689 ab->ctx = ctx;
1690 ab->gfp_mask = gfp_mask;
1692 return ab;
1694 err:
1695 audit_buffer_free(ab);
1696 return NULL;
1700 * audit_serial - compute a serial number for the audit record
1702 * Compute a serial number for the audit record. Audit records are
1703 * written to user-space as soon as they are generated, so a complete
1704 * audit record may be written in several pieces. The timestamp of the
1705 * record and this serial number are used by the user-space tools to
1706 * determine which pieces belong to the same audit record. The
1707 * (timestamp,serial) tuple is unique for each syscall and is live from
1708 * syscall entry to syscall exit.
1710 * NOTE: Another possibility is to store the formatted records off the
1711 * audit context (for those records that have a context), and emit them
1712 * all at syscall exit. However, this could delay the reporting of
1713 * significant errors until syscall exit (or never, if the system
1714 * halts).
1716 unsigned int audit_serial(void)
1718 static atomic_t serial = ATOMIC_INIT(0);
1720 return atomic_add_return(1, &serial);
1723 static inline void audit_get_stamp(struct audit_context *ctx,
1724 struct timespec64 *t, unsigned int *serial)
1726 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1727 *t = current_kernel_time64();
1728 *serial = audit_serial();
1733 * audit_log_start - obtain an audit buffer
1734 * @ctx: audit_context (may be NULL)
1735 * @gfp_mask: type of allocation
1736 * @type: audit message type
1738 * Returns audit_buffer pointer on success or NULL on error.
1740 * Obtain an audit buffer. This routine does locking to obtain the
1741 * audit buffer, but then no locking is required for calls to
1742 * audit_log_*format. If the task (ctx) is a task that is currently in a
1743 * syscall, then the syscall is marked as auditable and an audit record
1744 * will be written at syscall exit. If there is no associated task, then
1745 * task context (ctx) should be NULL.
1747 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1748 int type)
1750 struct audit_buffer *ab;
1751 struct timespec64 t;
1752 unsigned int uninitialized_var(serial);
1754 if (audit_initialized != AUDIT_INITIALIZED)
1755 return NULL;
1757 if (unlikely(!audit_filter(type, AUDIT_FILTER_TYPE)))
1758 return NULL;
1760 /* NOTE: don't ever fail/sleep on these two conditions:
1761 * 1. auditd generated record - since we need auditd to drain the
1762 * queue; also, when we are checking for auditd, compare PIDs using
1763 * task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1764 * using a PID anchored in the caller's namespace
1765 * 2. generator holding the audit_cmd_mutex - we don't want to block
1766 * while holding the mutex */
1767 if (!(auditd_test_task(current) || audit_ctl_owner_current())) {
1768 long stime = audit_backlog_wait_time;
1770 while (audit_backlog_limit &&
1771 (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1772 /* wake kauditd to try and flush the queue */
1773 wake_up_interruptible(&kauditd_wait);
1775 /* sleep if we are allowed and we haven't exhausted our
1776 * backlog wait limit */
1777 if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
1778 DECLARE_WAITQUEUE(wait, current);
1780 add_wait_queue_exclusive(&audit_backlog_wait,
1781 &wait);
1782 set_current_state(TASK_UNINTERRUPTIBLE);
1783 stime = schedule_timeout(stime);
1784 remove_wait_queue(&audit_backlog_wait, &wait);
1785 } else {
1786 if (audit_rate_check() && printk_ratelimit())
1787 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1788 skb_queue_len(&audit_queue),
1789 audit_backlog_limit);
1790 audit_log_lost("backlog limit exceeded");
1791 return NULL;
1796 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1797 if (!ab) {
1798 audit_log_lost("out of memory in audit_log_start");
1799 return NULL;
1802 audit_get_stamp(ab->ctx, &t, &serial);
1803 audit_log_format(ab, "audit(%llu.%03lu:%u): ",
1804 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial);
1806 return ab;
1810 * audit_expand - expand skb in the audit buffer
1811 * @ab: audit_buffer
1812 * @extra: space to add at tail of the skb
1814 * Returns 0 (no space) on failed expansion, or available space if
1815 * successful.
1817 static inline int audit_expand(struct audit_buffer *ab, int extra)
1819 struct sk_buff *skb = ab->skb;
1820 int oldtail = skb_tailroom(skb);
1821 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1822 int newtail = skb_tailroom(skb);
1824 if (ret < 0) {
1825 audit_log_lost("out of memory in audit_expand");
1826 return 0;
1829 skb->truesize += newtail - oldtail;
1830 return newtail;
1834 * Format an audit message into the audit buffer. If there isn't enough
1835 * room in the audit buffer, more room will be allocated and vsnprint
1836 * will be called a second time. Currently, we assume that a printk
1837 * can't format message larger than 1024 bytes, so we don't either.
1839 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1840 va_list args)
1842 int len, avail;
1843 struct sk_buff *skb;
1844 va_list args2;
1846 if (!ab)
1847 return;
1849 BUG_ON(!ab->skb);
1850 skb = ab->skb;
1851 avail = skb_tailroom(skb);
1852 if (avail == 0) {
1853 avail = audit_expand(ab, AUDIT_BUFSIZ);
1854 if (!avail)
1855 goto out;
1857 va_copy(args2, args);
1858 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1859 if (len >= avail) {
1860 /* The printk buffer is 1024 bytes long, so if we get
1861 * here and AUDIT_BUFSIZ is at least 1024, then we can
1862 * log everything that printk could have logged. */
1863 avail = audit_expand(ab,
1864 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1865 if (!avail)
1866 goto out_va_end;
1867 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1869 if (len > 0)
1870 skb_put(skb, len);
1871 out_va_end:
1872 va_end(args2);
1873 out:
1874 return;
1878 * audit_log_format - format a message into the audit buffer.
1879 * @ab: audit_buffer
1880 * @fmt: format string
1881 * @...: optional parameters matching @fmt string
1883 * All the work is done in audit_log_vformat.
1885 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1887 va_list args;
1889 if (!ab)
1890 return;
1891 va_start(args, fmt);
1892 audit_log_vformat(ab, fmt, args);
1893 va_end(args);
1897 * audit_log_n_hex - convert a buffer to hex and append it to the audit skb
1898 * @ab: the audit_buffer
1899 * @buf: buffer to convert to hex
1900 * @len: length of @buf to be converted
1902 * No return value; failure to expand is silently ignored.
1904 * This function will take the passed buf and convert it into a string of
1905 * ascii hex digits. The new string is placed onto the skb.
1907 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1908 size_t len)
1910 int i, avail, new_len;
1911 unsigned char *ptr;
1912 struct sk_buff *skb;
1914 if (!ab)
1915 return;
1917 BUG_ON(!ab->skb);
1918 skb = ab->skb;
1919 avail = skb_tailroom(skb);
1920 new_len = len<<1;
1921 if (new_len >= avail) {
1922 /* Round the buffer request up to the next multiple */
1923 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1924 avail = audit_expand(ab, new_len);
1925 if (!avail)
1926 return;
1929 ptr = skb_tail_pointer(skb);
1930 for (i = 0; i < len; i++)
1931 ptr = hex_byte_pack_upper(ptr, buf[i]);
1932 *ptr = 0;
1933 skb_put(skb, len << 1); /* new string is twice the old string */
1937 * Format a string of no more than slen characters into the audit buffer,
1938 * enclosed in quote marks.
1940 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1941 size_t slen)
1943 int avail, new_len;
1944 unsigned char *ptr;
1945 struct sk_buff *skb;
1947 if (!ab)
1948 return;
1950 BUG_ON(!ab->skb);
1951 skb = ab->skb;
1952 avail = skb_tailroom(skb);
1953 new_len = slen + 3; /* enclosing quotes + null terminator */
1954 if (new_len > avail) {
1955 avail = audit_expand(ab, new_len);
1956 if (!avail)
1957 return;
1959 ptr = skb_tail_pointer(skb);
1960 *ptr++ = '"';
1961 memcpy(ptr, string, slen);
1962 ptr += slen;
1963 *ptr++ = '"';
1964 *ptr = 0;
1965 skb_put(skb, slen + 2); /* don't include null terminator */
1969 * audit_string_contains_control - does a string need to be logged in hex
1970 * @string: string to be checked
1971 * @len: max length of the string to check
1973 bool audit_string_contains_control(const char *string, size_t len)
1975 const unsigned char *p;
1976 for (p = string; p < (const unsigned char *)string + len; p++) {
1977 if (*p == '"' || *p < 0x21 || *p > 0x7e)
1978 return true;
1980 return false;
1984 * audit_log_n_untrustedstring - log a string that may contain random characters
1985 * @ab: audit_buffer
1986 * @len: length of string (not including trailing null)
1987 * @string: string to be logged
1989 * This code will escape a string that is passed to it if the string
1990 * contains a control character, unprintable character, double quote mark,
1991 * or a space. Unescaped strings will start and end with a double quote mark.
1992 * Strings that are escaped are printed in hex (2 digits per char).
1994 * The caller specifies the number of characters in the string to log, which may
1995 * or may not be the entire string.
1997 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1998 size_t len)
2000 if (audit_string_contains_control(string, len))
2001 audit_log_n_hex(ab, string, len);
2002 else
2003 audit_log_n_string(ab, string, len);
2007 * audit_log_untrustedstring - log a string that may contain random characters
2008 * @ab: audit_buffer
2009 * @string: string to be logged
2011 * Same as audit_log_n_untrustedstring(), except that strlen is used to
2012 * determine string length.
2014 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
2016 audit_log_n_untrustedstring(ab, string, strlen(string));
2019 /* This is a helper-function to print the escaped d_path */
2020 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
2021 const struct path *path)
2023 char *p, *pathname;
2025 if (prefix)
2026 audit_log_format(ab, "%s", prefix);
2028 /* We will allow 11 spaces for ' (deleted)' to be appended */
2029 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
2030 if (!pathname) {
2031 audit_log_string(ab, "<no_memory>");
2032 return;
2034 p = d_path(path, pathname, PATH_MAX+11);
2035 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
2036 /* FIXME: can we save some information here? */
2037 audit_log_string(ab, "<too_long>");
2038 } else
2039 audit_log_untrustedstring(ab, p);
2040 kfree(pathname);
2043 void audit_log_session_info(struct audit_buffer *ab)
2045 unsigned int sessionid = audit_get_sessionid(current);
2046 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
2048 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
2051 void audit_log_key(struct audit_buffer *ab, char *key)
2053 audit_log_format(ab, " key=");
2054 if (key)
2055 audit_log_untrustedstring(ab, key);
2056 else
2057 audit_log_format(ab, "(null)");
2060 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
2062 int i;
2064 audit_log_format(ab, " %s=", prefix);
2065 CAP_FOR_EACH_U32(i) {
2066 audit_log_format(ab, "%08x",
2067 cap->cap[CAP_LAST_U32 - i]);
2071 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
2073 audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
2074 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
2075 audit_log_format(ab, " cap_fe=%d cap_fver=%x",
2076 name->fcap.fE, name->fcap_ver);
2079 static inline int audit_copy_fcaps(struct audit_names *name,
2080 const struct dentry *dentry)
2082 struct cpu_vfs_cap_data caps;
2083 int rc;
2085 if (!dentry)
2086 return 0;
2088 rc = get_vfs_caps_from_disk(dentry, &caps);
2089 if (rc)
2090 return rc;
2092 name->fcap.permitted = caps.permitted;
2093 name->fcap.inheritable = caps.inheritable;
2094 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2095 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2096 VFS_CAP_REVISION_SHIFT;
2098 return 0;
2101 /* Copy inode data into an audit_names. */
2102 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2103 struct inode *inode)
2105 name->ino = inode->i_ino;
2106 name->dev = inode->i_sb->s_dev;
2107 name->mode = inode->i_mode;
2108 name->uid = inode->i_uid;
2109 name->gid = inode->i_gid;
2110 name->rdev = inode->i_rdev;
2111 security_inode_getsecid(inode, &name->osid);
2112 audit_copy_fcaps(name, dentry);
2116 * audit_log_name - produce AUDIT_PATH record from struct audit_names
2117 * @context: audit_context for the task
2118 * @n: audit_names structure with reportable details
2119 * @path: optional path to report instead of audit_names->name
2120 * @record_num: record number to report when handling a list of names
2121 * @call_panic: optional pointer to int that will be updated if secid fails
2123 void audit_log_name(struct audit_context *context, struct audit_names *n,
2124 const struct path *path, int record_num, int *call_panic)
2126 struct audit_buffer *ab;
2127 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
2128 if (!ab)
2129 return;
2131 audit_log_format(ab, "item=%d", record_num);
2133 if (path)
2134 audit_log_d_path(ab, " name=", path);
2135 else if (n->name) {
2136 switch (n->name_len) {
2137 case AUDIT_NAME_FULL:
2138 /* log the full path */
2139 audit_log_format(ab, " name=");
2140 audit_log_untrustedstring(ab, n->name->name);
2141 break;
2142 case 0:
2143 /* name was specified as a relative path and the
2144 * directory component is the cwd */
2145 audit_log_d_path(ab, " name=", &context->pwd);
2146 break;
2147 default:
2148 /* log the name's directory component */
2149 audit_log_format(ab, " name=");
2150 audit_log_n_untrustedstring(ab, n->name->name,
2151 n->name_len);
2153 } else
2154 audit_log_format(ab, " name=(null)");
2156 if (n->ino != AUDIT_INO_UNSET)
2157 audit_log_format(ab, " inode=%lu"
2158 " dev=%02x:%02x mode=%#ho"
2159 " ouid=%u ogid=%u rdev=%02x:%02x",
2160 n->ino,
2161 MAJOR(n->dev),
2162 MINOR(n->dev),
2163 n->mode,
2164 from_kuid(&init_user_ns, n->uid),
2165 from_kgid(&init_user_ns, n->gid),
2166 MAJOR(n->rdev),
2167 MINOR(n->rdev));
2168 if (n->osid != 0) {
2169 char *ctx = NULL;
2170 u32 len;
2171 if (security_secid_to_secctx(
2172 n->osid, &ctx, &len)) {
2173 audit_log_format(ab, " osid=%u", n->osid);
2174 if (call_panic)
2175 *call_panic = 2;
2176 } else {
2177 audit_log_format(ab, " obj=%s", ctx);
2178 security_release_secctx(ctx, len);
2182 /* log the audit_names record type */
2183 audit_log_format(ab, " nametype=");
2184 switch(n->type) {
2185 case AUDIT_TYPE_NORMAL:
2186 audit_log_format(ab, "NORMAL");
2187 break;
2188 case AUDIT_TYPE_PARENT:
2189 audit_log_format(ab, "PARENT");
2190 break;
2191 case AUDIT_TYPE_CHILD_DELETE:
2192 audit_log_format(ab, "DELETE");
2193 break;
2194 case AUDIT_TYPE_CHILD_CREATE:
2195 audit_log_format(ab, "CREATE");
2196 break;
2197 default:
2198 audit_log_format(ab, "UNKNOWN");
2199 break;
2202 audit_log_fcaps(ab, n);
2203 audit_log_end(ab);
2206 int audit_log_task_context(struct audit_buffer *ab)
2208 char *ctx = NULL;
2209 unsigned len;
2210 int error;
2211 u32 sid;
2213 security_task_getsecid(current, &sid);
2214 if (!sid)
2215 return 0;
2217 error = security_secid_to_secctx(sid, &ctx, &len);
2218 if (error) {
2219 if (error != -EINVAL)
2220 goto error_path;
2221 return 0;
2224 audit_log_format(ab, " subj=%s", ctx);
2225 security_release_secctx(ctx, len);
2226 return 0;
2228 error_path:
2229 audit_panic("error in audit_log_task_context");
2230 return error;
2232 EXPORT_SYMBOL(audit_log_task_context);
2234 void audit_log_d_path_exe(struct audit_buffer *ab,
2235 struct mm_struct *mm)
2237 struct file *exe_file;
2239 if (!mm)
2240 goto out_null;
2242 exe_file = get_mm_exe_file(mm);
2243 if (!exe_file)
2244 goto out_null;
2246 audit_log_d_path(ab, " exe=", &exe_file->f_path);
2247 fput(exe_file);
2248 return;
2249 out_null:
2250 audit_log_format(ab, " exe=(null)");
2253 struct tty_struct *audit_get_tty(struct task_struct *tsk)
2255 struct tty_struct *tty = NULL;
2256 unsigned long flags;
2258 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2259 if (tsk->signal)
2260 tty = tty_kref_get(tsk->signal->tty);
2261 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2262 return tty;
2265 void audit_put_tty(struct tty_struct *tty)
2267 tty_kref_put(tty);
2270 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
2272 const struct cred *cred;
2273 char comm[sizeof(tsk->comm)];
2274 struct tty_struct *tty;
2276 if (!ab)
2277 return;
2279 /* tsk == current */
2280 cred = current_cred();
2281 tty = audit_get_tty(tsk);
2282 audit_log_format(ab,
2283 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
2284 " euid=%u suid=%u fsuid=%u"
2285 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2286 task_ppid_nr(tsk),
2287 task_tgid_nr(tsk),
2288 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
2289 from_kuid(&init_user_ns, cred->uid),
2290 from_kgid(&init_user_ns, cred->gid),
2291 from_kuid(&init_user_ns, cred->euid),
2292 from_kuid(&init_user_ns, cred->suid),
2293 from_kuid(&init_user_ns, cred->fsuid),
2294 from_kgid(&init_user_ns, cred->egid),
2295 from_kgid(&init_user_ns, cred->sgid),
2296 from_kgid(&init_user_ns, cred->fsgid),
2297 tty ? tty_name(tty) : "(none)",
2298 audit_get_sessionid(tsk));
2299 audit_put_tty(tty);
2300 audit_log_format(ab, " comm=");
2301 audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
2302 audit_log_d_path_exe(ab, tsk->mm);
2303 audit_log_task_context(ab);
2305 EXPORT_SYMBOL(audit_log_task_info);
2308 * audit_log_link_denied - report a link restriction denial
2309 * @operation: specific link operation
2311 void audit_log_link_denied(const char *operation)
2313 struct audit_buffer *ab;
2315 if (!audit_enabled || audit_dummy_context())
2316 return;
2318 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
2319 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_LINK);
2320 if (!ab)
2321 return;
2322 audit_log_format(ab, "op=%s", operation);
2323 audit_log_task_info(ab, current);
2324 audit_log_format(ab, " res=0");
2325 audit_log_end(ab);
2329 * audit_log_end - end one audit record
2330 * @ab: the audit_buffer
2332 * We can not do a netlink send inside an irq context because it blocks (last
2333 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2334 * queue and a tasklet is scheduled to remove them from the queue outside the
2335 * irq context. May be called in any context.
2337 void audit_log_end(struct audit_buffer *ab)
2339 struct sk_buff *skb;
2340 struct nlmsghdr *nlh;
2342 if (!ab)
2343 return;
2345 if (audit_rate_check()) {
2346 skb = ab->skb;
2347 ab->skb = NULL;
2349 /* setup the netlink header, see the comments in
2350 * kauditd_send_multicast_skb() for length quirks */
2351 nlh = nlmsg_hdr(skb);
2352 nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2354 /* queue the netlink packet and poke the kauditd thread */
2355 skb_queue_tail(&audit_queue, skb);
2356 wake_up_interruptible(&kauditd_wait);
2357 } else
2358 audit_log_lost("rate limit exceeded");
2360 audit_buffer_free(ab);
2364 * audit_log - Log an audit record
2365 * @ctx: audit context
2366 * @gfp_mask: type of allocation
2367 * @type: audit message type
2368 * @fmt: format string to use
2369 * @...: variable parameters matching the format string
2371 * This is a convenience function that calls audit_log_start,
2372 * audit_log_vformat, and audit_log_end. It may be called
2373 * in any context.
2375 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2376 const char *fmt, ...)
2378 struct audit_buffer *ab;
2379 va_list args;
2381 ab = audit_log_start(ctx, gfp_mask, type);
2382 if (ab) {
2383 va_start(args, fmt);
2384 audit_log_vformat(ab, fmt, args);
2385 va_end(args);
2386 audit_log_end(ab);
2390 EXPORT_SYMBOL(audit_log_start);
2391 EXPORT_SYMBOL(audit_log_end);
2392 EXPORT_SYMBOL(audit_log_format);
2393 EXPORT_SYMBOL(audit_log);