4 * Copyright (c) 1999-2002 Vojtech Pavlik
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published by
10 * the Free Software Foundation.
13 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
15 #include <linux/init.h>
16 #include <linux/types.h>
17 #include <linux/idr.h>
18 #include <linux/input/mt.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/random.h>
22 #include <linux/major.h>
23 #include <linux/proc_fs.h>
24 #include <linux/sched.h>
25 #include <linux/seq_file.h>
26 #include <linux/poll.h>
27 #include <linux/device.h>
28 #include <linux/mutex.h>
29 #include <linux/rcupdate.h>
30 #include "input-compat.h"
32 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
33 MODULE_DESCRIPTION("Input core");
34 MODULE_LICENSE("GPL");
36 #define INPUT_MAX_CHAR_DEVICES 1024
37 #define INPUT_FIRST_DYNAMIC_DEV 256
38 static DEFINE_IDA(input_ida
);
40 static LIST_HEAD(input_dev_list
);
41 static LIST_HEAD(input_handler_list
);
44 * input_mutex protects access to both input_dev_list and input_handler_list.
45 * This also causes input_[un]register_device and input_[un]register_handler
46 * be mutually exclusive which simplifies locking in drivers implementing
49 static DEFINE_MUTEX(input_mutex
);
51 static const struct input_value input_value_sync
= { EV_SYN
, SYN_REPORT
, 1 };
53 static inline int is_event_supported(unsigned int code
,
54 unsigned long *bm
, unsigned int max
)
56 return code
<= max
&& test_bit(code
, bm
);
59 static int input_defuzz_abs_event(int value
, int old_val
, int fuzz
)
62 if (value
> old_val
- fuzz
/ 2 && value
< old_val
+ fuzz
/ 2)
65 if (value
> old_val
- fuzz
&& value
< old_val
+ fuzz
)
66 return (old_val
* 3 + value
) / 4;
68 if (value
> old_val
- fuzz
* 2 && value
< old_val
+ fuzz
* 2)
69 return (old_val
+ value
) / 2;
75 static void input_start_autorepeat(struct input_dev
*dev
, int code
)
77 if (test_bit(EV_REP
, dev
->evbit
) &&
78 dev
->rep
[REP_PERIOD
] && dev
->rep
[REP_DELAY
] &&
80 dev
->repeat_key
= code
;
81 mod_timer(&dev
->timer
,
82 jiffies
+ msecs_to_jiffies(dev
->rep
[REP_DELAY
]));
86 static void input_stop_autorepeat(struct input_dev
*dev
)
88 del_timer(&dev
->timer
);
92 * Pass event first through all filters and then, if event has not been
93 * filtered out, through all open handles. This function is called with
94 * dev->event_lock held and interrupts disabled.
96 static unsigned int input_to_handler(struct input_handle
*handle
,
97 struct input_value
*vals
, unsigned int count
)
99 struct input_handler
*handler
= handle
->handler
;
100 struct input_value
*end
= vals
;
101 struct input_value
*v
;
103 if (handler
->filter
) {
104 for (v
= vals
; v
!= vals
+ count
; v
++) {
105 if (handler
->filter(handle
, v
->type
, v
->code
, v
->value
))
118 handler
->events(handle
, vals
, count
);
119 else if (handler
->event
)
120 for (v
= vals
; v
!= vals
+ count
; v
++)
121 handler
->event(handle
, v
->type
, v
->code
, v
->value
);
127 * Pass values first through all filters and then, if event has not been
128 * filtered out, through all open handles. This function is called with
129 * dev->event_lock held and interrupts disabled.
131 static void input_pass_values(struct input_dev
*dev
,
132 struct input_value
*vals
, unsigned int count
)
134 struct input_handle
*handle
;
135 struct input_value
*v
;
142 handle
= rcu_dereference(dev
->grab
);
144 count
= input_to_handler(handle
, vals
, count
);
146 list_for_each_entry_rcu(handle
, &dev
->h_list
, d_node
)
148 count
= input_to_handler(handle
, vals
, count
);
156 add_input_randomness(vals
->type
, vals
->code
, vals
->value
);
158 /* trigger auto repeat for key events */
159 if (test_bit(EV_REP
, dev
->evbit
) && test_bit(EV_KEY
, dev
->evbit
)) {
160 for (v
= vals
; v
!= vals
+ count
; v
++) {
161 if (v
->type
== EV_KEY
&& v
->value
!= 2) {
163 input_start_autorepeat(dev
, v
->code
);
165 input_stop_autorepeat(dev
);
171 static void input_pass_event(struct input_dev
*dev
,
172 unsigned int type
, unsigned int code
, int value
)
174 struct input_value vals
[] = { { type
, code
, value
} };
176 input_pass_values(dev
, vals
, ARRAY_SIZE(vals
));
180 * Generate software autorepeat event. Note that we take
181 * dev->event_lock here to avoid racing with input_event
182 * which may cause keys get "stuck".
184 static void input_repeat_key(unsigned long data
)
186 struct input_dev
*dev
= (void *) data
;
189 spin_lock_irqsave(&dev
->event_lock
, flags
);
191 if (test_bit(dev
->repeat_key
, dev
->key
) &&
192 is_event_supported(dev
->repeat_key
, dev
->keybit
, KEY_MAX
)) {
193 struct input_value vals
[] = {
194 { EV_KEY
, dev
->repeat_key
, 2 },
198 input_pass_values(dev
, vals
, ARRAY_SIZE(vals
));
200 if (dev
->rep
[REP_PERIOD
])
201 mod_timer(&dev
->timer
, jiffies
+
202 msecs_to_jiffies(dev
->rep
[REP_PERIOD
]));
205 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
208 #define INPUT_IGNORE_EVENT 0
209 #define INPUT_PASS_TO_HANDLERS 1
210 #define INPUT_PASS_TO_DEVICE 2
212 #define INPUT_FLUSH 8
213 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
215 static int input_handle_abs_event(struct input_dev
*dev
,
216 unsigned int code
, int *pval
)
218 struct input_mt
*mt
= dev
->mt
;
222 if (code
== ABS_MT_SLOT
) {
224 * "Stage" the event; we'll flush it later, when we
225 * get actual touch data.
227 if (mt
&& *pval
>= 0 && *pval
< mt
->num_slots
)
230 return INPUT_IGNORE_EVENT
;
233 is_mt_event
= input_is_mt_value(code
);
236 pold
= &dev
->absinfo
[code
].value
;
238 pold
= &mt
->slots
[mt
->slot
].abs
[code
- ABS_MT_FIRST
];
241 * Bypass filtering for multi-touch events when
242 * not employing slots.
248 *pval
= input_defuzz_abs_event(*pval
, *pold
,
249 dev
->absinfo
[code
].fuzz
);
251 return INPUT_IGNORE_EVENT
;
256 /* Flush pending "slot" event */
257 if (is_mt_event
&& mt
&& mt
->slot
!= input_abs_get_val(dev
, ABS_MT_SLOT
)) {
258 input_abs_set_val(dev
, ABS_MT_SLOT
, mt
->slot
);
259 return INPUT_PASS_TO_HANDLERS
| INPUT_SLOT
;
262 return INPUT_PASS_TO_HANDLERS
;
265 static int input_get_disposition(struct input_dev
*dev
,
266 unsigned int type
, unsigned int code
, int *pval
)
268 int disposition
= INPUT_IGNORE_EVENT
;
276 disposition
= INPUT_PASS_TO_ALL
;
280 disposition
= INPUT_PASS_TO_HANDLERS
| INPUT_FLUSH
;
283 disposition
= INPUT_PASS_TO_HANDLERS
;
289 if (is_event_supported(code
, dev
->keybit
, KEY_MAX
)) {
291 /* auto-repeat bypasses state updates */
293 disposition
= INPUT_PASS_TO_HANDLERS
;
297 if (!!test_bit(code
, dev
->key
) != !!value
) {
299 __change_bit(code
, dev
->key
);
300 disposition
= INPUT_PASS_TO_HANDLERS
;
306 if (is_event_supported(code
, dev
->swbit
, SW_MAX
) &&
307 !!test_bit(code
, dev
->sw
) != !!value
) {
309 __change_bit(code
, dev
->sw
);
310 disposition
= INPUT_PASS_TO_HANDLERS
;
315 if (is_event_supported(code
, dev
->absbit
, ABS_MAX
))
316 disposition
= input_handle_abs_event(dev
, code
, &value
);
321 if (is_event_supported(code
, dev
->relbit
, REL_MAX
) && value
)
322 disposition
= INPUT_PASS_TO_HANDLERS
;
327 if (is_event_supported(code
, dev
->mscbit
, MSC_MAX
))
328 disposition
= INPUT_PASS_TO_ALL
;
333 if (is_event_supported(code
, dev
->ledbit
, LED_MAX
) &&
334 !!test_bit(code
, dev
->led
) != !!value
) {
336 __change_bit(code
, dev
->led
);
337 disposition
= INPUT_PASS_TO_ALL
;
342 if (is_event_supported(code
, dev
->sndbit
, SND_MAX
)) {
344 if (!!test_bit(code
, dev
->snd
) != !!value
)
345 __change_bit(code
, dev
->snd
);
346 disposition
= INPUT_PASS_TO_ALL
;
351 if (code
<= REP_MAX
&& value
>= 0 && dev
->rep
[code
] != value
) {
352 dev
->rep
[code
] = value
;
353 disposition
= INPUT_PASS_TO_ALL
;
359 disposition
= INPUT_PASS_TO_ALL
;
363 disposition
= INPUT_PASS_TO_ALL
;
371 static void input_handle_event(struct input_dev
*dev
,
372 unsigned int type
, unsigned int code
, int value
)
376 disposition
= input_get_disposition(dev
, type
, code
, &value
);
378 if ((disposition
& INPUT_PASS_TO_DEVICE
) && dev
->event
)
379 dev
->event(dev
, type
, code
, value
);
384 if (disposition
& INPUT_PASS_TO_HANDLERS
) {
385 struct input_value
*v
;
387 if (disposition
& INPUT_SLOT
) {
388 v
= &dev
->vals
[dev
->num_vals
++];
390 v
->code
= ABS_MT_SLOT
;
391 v
->value
= dev
->mt
->slot
;
394 v
= &dev
->vals
[dev
->num_vals
++];
400 if (disposition
& INPUT_FLUSH
) {
401 if (dev
->num_vals
>= 2)
402 input_pass_values(dev
, dev
->vals
, dev
->num_vals
);
404 } else if (dev
->num_vals
>= dev
->max_vals
- 2) {
405 dev
->vals
[dev
->num_vals
++] = input_value_sync
;
406 input_pass_values(dev
, dev
->vals
, dev
->num_vals
);
413 * input_event() - report new input event
414 * @dev: device that generated the event
415 * @type: type of the event
417 * @value: value of the event
419 * This function should be used by drivers implementing various input
420 * devices to report input events. See also input_inject_event().
422 * NOTE: input_event() may be safely used right after input device was
423 * allocated with input_allocate_device(), even before it is registered
424 * with input_register_device(), but the event will not reach any of the
425 * input handlers. Such early invocation of input_event() may be used
426 * to 'seed' initial state of a switch or initial position of absolute
429 void input_event(struct input_dev
*dev
,
430 unsigned int type
, unsigned int code
, int value
)
434 if (is_event_supported(type
, dev
->evbit
, EV_MAX
)) {
436 spin_lock_irqsave(&dev
->event_lock
, flags
);
437 input_handle_event(dev
, type
, code
, value
);
438 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
441 EXPORT_SYMBOL(input_event
);
444 * input_inject_event() - send input event from input handler
445 * @handle: input handle to send event through
446 * @type: type of the event
448 * @value: value of the event
450 * Similar to input_event() but will ignore event if device is
451 * "grabbed" and handle injecting event is not the one that owns
454 void input_inject_event(struct input_handle
*handle
,
455 unsigned int type
, unsigned int code
, int value
)
457 struct input_dev
*dev
= handle
->dev
;
458 struct input_handle
*grab
;
461 if (is_event_supported(type
, dev
->evbit
, EV_MAX
)) {
462 spin_lock_irqsave(&dev
->event_lock
, flags
);
465 grab
= rcu_dereference(dev
->grab
);
466 if (!grab
|| grab
== handle
)
467 input_handle_event(dev
, type
, code
, value
);
470 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
473 EXPORT_SYMBOL(input_inject_event
);
476 * input_alloc_absinfo - allocates array of input_absinfo structs
477 * @dev: the input device emitting absolute events
479 * If the absinfo struct the caller asked for is already allocated, this
480 * functions will not do anything.
482 void input_alloc_absinfo(struct input_dev
*dev
)
485 dev
->absinfo
= kcalloc(ABS_CNT
, sizeof(struct input_absinfo
),
488 WARN(!dev
->absinfo
, "%s(): kcalloc() failed?\n", __func__
);
490 EXPORT_SYMBOL(input_alloc_absinfo
);
492 void input_set_abs_params(struct input_dev
*dev
, unsigned int axis
,
493 int min
, int max
, int fuzz
, int flat
)
495 struct input_absinfo
*absinfo
;
497 input_alloc_absinfo(dev
);
501 absinfo
= &dev
->absinfo
[axis
];
502 absinfo
->minimum
= min
;
503 absinfo
->maximum
= max
;
504 absinfo
->fuzz
= fuzz
;
505 absinfo
->flat
= flat
;
507 __set_bit(EV_ABS
, dev
->evbit
);
508 __set_bit(axis
, dev
->absbit
);
510 EXPORT_SYMBOL(input_set_abs_params
);
514 * input_grab_device - grabs device for exclusive use
515 * @handle: input handle that wants to own the device
517 * When a device is grabbed by an input handle all events generated by
518 * the device are delivered only to this handle. Also events injected
519 * by other input handles are ignored while device is grabbed.
521 int input_grab_device(struct input_handle
*handle
)
523 struct input_dev
*dev
= handle
->dev
;
526 retval
= mutex_lock_interruptible(&dev
->mutex
);
535 rcu_assign_pointer(dev
->grab
, handle
);
538 mutex_unlock(&dev
->mutex
);
541 EXPORT_SYMBOL(input_grab_device
);
543 static void __input_release_device(struct input_handle
*handle
)
545 struct input_dev
*dev
= handle
->dev
;
546 struct input_handle
*grabber
;
548 grabber
= rcu_dereference_protected(dev
->grab
,
549 lockdep_is_held(&dev
->mutex
));
550 if (grabber
== handle
) {
551 rcu_assign_pointer(dev
->grab
, NULL
);
552 /* Make sure input_pass_event() notices that grab is gone */
555 list_for_each_entry(handle
, &dev
->h_list
, d_node
)
556 if (handle
->open
&& handle
->handler
->start
)
557 handle
->handler
->start(handle
);
562 * input_release_device - release previously grabbed device
563 * @handle: input handle that owns the device
565 * Releases previously grabbed device so that other input handles can
566 * start receiving input events. Upon release all handlers attached
567 * to the device have their start() method called so they have a change
568 * to synchronize device state with the rest of the system.
570 void input_release_device(struct input_handle
*handle
)
572 struct input_dev
*dev
= handle
->dev
;
574 mutex_lock(&dev
->mutex
);
575 __input_release_device(handle
);
576 mutex_unlock(&dev
->mutex
);
578 EXPORT_SYMBOL(input_release_device
);
581 * input_open_device - open input device
582 * @handle: handle through which device is being accessed
584 * This function should be called by input handlers when they
585 * want to start receive events from given input device.
587 int input_open_device(struct input_handle
*handle
)
589 struct input_dev
*dev
= handle
->dev
;
592 retval
= mutex_lock_interruptible(&dev
->mutex
);
596 if (dev
->going_away
) {
603 if (!dev
->users
++ && dev
->open
)
604 retval
= dev
->open(dev
);
608 if (!--handle
->open
) {
610 * Make sure we are not delivering any more events
611 * through this handle
618 mutex_unlock(&dev
->mutex
);
621 EXPORT_SYMBOL(input_open_device
);
623 int input_flush_device(struct input_handle
*handle
, struct file
*file
)
625 struct input_dev
*dev
= handle
->dev
;
628 retval
= mutex_lock_interruptible(&dev
->mutex
);
633 retval
= dev
->flush(dev
, file
);
635 mutex_unlock(&dev
->mutex
);
638 EXPORT_SYMBOL(input_flush_device
);
641 * input_close_device - close input device
642 * @handle: handle through which device is being accessed
644 * This function should be called by input handlers when they
645 * want to stop receive events from given input device.
647 void input_close_device(struct input_handle
*handle
)
649 struct input_dev
*dev
= handle
->dev
;
651 mutex_lock(&dev
->mutex
);
653 __input_release_device(handle
);
655 if (!--dev
->users
&& dev
->close
)
658 if (!--handle
->open
) {
660 * synchronize_rcu() makes sure that input_pass_event()
661 * completed and that no more input events are delivered
662 * through this handle
667 mutex_unlock(&dev
->mutex
);
669 EXPORT_SYMBOL(input_close_device
);
672 * Simulate keyup events for all keys that are marked as pressed.
673 * The function must be called with dev->event_lock held.
675 static void input_dev_release_keys(struct input_dev
*dev
)
679 if (is_event_supported(EV_KEY
, dev
->evbit
, EV_MAX
)) {
680 for (code
= 0; code
<= KEY_MAX
; code
++) {
681 if (is_event_supported(code
, dev
->keybit
, KEY_MAX
) &&
682 __test_and_clear_bit(code
, dev
->key
)) {
683 input_pass_event(dev
, EV_KEY
, code
, 0);
686 input_pass_event(dev
, EV_SYN
, SYN_REPORT
, 1);
691 * Prepare device for unregistering
693 static void input_disconnect_device(struct input_dev
*dev
)
695 struct input_handle
*handle
;
698 * Mark device as going away. Note that we take dev->mutex here
699 * not to protect access to dev->going_away but rather to ensure
700 * that there are no threads in the middle of input_open_device()
702 mutex_lock(&dev
->mutex
);
703 dev
->going_away
= true;
704 mutex_unlock(&dev
->mutex
);
706 spin_lock_irq(&dev
->event_lock
);
709 * Simulate keyup events for all pressed keys so that handlers
710 * are not left with "stuck" keys. The driver may continue
711 * generate events even after we done here but they will not
712 * reach any handlers.
714 input_dev_release_keys(dev
);
716 list_for_each_entry(handle
, &dev
->h_list
, d_node
)
719 spin_unlock_irq(&dev
->event_lock
);
723 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
724 * @ke: keymap entry containing scancode to be converted.
725 * @scancode: pointer to the location where converted scancode should
728 * This function is used to convert scancode stored in &struct keymap_entry
729 * into scalar form understood by legacy keymap handling methods. These
730 * methods expect scancodes to be represented as 'unsigned int'.
732 int input_scancode_to_scalar(const struct input_keymap_entry
*ke
,
733 unsigned int *scancode
)
737 *scancode
= *((u8
*)ke
->scancode
);
741 *scancode
= *((u16
*)ke
->scancode
);
745 *scancode
= *((u32
*)ke
->scancode
);
754 EXPORT_SYMBOL(input_scancode_to_scalar
);
757 * Those routines handle the default case where no [gs]etkeycode() is
758 * defined. In this case, an array indexed by the scancode is used.
761 static unsigned int input_fetch_keycode(struct input_dev
*dev
,
764 switch (dev
->keycodesize
) {
766 return ((u8
*)dev
->keycode
)[index
];
769 return ((u16
*)dev
->keycode
)[index
];
772 return ((u32
*)dev
->keycode
)[index
];
776 static int input_default_getkeycode(struct input_dev
*dev
,
777 struct input_keymap_entry
*ke
)
782 if (!dev
->keycodesize
)
785 if (ke
->flags
& INPUT_KEYMAP_BY_INDEX
)
788 error
= input_scancode_to_scalar(ke
, &index
);
793 if (index
>= dev
->keycodemax
)
796 ke
->keycode
= input_fetch_keycode(dev
, index
);
798 ke
->len
= sizeof(index
);
799 memcpy(ke
->scancode
, &index
, sizeof(index
));
804 static int input_default_setkeycode(struct input_dev
*dev
,
805 const struct input_keymap_entry
*ke
,
806 unsigned int *old_keycode
)
812 if (!dev
->keycodesize
)
815 if (ke
->flags
& INPUT_KEYMAP_BY_INDEX
) {
818 error
= input_scancode_to_scalar(ke
, &index
);
823 if (index
>= dev
->keycodemax
)
826 if (dev
->keycodesize
< sizeof(ke
->keycode
) &&
827 (ke
->keycode
>> (dev
->keycodesize
* 8)))
830 switch (dev
->keycodesize
) {
832 u8
*k
= (u8
*)dev
->keycode
;
833 *old_keycode
= k
[index
];
834 k
[index
] = ke
->keycode
;
838 u16
*k
= (u16
*)dev
->keycode
;
839 *old_keycode
= k
[index
];
840 k
[index
] = ke
->keycode
;
844 u32
*k
= (u32
*)dev
->keycode
;
845 *old_keycode
= k
[index
];
846 k
[index
] = ke
->keycode
;
851 __clear_bit(*old_keycode
, dev
->keybit
);
852 __set_bit(ke
->keycode
, dev
->keybit
);
854 for (i
= 0; i
< dev
->keycodemax
; i
++) {
855 if (input_fetch_keycode(dev
, i
) == *old_keycode
) {
856 __set_bit(*old_keycode
, dev
->keybit
);
857 break; /* Setting the bit twice is useless, so break */
865 * input_get_keycode - retrieve keycode currently mapped to a given scancode
866 * @dev: input device which keymap is being queried
869 * This function should be called by anyone interested in retrieving current
870 * keymap. Presently evdev handlers use it.
872 int input_get_keycode(struct input_dev
*dev
, struct input_keymap_entry
*ke
)
877 spin_lock_irqsave(&dev
->event_lock
, flags
);
878 retval
= dev
->getkeycode(dev
, ke
);
879 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
883 EXPORT_SYMBOL(input_get_keycode
);
886 * input_set_keycode - attribute a keycode to a given scancode
887 * @dev: input device which keymap is being updated
888 * @ke: new keymap entry
890 * This function should be called by anyone needing to update current
891 * keymap. Presently keyboard and evdev handlers use it.
893 int input_set_keycode(struct input_dev
*dev
,
894 const struct input_keymap_entry
*ke
)
897 unsigned int old_keycode
;
900 if (ke
->keycode
> KEY_MAX
)
903 spin_lock_irqsave(&dev
->event_lock
, flags
);
905 retval
= dev
->setkeycode(dev
, ke
, &old_keycode
);
909 /* Make sure KEY_RESERVED did not get enabled. */
910 __clear_bit(KEY_RESERVED
, dev
->keybit
);
913 * Simulate keyup event if keycode is not present
914 * in the keymap anymore
916 if (test_bit(EV_KEY
, dev
->evbit
) &&
917 !is_event_supported(old_keycode
, dev
->keybit
, KEY_MAX
) &&
918 __test_and_clear_bit(old_keycode
, dev
->key
)) {
919 struct input_value vals
[] = {
920 { EV_KEY
, old_keycode
, 0 },
924 input_pass_values(dev
, vals
, ARRAY_SIZE(vals
));
928 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
932 EXPORT_SYMBOL(input_set_keycode
);
934 static const struct input_device_id
*input_match_device(struct input_handler
*handler
,
935 struct input_dev
*dev
)
937 const struct input_device_id
*id
;
939 for (id
= handler
->id_table
; id
->flags
|| id
->driver_info
; id
++) {
941 if (id
->flags
& INPUT_DEVICE_ID_MATCH_BUS
)
942 if (id
->bustype
!= dev
->id
.bustype
)
945 if (id
->flags
& INPUT_DEVICE_ID_MATCH_VENDOR
)
946 if (id
->vendor
!= dev
->id
.vendor
)
949 if (id
->flags
& INPUT_DEVICE_ID_MATCH_PRODUCT
)
950 if (id
->product
!= dev
->id
.product
)
953 if (id
->flags
& INPUT_DEVICE_ID_MATCH_VERSION
)
954 if (id
->version
!= dev
->id
.version
)
957 if (!bitmap_subset(id
->evbit
, dev
->evbit
, EV_MAX
))
960 if (!bitmap_subset(id
->keybit
, dev
->keybit
, KEY_MAX
))
963 if (!bitmap_subset(id
->relbit
, dev
->relbit
, REL_MAX
))
966 if (!bitmap_subset(id
->absbit
, dev
->absbit
, ABS_MAX
))
969 if (!bitmap_subset(id
->mscbit
, dev
->mscbit
, MSC_MAX
))
972 if (!bitmap_subset(id
->ledbit
, dev
->ledbit
, LED_MAX
))
975 if (!bitmap_subset(id
->sndbit
, dev
->sndbit
, SND_MAX
))
978 if (!bitmap_subset(id
->ffbit
, dev
->ffbit
, FF_MAX
))
981 if (!bitmap_subset(id
->swbit
, dev
->swbit
, SW_MAX
))
984 if (!handler
->match
|| handler
->match(handler
, dev
))
991 static int input_attach_handler(struct input_dev
*dev
, struct input_handler
*handler
)
993 const struct input_device_id
*id
;
996 id
= input_match_device(handler
, dev
);
1000 error
= handler
->connect(handler
, dev
, id
);
1001 if (error
&& error
!= -ENODEV
)
1002 pr_err("failed to attach handler %s to device %s, error: %d\n",
1003 handler
->name
, kobject_name(&dev
->dev
.kobj
), error
);
1008 #ifdef CONFIG_COMPAT
1010 static int input_bits_to_string(char *buf
, int buf_size
,
1011 unsigned long bits
, bool skip_empty
)
1015 if (INPUT_COMPAT_TEST
) {
1016 u32 dword
= bits
>> 32;
1017 if (dword
|| !skip_empty
)
1018 len
+= snprintf(buf
, buf_size
, "%x ", dword
);
1020 dword
= bits
& 0xffffffffUL
;
1021 if (dword
|| !skip_empty
|| len
)
1022 len
+= snprintf(buf
+ len
, max(buf_size
- len
, 0),
1025 if (bits
|| !skip_empty
)
1026 len
+= snprintf(buf
, buf_size
, "%lx", bits
);
1032 #else /* !CONFIG_COMPAT */
1034 static int input_bits_to_string(char *buf
, int buf_size
,
1035 unsigned long bits
, bool skip_empty
)
1037 return bits
|| !skip_empty
?
1038 snprintf(buf
, buf_size
, "%lx", bits
) : 0;
1043 #ifdef CONFIG_PROC_FS
1045 static struct proc_dir_entry
*proc_bus_input_dir
;
1046 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait
);
1047 static int input_devices_state
;
1049 static inline void input_wakeup_procfs_readers(void)
1051 input_devices_state
++;
1052 wake_up(&input_devices_poll_wait
);
1055 static unsigned int input_proc_devices_poll(struct file
*file
, poll_table
*wait
)
1057 poll_wait(file
, &input_devices_poll_wait
, wait
);
1058 if (file
->f_version
!= input_devices_state
) {
1059 file
->f_version
= input_devices_state
;
1060 return POLLIN
| POLLRDNORM
;
1066 union input_seq_state
{
1069 bool mutex_acquired
;
1074 static void *input_devices_seq_start(struct seq_file
*seq
, loff_t
*pos
)
1076 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1079 /* We need to fit into seq->private pointer */
1080 BUILD_BUG_ON(sizeof(union input_seq_state
) != sizeof(seq
->private));
1082 error
= mutex_lock_interruptible(&input_mutex
);
1084 state
->mutex_acquired
= false;
1085 return ERR_PTR(error
);
1088 state
->mutex_acquired
= true;
1090 return seq_list_start(&input_dev_list
, *pos
);
1093 static void *input_devices_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
1095 return seq_list_next(v
, &input_dev_list
, pos
);
1098 static void input_seq_stop(struct seq_file
*seq
, void *v
)
1100 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1102 if (state
->mutex_acquired
)
1103 mutex_unlock(&input_mutex
);
1106 static void input_seq_print_bitmap(struct seq_file
*seq
, const char *name
,
1107 unsigned long *bitmap
, int max
)
1110 bool skip_empty
= true;
1113 seq_printf(seq
, "B: %s=", name
);
1115 for (i
= BITS_TO_LONGS(max
) - 1; i
>= 0; i
--) {
1116 if (input_bits_to_string(buf
, sizeof(buf
),
1117 bitmap
[i
], skip_empty
)) {
1119 seq_printf(seq
, "%s%s", buf
, i
> 0 ? " " : "");
1124 * If no output was produced print a single 0.
1129 seq_putc(seq
, '\n');
1132 static int input_devices_seq_show(struct seq_file
*seq
, void *v
)
1134 struct input_dev
*dev
= container_of(v
, struct input_dev
, node
);
1135 const char *path
= kobject_get_path(&dev
->dev
.kobj
, GFP_KERNEL
);
1136 struct input_handle
*handle
;
1138 seq_printf(seq
, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1139 dev
->id
.bustype
, dev
->id
.vendor
, dev
->id
.product
, dev
->id
.version
);
1141 seq_printf(seq
, "N: Name=\"%s\"\n", dev
->name
? dev
->name
: "");
1142 seq_printf(seq
, "P: Phys=%s\n", dev
->phys
? dev
->phys
: "");
1143 seq_printf(seq
, "S: Sysfs=%s\n", path
? path
: "");
1144 seq_printf(seq
, "U: Uniq=%s\n", dev
->uniq
? dev
->uniq
: "");
1145 seq_printf(seq
, "H: Handlers=");
1147 list_for_each_entry(handle
, &dev
->h_list
, d_node
)
1148 seq_printf(seq
, "%s ", handle
->name
);
1149 seq_putc(seq
, '\n');
1151 input_seq_print_bitmap(seq
, "PROP", dev
->propbit
, INPUT_PROP_MAX
);
1153 input_seq_print_bitmap(seq
, "EV", dev
->evbit
, EV_MAX
);
1154 if (test_bit(EV_KEY
, dev
->evbit
))
1155 input_seq_print_bitmap(seq
, "KEY", dev
->keybit
, KEY_MAX
);
1156 if (test_bit(EV_REL
, dev
->evbit
))
1157 input_seq_print_bitmap(seq
, "REL", dev
->relbit
, REL_MAX
);
1158 if (test_bit(EV_ABS
, dev
->evbit
))
1159 input_seq_print_bitmap(seq
, "ABS", dev
->absbit
, ABS_MAX
);
1160 if (test_bit(EV_MSC
, dev
->evbit
))
1161 input_seq_print_bitmap(seq
, "MSC", dev
->mscbit
, MSC_MAX
);
1162 if (test_bit(EV_LED
, dev
->evbit
))
1163 input_seq_print_bitmap(seq
, "LED", dev
->ledbit
, LED_MAX
);
1164 if (test_bit(EV_SND
, dev
->evbit
))
1165 input_seq_print_bitmap(seq
, "SND", dev
->sndbit
, SND_MAX
);
1166 if (test_bit(EV_FF
, dev
->evbit
))
1167 input_seq_print_bitmap(seq
, "FF", dev
->ffbit
, FF_MAX
);
1168 if (test_bit(EV_SW
, dev
->evbit
))
1169 input_seq_print_bitmap(seq
, "SW", dev
->swbit
, SW_MAX
);
1171 seq_putc(seq
, '\n');
1177 static const struct seq_operations input_devices_seq_ops
= {
1178 .start
= input_devices_seq_start
,
1179 .next
= input_devices_seq_next
,
1180 .stop
= input_seq_stop
,
1181 .show
= input_devices_seq_show
,
1184 static int input_proc_devices_open(struct inode
*inode
, struct file
*file
)
1186 return seq_open(file
, &input_devices_seq_ops
);
1189 static const struct file_operations input_devices_fileops
= {
1190 .owner
= THIS_MODULE
,
1191 .open
= input_proc_devices_open
,
1192 .poll
= input_proc_devices_poll
,
1194 .llseek
= seq_lseek
,
1195 .release
= seq_release
,
1198 static void *input_handlers_seq_start(struct seq_file
*seq
, loff_t
*pos
)
1200 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1203 /* We need to fit into seq->private pointer */
1204 BUILD_BUG_ON(sizeof(union input_seq_state
) != sizeof(seq
->private));
1206 error
= mutex_lock_interruptible(&input_mutex
);
1208 state
->mutex_acquired
= false;
1209 return ERR_PTR(error
);
1212 state
->mutex_acquired
= true;
1215 return seq_list_start(&input_handler_list
, *pos
);
1218 static void *input_handlers_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
1220 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1222 state
->pos
= *pos
+ 1;
1223 return seq_list_next(v
, &input_handler_list
, pos
);
1226 static int input_handlers_seq_show(struct seq_file
*seq
, void *v
)
1228 struct input_handler
*handler
= container_of(v
, struct input_handler
, node
);
1229 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1231 seq_printf(seq
, "N: Number=%u Name=%s", state
->pos
, handler
->name
);
1232 if (handler
->filter
)
1233 seq_puts(seq
, " (filter)");
1234 if (handler
->legacy_minors
)
1235 seq_printf(seq
, " Minor=%d", handler
->minor
);
1236 seq_putc(seq
, '\n');
1241 static const struct seq_operations input_handlers_seq_ops
= {
1242 .start
= input_handlers_seq_start
,
1243 .next
= input_handlers_seq_next
,
1244 .stop
= input_seq_stop
,
1245 .show
= input_handlers_seq_show
,
1248 static int input_proc_handlers_open(struct inode
*inode
, struct file
*file
)
1250 return seq_open(file
, &input_handlers_seq_ops
);
1253 static const struct file_operations input_handlers_fileops
= {
1254 .owner
= THIS_MODULE
,
1255 .open
= input_proc_handlers_open
,
1257 .llseek
= seq_lseek
,
1258 .release
= seq_release
,
1261 static int __init
input_proc_init(void)
1263 struct proc_dir_entry
*entry
;
1265 proc_bus_input_dir
= proc_mkdir("bus/input", NULL
);
1266 if (!proc_bus_input_dir
)
1269 entry
= proc_create("devices", 0, proc_bus_input_dir
,
1270 &input_devices_fileops
);
1274 entry
= proc_create("handlers", 0, proc_bus_input_dir
,
1275 &input_handlers_fileops
);
1281 fail2
: remove_proc_entry("devices", proc_bus_input_dir
);
1282 fail1
: remove_proc_entry("bus/input", NULL
);
1286 static void input_proc_exit(void)
1288 remove_proc_entry("devices", proc_bus_input_dir
);
1289 remove_proc_entry("handlers", proc_bus_input_dir
);
1290 remove_proc_entry("bus/input", NULL
);
1293 #else /* !CONFIG_PROC_FS */
1294 static inline void input_wakeup_procfs_readers(void) { }
1295 static inline int input_proc_init(void) { return 0; }
1296 static inline void input_proc_exit(void) { }
1299 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1300 static ssize_t input_dev_show_##name(struct device *dev, \
1301 struct device_attribute *attr, \
1304 struct input_dev *input_dev = to_input_dev(dev); \
1306 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1307 input_dev->name ? input_dev->name : ""); \
1309 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1311 INPUT_DEV_STRING_ATTR_SHOW(name
);
1312 INPUT_DEV_STRING_ATTR_SHOW(phys
);
1313 INPUT_DEV_STRING_ATTR_SHOW(uniq
);
1315 static int input_print_modalias_bits(char *buf
, int size
,
1316 char name
, unsigned long *bm
,
1317 unsigned int min_bit
, unsigned int max_bit
)
1321 len
+= snprintf(buf
, max(size
, 0), "%c", name
);
1322 for (i
= min_bit
; i
< max_bit
; i
++)
1323 if (bm
[BIT_WORD(i
)] & BIT_MASK(i
))
1324 len
+= snprintf(buf
+ len
, max(size
- len
, 0), "%X,", i
);
1328 static int input_print_modalias(char *buf
, int size
, struct input_dev
*id
,
1333 len
= snprintf(buf
, max(size
, 0),
1334 "input:b%04Xv%04Xp%04Xe%04X-",
1335 id
->id
.bustype
, id
->id
.vendor
,
1336 id
->id
.product
, id
->id
.version
);
1338 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1339 'e', id
->evbit
, 0, EV_MAX
);
1340 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1341 'k', id
->keybit
, KEY_MIN_INTERESTING
, KEY_MAX
);
1342 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1343 'r', id
->relbit
, 0, REL_MAX
);
1344 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1345 'a', id
->absbit
, 0, ABS_MAX
);
1346 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1347 'm', id
->mscbit
, 0, MSC_MAX
);
1348 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1349 'l', id
->ledbit
, 0, LED_MAX
);
1350 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1351 's', id
->sndbit
, 0, SND_MAX
);
1352 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1353 'f', id
->ffbit
, 0, FF_MAX
);
1354 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1355 'w', id
->swbit
, 0, SW_MAX
);
1358 len
+= snprintf(buf
+ len
, max(size
- len
, 0), "\n");
1363 static ssize_t
input_dev_show_modalias(struct device
*dev
,
1364 struct device_attribute
*attr
,
1367 struct input_dev
*id
= to_input_dev(dev
);
1370 len
= input_print_modalias(buf
, PAGE_SIZE
, id
, 1);
1372 return min_t(int, len
, PAGE_SIZE
);
1374 static DEVICE_ATTR(modalias
, S_IRUGO
, input_dev_show_modalias
, NULL
);
1376 static int input_print_bitmap(char *buf
, int buf_size
, unsigned long *bitmap
,
1377 int max
, int add_cr
);
1379 static ssize_t
input_dev_show_properties(struct device
*dev
,
1380 struct device_attribute
*attr
,
1383 struct input_dev
*input_dev
= to_input_dev(dev
);
1384 int len
= input_print_bitmap(buf
, PAGE_SIZE
, input_dev
->propbit
,
1385 INPUT_PROP_MAX
, true);
1386 return min_t(int, len
, PAGE_SIZE
);
1388 static DEVICE_ATTR(properties
, S_IRUGO
, input_dev_show_properties
, NULL
);
1390 static struct attribute
*input_dev_attrs
[] = {
1391 &dev_attr_name
.attr
,
1392 &dev_attr_phys
.attr
,
1393 &dev_attr_uniq
.attr
,
1394 &dev_attr_modalias
.attr
,
1395 &dev_attr_properties
.attr
,
1399 static struct attribute_group input_dev_attr_group
= {
1400 .attrs
= input_dev_attrs
,
1403 #define INPUT_DEV_ID_ATTR(name) \
1404 static ssize_t input_dev_show_id_##name(struct device *dev, \
1405 struct device_attribute *attr, \
1408 struct input_dev *input_dev = to_input_dev(dev); \
1409 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1411 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1413 INPUT_DEV_ID_ATTR(bustype
);
1414 INPUT_DEV_ID_ATTR(vendor
);
1415 INPUT_DEV_ID_ATTR(product
);
1416 INPUT_DEV_ID_ATTR(version
);
1418 static struct attribute
*input_dev_id_attrs
[] = {
1419 &dev_attr_bustype
.attr
,
1420 &dev_attr_vendor
.attr
,
1421 &dev_attr_product
.attr
,
1422 &dev_attr_version
.attr
,
1426 static struct attribute_group input_dev_id_attr_group
= {
1428 .attrs
= input_dev_id_attrs
,
1431 static int input_print_bitmap(char *buf
, int buf_size
, unsigned long *bitmap
,
1432 int max
, int add_cr
)
1436 bool skip_empty
= true;
1438 for (i
= BITS_TO_LONGS(max
) - 1; i
>= 0; i
--) {
1439 len
+= input_bits_to_string(buf
+ len
, max(buf_size
- len
, 0),
1440 bitmap
[i
], skip_empty
);
1444 len
+= snprintf(buf
+ len
, max(buf_size
- len
, 0), " ");
1449 * If no output was produced print a single 0.
1452 len
= snprintf(buf
, buf_size
, "%d", 0);
1455 len
+= snprintf(buf
+ len
, max(buf_size
- len
, 0), "\n");
1460 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1461 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1462 struct device_attribute *attr, \
1465 struct input_dev *input_dev = to_input_dev(dev); \
1466 int len = input_print_bitmap(buf, PAGE_SIZE, \
1467 input_dev->bm##bit, ev##_MAX, \
1469 return min_t(int, len, PAGE_SIZE); \
1471 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1473 INPUT_DEV_CAP_ATTR(EV
, ev
);
1474 INPUT_DEV_CAP_ATTR(KEY
, key
);
1475 INPUT_DEV_CAP_ATTR(REL
, rel
);
1476 INPUT_DEV_CAP_ATTR(ABS
, abs
);
1477 INPUT_DEV_CAP_ATTR(MSC
, msc
);
1478 INPUT_DEV_CAP_ATTR(LED
, led
);
1479 INPUT_DEV_CAP_ATTR(SND
, snd
);
1480 INPUT_DEV_CAP_ATTR(FF
, ff
);
1481 INPUT_DEV_CAP_ATTR(SW
, sw
);
1483 static struct attribute
*input_dev_caps_attrs
[] = {
1496 static struct attribute_group input_dev_caps_attr_group
= {
1497 .name
= "capabilities",
1498 .attrs
= input_dev_caps_attrs
,
1501 static const struct attribute_group
*input_dev_attr_groups
[] = {
1502 &input_dev_attr_group
,
1503 &input_dev_id_attr_group
,
1504 &input_dev_caps_attr_group
,
1508 static void input_dev_release(struct device
*device
)
1510 struct input_dev
*dev
= to_input_dev(device
);
1512 input_ff_destroy(dev
);
1513 input_mt_destroy_slots(dev
);
1514 kfree(dev
->absinfo
);
1518 module_put(THIS_MODULE
);
1522 * Input uevent interface - loading event handlers based on
1525 static int input_add_uevent_bm_var(struct kobj_uevent_env
*env
,
1526 const char *name
, unsigned long *bitmap
, int max
)
1530 if (add_uevent_var(env
, "%s", name
))
1533 len
= input_print_bitmap(&env
->buf
[env
->buflen
- 1],
1534 sizeof(env
->buf
) - env
->buflen
,
1535 bitmap
, max
, false);
1536 if (len
>= (sizeof(env
->buf
) - env
->buflen
))
1543 static int input_add_uevent_modalias_var(struct kobj_uevent_env
*env
,
1544 struct input_dev
*dev
)
1548 if (add_uevent_var(env
, "MODALIAS="))
1551 len
= input_print_modalias(&env
->buf
[env
->buflen
- 1],
1552 sizeof(env
->buf
) - env
->buflen
,
1554 if (len
>= (sizeof(env
->buf
) - env
->buflen
))
1561 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1563 int err = add_uevent_var(env, fmt, val); \
1568 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1570 int err = input_add_uevent_bm_var(env, name, bm, max); \
1575 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1577 int err = input_add_uevent_modalias_var(env, dev); \
1582 static int input_dev_uevent(struct device
*device
, struct kobj_uevent_env
*env
)
1584 struct input_dev
*dev
= to_input_dev(device
);
1586 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1587 dev
->id
.bustype
, dev
->id
.vendor
,
1588 dev
->id
.product
, dev
->id
.version
);
1590 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev
->name
);
1592 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev
->phys
);
1594 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev
->uniq
);
1596 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev
->propbit
, INPUT_PROP_MAX
);
1598 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev
->evbit
, EV_MAX
);
1599 if (test_bit(EV_KEY
, dev
->evbit
))
1600 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev
->keybit
, KEY_MAX
);
1601 if (test_bit(EV_REL
, dev
->evbit
))
1602 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev
->relbit
, REL_MAX
);
1603 if (test_bit(EV_ABS
, dev
->evbit
))
1604 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev
->absbit
, ABS_MAX
);
1605 if (test_bit(EV_MSC
, dev
->evbit
))
1606 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev
->mscbit
, MSC_MAX
);
1607 if (test_bit(EV_LED
, dev
->evbit
))
1608 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev
->ledbit
, LED_MAX
);
1609 if (test_bit(EV_SND
, dev
->evbit
))
1610 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev
->sndbit
, SND_MAX
);
1611 if (test_bit(EV_FF
, dev
->evbit
))
1612 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev
->ffbit
, FF_MAX
);
1613 if (test_bit(EV_SW
, dev
->evbit
))
1614 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev
->swbit
, SW_MAX
);
1616 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev
);
1621 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1626 if (!test_bit(EV_##type, dev->evbit)) \
1629 for (i = 0; i < type##_MAX; i++) { \
1630 if (!test_bit(i, dev->bits##bit)) \
1633 active = test_bit(i, dev->bits); \
1634 if (!active && !on) \
1637 dev->event(dev, EV_##type, i, on ? active : 0); \
1641 static void input_dev_toggle(struct input_dev
*dev
, bool activate
)
1646 INPUT_DO_TOGGLE(dev
, LED
, led
, activate
);
1647 INPUT_DO_TOGGLE(dev
, SND
, snd
, activate
);
1649 if (activate
&& test_bit(EV_REP
, dev
->evbit
)) {
1650 dev
->event(dev
, EV_REP
, REP_PERIOD
, dev
->rep
[REP_PERIOD
]);
1651 dev
->event(dev
, EV_REP
, REP_DELAY
, dev
->rep
[REP_DELAY
]);
1656 * input_reset_device() - reset/restore the state of input device
1657 * @dev: input device whose state needs to be reset
1659 * This function tries to reset the state of an opened input device and
1660 * bring internal state and state if the hardware in sync with each other.
1661 * We mark all keys as released, restore LED state, repeat rate, etc.
1663 void input_reset_device(struct input_dev
*dev
)
1665 unsigned long flags
;
1667 mutex_lock(&dev
->mutex
);
1668 spin_lock_irqsave(&dev
->event_lock
, flags
);
1670 input_dev_toggle(dev
, true);
1671 input_dev_release_keys(dev
);
1673 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
1674 mutex_unlock(&dev
->mutex
);
1676 EXPORT_SYMBOL(input_reset_device
);
1678 #ifdef CONFIG_PM_SLEEP
1679 static int input_dev_suspend(struct device
*dev
)
1681 struct input_dev
*input_dev
= to_input_dev(dev
);
1683 spin_lock_irq(&input_dev
->event_lock
);
1686 * Keys that are pressed now are unlikely to be
1687 * still pressed when we resume.
1689 input_dev_release_keys(input_dev
);
1691 /* Turn off LEDs and sounds, if any are active. */
1692 input_dev_toggle(input_dev
, false);
1694 spin_unlock_irq(&input_dev
->event_lock
);
1699 static int input_dev_resume(struct device
*dev
)
1701 struct input_dev
*input_dev
= to_input_dev(dev
);
1703 spin_lock_irq(&input_dev
->event_lock
);
1705 /* Restore state of LEDs and sounds, if any were active. */
1706 input_dev_toggle(input_dev
, true);
1708 spin_unlock_irq(&input_dev
->event_lock
);
1713 static int input_dev_freeze(struct device
*dev
)
1715 struct input_dev
*input_dev
= to_input_dev(dev
);
1717 spin_lock_irq(&input_dev
->event_lock
);
1720 * Keys that are pressed now are unlikely to be
1721 * still pressed when we resume.
1723 input_dev_release_keys(input_dev
);
1725 spin_unlock_irq(&input_dev
->event_lock
);
1730 static int input_dev_poweroff(struct device
*dev
)
1732 struct input_dev
*input_dev
= to_input_dev(dev
);
1734 spin_lock_irq(&input_dev
->event_lock
);
1736 /* Turn off LEDs and sounds, if any are active. */
1737 input_dev_toggle(input_dev
, false);
1739 spin_unlock_irq(&input_dev
->event_lock
);
1744 static const struct dev_pm_ops input_dev_pm_ops
= {
1745 .suspend
= input_dev_suspend
,
1746 .resume
= input_dev_resume
,
1747 .freeze
= input_dev_freeze
,
1748 .poweroff
= input_dev_poweroff
,
1749 .restore
= input_dev_resume
,
1751 #endif /* CONFIG_PM */
1753 static struct device_type input_dev_type
= {
1754 .groups
= input_dev_attr_groups
,
1755 .release
= input_dev_release
,
1756 .uevent
= input_dev_uevent
,
1757 #ifdef CONFIG_PM_SLEEP
1758 .pm
= &input_dev_pm_ops
,
1762 static char *input_devnode(struct device
*dev
, umode_t
*mode
)
1764 return kasprintf(GFP_KERNEL
, "input/%s", dev_name(dev
));
1767 struct class input_class
= {
1769 .devnode
= input_devnode
,
1771 EXPORT_SYMBOL_GPL(input_class
);
1774 * input_allocate_device - allocate memory for new input device
1776 * Returns prepared struct input_dev or %NULL.
1778 * NOTE: Use input_free_device() to free devices that have not been
1779 * registered; input_unregister_device() should be used for already
1780 * registered devices.
1782 struct input_dev
*input_allocate_device(void)
1784 static atomic_t input_no
= ATOMIC_INIT(-1);
1785 struct input_dev
*dev
;
1787 dev
= kzalloc(sizeof(struct input_dev
), GFP_KERNEL
);
1789 dev
->dev
.type
= &input_dev_type
;
1790 dev
->dev
.class = &input_class
;
1791 device_initialize(&dev
->dev
);
1792 mutex_init(&dev
->mutex
);
1793 spin_lock_init(&dev
->event_lock
);
1794 init_timer(&dev
->timer
);
1795 INIT_LIST_HEAD(&dev
->h_list
);
1796 INIT_LIST_HEAD(&dev
->node
);
1798 dev_set_name(&dev
->dev
, "input%lu",
1799 (unsigned long)atomic_inc_return(&input_no
));
1801 __module_get(THIS_MODULE
);
1806 EXPORT_SYMBOL(input_allocate_device
);
1808 struct input_devres
{
1809 struct input_dev
*input
;
1812 static int devm_input_device_match(struct device
*dev
, void *res
, void *data
)
1814 struct input_devres
*devres
= res
;
1816 return devres
->input
== data
;
1819 static void devm_input_device_release(struct device
*dev
, void *res
)
1821 struct input_devres
*devres
= res
;
1822 struct input_dev
*input
= devres
->input
;
1824 dev_dbg(dev
, "%s: dropping reference to %s\n",
1825 __func__
, dev_name(&input
->dev
));
1826 input_put_device(input
);
1830 * devm_input_allocate_device - allocate managed input device
1831 * @dev: device owning the input device being created
1833 * Returns prepared struct input_dev or %NULL.
1835 * Managed input devices do not need to be explicitly unregistered or
1836 * freed as it will be done automatically when owner device unbinds from
1837 * its driver (or binding fails). Once managed input device is allocated,
1838 * it is ready to be set up and registered in the same fashion as regular
1839 * input device. There are no special devm_input_device_[un]register()
1840 * variants, regular ones work with both managed and unmanaged devices,
1841 * should you need them. In most cases however, managed input device need
1842 * not be explicitly unregistered or freed.
1844 * NOTE: the owner device is set up as parent of input device and users
1845 * should not override it.
1847 struct input_dev
*devm_input_allocate_device(struct device
*dev
)
1849 struct input_dev
*input
;
1850 struct input_devres
*devres
;
1852 devres
= devres_alloc(devm_input_device_release
,
1853 sizeof(struct input_devres
), GFP_KERNEL
);
1857 input
= input_allocate_device();
1859 devres_free(devres
);
1863 input
->dev
.parent
= dev
;
1864 input
->devres_managed
= true;
1866 devres
->input
= input
;
1867 devres_add(dev
, devres
);
1871 EXPORT_SYMBOL(devm_input_allocate_device
);
1874 * input_free_device - free memory occupied by input_dev structure
1875 * @dev: input device to free
1877 * This function should only be used if input_register_device()
1878 * was not called yet or if it failed. Once device was registered
1879 * use input_unregister_device() and memory will be freed once last
1880 * reference to the device is dropped.
1882 * Device should be allocated by input_allocate_device().
1884 * NOTE: If there are references to the input device then memory
1885 * will not be freed until last reference is dropped.
1887 void input_free_device(struct input_dev
*dev
)
1890 if (dev
->devres_managed
)
1891 WARN_ON(devres_destroy(dev
->dev
.parent
,
1892 devm_input_device_release
,
1893 devm_input_device_match
,
1895 input_put_device(dev
);
1898 EXPORT_SYMBOL(input_free_device
);
1901 * input_set_capability - mark device as capable of a certain event
1902 * @dev: device that is capable of emitting or accepting event
1903 * @type: type of the event (EV_KEY, EV_REL, etc...)
1906 * In addition to setting up corresponding bit in appropriate capability
1907 * bitmap the function also adjusts dev->evbit.
1909 void input_set_capability(struct input_dev
*dev
, unsigned int type
, unsigned int code
)
1913 __set_bit(code
, dev
->keybit
);
1917 __set_bit(code
, dev
->relbit
);
1921 input_alloc_absinfo(dev
);
1925 __set_bit(code
, dev
->absbit
);
1929 __set_bit(code
, dev
->mscbit
);
1933 __set_bit(code
, dev
->swbit
);
1937 __set_bit(code
, dev
->ledbit
);
1941 __set_bit(code
, dev
->sndbit
);
1945 __set_bit(code
, dev
->ffbit
);
1953 pr_err("input_set_capability: unknown type %u (code %u)\n",
1959 __set_bit(type
, dev
->evbit
);
1961 EXPORT_SYMBOL(input_set_capability
);
1963 static unsigned int input_estimate_events_per_packet(struct input_dev
*dev
)
1967 unsigned int events
;
1970 mt_slots
= dev
->mt
->num_slots
;
1971 } else if (test_bit(ABS_MT_TRACKING_ID
, dev
->absbit
)) {
1972 mt_slots
= dev
->absinfo
[ABS_MT_TRACKING_ID
].maximum
-
1973 dev
->absinfo
[ABS_MT_TRACKING_ID
].minimum
+ 1,
1974 mt_slots
= clamp(mt_slots
, 2, 32);
1975 } else if (test_bit(ABS_MT_POSITION_X
, dev
->absbit
)) {
1981 events
= mt_slots
+ 1; /* count SYN_MT_REPORT and SYN_REPORT */
1983 if (test_bit(EV_ABS
, dev
->evbit
)) {
1984 for (i
= 0; i
< ABS_CNT
; i
++) {
1985 if (test_bit(i
, dev
->absbit
)) {
1986 if (input_is_mt_axis(i
))
1994 if (test_bit(EV_REL
, dev
->evbit
)) {
1995 for (i
= 0; i
< REL_CNT
; i
++)
1996 if (test_bit(i
, dev
->relbit
))
2000 /* Make room for KEY and MSC events */
2006 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
2008 if (!test_bit(EV_##type, dev->evbit)) \
2009 memset(dev->bits##bit, 0, \
2010 sizeof(dev->bits##bit)); \
2013 static void input_cleanse_bitmasks(struct input_dev
*dev
)
2015 INPUT_CLEANSE_BITMASK(dev
, KEY
, key
);
2016 INPUT_CLEANSE_BITMASK(dev
, REL
, rel
);
2017 INPUT_CLEANSE_BITMASK(dev
, ABS
, abs
);
2018 INPUT_CLEANSE_BITMASK(dev
, MSC
, msc
);
2019 INPUT_CLEANSE_BITMASK(dev
, LED
, led
);
2020 INPUT_CLEANSE_BITMASK(dev
, SND
, snd
);
2021 INPUT_CLEANSE_BITMASK(dev
, FF
, ff
);
2022 INPUT_CLEANSE_BITMASK(dev
, SW
, sw
);
2025 static void __input_unregister_device(struct input_dev
*dev
)
2027 struct input_handle
*handle
, *next
;
2029 input_disconnect_device(dev
);
2031 mutex_lock(&input_mutex
);
2033 list_for_each_entry_safe(handle
, next
, &dev
->h_list
, d_node
)
2034 handle
->handler
->disconnect(handle
);
2035 WARN_ON(!list_empty(&dev
->h_list
));
2037 del_timer_sync(&dev
->timer
);
2038 list_del_init(&dev
->node
);
2040 input_wakeup_procfs_readers();
2042 mutex_unlock(&input_mutex
);
2044 device_del(&dev
->dev
);
2047 static void devm_input_device_unregister(struct device
*dev
, void *res
)
2049 struct input_devres
*devres
= res
;
2050 struct input_dev
*input
= devres
->input
;
2052 dev_dbg(dev
, "%s: unregistering device %s\n",
2053 __func__
, dev_name(&input
->dev
));
2054 __input_unregister_device(input
);
2058 * input_register_device - register device with input core
2059 * @dev: device to be registered
2061 * This function registers device with input core. The device must be
2062 * allocated with input_allocate_device() and all it's capabilities
2063 * set up before registering.
2064 * If function fails the device must be freed with input_free_device().
2065 * Once device has been successfully registered it can be unregistered
2066 * with input_unregister_device(); input_free_device() should not be
2067 * called in this case.
2069 * Note that this function is also used to register managed input devices
2070 * (ones allocated with devm_input_allocate_device()). Such managed input
2071 * devices need not be explicitly unregistered or freed, their tear down
2072 * is controlled by the devres infrastructure. It is also worth noting
2073 * that tear down of managed input devices is internally a 2-step process:
2074 * registered managed input device is first unregistered, but stays in
2075 * memory and can still handle input_event() calls (although events will
2076 * not be delivered anywhere). The freeing of managed input device will
2077 * happen later, when devres stack is unwound to the point where device
2078 * allocation was made.
2080 int input_register_device(struct input_dev
*dev
)
2082 struct input_devres
*devres
= NULL
;
2083 struct input_handler
*handler
;
2084 unsigned int packet_size
;
2088 if (dev
->devres_managed
) {
2089 devres
= devres_alloc(devm_input_device_unregister
,
2090 sizeof(struct input_devres
), GFP_KERNEL
);
2094 devres
->input
= dev
;
2097 /* Every input device generates EV_SYN/SYN_REPORT events. */
2098 __set_bit(EV_SYN
, dev
->evbit
);
2100 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
2101 __clear_bit(KEY_RESERVED
, dev
->keybit
);
2103 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2104 input_cleanse_bitmasks(dev
);
2106 packet_size
= input_estimate_events_per_packet(dev
);
2107 if (dev
->hint_events_per_packet
< packet_size
)
2108 dev
->hint_events_per_packet
= packet_size
;
2110 dev
->max_vals
= dev
->hint_events_per_packet
+ 2;
2111 dev
->vals
= kcalloc(dev
->max_vals
, sizeof(*dev
->vals
), GFP_KERNEL
);
2114 goto err_devres_free
;
2118 * If delay and period are pre-set by the driver, then autorepeating
2119 * is handled by the driver itself and we don't do it in input.c.
2121 if (!dev
->rep
[REP_DELAY
] && !dev
->rep
[REP_PERIOD
]) {
2122 dev
->timer
.data
= (long) dev
;
2123 dev
->timer
.function
= input_repeat_key
;
2124 dev
->rep
[REP_DELAY
] = 250;
2125 dev
->rep
[REP_PERIOD
] = 33;
2128 if (!dev
->getkeycode
)
2129 dev
->getkeycode
= input_default_getkeycode
;
2131 if (!dev
->setkeycode
)
2132 dev
->setkeycode
= input_default_setkeycode
;
2134 error
= device_add(&dev
->dev
);
2138 path
= kobject_get_path(&dev
->dev
.kobj
, GFP_KERNEL
);
2139 pr_info("%s as %s\n",
2140 dev
->name
? dev
->name
: "Unspecified device",
2141 path
? path
: "N/A");
2144 error
= mutex_lock_interruptible(&input_mutex
);
2146 goto err_device_del
;
2148 list_add_tail(&dev
->node
, &input_dev_list
);
2150 list_for_each_entry(handler
, &input_handler_list
, node
)
2151 input_attach_handler(dev
, handler
);
2153 input_wakeup_procfs_readers();
2155 mutex_unlock(&input_mutex
);
2157 if (dev
->devres_managed
) {
2158 dev_dbg(dev
->dev
.parent
, "%s: registering %s with devres.\n",
2159 __func__
, dev_name(&dev
->dev
));
2160 devres_add(dev
->dev
.parent
, devres
);
2165 device_del(&dev
->dev
);
2170 devres_free(devres
);
2173 EXPORT_SYMBOL(input_register_device
);
2176 * input_unregister_device - unregister previously registered device
2177 * @dev: device to be unregistered
2179 * This function unregisters an input device. Once device is unregistered
2180 * the caller should not try to access it as it may get freed at any moment.
2182 void input_unregister_device(struct input_dev
*dev
)
2184 if (dev
->devres_managed
) {
2185 WARN_ON(devres_destroy(dev
->dev
.parent
,
2186 devm_input_device_unregister
,
2187 devm_input_device_match
,
2189 __input_unregister_device(dev
);
2191 * We do not do input_put_device() here because it will be done
2192 * when 2nd devres fires up.
2195 __input_unregister_device(dev
);
2196 input_put_device(dev
);
2199 EXPORT_SYMBOL(input_unregister_device
);
2202 * input_register_handler - register a new input handler
2203 * @handler: handler to be registered
2205 * This function registers a new input handler (interface) for input
2206 * devices in the system and attaches it to all input devices that
2207 * are compatible with the handler.
2209 int input_register_handler(struct input_handler
*handler
)
2211 struct input_dev
*dev
;
2214 error
= mutex_lock_interruptible(&input_mutex
);
2218 INIT_LIST_HEAD(&handler
->h_list
);
2220 list_add_tail(&handler
->node
, &input_handler_list
);
2222 list_for_each_entry(dev
, &input_dev_list
, node
)
2223 input_attach_handler(dev
, handler
);
2225 input_wakeup_procfs_readers();
2227 mutex_unlock(&input_mutex
);
2230 EXPORT_SYMBOL(input_register_handler
);
2233 * input_unregister_handler - unregisters an input handler
2234 * @handler: handler to be unregistered
2236 * This function disconnects a handler from its input devices and
2237 * removes it from lists of known handlers.
2239 void input_unregister_handler(struct input_handler
*handler
)
2241 struct input_handle
*handle
, *next
;
2243 mutex_lock(&input_mutex
);
2245 list_for_each_entry_safe(handle
, next
, &handler
->h_list
, h_node
)
2246 handler
->disconnect(handle
);
2247 WARN_ON(!list_empty(&handler
->h_list
));
2249 list_del_init(&handler
->node
);
2251 input_wakeup_procfs_readers();
2253 mutex_unlock(&input_mutex
);
2255 EXPORT_SYMBOL(input_unregister_handler
);
2258 * input_handler_for_each_handle - handle iterator
2259 * @handler: input handler to iterate
2260 * @data: data for the callback
2261 * @fn: function to be called for each handle
2263 * Iterate over @bus's list of devices, and call @fn for each, passing
2264 * it @data and stop when @fn returns a non-zero value. The function is
2265 * using RCU to traverse the list and therefore may be usind in atonic
2266 * contexts. The @fn callback is invoked from RCU critical section and
2267 * thus must not sleep.
2269 int input_handler_for_each_handle(struct input_handler
*handler
, void *data
,
2270 int (*fn
)(struct input_handle
*, void *))
2272 struct input_handle
*handle
;
2277 list_for_each_entry_rcu(handle
, &handler
->h_list
, h_node
) {
2278 retval
= fn(handle
, data
);
2287 EXPORT_SYMBOL(input_handler_for_each_handle
);
2290 * input_register_handle - register a new input handle
2291 * @handle: handle to register
2293 * This function puts a new input handle onto device's
2294 * and handler's lists so that events can flow through
2295 * it once it is opened using input_open_device().
2297 * This function is supposed to be called from handler's
2300 int input_register_handle(struct input_handle
*handle
)
2302 struct input_handler
*handler
= handle
->handler
;
2303 struct input_dev
*dev
= handle
->dev
;
2307 * We take dev->mutex here to prevent race with
2308 * input_release_device().
2310 error
= mutex_lock_interruptible(&dev
->mutex
);
2315 * Filters go to the head of the list, normal handlers
2318 if (handler
->filter
)
2319 list_add_rcu(&handle
->d_node
, &dev
->h_list
);
2321 list_add_tail_rcu(&handle
->d_node
, &dev
->h_list
);
2323 mutex_unlock(&dev
->mutex
);
2326 * Since we are supposed to be called from ->connect()
2327 * which is mutually exclusive with ->disconnect()
2328 * we can't be racing with input_unregister_handle()
2329 * and so separate lock is not needed here.
2331 list_add_tail_rcu(&handle
->h_node
, &handler
->h_list
);
2334 handler
->start(handle
);
2338 EXPORT_SYMBOL(input_register_handle
);
2341 * input_unregister_handle - unregister an input handle
2342 * @handle: handle to unregister
2344 * This function removes input handle from device's
2345 * and handler's lists.
2347 * This function is supposed to be called from handler's
2348 * disconnect() method.
2350 void input_unregister_handle(struct input_handle
*handle
)
2352 struct input_dev
*dev
= handle
->dev
;
2354 list_del_rcu(&handle
->h_node
);
2357 * Take dev->mutex to prevent race with input_release_device().
2359 mutex_lock(&dev
->mutex
);
2360 list_del_rcu(&handle
->d_node
);
2361 mutex_unlock(&dev
->mutex
);
2365 EXPORT_SYMBOL(input_unregister_handle
);
2368 * input_get_new_minor - allocates a new input minor number
2369 * @legacy_base: beginning or the legacy range to be searched
2370 * @legacy_num: size of legacy range
2371 * @allow_dynamic: whether we can also take ID from the dynamic range
2373 * This function allocates a new device minor for from input major namespace.
2374 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2375 * parameters and whether ID can be allocated from dynamic range if there are
2376 * no free IDs in legacy range.
2378 int input_get_new_minor(int legacy_base
, unsigned int legacy_num
,
2382 * This function should be called from input handler's ->connect()
2383 * methods, which are serialized with input_mutex, so no additional
2384 * locking is needed here.
2386 if (legacy_base
>= 0) {
2387 int minor
= ida_simple_get(&input_ida
,
2389 legacy_base
+ legacy_num
,
2391 if (minor
>= 0 || !allow_dynamic
)
2395 return ida_simple_get(&input_ida
,
2396 INPUT_FIRST_DYNAMIC_DEV
, INPUT_MAX_CHAR_DEVICES
,
2399 EXPORT_SYMBOL(input_get_new_minor
);
2402 * input_free_minor - release previously allocated minor
2403 * @minor: minor to be released
2405 * This function releases previously allocated input minor so that it can be
2408 void input_free_minor(unsigned int minor
)
2410 ida_simple_remove(&input_ida
, minor
);
2412 EXPORT_SYMBOL(input_free_minor
);
2414 static int __init
input_init(void)
2418 err
= class_register(&input_class
);
2420 pr_err("unable to register input_dev class\n");
2424 err
= input_proc_init();
2428 err
= register_chrdev_region(MKDEV(INPUT_MAJOR
, 0),
2429 INPUT_MAX_CHAR_DEVICES
, "input");
2431 pr_err("unable to register char major %d", INPUT_MAJOR
);
2437 fail2
: input_proc_exit();
2438 fail1
: class_unregister(&input_class
);
2442 static void __exit
input_exit(void)
2445 unregister_chrdev_region(MKDEV(INPUT_MAJOR
, 0),
2446 INPUT_MAX_CHAR_DEVICES
);
2447 class_unregister(&input_class
);
2450 subsys_initcall(input_init
);
2451 module_exit(input_exit
);