1 #define DRV_NAME "advansys"
2 #define ASC_VERSION "3.4" /* AdvanSys Driver Version */
5 * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
7 * Copyright (c) 1995-2000 Advanced System Products, Inc.
8 * Copyright (c) 2000-2001 ConnectCom Solutions, Inc.
9 * Copyright (c) 2007 Matthew Wilcox <matthew@wil.cx>
10 * All Rights Reserved.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
19 * As of March 8, 2000 Advanced System Products, Inc. (AdvanSys)
20 * changed its name to ConnectCom Solutions, Inc.
21 * On June 18, 2001 Initio Corp. acquired ConnectCom's SCSI assets
24 #include <linux/module.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/types.h>
28 #include <linux/ioport.h>
29 #include <linux/interrupt.h>
30 #include <linux/delay.h>
31 #include <linux/slab.h>
33 #include <linux/proc_fs.h>
34 #include <linux/init.h>
35 #include <linux/blkdev.h>
36 #include <linux/isa.h>
37 #include <linux/eisa.h>
38 #include <linux/pci.h>
39 #include <linux/spinlock.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/firmware.h>
46 #include <scsi/scsi_cmnd.h>
47 #include <scsi/scsi_device.h>
48 #include <scsi/scsi_tcq.h>
49 #include <scsi/scsi.h>
50 #include <scsi/scsi_host.h>
54 * 1. Although all of the necessary command mapping places have the
55 * appropriate dma_map.. APIs, the driver still processes its internal
56 * queue using bus_to_virt() and virt_to_bus() which are illegal under
57 * the API. The entire queue processing structure will need to be
58 * altered to fix this.
59 * 2. Need to add memory mapping workaround. Test the memory mapping.
60 * If it doesn't work revert to I/O port access. Can a test be done
62 * 3. Handle an interrupt not working. Keep an interrupt counter in
63 * the interrupt handler. In the timeout function if the interrupt
64 * has not occurred then print a message and run in polled mode.
65 * 4. Need to add support for target mode commands, cf. CAM XPT.
66 * 5. check DMA mapping functions for failure
67 * 6. Use scsi_transport_spi
68 * 7. advansys_info is not safe against multiple simultaneous callers
69 * 8. Add module_param to override ISA/VLB ioport array
71 #warning this driver is still not properly converted to the DMA API
73 /* Enable driver /proc statistics. */
74 #define ADVANSYS_STATS
76 /* Enable driver tracing. */
82 * Any instance where a 32-bit long or pointer type is assumed
83 * for precision or HW defined structures, the following define
84 * types must be used. In Linux the char, short, and int types
85 * are all consistent at 8, 16, and 32 bits respectively. Pointers
86 * and long types are 64 bits on Alpha and UltraSPARC.
88 #define ASC_PADDR __u32 /* Physical/Bus address data type. */
89 #define ASC_VADDR __u32 /* Virtual address data type. */
90 #define ASC_DCNT __u32 /* Unsigned Data count type. */
91 #define ASC_SDCNT __s32 /* Signed Data count type. */
93 typedef unsigned char uchar
;
103 #define UW_ERR (uint)(0xFFFF)
104 #define isodd_word(val) ((((uint)val) & (uint)0x0001) != 0)
106 #define PCI_VENDOR_ID_ASP 0x10cd
107 #define PCI_DEVICE_ID_ASP_1200A 0x1100
108 #define PCI_DEVICE_ID_ASP_ABP940 0x1200
109 #define PCI_DEVICE_ID_ASP_ABP940U 0x1300
110 #define PCI_DEVICE_ID_ASP_ABP940UW 0x2300
111 #define PCI_DEVICE_ID_38C0800_REV1 0x2500
112 #define PCI_DEVICE_ID_38C1600_REV1 0x2700
115 * Enable CC_VERY_LONG_SG_LIST to support up to 64K element SG lists.
116 * The SRB structure will have to be changed and the ASC_SRB2SCSIQ()
117 * macro re-defined to be able to obtain a ASC_SCSI_Q pointer from the
120 #define CC_VERY_LONG_SG_LIST 0
121 #define ASC_SRB2SCSIQ(srb_ptr) (srb_ptr)
123 #define PortAddr unsigned int /* port address size */
124 #define inp(port) inb(port)
125 #define outp(port, byte) outb((byte), (port))
127 #define inpw(port) inw(port)
128 #define outpw(port, word) outw((word), (port))
130 #define ASC_MAX_SG_QUEUE 7
131 #define ASC_MAX_SG_LIST 255
133 #define ASC_CS_TYPE unsigned short
135 #define ASC_IS_ISA (0x0001)
136 #define ASC_IS_ISAPNP (0x0081)
137 #define ASC_IS_EISA (0x0002)
138 #define ASC_IS_PCI (0x0004)
139 #define ASC_IS_PCI_ULTRA (0x0104)
140 #define ASC_IS_PCMCIA (0x0008)
141 #define ASC_IS_MCA (0x0020)
142 #define ASC_IS_VL (0x0040)
143 #define ASC_IS_WIDESCSI_16 (0x0100)
144 #define ASC_IS_WIDESCSI_32 (0x0200)
145 #define ASC_IS_BIG_ENDIAN (0x8000)
147 #define ASC_CHIP_MIN_VER_VL (0x01)
148 #define ASC_CHIP_MAX_VER_VL (0x07)
149 #define ASC_CHIP_MIN_VER_PCI (0x09)
150 #define ASC_CHIP_MAX_VER_PCI (0x0F)
151 #define ASC_CHIP_VER_PCI_BIT (0x08)
152 #define ASC_CHIP_MIN_VER_ISA (0x11)
153 #define ASC_CHIP_MIN_VER_ISA_PNP (0x21)
154 #define ASC_CHIP_MAX_VER_ISA (0x27)
155 #define ASC_CHIP_VER_ISA_BIT (0x30)
156 #define ASC_CHIP_VER_ISAPNP_BIT (0x20)
157 #define ASC_CHIP_VER_ASYN_BUG (0x21)
158 #define ASC_CHIP_VER_PCI 0x08
159 #define ASC_CHIP_VER_PCI_ULTRA_3150 (ASC_CHIP_VER_PCI | 0x02)
160 #define ASC_CHIP_VER_PCI_ULTRA_3050 (ASC_CHIP_VER_PCI | 0x03)
161 #define ASC_CHIP_MIN_VER_EISA (0x41)
162 #define ASC_CHIP_MAX_VER_EISA (0x47)
163 #define ASC_CHIP_VER_EISA_BIT (0x40)
164 #define ASC_CHIP_LATEST_VER_EISA ((ASC_CHIP_MIN_VER_EISA - 1) + 3)
165 #define ASC_MAX_VL_DMA_COUNT (0x07FFFFFFL)
166 #define ASC_MAX_PCI_DMA_COUNT (0xFFFFFFFFL)
167 #define ASC_MAX_ISA_DMA_COUNT (0x00FFFFFFL)
169 #define ASC_SCSI_ID_BITS 3
170 #define ASC_SCSI_TIX_TYPE uchar
171 #define ASC_ALL_DEVICE_BIT_SET 0xFF
172 #define ASC_SCSI_BIT_ID_TYPE uchar
173 #define ASC_MAX_TID 7
174 #define ASC_MAX_LUN 7
175 #define ASC_SCSI_WIDTH_BIT_SET 0xFF
176 #define ASC_MAX_SENSE_LEN 32
177 #define ASC_MIN_SENSE_LEN 14
178 #define ASC_SCSI_RESET_HOLD_TIME_US 60
181 * Narrow boards only support 12-byte commands, while wide boards
182 * extend to 16-byte commands.
184 #define ASC_MAX_CDB_LEN 12
185 #define ADV_MAX_CDB_LEN 16
187 #define MS_SDTR_LEN 0x03
188 #define MS_WDTR_LEN 0x02
190 #define ASC_SG_LIST_PER_Q 7
192 #define QS_READY 0x01
193 #define QS_DISC1 0x02
194 #define QS_DISC2 0x04
196 #define QS_ABORTED 0x40
198 #define QC_NO_CALLBACK 0x01
199 #define QC_SG_SWAP_QUEUE 0x02
200 #define QC_SG_HEAD 0x04
201 #define QC_DATA_IN 0x08
202 #define QC_DATA_OUT 0x10
203 #define QC_URGENT 0x20
204 #define QC_MSG_OUT 0x40
205 #define QC_REQ_SENSE 0x80
206 #define QCSG_SG_XFER_LIST 0x02
207 #define QCSG_SG_XFER_MORE 0x04
208 #define QCSG_SG_XFER_END 0x08
209 #define QD_IN_PROGRESS 0x00
210 #define QD_NO_ERROR 0x01
211 #define QD_ABORTED_BY_HOST 0x02
212 #define QD_WITH_ERROR 0x04
213 #define QD_INVALID_REQUEST 0x80
214 #define QD_INVALID_HOST_NUM 0x81
215 #define QD_INVALID_DEVICE 0x82
216 #define QD_ERR_INTERNAL 0xFF
217 #define QHSTA_NO_ERROR 0x00
218 #define QHSTA_M_SEL_TIMEOUT 0x11
219 #define QHSTA_M_DATA_OVER_RUN 0x12
220 #define QHSTA_M_DATA_UNDER_RUN 0x12
221 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
222 #define QHSTA_M_BAD_BUS_PHASE_SEQ 0x14
223 #define QHSTA_D_QDONE_SG_LIST_CORRUPTED 0x21
224 #define QHSTA_D_ASC_DVC_ERROR_CODE_SET 0x22
225 #define QHSTA_D_HOST_ABORT_FAILED 0x23
226 #define QHSTA_D_EXE_SCSI_Q_FAILED 0x24
227 #define QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT 0x25
228 #define QHSTA_D_ASPI_NO_BUF_POOL 0x26
229 #define QHSTA_M_WTM_TIMEOUT 0x41
230 #define QHSTA_M_BAD_CMPL_STATUS_IN 0x42
231 #define QHSTA_M_NO_AUTO_REQ_SENSE 0x43
232 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
233 #define QHSTA_M_TARGET_STATUS_BUSY 0x45
234 #define QHSTA_M_BAD_TAG_CODE 0x46
235 #define QHSTA_M_BAD_QUEUE_FULL_OR_BUSY 0x47
236 #define QHSTA_M_HUNG_REQ_SCSI_BUS_RESET 0x48
237 #define QHSTA_D_LRAM_CMP_ERROR 0x81
238 #define QHSTA_M_MICRO_CODE_ERROR_HALT 0xA1
239 #define ASC_FLAG_SCSIQ_REQ 0x01
240 #define ASC_FLAG_BIOS_SCSIQ_REQ 0x02
241 #define ASC_FLAG_BIOS_ASYNC_IO 0x04
242 #define ASC_FLAG_SRB_LINEAR_ADDR 0x08
243 #define ASC_FLAG_WIN16 0x10
244 #define ASC_FLAG_WIN32 0x20
245 #define ASC_FLAG_ISA_OVER_16MB 0x40
246 #define ASC_FLAG_DOS_VM_CALLBACK 0x80
247 #define ASC_TAG_FLAG_EXTRA_BYTES 0x10
248 #define ASC_TAG_FLAG_DISABLE_DISCONNECT 0x04
249 #define ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX 0x08
250 #define ASC_TAG_FLAG_DISABLE_CHK_COND_INT_HOST 0x40
251 #define ASC_SCSIQ_CPY_BEG 4
252 #define ASC_SCSIQ_SGHD_CPY_BEG 2
253 #define ASC_SCSIQ_B_FWD 0
254 #define ASC_SCSIQ_B_BWD 1
255 #define ASC_SCSIQ_B_STATUS 2
256 #define ASC_SCSIQ_B_QNO 3
257 #define ASC_SCSIQ_B_CNTL 4
258 #define ASC_SCSIQ_B_SG_QUEUE_CNT 5
259 #define ASC_SCSIQ_D_DATA_ADDR 8
260 #define ASC_SCSIQ_D_DATA_CNT 12
261 #define ASC_SCSIQ_B_SENSE_LEN 20
262 #define ASC_SCSIQ_DONE_INFO_BEG 22
263 #define ASC_SCSIQ_D_SRBPTR 22
264 #define ASC_SCSIQ_B_TARGET_IX 26
265 #define ASC_SCSIQ_B_CDB_LEN 28
266 #define ASC_SCSIQ_B_TAG_CODE 29
267 #define ASC_SCSIQ_W_VM_ID 30
268 #define ASC_SCSIQ_DONE_STATUS 32
269 #define ASC_SCSIQ_HOST_STATUS 33
270 #define ASC_SCSIQ_SCSI_STATUS 34
271 #define ASC_SCSIQ_CDB_BEG 36
272 #define ASC_SCSIQ_DW_REMAIN_XFER_ADDR 56
273 #define ASC_SCSIQ_DW_REMAIN_XFER_CNT 60
274 #define ASC_SCSIQ_B_FIRST_SG_WK_QP 48
275 #define ASC_SCSIQ_B_SG_WK_QP 49
276 #define ASC_SCSIQ_B_SG_WK_IX 50
277 #define ASC_SCSIQ_W_ALT_DC1 52
278 #define ASC_SCSIQ_B_LIST_CNT 6
279 #define ASC_SCSIQ_B_CUR_LIST_CNT 7
280 #define ASC_SGQ_B_SG_CNTL 4
281 #define ASC_SGQ_B_SG_HEAD_QP 5
282 #define ASC_SGQ_B_SG_LIST_CNT 6
283 #define ASC_SGQ_B_SG_CUR_LIST_CNT 7
284 #define ASC_SGQ_LIST_BEG 8
285 #define ASC_DEF_SCSI1_QNG 4
286 #define ASC_MAX_SCSI1_QNG 4
287 #define ASC_DEF_SCSI2_QNG 16
288 #define ASC_MAX_SCSI2_QNG 32
289 #define ASC_TAG_CODE_MASK 0x23
290 #define ASC_STOP_REQ_RISC_STOP 0x01
291 #define ASC_STOP_ACK_RISC_STOP 0x03
292 #define ASC_STOP_CLEAN_UP_BUSY_Q 0x10
293 #define ASC_STOP_CLEAN_UP_DISC_Q 0x20
294 #define ASC_STOP_HOST_REQ_RISC_HALT 0x40
295 #define ASC_TIDLUN_TO_IX(tid, lun) (ASC_SCSI_TIX_TYPE)((tid) + ((lun)<<ASC_SCSI_ID_BITS))
296 #define ASC_TID_TO_TARGET_ID(tid) (ASC_SCSI_BIT_ID_TYPE)(0x01 << (tid))
297 #define ASC_TIX_TO_TARGET_ID(tix) (0x01 << ((tix) & ASC_MAX_TID))
298 #define ASC_TIX_TO_TID(tix) ((tix) & ASC_MAX_TID)
299 #define ASC_TID_TO_TIX(tid) ((tid) & ASC_MAX_TID)
300 #define ASC_TIX_TO_LUN(tix) (((tix) >> ASC_SCSI_ID_BITS) & ASC_MAX_LUN)
301 #define ASC_QNO_TO_QADDR(q_no) ((ASC_QADR_BEG)+((int)(q_no) << 6))
303 typedef struct asc_scsiq_1
{
312 ASC_PADDR sense_addr
;
317 typedef struct asc_scsiq_2
{
326 typedef struct asc_scsiq_3
{
333 typedef struct asc_scsiq_4
{
334 uchar cdb
[ASC_MAX_CDB_LEN
];
335 uchar y_first_sg_list_qp
;
336 uchar y_working_sg_qp
;
337 uchar y_working_sg_ix
;
340 ushort x_reconnect_rtn
;
341 ASC_PADDR x_saved_data_addr
;
342 ASC_DCNT x_saved_data_cnt
;
345 typedef struct asc_q_done_info
{
354 ASC_DCNT remain_bytes
;
357 typedef struct asc_sg_list
{
362 typedef struct asc_sg_head
{
365 ushort entry_to_copy
;
367 ASC_SG_LIST sg_list
[0];
370 typedef struct asc_scsi_q
{
374 ASC_SG_HEAD
*sg_head
;
375 ushort remain_sg_entry_cnt
;
376 ushort next_sg_index
;
379 typedef struct asc_scsi_req_q
{
383 ASC_SG_HEAD
*sg_head
;
386 uchar cdb
[ASC_MAX_CDB_LEN
];
387 uchar sense
[ASC_MIN_SENSE_LEN
];
390 typedef struct asc_scsi_bios_req_q
{
394 ASC_SG_HEAD
*sg_head
;
397 uchar cdb
[ASC_MAX_CDB_LEN
];
398 uchar sense
[ASC_MIN_SENSE_LEN
];
399 } ASC_SCSI_BIOS_REQ_Q
;
401 typedef struct asc_risc_q
{
410 typedef struct asc_sg_list_q
{
416 uchar sg_cur_list_cnt
;
419 typedef struct asc_risc_sg_list_q
{
423 ASC_SG_LIST sg_list
[7];
424 } ASC_RISC_SG_LIST_Q
;
426 #define ASCQ_ERR_Q_STATUS 0x0D
427 #define ASCQ_ERR_CUR_QNG 0x17
428 #define ASCQ_ERR_SG_Q_LINKS 0x18
429 #define ASCQ_ERR_ISR_RE_ENTRY 0x1A
430 #define ASCQ_ERR_CRITICAL_RE_ENTRY 0x1B
431 #define ASCQ_ERR_ISR_ON_CRITICAL 0x1C
434 * Warning code values are set in ASC_DVC_VAR 'warn_code'.
436 #define ASC_WARN_NO_ERROR 0x0000
437 #define ASC_WARN_IO_PORT_ROTATE 0x0001
438 #define ASC_WARN_EEPROM_CHKSUM 0x0002
439 #define ASC_WARN_IRQ_MODIFIED 0x0004
440 #define ASC_WARN_AUTO_CONFIG 0x0008
441 #define ASC_WARN_CMD_QNG_CONFLICT 0x0010
442 #define ASC_WARN_EEPROM_RECOVER 0x0020
443 #define ASC_WARN_CFG_MSW_RECOVER 0x0040
446 * Error code values are set in {ASC/ADV}_DVC_VAR 'err_code'.
448 #define ASC_IERR_NO_CARRIER 0x0001 /* No more carrier memory */
449 #define ASC_IERR_MCODE_CHKSUM 0x0002 /* micro code check sum error */
450 #define ASC_IERR_SET_PC_ADDR 0x0004
451 #define ASC_IERR_START_STOP_CHIP 0x0008 /* start/stop chip failed */
452 #define ASC_IERR_ILLEGAL_CONNECTION 0x0010 /* Illegal cable connection */
453 #define ASC_IERR_SINGLE_END_DEVICE 0x0020 /* SE device on DIFF bus */
454 #define ASC_IERR_REVERSED_CABLE 0x0040 /* Narrow flat cable reversed */
455 #define ASC_IERR_SET_SCSI_ID 0x0080 /* set SCSI ID failed */
456 #define ASC_IERR_HVD_DEVICE 0x0100 /* HVD device on LVD port */
457 #define ASC_IERR_BAD_SIGNATURE 0x0200 /* signature not found */
458 #define ASC_IERR_NO_BUS_TYPE 0x0400
459 #define ASC_IERR_BIST_PRE_TEST 0x0800 /* BIST pre-test error */
460 #define ASC_IERR_BIST_RAM_TEST 0x1000 /* BIST RAM test error */
461 #define ASC_IERR_BAD_CHIPTYPE 0x2000 /* Invalid chip_type setting */
463 #define ASC_DEF_MAX_TOTAL_QNG (0xF0)
464 #define ASC_MIN_TAG_Q_PER_DVC (0x04)
465 #define ASC_MIN_FREE_Q (0x02)
466 #define ASC_MIN_TOTAL_QNG ((ASC_MAX_SG_QUEUE)+(ASC_MIN_FREE_Q))
467 #define ASC_MAX_TOTAL_QNG 240
468 #define ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG 16
469 #define ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG 8
470 #define ASC_MAX_PCI_INRAM_TOTAL_QNG 20
471 #define ASC_MAX_INRAM_TAG_QNG 16
472 #define ASC_IOADR_GAP 0x10
473 #define ASC_SYN_MAX_OFFSET 0x0F
474 #define ASC_DEF_SDTR_OFFSET 0x0F
475 #define ASC_SDTR_ULTRA_PCI_10MB_INDEX 0x02
476 #define ASYN_SDTR_DATA_FIX_PCI_REV_AB 0x41
478 /* The narrow chip only supports a limited selection of transfer rates.
479 * These are encoded in the range 0..7 or 0..15 depending whether the chip
480 * is Ultra-capable or not. These tables let us convert from one to the other.
482 static const unsigned char asc_syn_xfer_period
[8] = {
483 25, 30, 35, 40, 50, 60, 70, 85
486 static const unsigned char asc_syn_ultra_xfer_period
[16] = {
487 12, 19, 25, 32, 38, 44, 50, 57, 63, 69, 75, 82, 88, 94, 100, 107
490 typedef struct ext_msg
{
496 uchar sdtr_xfer_period
;
497 uchar sdtr_req_ack_offset
;
512 #define xfer_period u_ext_msg.sdtr.sdtr_xfer_period
513 #define req_ack_offset u_ext_msg.sdtr.sdtr_req_ack_offset
514 #define wdtr_width u_ext_msg.wdtr.wdtr_width
515 #define mdp_b3 u_ext_msg.mdp_b3
516 #define mdp_b2 u_ext_msg.mdp_b2
517 #define mdp_b1 u_ext_msg.mdp_b1
518 #define mdp_b0 u_ext_msg.mdp_b0
520 typedef struct asc_dvc_cfg
{
521 ASC_SCSI_BIT_ID_TYPE can_tagged_qng
;
522 ASC_SCSI_BIT_ID_TYPE cmd_qng_enabled
;
523 ASC_SCSI_BIT_ID_TYPE disc_enable
;
524 ASC_SCSI_BIT_ID_TYPE sdtr_enable
;
527 uchar isa_dma_channel
;
530 ushort mcode_version
;
531 uchar max_tag_qng
[ASC_MAX_TID
+ 1];
532 uchar sdtr_period_offset
[ASC_MAX_TID
+ 1];
533 uchar adapter_info
[6];
536 #define ASC_DEF_DVC_CNTL 0xFFFF
537 #define ASC_DEF_CHIP_SCSI_ID 7
538 #define ASC_DEF_ISA_DMA_SPEED 4
539 #define ASC_INIT_STATE_BEG_GET_CFG 0x0001
540 #define ASC_INIT_STATE_END_GET_CFG 0x0002
541 #define ASC_INIT_STATE_BEG_SET_CFG 0x0004
542 #define ASC_INIT_STATE_END_SET_CFG 0x0008
543 #define ASC_INIT_STATE_BEG_LOAD_MC 0x0010
544 #define ASC_INIT_STATE_END_LOAD_MC 0x0020
545 #define ASC_INIT_STATE_BEG_INQUIRY 0x0040
546 #define ASC_INIT_STATE_END_INQUIRY 0x0080
547 #define ASC_INIT_RESET_SCSI_DONE 0x0100
548 #define ASC_INIT_STATE_WITHOUT_EEP 0x8000
549 #define ASC_BUG_FIX_IF_NOT_DWB 0x0001
550 #define ASC_BUG_FIX_ASYN_USE_SYN 0x0002
551 #define ASC_MIN_TAGGED_CMD 7
552 #define ASC_MAX_SCSI_RESET_WAIT 30
553 #define ASC_OVERRUN_BSIZE 64
555 struct asc_dvc_var
; /* Forward Declaration. */
557 typedef struct asc_dvc_var
{
563 ASC_SCSI_BIT_ID_TYPE init_sdtr
;
564 ASC_SCSI_BIT_ID_TYPE sdtr_done
;
565 ASC_SCSI_BIT_ID_TYPE use_tagged_qng
;
566 ASC_SCSI_BIT_ID_TYPE unit_not_ready
;
567 ASC_SCSI_BIT_ID_TYPE queue_full_or_busy
;
568 ASC_SCSI_BIT_ID_TYPE start_motor
;
570 dma_addr_t overrun_dma
;
571 uchar scsi_reset_wait
;
576 uchar in_critical_cnt
;
577 uchar last_q_shortage
;
579 uchar cur_dvc_qng
[ASC_MAX_TID
+ 1];
580 uchar max_dvc_qng
[ASC_MAX_TID
+ 1];
581 ASC_SCSI_Q
*scsiq_busy_head
[ASC_MAX_TID
+ 1];
582 ASC_SCSI_Q
*scsiq_busy_tail
[ASC_MAX_TID
+ 1];
583 const uchar
*sdtr_period_tbl
;
585 ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer_always
;
588 uchar dos_int13_table
[ASC_MAX_TID
+ 1];
589 ASC_DCNT max_dma_count
;
590 ASC_SCSI_BIT_ID_TYPE no_scam
;
591 ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer
;
592 uchar min_sdtr_index
;
593 uchar max_sdtr_index
;
594 struct asc_board
*drv_ptr
;
600 typedef struct asc_dvc_inq_info
{
601 uchar type
[ASC_MAX_TID
+ 1][ASC_MAX_LUN
+ 1];
604 typedef struct asc_cap_info
{
609 typedef struct asc_cap_info_array
{
610 ASC_CAP_INFO cap_info
[ASC_MAX_TID
+ 1][ASC_MAX_LUN
+ 1];
611 } ASC_CAP_INFO_ARRAY
;
613 #define ASC_MCNTL_NO_SEL_TIMEOUT (ushort)0x0001
614 #define ASC_MCNTL_NULL_TARGET (ushort)0x0002
615 #define ASC_CNTL_INITIATOR (ushort)0x0001
616 #define ASC_CNTL_BIOS_GT_1GB (ushort)0x0002
617 #define ASC_CNTL_BIOS_GT_2_DISK (ushort)0x0004
618 #define ASC_CNTL_BIOS_REMOVABLE (ushort)0x0008
619 #define ASC_CNTL_NO_SCAM (ushort)0x0010
620 #define ASC_CNTL_INT_MULTI_Q (ushort)0x0080
621 #define ASC_CNTL_NO_LUN_SUPPORT (ushort)0x0040
622 #define ASC_CNTL_NO_VERIFY_COPY (ushort)0x0100
623 #define ASC_CNTL_RESET_SCSI (ushort)0x0200
624 #define ASC_CNTL_INIT_INQUIRY (ushort)0x0400
625 #define ASC_CNTL_INIT_VERBOSE (ushort)0x0800
626 #define ASC_CNTL_SCSI_PARITY (ushort)0x1000
627 #define ASC_CNTL_BURST_MODE (ushort)0x2000
628 #define ASC_CNTL_SDTR_ENABLE_ULTRA (ushort)0x4000
629 #define ASC_EEP_DVC_CFG_BEG_VL 2
630 #define ASC_EEP_MAX_DVC_ADDR_VL 15
631 #define ASC_EEP_DVC_CFG_BEG 32
632 #define ASC_EEP_MAX_DVC_ADDR 45
633 #define ASC_EEP_MAX_RETRY 20
636 * These macros keep the chip SCSI id and ISA DMA speed
637 * bitfields in board order. C bitfields aren't portable
638 * between big and little-endian platforms so they are
642 #define ASC_EEP_GET_CHIP_ID(cfg) ((cfg)->id_speed & 0x0f)
643 #define ASC_EEP_GET_DMA_SPD(cfg) (((cfg)->id_speed & 0xf0) >> 4)
644 #define ASC_EEP_SET_CHIP_ID(cfg, sid) \
645 ((cfg)->id_speed = ((cfg)->id_speed & 0xf0) | ((sid) & ASC_MAX_TID))
646 #define ASC_EEP_SET_DMA_SPD(cfg, spd) \
647 ((cfg)->id_speed = ((cfg)->id_speed & 0x0f) | ((spd) & 0x0f) << 4)
649 typedef struct asceep_config
{
661 uchar id_speed
; /* low order 4 bits is chip scsi id */
662 /* high order 4 bits is isa dma speed */
663 uchar dos_int13_table
[ASC_MAX_TID
+ 1];
664 uchar adapter_info
[6];
669 #define ASC_EEP_CMD_READ 0x80
670 #define ASC_EEP_CMD_WRITE 0x40
671 #define ASC_EEP_CMD_WRITE_ABLE 0x30
672 #define ASC_EEP_CMD_WRITE_DISABLE 0x00
673 #define ASCV_MSGOUT_BEG 0x0000
674 #define ASCV_MSGOUT_SDTR_PERIOD (ASCV_MSGOUT_BEG+3)
675 #define ASCV_MSGOUT_SDTR_OFFSET (ASCV_MSGOUT_BEG+4)
676 #define ASCV_BREAK_SAVED_CODE (ushort)0x0006
677 #define ASCV_MSGIN_BEG (ASCV_MSGOUT_BEG+8)
678 #define ASCV_MSGIN_SDTR_PERIOD (ASCV_MSGIN_BEG+3)
679 #define ASCV_MSGIN_SDTR_OFFSET (ASCV_MSGIN_BEG+4)
680 #define ASCV_SDTR_DATA_BEG (ASCV_MSGIN_BEG+8)
681 #define ASCV_SDTR_DONE_BEG (ASCV_SDTR_DATA_BEG+8)
682 #define ASCV_MAX_DVC_QNG_BEG (ushort)0x0020
683 #define ASCV_BREAK_ADDR (ushort)0x0028
684 #define ASCV_BREAK_NOTIFY_COUNT (ushort)0x002A
685 #define ASCV_BREAK_CONTROL (ushort)0x002C
686 #define ASCV_BREAK_HIT_COUNT (ushort)0x002E
688 #define ASCV_ASCDVC_ERR_CODE_W (ushort)0x0030
689 #define ASCV_MCODE_CHKSUM_W (ushort)0x0032
690 #define ASCV_MCODE_SIZE_W (ushort)0x0034
691 #define ASCV_STOP_CODE_B (ushort)0x0036
692 #define ASCV_DVC_ERR_CODE_B (ushort)0x0037
693 #define ASCV_OVERRUN_PADDR_D (ushort)0x0038
694 #define ASCV_OVERRUN_BSIZE_D (ushort)0x003C
695 #define ASCV_HALTCODE_W (ushort)0x0040
696 #define ASCV_CHKSUM_W (ushort)0x0042
697 #define ASCV_MC_DATE_W (ushort)0x0044
698 #define ASCV_MC_VER_W (ushort)0x0046
699 #define ASCV_NEXTRDY_B (ushort)0x0048
700 #define ASCV_DONENEXT_B (ushort)0x0049
701 #define ASCV_USE_TAGGED_QNG_B (ushort)0x004A
702 #define ASCV_SCSIBUSY_B (ushort)0x004B
703 #define ASCV_Q_DONE_IN_PROGRESS_B (ushort)0x004C
704 #define ASCV_CURCDB_B (ushort)0x004D
705 #define ASCV_RCLUN_B (ushort)0x004E
706 #define ASCV_BUSY_QHEAD_B (ushort)0x004F
707 #define ASCV_DISC1_QHEAD_B (ushort)0x0050
708 #define ASCV_DISC_ENABLE_B (ushort)0x0052
709 #define ASCV_CAN_TAGGED_QNG_B (ushort)0x0053
710 #define ASCV_HOSTSCSI_ID_B (ushort)0x0055
711 #define ASCV_MCODE_CNTL_B (ushort)0x0056
712 #define ASCV_NULL_TARGET_B (ushort)0x0057
713 #define ASCV_FREE_Q_HEAD_W (ushort)0x0058
714 #define ASCV_DONE_Q_TAIL_W (ushort)0x005A
715 #define ASCV_FREE_Q_HEAD_B (ushort)(ASCV_FREE_Q_HEAD_W+1)
716 #define ASCV_DONE_Q_TAIL_B (ushort)(ASCV_DONE_Q_TAIL_W+1)
717 #define ASCV_HOST_FLAG_B (ushort)0x005D
718 #define ASCV_TOTAL_READY_Q_B (ushort)0x0064
719 #define ASCV_VER_SERIAL_B (ushort)0x0065
720 #define ASCV_HALTCODE_SAVED_W (ushort)0x0066
721 #define ASCV_WTM_FLAG_B (ushort)0x0068
722 #define ASCV_RISC_FLAG_B (ushort)0x006A
723 #define ASCV_REQ_SG_LIST_QP (ushort)0x006B
724 #define ASC_HOST_FLAG_IN_ISR 0x01
725 #define ASC_HOST_FLAG_ACK_INT 0x02
726 #define ASC_RISC_FLAG_GEN_INT 0x01
727 #define ASC_RISC_FLAG_REQ_SG_LIST 0x02
728 #define IOP_CTRL (0x0F)
729 #define IOP_STATUS (0x0E)
730 #define IOP_INT_ACK IOP_STATUS
731 #define IOP_REG_IFC (0x0D)
732 #define IOP_SYN_OFFSET (0x0B)
733 #define IOP_EXTRA_CONTROL (0x0D)
734 #define IOP_REG_PC (0x0C)
735 #define IOP_RAM_ADDR (0x0A)
736 #define IOP_RAM_DATA (0x08)
737 #define IOP_EEP_DATA (0x06)
738 #define IOP_EEP_CMD (0x07)
739 #define IOP_VERSION (0x03)
740 #define IOP_CONFIG_HIGH (0x04)
741 #define IOP_CONFIG_LOW (0x02)
742 #define IOP_SIG_BYTE (0x01)
743 #define IOP_SIG_WORD (0x00)
744 #define IOP_REG_DC1 (0x0E)
745 #define IOP_REG_DC0 (0x0C)
746 #define IOP_REG_SB (0x0B)
747 #define IOP_REG_DA1 (0x0A)
748 #define IOP_REG_DA0 (0x08)
749 #define IOP_REG_SC (0x09)
750 #define IOP_DMA_SPEED (0x07)
751 #define IOP_REG_FLAG (0x07)
752 #define IOP_FIFO_H (0x06)
753 #define IOP_FIFO_L (0x04)
754 #define IOP_REG_ID (0x05)
755 #define IOP_REG_QP (0x03)
756 #define IOP_REG_IH (0x02)
757 #define IOP_REG_IX (0x01)
758 #define IOP_REG_AX (0x00)
759 #define IFC_REG_LOCK (0x00)
760 #define IFC_REG_UNLOCK (0x09)
761 #define IFC_WR_EN_FILTER (0x10)
762 #define IFC_RD_NO_EEPROM (0x10)
763 #define IFC_SLEW_RATE (0x20)
764 #define IFC_ACT_NEG (0x40)
765 #define IFC_INP_FILTER (0x80)
766 #define IFC_INIT_DEFAULT (IFC_ACT_NEG | IFC_REG_UNLOCK)
767 #define SC_SEL (uchar)(0x80)
768 #define SC_BSY (uchar)(0x40)
769 #define SC_ACK (uchar)(0x20)
770 #define SC_REQ (uchar)(0x10)
771 #define SC_ATN (uchar)(0x08)
772 #define SC_IO (uchar)(0x04)
773 #define SC_CD (uchar)(0x02)
774 #define SC_MSG (uchar)(0x01)
775 #define SEC_SCSI_CTL (uchar)(0x80)
776 #define SEC_ACTIVE_NEGATE (uchar)(0x40)
777 #define SEC_SLEW_RATE (uchar)(0x20)
778 #define SEC_ENABLE_FILTER (uchar)(0x10)
779 #define ASC_HALT_EXTMSG_IN (ushort)0x8000
780 #define ASC_HALT_CHK_CONDITION (ushort)0x8100
781 #define ASC_HALT_SS_QUEUE_FULL (ushort)0x8200
782 #define ASC_HALT_DISABLE_ASYN_USE_SYN_FIX (ushort)0x8300
783 #define ASC_HALT_ENABLE_ASYN_USE_SYN_FIX (ushort)0x8400
784 #define ASC_HALT_SDTR_REJECTED (ushort)0x4000
785 #define ASC_HALT_HOST_COPY_SG_LIST_TO_RISC ( ushort )0x2000
786 #define ASC_MAX_QNO 0xF8
787 #define ASC_DATA_SEC_BEG (ushort)0x0080
788 #define ASC_DATA_SEC_END (ushort)0x0080
789 #define ASC_CODE_SEC_BEG (ushort)0x0080
790 #define ASC_CODE_SEC_END (ushort)0x0080
791 #define ASC_QADR_BEG (0x4000)
792 #define ASC_QADR_USED (ushort)(ASC_MAX_QNO * 64)
793 #define ASC_QADR_END (ushort)0x7FFF
794 #define ASC_QLAST_ADR (ushort)0x7FC0
795 #define ASC_QBLK_SIZE 0x40
796 #define ASC_BIOS_DATA_QBEG 0xF8
797 #define ASC_MIN_ACTIVE_QNO 0x01
798 #define ASC_QLINK_END 0xFF
799 #define ASC_EEPROM_WORDS 0x10
800 #define ASC_MAX_MGS_LEN 0x10
801 #define ASC_BIOS_ADDR_DEF 0xDC00
802 #define ASC_BIOS_SIZE 0x3800
803 #define ASC_BIOS_RAM_OFF 0x3800
804 #define ASC_BIOS_RAM_SIZE 0x800
805 #define ASC_BIOS_MIN_ADDR 0xC000
806 #define ASC_BIOS_MAX_ADDR 0xEC00
807 #define ASC_BIOS_BANK_SIZE 0x0400
808 #define ASC_MCODE_START_ADDR 0x0080
809 #define ASC_CFG0_HOST_INT_ON 0x0020
810 #define ASC_CFG0_BIOS_ON 0x0040
811 #define ASC_CFG0_VERA_BURST_ON 0x0080
812 #define ASC_CFG0_SCSI_PARITY_ON 0x0800
813 #define ASC_CFG1_SCSI_TARGET_ON 0x0080
814 #define ASC_CFG1_LRAM_8BITS_ON 0x0800
815 #define ASC_CFG_MSW_CLR_MASK 0x3080
816 #define CSW_TEST1 (ASC_CS_TYPE)0x8000
817 #define CSW_AUTO_CONFIG (ASC_CS_TYPE)0x4000
818 #define CSW_RESERVED1 (ASC_CS_TYPE)0x2000
819 #define CSW_IRQ_WRITTEN (ASC_CS_TYPE)0x1000
820 #define CSW_33MHZ_SELECTED (ASC_CS_TYPE)0x0800
821 #define CSW_TEST2 (ASC_CS_TYPE)0x0400
822 #define CSW_TEST3 (ASC_CS_TYPE)0x0200
823 #define CSW_RESERVED2 (ASC_CS_TYPE)0x0100
824 #define CSW_DMA_DONE (ASC_CS_TYPE)0x0080
825 #define CSW_FIFO_RDY (ASC_CS_TYPE)0x0040
826 #define CSW_EEP_READ_DONE (ASC_CS_TYPE)0x0020
827 #define CSW_HALTED (ASC_CS_TYPE)0x0010
828 #define CSW_SCSI_RESET_ACTIVE (ASC_CS_TYPE)0x0008
829 #define CSW_PARITY_ERR (ASC_CS_TYPE)0x0004
830 #define CSW_SCSI_RESET_LATCH (ASC_CS_TYPE)0x0002
831 #define CSW_INT_PENDING (ASC_CS_TYPE)0x0001
832 #define CIW_CLR_SCSI_RESET_INT (ASC_CS_TYPE)0x1000
833 #define CIW_INT_ACK (ASC_CS_TYPE)0x0100
834 #define CIW_TEST1 (ASC_CS_TYPE)0x0200
835 #define CIW_TEST2 (ASC_CS_TYPE)0x0400
836 #define CIW_SEL_33MHZ (ASC_CS_TYPE)0x0800
837 #define CIW_IRQ_ACT (ASC_CS_TYPE)0x1000
838 #define CC_CHIP_RESET (uchar)0x80
839 #define CC_SCSI_RESET (uchar)0x40
840 #define CC_HALT (uchar)0x20
841 #define CC_SINGLE_STEP (uchar)0x10
842 #define CC_DMA_ABLE (uchar)0x08
843 #define CC_TEST (uchar)0x04
844 #define CC_BANK_ONE (uchar)0x02
845 #define CC_DIAG (uchar)0x01
846 #define ASC_1000_ID0W 0x04C1
847 #define ASC_1000_ID0W_FIX 0x00C1
848 #define ASC_1000_ID1B 0x25
849 #define ASC_EISA_REV_IOP_MASK (0x0C83)
850 #define ASC_EISA_CFG_IOP_MASK (0x0C86)
851 #define ASC_GET_EISA_SLOT(iop) (PortAddr)((iop) & 0xF000)
852 #define INS_HALTINT (ushort)0x6281
853 #define INS_HALT (ushort)0x6280
854 #define INS_SINT (ushort)0x6200
855 #define INS_RFLAG_WTM (ushort)0x7380
856 #define ASC_MC_SAVE_CODE_WSIZE 0x500
857 #define ASC_MC_SAVE_DATA_WSIZE 0x40
859 typedef struct asc_mc_saved
{
860 ushort data
[ASC_MC_SAVE_DATA_WSIZE
];
861 ushort code
[ASC_MC_SAVE_CODE_WSIZE
];
864 #define AscGetQDoneInProgress(port) AscReadLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B)
865 #define AscPutQDoneInProgress(port, val) AscWriteLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B, val)
866 #define AscGetVarFreeQHead(port) AscReadLramWord((port), ASCV_FREE_Q_HEAD_W)
867 #define AscGetVarDoneQTail(port) AscReadLramWord((port), ASCV_DONE_Q_TAIL_W)
868 #define AscPutVarFreeQHead(port, val) AscWriteLramWord((port), ASCV_FREE_Q_HEAD_W, val)
869 #define AscPutVarDoneQTail(port, val) AscWriteLramWord((port), ASCV_DONE_Q_TAIL_W, val)
870 #define AscGetRiscVarFreeQHead(port) AscReadLramByte((port), ASCV_NEXTRDY_B)
871 #define AscGetRiscVarDoneQTail(port) AscReadLramByte((port), ASCV_DONENEXT_B)
872 #define AscPutRiscVarFreeQHead(port, val) AscWriteLramByte((port), ASCV_NEXTRDY_B, val)
873 #define AscPutRiscVarDoneQTail(port, val) AscWriteLramByte((port), ASCV_DONENEXT_B, val)
874 #define AscPutMCodeSDTRDoneAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id), (data))
875 #define AscGetMCodeSDTRDoneAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id))
876 #define AscPutMCodeInitSDTRAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id), data)
877 #define AscGetMCodeInitSDTRAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id))
878 #define AscGetChipSignatureByte(port) (uchar)inp((port)+IOP_SIG_BYTE)
879 #define AscGetChipSignatureWord(port) (ushort)inpw((port)+IOP_SIG_WORD)
880 #define AscGetChipVerNo(port) (uchar)inp((port)+IOP_VERSION)
881 #define AscGetChipCfgLsw(port) (ushort)inpw((port)+IOP_CONFIG_LOW)
882 #define AscGetChipCfgMsw(port) (ushort)inpw((port)+IOP_CONFIG_HIGH)
883 #define AscSetChipCfgLsw(port, data) outpw((port)+IOP_CONFIG_LOW, data)
884 #define AscSetChipCfgMsw(port, data) outpw((port)+IOP_CONFIG_HIGH, data)
885 #define AscGetChipEEPCmd(port) (uchar)inp((port)+IOP_EEP_CMD)
886 #define AscSetChipEEPCmd(port, data) outp((port)+IOP_EEP_CMD, data)
887 #define AscGetChipEEPData(port) (ushort)inpw((port)+IOP_EEP_DATA)
888 #define AscSetChipEEPData(port, data) outpw((port)+IOP_EEP_DATA, data)
889 #define AscGetChipLramAddr(port) (ushort)inpw((PortAddr)((port)+IOP_RAM_ADDR))
890 #define AscSetChipLramAddr(port, addr) outpw((PortAddr)((port)+IOP_RAM_ADDR), addr)
891 #define AscGetChipLramData(port) (ushort)inpw((port)+IOP_RAM_DATA)
892 #define AscSetChipLramData(port, data) outpw((port)+IOP_RAM_DATA, data)
893 #define AscGetChipIFC(port) (uchar)inp((port)+IOP_REG_IFC)
894 #define AscSetChipIFC(port, data) outp((port)+IOP_REG_IFC, data)
895 #define AscGetChipStatus(port) (ASC_CS_TYPE)inpw((port)+IOP_STATUS)
896 #define AscSetChipStatus(port, cs_val) outpw((port)+IOP_STATUS, cs_val)
897 #define AscGetChipControl(port) (uchar)inp((port)+IOP_CTRL)
898 #define AscSetChipControl(port, cc_val) outp((port)+IOP_CTRL, cc_val)
899 #define AscGetChipSyn(port) (uchar)inp((port)+IOP_SYN_OFFSET)
900 #define AscSetChipSyn(port, data) outp((port)+IOP_SYN_OFFSET, data)
901 #define AscSetPCAddr(port, data) outpw((port)+IOP_REG_PC, data)
902 #define AscGetPCAddr(port) (ushort)inpw((port)+IOP_REG_PC)
903 #define AscIsIntPending(port) (AscGetChipStatus(port) & (CSW_INT_PENDING | CSW_SCSI_RESET_LATCH))
904 #define AscGetChipScsiID(port) ((AscGetChipCfgLsw(port) >> 8) & ASC_MAX_TID)
905 #define AscGetExtraControl(port) (uchar)inp((port)+IOP_EXTRA_CONTROL)
906 #define AscSetExtraControl(port, data) outp((port)+IOP_EXTRA_CONTROL, data)
907 #define AscReadChipAX(port) (ushort)inpw((port)+IOP_REG_AX)
908 #define AscWriteChipAX(port, data) outpw((port)+IOP_REG_AX, data)
909 #define AscReadChipIX(port) (uchar)inp((port)+IOP_REG_IX)
910 #define AscWriteChipIX(port, data) outp((port)+IOP_REG_IX, data)
911 #define AscReadChipIH(port) (ushort)inpw((port)+IOP_REG_IH)
912 #define AscWriteChipIH(port, data) outpw((port)+IOP_REG_IH, data)
913 #define AscReadChipQP(port) (uchar)inp((port)+IOP_REG_QP)
914 #define AscWriteChipQP(port, data) outp((port)+IOP_REG_QP, data)
915 #define AscReadChipFIFO_L(port) (ushort)inpw((port)+IOP_REG_FIFO_L)
916 #define AscWriteChipFIFO_L(port, data) outpw((port)+IOP_REG_FIFO_L, data)
917 #define AscReadChipFIFO_H(port) (ushort)inpw((port)+IOP_REG_FIFO_H)
918 #define AscWriteChipFIFO_H(port, data) outpw((port)+IOP_REG_FIFO_H, data)
919 #define AscReadChipDmaSpeed(port) (uchar)inp((port)+IOP_DMA_SPEED)
920 #define AscWriteChipDmaSpeed(port, data) outp((port)+IOP_DMA_SPEED, data)
921 #define AscReadChipDA0(port) (ushort)inpw((port)+IOP_REG_DA0)
922 #define AscWriteChipDA0(port) outpw((port)+IOP_REG_DA0, data)
923 #define AscReadChipDA1(port) (ushort)inpw((port)+IOP_REG_DA1)
924 #define AscWriteChipDA1(port) outpw((port)+IOP_REG_DA1, data)
925 #define AscReadChipDC0(port) (ushort)inpw((port)+IOP_REG_DC0)
926 #define AscWriteChipDC0(port) outpw((port)+IOP_REG_DC0, data)
927 #define AscReadChipDC1(port) (ushort)inpw((port)+IOP_REG_DC1)
928 #define AscWriteChipDC1(port) outpw((port)+IOP_REG_DC1, data)
929 #define AscReadChipDvcID(port) (uchar)inp((port)+IOP_REG_ID)
930 #define AscWriteChipDvcID(port, data) outp((port)+IOP_REG_ID, data)
933 * Portable Data Types
935 * Any instance where a 32-bit long or pointer type is assumed
936 * for precision or HW defined structures, the following define
937 * types must be used. In Linux the char, short, and int types
938 * are all consistent at 8, 16, and 32 bits respectively. Pointers
939 * and long types are 64 bits on Alpha and UltraSPARC.
941 #define ADV_PADDR __u32 /* Physical address data type. */
942 #define ADV_VADDR __u32 /* Virtual address data type. */
943 #define ADV_DCNT __u32 /* Unsigned Data count type. */
944 #define ADV_SDCNT __s32 /* Signed Data count type. */
947 * These macros are used to convert a virtual address to a
948 * 32-bit value. This currently can be used on Linux Alpha
949 * which uses 64-bit virtual address but a 32-bit bus address.
950 * This is likely to break in the future, but doing this now
951 * will give us time to change the HW and FW to handle 64-bit
954 #define ADV_VADDR_TO_U32 virt_to_bus
955 #define ADV_U32_TO_VADDR bus_to_virt
957 #define AdvPortAddr void __iomem * /* Virtual memory address size */
960 * Define Adv Library required memory access macros.
962 #define ADV_MEM_READB(addr) readb(addr)
963 #define ADV_MEM_READW(addr) readw(addr)
964 #define ADV_MEM_WRITEB(addr, byte) writeb(byte, addr)
965 #define ADV_MEM_WRITEW(addr, word) writew(word, addr)
966 #define ADV_MEM_WRITEDW(addr, dword) writel(dword, addr)
968 #define ADV_CARRIER_COUNT (ASC_DEF_MAX_HOST_QNG + 15)
971 * Define total number of simultaneous maximum element scatter-gather
972 * request blocks per wide adapter. ASC_DEF_MAX_HOST_QNG (253) is the
973 * maximum number of outstanding commands per wide host adapter. Each
974 * command uses one or more ADV_SG_BLOCK each with 15 scatter-gather
975 * elements. Allow each command to have at least one ADV_SG_BLOCK structure.
976 * This allows about 15 commands to have the maximum 17 ADV_SG_BLOCK
977 * structures or 255 scatter-gather elements.
979 #define ADV_TOT_SG_BLOCK ASC_DEF_MAX_HOST_QNG
982 * Define maximum number of scatter-gather elements per request.
984 #define ADV_MAX_SG_LIST 255
985 #define NO_OF_SG_PER_BLOCK 15
987 #define ADV_EEP_DVC_CFG_BEGIN (0x00)
988 #define ADV_EEP_DVC_CFG_END (0x15)
989 #define ADV_EEP_DVC_CTL_BEGIN (0x16) /* location of OEM name */
990 #define ADV_EEP_MAX_WORD_ADDR (0x1E)
992 #define ADV_EEP_DELAY_MS 100
994 #define ADV_EEPROM_BIG_ENDIAN 0x8000 /* EEPROM Bit 15 */
995 #define ADV_EEPROM_BIOS_ENABLE 0x4000 /* EEPROM Bit 14 */
997 * For the ASC3550 Bit 13 is Termination Polarity control bit.
998 * For later ICs Bit 13 controls whether the CIS (Card Information
999 * Service Section) is loaded from EEPROM.
1001 #define ADV_EEPROM_TERM_POL 0x2000 /* EEPROM Bit 13 */
1002 #define ADV_EEPROM_CIS_LD 0x2000 /* EEPROM Bit 13 */
1006 * If EEPROM Bit 11 is 0 for Function 0, then Function 0 will specify
1007 * INT A in the PCI Configuration Space Int Pin field. If it is 1, then
1008 * Function 0 will specify INT B.
1010 * If EEPROM Bit 11 is 0 for Function 1, then Function 1 will specify
1011 * INT B in the PCI Configuration Space Int Pin field. If it is 1, then
1012 * Function 1 will specify INT A.
1014 #define ADV_EEPROM_INTAB 0x0800 /* EEPROM Bit 11 */
1016 typedef struct adveep_3550_config
{
1017 /* Word Offset, Description */
1019 ushort cfg_lsw
; /* 00 power up initialization */
1020 /* bit 13 set - Term Polarity Control */
1021 /* bit 14 set - BIOS Enable */
1022 /* bit 15 set - Big Endian Mode */
1023 ushort cfg_msw
; /* 01 unused */
1024 ushort disc_enable
; /* 02 disconnect enable */
1025 ushort wdtr_able
; /* 03 Wide DTR able */
1026 ushort sdtr_able
; /* 04 Synchronous DTR able */
1027 ushort start_motor
; /* 05 send start up motor */
1028 ushort tagqng_able
; /* 06 tag queuing able */
1029 ushort bios_scan
; /* 07 BIOS device control */
1030 ushort scam_tolerant
; /* 08 no scam */
1032 uchar adapter_scsi_id
; /* 09 Host Adapter ID */
1033 uchar bios_boot_delay
; /* power up wait */
1035 uchar scsi_reset_delay
; /* 10 reset delay */
1036 uchar bios_id_lun
; /* first boot device scsi id & lun */
1037 /* high nibble is lun */
1038 /* low nibble is scsi id */
1040 uchar termination
; /* 11 0 - automatic */
1041 /* 1 - low off / high off */
1042 /* 2 - low off / high on */
1043 /* 3 - low on / high on */
1044 /* There is no low on / high off */
1046 uchar reserved1
; /* reserved byte (not used) */
1048 ushort bios_ctrl
; /* 12 BIOS control bits */
1049 /* bit 0 BIOS don't act as initiator. */
1050 /* bit 1 BIOS > 1 GB support */
1051 /* bit 2 BIOS > 2 Disk Support */
1052 /* bit 3 BIOS don't support removables */
1053 /* bit 4 BIOS support bootable CD */
1054 /* bit 5 BIOS scan enabled */
1055 /* bit 6 BIOS support multiple LUNs */
1056 /* bit 7 BIOS display of message */
1057 /* bit 8 SCAM disabled */
1058 /* bit 9 Reset SCSI bus during init. */
1060 /* bit 11 No verbose initialization. */
1061 /* bit 12 SCSI parity enabled */
1065 ushort ultra_able
; /* 13 ULTRA speed able */
1066 ushort reserved2
; /* 14 reserved */
1067 uchar max_host_qng
; /* 15 maximum host queuing */
1068 uchar max_dvc_qng
; /* maximum per device queuing */
1069 ushort dvc_cntl
; /* 16 control bit for driver */
1070 ushort bug_fix
; /* 17 control bit for bug fix */
1071 ushort serial_number_word1
; /* 18 Board serial number word 1 */
1072 ushort serial_number_word2
; /* 19 Board serial number word 2 */
1073 ushort serial_number_word3
; /* 20 Board serial number word 3 */
1074 ushort check_sum
; /* 21 EEP check sum */
1075 uchar oem_name
[16]; /* 22 OEM name */
1076 ushort dvc_err_code
; /* 30 last device driver error code */
1077 ushort adv_err_code
; /* 31 last uc and Adv Lib error code */
1078 ushort adv_err_addr
; /* 32 last uc error address */
1079 ushort saved_dvc_err_code
; /* 33 saved last dev. driver error code */
1080 ushort saved_adv_err_code
; /* 34 saved last uc and Adv Lib error code */
1081 ushort saved_adv_err_addr
; /* 35 saved last uc error address */
1082 ushort num_of_err
; /* 36 number of error */
1083 } ADVEEP_3550_CONFIG
;
1085 typedef struct adveep_38C0800_config
{
1086 /* Word Offset, Description */
1088 ushort cfg_lsw
; /* 00 power up initialization */
1089 /* bit 13 set - Load CIS */
1090 /* bit 14 set - BIOS Enable */
1091 /* bit 15 set - Big Endian Mode */
1092 ushort cfg_msw
; /* 01 unused */
1093 ushort disc_enable
; /* 02 disconnect enable */
1094 ushort wdtr_able
; /* 03 Wide DTR able */
1095 ushort sdtr_speed1
; /* 04 SDTR Speed TID 0-3 */
1096 ushort start_motor
; /* 05 send start up motor */
1097 ushort tagqng_able
; /* 06 tag queuing able */
1098 ushort bios_scan
; /* 07 BIOS device control */
1099 ushort scam_tolerant
; /* 08 no scam */
1101 uchar adapter_scsi_id
; /* 09 Host Adapter ID */
1102 uchar bios_boot_delay
; /* power up wait */
1104 uchar scsi_reset_delay
; /* 10 reset delay */
1105 uchar bios_id_lun
; /* first boot device scsi id & lun */
1106 /* high nibble is lun */
1107 /* low nibble is scsi id */
1109 uchar termination_se
; /* 11 0 - automatic */
1110 /* 1 - low off / high off */
1111 /* 2 - low off / high on */
1112 /* 3 - low on / high on */
1113 /* There is no low on / high off */
1115 uchar termination_lvd
; /* 11 0 - automatic */
1116 /* 1 - low off / high off */
1117 /* 2 - low off / high on */
1118 /* 3 - low on / high on */
1119 /* There is no low on / high off */
1121 ushort bios_ctrl
; /* 12 BIOS control bits */
1122 /* bit 0 BIOS don't act as initiator. */
1123 /* bit 1 BIOS > 1 GB support */
1124 /* bit 2 BIOS > 2 Disk Support */
1125 /* bit 3 BIOS don't support removables */
1126 /* bit 4 BIOS support bootable CD */
1127 /* bit 5 BIOS scan enabled */
1128 /* bit 6 BIOS support multiple LUNs */
1129 /* bit 7 BIOS display of message */
1130 /* bit 8 SCAM disabled */
1131 /* bit 9 Reset SCSI bus during init. */
1133 /* bit 11 No verbose initialization. */
1134 /* bit 12 SCSI parity enabled */
1138 ushort sdtr_speed2
; /* 13 SDTR speed TID 4-7 */
1139 ushort sdtr_speed3
; /* 14 SDTR speed TID 8-11 */
1140 uchar max_host_qng
; /* 15 maximum host queueing */
1141 uchar max_dvc_qng
; /* maximum per device queuing */
1142 ushort dvc_cntl
; /* 16 control bit for driver */
1143 ushort sdtr_speed4
; /* 17 SDTR speed 4 TID 12-15 */
1144 ushort serial_number_word1
; /* 18 Board serial number word 1 */
1145 ushort serial_number_word2
; /* 19 Board serial number word 2 */
1146 ushort serial_number_word3
; /* 20 Board serial number word 3 */
1147 ushort check_sum
; /* 21 EEP check sum */
1148 uchar oem_name
[16]; /* 22 OEM name */
1149 ushort dvc_err_code
; /* 30 last device driver error code */
1150 ushort adv_err_code
; /* 31 last uc and Adv Lib error code */
1151 ushort adv_err_addr
; /* 32 last uc error address */
1152 ushort saved_dvc_err_code
; /* 33 saved last dev. driver error code */
1153 ushort saved_adv_err_code
; /* 34 saved last uc and Adv Lib error code */
1154 ushort saved_adv_err_addr
; /* 35 saved last uc error address */
1155 ushort reserved36
; /* 36 reserved */
1156 ushort reserved37
; /* 37 reserved */
1157 ushort reserved38
; /* 38 reserved */
1158 ushort reserved39
; /* 39 reserved */
1159 ushort reserved40
; /* 40 reserved */
1160 ushort reserved41
; /* 41 reserved */
1161 ushort reserved42
; /* 42 reserved */
1162 ushort reserved43
; /* 43 reserved */
1163 ushort reserved44
; /* 44 reserved */
1164 ushort reserved45
; /* 45 reserved */
1165 ushort reserved46
; /* 46 reserved */
1166 ushort reserved47
; /* 47 reserved */
1167 ushort reserved48
; /* 48 reserved */
1168 ushort reserved49
; /* 49 reserved */
1169 ushort reserved50
; /* 50 reserved */
1170 ushort reserved51
; /* 51 reserved */
1171 ushort reserved52
; /* 52 reserved */
1172 ushort reserved53
; /* 53 reserved */
1173 ushort reserved54
; /* 54 reserved */
1174 ushort reserved55
; /* 55 reserved */
1175 ushort cisptr_lsw
; /* 56 CIS PTR LSW */
1176 ushort cisprt_msw
; /* 57 CIS PTR MSW */
1177 ushort subsysvid
; /* 58 SubSystem Vendor ID */
1178 ushort subsysid
; /* 59 SubSystem ID */
1179 ushort reserved60
; /* 60 reserved */
1180 ushort reserved61
; /* 61 reserved */
1181 ushort reserved62
; /* 62 reserved */
1182 ushort reserved63
; /* 63 reserved */
1183 } ADVEEP_38C0800_CONFIG
;
1185 typedef struct adveep_38C1600_config
{
1186 /* Word Offset, Description */
1188 ushort cfg_lsw
; /* 00 power up initialization */
1189 /* bit 11 set - Func. 0 INTB, Func. 1 INTA */
1190 /* clear - Func. 0 INTA, Func. 1 INTB */
1191 /* bit 13 set - Load CIS */
1192 /* bit 14 set - BIOS Enable */
1193 /* bit 15 set - Big Endian Mode */
1194 ushort cfg_msw
; /* 01 unused */
1195 ushort disc_enable
; /* 02 disconnect enable */
1196 ushort wdtr_able
; /* 03 Wide DTR able */
1197 ushort sdtr_speed1
; /* 04 SDTR Speed TID 0-3 */
1198 ushort start_motor
; /* 05 send start up motor */
1199 ushort tagqng_able
; /* 06 tag queuing able */
1200 ushort bios_scan
; /* 07 BIOS device control */
1201 ushort scam_tolerant
; /* 08 no scam */
1203 uchar adapter_scsi_id
; /* 09 Host Adapter ID */
1204 uchar bios_boot_delay
; /* power up wait */
1206 uchar scsi_reset_delay
; /* 10 reset delay */
1207 uchar bios_id_lun
; /* first boot device scsi id & lun */
1208 /* high nibble is lun */
1209 /* low nibble is scsi id */
1211 uchar termination_se
; /* 11 0 - automatic */
1212 /* 1 - low off / high off */
1213 /* 2 - low off / high on */
1214 /* 3 - low on / high on */
1215 /* There is no low on / high off */
1217 uchar termination_lvd
; /* 11 0 - automatic */
1218 /* 1 - low off / high off */
1219 /* 2 - low off / high on */
1220 /* 3 - low on / high on */
1221 /* There is no low on / high off */
1223 ushort bios_ctrl
; /* 12 BIOS control bits */
1224 /* bit 0 BIOS don't act as initiator. */
1225 /* bit 1 BIOS > 1 GB support */
1226 /* bit 2 BIOS > 2 Disk Support */
1227 /* bit 3 BIOS don't support removables */
1228 /* bit 4 BIOS support bootable CD */
1229 /* bit 5 BIOS scan enabled */
1230 /* bit 6 BIOS support multiple LUNs */
1231 /* bit 7 BIOS display of message */
1232 /* bit 8 SCAM disabled */
1233 /* bit 9 Reset SCSI bus during init. */
1234 /* bit 10 Basic Integrity Checking disabled */
1235 /* bit 11 No verbose initialization. */
1236 /* bit 12 SCSI parity enabled */
1237 /* bit 13 AIPP (Asyn. Info. Ph. Prot.) dis. */
1240 ushort sdtr_speed2
; /* 13 SDTR speed TID 4-7 */
1241 ushort sdtr_speed3
; /* 14 SDTR speed TID 8-11 */
1242 uchar max_host_qng
; /* 15 maximum host queueing */
1243 uchar max_dvc_qng
; /* maximum per device queuing */
1244 ushort dvc_cntl
; /* 16 control bit for driver */
1245 ushort sdtr_speed4
; /* 17 SDTR speed 4 TID 12-15 */
1246 ushort serial_number_word1
; /* 18 Board serial number word 1 */
1247 ushort serial_number_word2
; /* 19 Board serial number word 2 */
1248 ushort serial_number_word3
; /* 20 Board serial number word 3 */
1249 ushort check_sum
; /* 21 EEP check sum */
1250 uchar oem_name
[16]; /* 22 OEM name */
1251 ushort dvc_err_code
; /* 30 last device driver error code */
1252 ushort adv_err_code
; /* 31 last uc and Adv Lib error code */
1253 ushort adv_err_addr
; /* 32 last uc error address */
1254 ushort saved_dvc_err_code
; /* 33 saved last dev. driver error code */
1255 ushort saved_adv_err_code
; /* 34 saved last uc and Adv Lib error code */
1256 ushort saved_adv_err_addr
; /* 35 saved last uc error address */
1257 ushort reserved36
; /* 36 reserved */
1258 ushort reserved37
; /* 37 reserved */
1259 ushort reserved38
; /* 38 reserved */
1260 ushort reserved39
; /* 39 reserved */
1261 ushort reserved40
; /* 40 reserved */
1262 ushort reserved41
; /* 41 reserved */
1263 ushort reserved42
; /* 42 reserved */
1264 ushort reserved43
; /* 43 reserved */
1265 ushort reserved44
; /* 44 reserved */
1266 ushort reserved45
; /* 45 reserved */
1267 ushort reserved46
; /* 46 reserved */
1268 ushort reserved47
; /* 47 reserved */
1269 ushort reserved48
; /* 48 reserved */
1270 ushort reserved49
; /* 49 reserved */
1271 ushort reserved50
; /* 50 reserved */
1272 ushort reserved51
; /* 51 reserved */
1273 ushort reserved52
; /* 52 reserved */
1274 ushort reserved53
; /* 53 reserved */
1275 ushort reserved54
; /* 54 reserved */
1276 ushort reserved55
; /* 55 reserved */
1277 ushort cisptr_lsw
; /* 56 CIS PTR LSW */
1278 ushort cisprt_msw
; /* 57 CIS PTR MSW */
1279 ushort subsysvid
; /* 58 SubSystem Vendor ID */
1280 ushort subsysid
; /* 59 SubSystem ID */
1281 ushort reserved60
; /* 60 reserved */
1282 ushort reserved61
; /* 61 reserved */
1283 ushort reserved62
; /* 62 reserved */
1284 ushort reserved63
; /* 63 reserved */
1285 } ADVEEP_38C1600_CONFIG
;
1290 #define ASC_EEP_CMD_DONE 0x0200
1293 #define BIOS_CTRL_BIOS 0x0001
1294 #define BIOS_CTRL_EXTENDED_XLAT 0x0002
1295 #define BIOS_CTRL_GT_2_DISK 0x0004
1296 #define BIOS_CTRL_BIOS_REMOVABLE 0x0008
1297 #define BIOS_CTRL_BOOTABLE_CD 0x0010
1298 #define BIOS_CTRL_MULTIPLE_LUN 0x0040
1299 #define BIOS_CTRL_DISPLAY_MSG 0x0080
1300 #define BIOS_CTRL_NO_SCAM 0x0100
1301 #define BIOS_CTRL_RESET_SCSI_BUS 0x0200
1302 #define BIOS_CTRL_INIT_VERBOSE 0x0800
1303 #define BIOS_CTRL_SCSI_PARITY 0x1000
1304 #define BIOS_CTRL_AIPP_DIS 0x2000
1306 #define ADV_3550_MEMSIZE 0x2000 /* 8 KB Internal Memory */
1308 #define ADV_38C0800_MEMSIZE 0x4000 /* 16 KB Internal Memory */
1311 * XXX - Since ASC38C1600 Rev.3 has a local RAM failure issue, there is
1312 * a special 16K Adv Library and Microcode version. After the issue is
1313 * resolved, should restore 32K support.
1315 * #define ADV_38C1600_MEMSIZE 0x8000L * 32 KB Internal Memory *
1317 #define ADV_38C1600_MEMSIZE 0x4000 /* 16 KB Internal Memory */
1320 * Byte I/O register address from base of 'iop_base'.
1322 #define IOPB_INTR_STATUS_REG 0x00
1323 #define IOPB_CHIP_ID_1 0x01
1324 #define IOPB_INTR_ENABLES 0x02
1325 #define IOPB_CHIP_TYPE_REV 0x03
1326 #define IOPB_RES_ADDR_4 0x04
1327 #define IOPB_RES_ADDR_5 0x05
1328 #define IOPB_RAM_DATA 0x06
1329 #define IOPB_RES_ADDR_7 0x07
1330 #define IOPB_FLAG_REG 0x08
1331 #define IOPB_RES_ADDR_9 0x09
1332 #define IOPB_RISC_CSR 0x0A
1333 #define IOPB_RES_ADDR_B 0x0B
1334 #define IOPB_RES_ADDR_C 0x0C
1335 #define IOPB_RES_ADDR_D 0x0D
1336 #define IOPB_SOFT_OVER_WR 0x0E
1337 #define IOPB_RES_ADDR_F 0x0F
1338 #define IOPB_MEM_CFG 0x10
1339 #define IOPB_RES_ADDR_11 0x11
1340 #define IOPB_GPIO_DATA 0x12
1341 #define IOPB_RES_ADDR_13 0x13
1342 #define IOPB_FLASH_PAGE 0x14
1343 #define IOPB_RES_ADDR_15 0x15
1344 #define IOPB_GPIO_CNTL 0x16
1345 #define IOPB_RES_ADDR_17 0x17
1346 #define IOPB_FLASH_DATA 0x18
1347 #define IOPB_RES_ADDR_19 0x19
1348 #define IOPB_RES_ADDR_1A 0x1A
1349 #define IOPB_RES_ADDR_1B 0x1B
1350 #define IOPB_RES_ADDR_1C 0x1C
1351 #define IOPB_RES_ADDR_1D 0x1D
1352 #define IOPB_RES_ADDR_1E 0x1E
1353 #define IOPB_RES_ADDR_1F 0x1F
1354 #define IOPB_DMA_CFG0 0x20
1355 #define IOPB_DMA_CFG1 0x21
1356 #define IOPB_TICKLE 0x22
1357 #define IOPB_DMA_REG_WR 0x23
1358 #define IOPB_SDMA_STATUS 0x24
1359 #define IOPB_SCSI_BYTE_CNT 0x25
1360 #define IOPB_HOST_BYTE_CNT 0x26
1361 #define IOPB_BYTE_LEFT_TO_XFER 0x27
1362 #define IOPB_BYTE_TO_XFER_0 0x28
1363 #define IOPB_BYTE_TO_XFER_1 0x29
1364 #define IOPB_BYTE_TO_XFER_2 0x2A
1365 #define IOPB_BYTE_TO_XFER_3 0x2B
1366 #define IOPB_ACC_GRP 0x2C
1367 #define IOPB_RES_ADDR_2D 0x2D
1368 #define IOPB_DEV_ID 0x2E
1369 #define IOPB_RES_ADDR_2F 0x2F
1370 #define IOPB_SCSI_DATA 0x30
1371 #define IOPB_RES_ADDR_31 0x31
1372 #define IOPB_RES_ADDR_32 0x32
1373 #define IOPB_SCSI_DATA_HSHK 0x33
1374 #define IOPB_SCSI_CTRL 0x34
1375 #define IOPB_RES_ADDR_35 0x35
1376 #define IOPB_RES_ADDR_36 0x36
1377 #define IOPB_RES_ADDR_37 0x37
1378 #define IOPB_RAM_BIST 0x38
1379 #define IOPB_PLL_TEST 0x39
1380 #define IOPB_PCI_INT_CFG 0x3A
1381 #define IOPB_RES_ADDR_3B 0x3B
1382 #define IOPB_RFIFO_CNT 0x3C
1383 #define IOPB_RES_ADDR_3D 0x3D
1384 #define IOPB_RES_ADDR_3E 0x3E
1385 #define IOPB_RES_ADDR_3F 0x3F
1388 * Word I/O register address from base of 'iop_base'.
1390 #define IOPW_CHIP_ID_0 0x00 /* CID0 */
1391 #define IOPW_CTRL_REG 0x02 /* CC */
1392 #define IOPW_RAM_ADDR 0x04 /* LA */
1393 #define IOPW_RAM_DATA 0x06 /* LD */
1394 #define IOPW_RES_ADDR_08 0x08
1395 #define IOPW_RISC_CSR 0x0A /* CSR */
1396 #define IOPW_SCSI_CFG0 0x0C /* CFG0 */
1397 #define IOPW_SCSI_CFG1 0x0E /* CFG1 */
1398 #define IOPW_RES_ADDR_10 0x10
1399 #define IOPW_SEL_MASK 0x12 /* SM */
1400 #define IOPW_RES_ADDR_14 0x14
1401 #define IOPW_FLASH_ADDR 0x16 /* FA */
1402 #define IOPW_RES_ADDR_18 0x18
1403 #define IOPW_EE_CMD 0x1A /* EC */
1404 #define IOPW_EE_DATA 0x1C /* ED */
1405 #define IOPW_SFIFO_CNT 0x1E /* SFC */
1406 #define IOPW_RES_ADDR_20 0x20
1407 #define IOPW_Q_BASE 0x22 /* QB */
1408 #define IOPW_QP 0x24 /* QP */
1409 #define IOPW_IX 0x26 /* IX */
1410 #define IOPW_SP 0x28 /* SP */
1411 #define IOPW_PC 0x2A /* PC */
1412 #define IOPW_RES_ADDR_2C 0x2C
1413 #define IOPW_RES_ADDR_2E 0x2E
1414 #define IOPW_SCSI_DATA 0x30 /* SD */
1415 #define IOPW_SCSI_DATA_HSHK 0x32 /* SDH */
1416 #define IOPW_SCSI_CTRL 0x34 /* SC */
1417 #define IOPW_HSHK_CFG 0x36 /* HCFG */
1418 #define IOPW_SXFR_STATUS 0x36 /* SXS */
1419 #define IOPW_SXFR_CNTL 0x38 /* SXL */
1420 #define IOPW_SXFR_CNTH 0x3A /* SXH */
1421 #define IOPW_RES_ADDR_3C 0x3C
1422 #define IOPW_RFIFO_DATA 0x3E /* RFD */
1425 * Doubleword I/O register address from base of 'iop_base'.
1427 #define IOPDW_RES_ADDR_0 0x00
1428 #define IOPDW_RAM_DATA 0x04
1429 #define IOPDW_RES_ADDR_8 0x08
1430 #define IOPDW_RES_ADDR_C 0x0C
1431 #define IOPDW_RES_ADDR_10 0x10
1432 #define IOPDW_COMMA 0x14
1433 #define IOPDW_COMMB 0x18
1434 #define IOPDW_RES_ADDR_1C 0x1C
1435 #define IOPDW_SDMA_ADDR0 0x20
1436 #define IOPDW_SDMA_ADDR1 0x24
1437 #define IOPDW_SDMA_COUNT 0x28
1438 #define IOPDW_SDMA_ERROR 0x2C
1439 #define IOPDW_RDMA_ADDR0 0x30
1440 #define IOPDW_RDMA_ADDR1 0x34
1441 #define IOPDW_RDMA_COUNT 0x38
1442 #define IOPDW_RDMA_ERROR 0x3C
1444 #define ADV_CHIP_ID_BYTE 0x25
1445 #define ADV_CHIP_ID_WORD 0x04C1
1447 #define ADV_INTR_ENABLE_HOST_INTR 0x01
1448 #define ADV_INTR_ENABLE_SEL_INTR 0x02
1449 #define ADV_INTR_ENABLE_DPR_INTR 0x04
1450 #define ADV_INTR_ENABLE_RTA_INTR 0x08
1451 #define ADV_INTR_ENABLE_RMA_INTR 0x10
1452 #define ADV_INTR_ENABLE_RST_INTR 0x20
1453 #define ADV_INTR_ENABLE_DPE_INTR 0x40
1454 #define ADV_INTR_ENABLE_GLOBAL_INTR 0x80
1456 #define ADV_INTR_STATUS_INTRA 0x01
1457 #define ADV_INTR_STATUS_INTRB 0x02
1458 #define ADV_INTR_STATUS_INTRC 0x04
1460 #define ADV_RISC_CSR_STOP (0x0000)
1461 #define ADV_RISC_TEST_COND (0x2000)
1462 #define ADV_RISC_CSR_RUN (0x4000)
1463 #define ADV_RISC_CSR_SINGLE_STEP (0x8000)
1465 #define ADV_CTRL_REG_HOST_INTR 0x0100
1466 #define ADV_CTRL_REG_SEL_INTR 0x0200
1467 #define ADV_CTRL_REG_DPR_INTR 0x0400
1468 #define ADV_CTRL_REG_RTA_INTR 0x0800
1469 #define ADV_CTRL_REG_RMA_INTR 0x1000
1470 #define ADV_CTRL_REG_RES_BIT14 0x2000
1471 #define ADV_CTRL_REG_DPE_INTR 0x4000
1472 #define ADV_CTRL_REG_POWER_DONE 0x8000
1473 #define ADV_CTRL_REG_ANY_INTR 0xFF00
1475 #define ADV_CTRL_REG_CMD_RESET 0x00C6
1476 #define ADV_CTRL_REG_CMD_WR_IO_REG 0x00C5
1477 #define ADV_CTRL_REG_CMD_RD_IO_REG 0x00C4
1478 #define ADV_CTRL_REG_CMD_WR_PCI_CFG_SPACE 0x00C3
1479 #define ADV_CTRL_REG_CMD_RD_PCI_CFG_SPACE 0x00C2
1481 #define ADV_TICKLE_NOP 0x00
1482 #define ADV_TICKLE_A 0x01
1483 #define ADV_TICKLE_B 0x02
1484 #define ADV_TICKLE_C 0x03
1486 #define AdvIsIntPending(port) \
1487 (AdvReadWordRegister(port, IOPW_CTRL_REG) & ADV_CTRL_REG_HOST_INTR)
1490 * SCSI_CFG0 Register bit definitions
1492 #define TIMER_MODEAB 0xC000 /* Watchdog, Second, and Select. Timer Ctrl. */
1493 #define PARITY_EN 0x2000 /* Enable SCSI Parity Error detection */
1494 #define EVEN_PARITY 0x1000 /* Select Even Parity */
1495 #define WD_LONG 0x0800 /* Watchdog Interval, 1: 57 min, 0: 13 sec */
1496 #define QUEUE_128 0x0400 /* Queue Size, 1: 128 byte, 0: 64 byte */
1497 #define PRIM_MODE 0x0100 /* Primitive SCSI mode */
1498 #define SCAM_EN 0x0080 /* Enable SCAM selection */
1499 #define SEL_TMO_LONG 0x0040 /* Sel/Resel Timeout, 1: 400 ms, 0: 1.6 ms */
1500 #define CFRM_ID 0x0020 /* SCAM id sel. confirm., 1: fast, 0: 6.4 ms */
1501 #define OUR_ID_EN 0x0010 /* Enable OUR_ID bits */
1502 #define OUR_ID 0x000F /* SCSI ID */
1505 * SCSI_CFG1 Register bit definitions
1507 #define BIG_ENDIAN 0x8000 /* Enable Big Endian Mode MIO:15, EEP:15 */
1508 #define TERM_POL 0x2000 /* Terminator Polarity Ctrl. MIO:13, EEP:13 */
1509 #define SLEW_RATE 0x1000 /* SCSI output buffer slew rate */
1510 #define FILTER_SEL 0x0C00 /* Filter Period Selection */
1511 #define FLTR_DISABLE 0x0000 /* Input Filtering Disabled */
1512 #define FLTR_11_TO_20NS 0x0800 /* Input Filtering 11ns to 20ns */
1513 #define FLTR_21_TO_39NS 0x0C00 /* Input Filtering 21ns to 39ns */
1514 #define ACTIVE_DBL 0x0200 /* Disable Active Negation */
1515 #define DIFF_MODE 0x0100 /* SCSI differential Mode (Read-Only) */
1516 #define DIFF_SENSE 0x0080 /* 1: No SE cables, 0: SE cable (Read-Only) */
1517 #define TERM_CTL_SEL 0x0040 /* Enable TERM_CTL_H and TERM_CTL_L */
1518 #define TERM_CTL 0x0030 /* External SCSI Termination Bits */
1519 #define TERM_CTL_H 0x0020 /* Enable External SCSI Upper Termination */
1520 #define TERM_CTL_L 0x0010 /* Enable External SCSI Lower Termination */
1521 #define CABLE_DETECT 0x000F /* External SCSI Cable Connection Status */
1524 * Addendum for ASC-38C0800 Chip
1526 * The ASC-38C1600 Chip uses the same definitions except that the
1527 * bus mode override bits [12:10] have been moved to byte register
1528 * offset 0xE (IOPB_SOFT_OVER_WR) bits [12:10]. The [12:10] bits in
1529 * SCSI_CFG1 are read-only and always available. Bit 14 (DIS_TERM_DRV)
1530 * is not needed. The [12:10] bits in IOPB_SOFT_OVER_WR are write-only.
1531 * Also each ASC-38C1600 function or channel uses only cable bits [5:4]
1532 * and [1:0]. Bits [14], [7:6], [3:2] are unused.
1534 #define DIS_TERM_DRV 0x4000 /* 1: Read c_det[3:0], 0: cannot read */
1535 #define HVD_LVD_SE 0x1C00 /* Device Detect Bits */
1536 #define HVD 0x1000 /* HVD Device Detect */
1537 #define LVD 0x0800 /* LVD Device Detect */
1538 #define SE 0x0400 /* SE Device Detect */
1539 #define TERM_LVD 0x00C0 /* LVD Termination Bits */
1540 #define TERM_LVD_HI 0x0080 /* Enable LVD Upper Termination */
1541 #define TERM_LVD_LO 0x0040 /* Enable LVD Lower Termination */
1542 #define TERM_SE 0x0030 /* SE Termination Bits */
1543 #define TERM_SE_HI 0x0020 /* Enable SE Upper Termination */
1544 #define TERM_SE_LO 0x0010 /* Enable SE Lower Termination */
1545 #define C_DET_LVD 0x000C /* LVD Cable Detect Bits */
1546 #define C_DET3 0x0008 /* Cable Detect for LVD External Wide */
1547 #define C_DET2 0x0004 /* Cable Detect for LVD Internal Wide */
1548 #define C_DET_SE 0x0003 /* SE Cable Detect Bits */
1549 #define C_DET1 0x0002 /* Cable Detect for SE Internal Wide */
1550 #define C_DET0 0x0001 /* Cable Detect for SE Internal Narrow */
1552 #define CABLE_ILLEGAL_A 0x7
1553 /* x 0 0 0 | on on | Illegal (all 3 connectors are used) */
1555 #define CABLE_ILLEGAL_B 0xB
1556 /* 0 x 0 0 | on on | Illegal (all 3 connectors are used) */
1559 * MEM_CFG Register bit definitions
1561 #define BIOS_EN 0x40 /* BIOS Enable MIO:14,EEP:14 */
1562 #define FAST_EE_CLK 0x20 /* Diagnostic Bit */
1563 #define RAM_SZ 0x1C /* Specify size of RAM to RISC */
1564 #define RAM_SZ_2KB 0x00 /* 2 KB */
1565 #define RAM_SZ_4KB 0x04 /* 4 KB */
1566 #define RAM_SZ_8KB 0x08 /* 8 KB */
1567 #define RAM_SZ_16KB 0x0C /* 16 KB */
1568 #define RAM_SZ_32KB 0x10 /* 32 KB */
1569 #define RAM_SZ_64KB 0x14 /* 64 KB */
1572 * DMA_CFG0 Register bit definitions
1574 * This register is only accessible to the host.
1576 #define BC_THRESH_ENB 0x80 /* PCI DMA Start Conditions */
1577 #define FIFO_THRESH 0x70 /* PCI DMA FIFO Threshold */
1578 #define FIFO_THRESH_16B 0x00 /* 16 bytes */
1579 #define FIFO_THRESH_32B 0x20 /* 32 bytes */
1580 #define FIFO_THRESH_48B 0x30 /* 48 bytes */
1581 #define FIFO_THRESH_64B 0x40 /* 64 bytes */
1582 #define FIFO_THRESH_80B 0x50 /* 80 bytes (default) */
1583 #define FIFO_THRESH_96B 0x60 /* 96 bytes */
1584 #define FIFO_THRESH_112B 0x70 /* 112 bytes */
1585 #define START_CTL 0x0C /* DMA start conditions */
1586 #define START_CTL_TH 0x00 /* Wait threshold level (default) */
1587 #define START_CTL_ID 0x04 /* Wait SDMA/SBUS idle */
1588 #define START_CTL_THID 0x08 /* Wait threshold and SDMA/SBUS idle */
1589 #define START_CTL_EMFU 0x0C /* Wait SDMA FIFO empty/full */
1590 #define READ_CMD 0x03 /* Memory Read Method */
1591 #define READ_CMD_MR 0x00 /* Memory Read */
1592 #define READ_CMD_MRL 0x02 /* Memory Read Long */
1593 #define READ_CMD_MRM 0x03 /* Memory Read Multiple (default) */
1596 * ASC-38C0800 RAM BIST Register bit definitions
1598 #define RAM_TEST_MODE 0x80
1599 #define PRE_TEST_MODE 0x40
1600 #define NORMAL_MODE 0x00
1601 #define RAM_TEST_DONE 0x10
1602 #define RAM_TEST_STATUS 0x0F
1603 #define RAM_TEST_HOST_ERROR 0x08
1604 #define RAM_TEST_INTRAM_ERROR 0x04
1605 #define RAM_TEST_RISC_ERROR 0x02
1606 #define RAM_TEST_SCSI_ERROR 0x01
1607 #define RAM_TEST_SUCCESS 0x00
1608 #define PRE_TEST_VALUE 0x05
1609 #define NORMAL_VALUE 0x00
1612 * ASC38C1600 Definitions
1614 * IOPB_PCI_INT_CFG Bit Field Definitions
1617 #define INTAB_LD 0x80 /* Value loaded from EEPROM Bit 11. */
1620 * Bit 1 can be set to change the interrupt for the Function to operate in
1621 * Totem Pole mode. By default Bit 1 is 0 and the interrupt operates in
1622 * Open Drain mode. Both functions of the ASC38C1600 must be set to the same
1623 * mode, otherwise the operating mode is undefined.
1625 #define TOTEMPOLE 0x02
1628 * Bit 0 can be used to change the Int Pin for the Function. The value is
1629 * 0 by default for both Functions with Function 0 using INT A and Function
1630 * B using INT B. For Function 0 if set, INT B is used. For Function 1 if set,
1633 * EEPROM Word 0 Bit 11 for each Function may change the initial Int Pin
1634 * value specified in the PCI Configuration Space.
1639 * Adv Library Status Definitions
1643 #define ADV_SUCCESS 1
1645 #define ADV_ERROR (-1)
1648 * ADV_DVC_VAR 'warn_code' values
1650 #define ASC_WARN_BUSRESET_ERROR 0x0001 /* SCSI Bus Reset error */
1651 #define ASC_WARN_EEPROM_CHKSUM 0x0002 /* EEP check sum error */
1652 #define ASC_WARN_EEPROM_TERMINATION 0x0004 /* EEP termination bad field */
1653 #define ASC_WARN_ERROR 0xFFFF /* ADV_ERROR return */
1655 #define ADV_MAX_TID 15 /* max. target identifier */
1656 #define ADV_MAX_LUN 7 /* max. logical unit number */
1659 * Fixed locations of microcode operating variables.
1661 #define ASC_MC_CODE_BEGIN_ADDR 0x0028 /* microcode start address */
1662 #define ASC_MC_CODE_END_ADDR 0x002A /* microcode end address */
1663 #define ASC_MC_CODE_CHK_SUM 0x002C /* microcode code checksum */
1664 #define ASC_MC_VERSION_DATE 0x0038 /* microcode version */
1665 #define ASC_MC_VERSION_NUM 0x003A /* microcode number */
1666 #define ASC_MC_BIOSMEM 0x0040 /* BIOS RISC Memory Start */
1667 #define ASC_MC_BIOSLEN 0x0050 /* BIOS RISC Memory Length */
1668 #define ASC_MC_BIOS_SIGNATURE 0x0058 /* BIOS Signature 0x55AA */
1669 #define ASC_MC_BIOS_VERSION 0x005A /* BIOS Version (2 bytes) */
1670 #define ASC_MC_SDTR_SPEED1 0x0090 /* SDTR Speed for TID 0-3 */
1671 #define ASC_MC_SDTR_SPEED2 0x0092 /* SDTR Speed for TID 4-7 */
1672 #define ASC_MC_SDTR_SPEED3 0x0094 /* SDTR Speed for TID 8-11 */
1673 #define ASC_MC_SDTR_SPEED4 0x0096 /* SDTR Speed for TID 12-15 */
1674 #define ASC_MC_CHIP_TYPE 0x009A
1675 #define ASC_MC_INTRB_CODE 0x009B
1676 #define ASC_MC_WDTR_ABLE 0x009C
1677 #define ASC_MC_SDTR_ABLE 0x009E
1678 #define ASC_MC_TAGQNG_ABLE 0x00A0
1679 #define ASC_MC_DISC_ENABLE 0x00A2
1680 #define ASC_MC_IDLE_CMD_STATUS 0x00A4
1681 #define ASC_MC_IDLE_CMD 0x00A6
1682 #define ASC_MC_IDLE_CMD_PARAMETER 0x00A8
1683 #define ASC_MC_DEFAULT_SCSI_CFG0 0x00AC
1684 #define ASC_MC_DEFAULT_SCSI_CFG1 0x00AE
1685 #define ASC_MC_DEFAULT_MEM_CFG 0x00B0
1686 #define ASC_MC_DEFAULT_SEL_MASK 0x00B2
1687 #define ASC_MC_SDTR_DONE 0x00B6
1688 #define ASC_MC_NUMBER_OF_QUEUED_CMD 0x00C0
1689 #define ASC_MC_NUMBER_OF_MAX_CMD 0x00D0
1690 #define ASC_MC_DEVICE_HSHK_CFG_TABLE 0x0100
1691 #define ASC_MC_CONTROL_FLAG 0x0122 /* Microcode control flag. */
1692 #define ASC_MC_WDTR_DONE 0x0124
1693 #define ASC_MC_CAM_MODE_MASK 0x015E /* CAM mode TID bitmask. */
1694 #define ASC_MC_ICQ 0x0160
1695 #define ASC_MC_IRQ 0x0164
1696 #define ASC_MC_PPR_ABLE 0x017A
1699 * BIOS LRAM variable absolute offsets.
1701 #define BIOS_CODESEG 0x54
1702 #define BIOS_CODELEN 0x56
1703 #define BIOS_SIGNATURE 0x58
1704 #define BIOS_VERSION 0x5A
1707 * Microcode Control Flags
1709 * Flags set by the Adv Library in RISC variable 'control_flag' (0x122)
1710 * and handled by the microcode.
1712 #define CONTROL_FLAG_IGNORE_PERR 0x0001 /* Ignore DMA Parity Errors */
1713 #define CONTROL_FLAG_ENABLE_AIPP 0x0002 /* Enabled AIPP checking. */
1716 * ASC_MC_DEVICE_HSHK_CFG_TABLE microcode table or HSHK_CFG register format
1718 #define HSHK_CFG_WIDE_XFR 0x8000
1719 #define HSHK_CFG_RATE 0x0F00
1720 #define HSHK_CFG_OFFSET 0x001F
1722 #define ASC_DEF_MAX_HOST_QNG 0xFD /* Max. number of host commands (253) */
1723 #define ASC_DEF_MIN_HOST_QNG 0x10 /* Min. number of host commands (16) */
1724 #define ASC_DEF_MAX_DVC_QNG 0x3F /* Max. number commands per device (63) */
1725 #define ASC_DEF_MIN_DVC_QNG 0x04 /* Min. number commands per device (4) */
1727 #define ASC_QC_DATA_CHECK 0x01 /* Require ASC_QC_DATA_OUT set or clear. */
1728 #define ASC_QC_DATA_OUT 0x02 /* Data out DMA transfer. */
1729 #define ASC_QC_START_MOTOR 0x04 /* Send auto-start motor before request. */
1730 #define ASC_QC_NO_OVERRUN 0x08 /* Don't report overrun. */
1731 #define ASC_QC_FREEZE_TIDQ 0x10 /* Freeze TID queue after request. XXX TBD */
1733 #define ASC_QSC_NO_DISC 0x01 /* Don't allow disconnect for request. */
1734 #define ASC_QSC_NO_TAGMSG 0x02 /* Don't allow tag queuing for request. */
1735 #define ASC_QSC_NO_SYNC 0x04 /* Don't use Synch. transfer on request. */
1736 #define ASC_QSC_NO_WIDE 0x08 /* Don't use Wide transfer on request. */
1737 #define ASC_QSC_REDO_DTR 0x10 /* Renegotiate WDTR/SDTR before request. */
1739 * Note: If a Tag Message is to be sent and neither ASC_QSC_HEAD_TAG or
1740 * ASC_QSC_ORDERED_TAG is set, then a Simple Tag Message (0x20) is used.
1742 #define ASC_QSC_HEAD_TAG 0x40 /* Use Head Tag Message (0x21). */
1743 #define ASC_QSC_ORDERED_TAG 0x80 /* Use Ordered Tag Message (0x22). */
1746 * All fields here are accessed by the board microcode and need to be
1749 typedef struct adv_carr_t
{
1750 ADV_VADDR carr_va
; /* Carrier Virtual Address */
1751 ADV_PADDR carr_pa
; /* Carrier Physical Address */
1752 ADV_VADDR areq_vpa
; /* ASC_SCSI_REQ_Q Virtual or Physical Address */
1754 * next_vpa [31:4] Carrier Virtual or Physical Next Pointer
1756 * next_vpa [3:1] Reserved Bits
1757 * next_vpa [0] Done Flag set in Response Queue.
1763 * Mask used to eliminate low 4 bits of carrier 'next_vpa' field.
1765 #define ASC_NEXT_VPA_MASK 0xFFFFFFF0
1767 #define ASC_RQ_DONE 0x00000001
1768 #define ASC_RQ_GOOD 0x00000002
1769 #define ASC_CQ_STOPPER 0x00000000
1771 #define ASC_GET_CARRP(carrp) ((carrp) & ASC_NEXT_VPA_MASK)
1773 #define ADV_CARRIER_NUM_PAGE_CROSSING \
1774 (((ADV_CARRIER_COUNT * sizeof(ADV_CARR_T)) + (PAGE_SIZE - 1))/PAGE_SIZE)
1776 #define ADV_CARRIER_BUFSIZE \
1777 ((ADV_CARRIER_COUNT + ADV_CARRIER_NUM_PAGE_CROSSING) * sizeof(ADV_CARR_T))
1780 * ASC_SCSI_REQ_Q 'a_flag' definitions
1782 * The Adv Library should limit use to the lower nibble (4 bits) of
1783 * a_flag. Drivers are free to use the upper nibble (4 bits) of a_flag.
1785 #define ADV_POLL_REQUEST 0x01 /* poll for request completion */
1786 #define ADV_SCSIQ_DONE 0x02 /* request done */
1787 #define ADV_DONT_RETRY 0x08 /* don't do retry */
1789 #define ADV_CHIP_ASC3550 0x01 /* Ultra-Wide IC */
1790 #define ADV_CHIP_ASC38C0800 0x02 /* Ultra2-Wide/LVD IC */
1791 #define ADV_CHIP_ASC38C1600 0x03 /* Ultra3-Wide/LVD2 IC */
1794 * Adapter temporary configuration structure
1796 * This structure can be discarded after initialization. Don't add
1797 * fields here needed after initialization.
1799 * Field naming convention:
1801 * *_enable indicates the field enables or disables a feature. The
1802 * value of the field is never reset.
1804 typedef struct adv_dvc_cfg
{
1805 ushort disc_enable
; /* enable disconnection */
1806 uchar chip_version
; /* chip version */
1807 uchar termination
; /* Term. Ctrl. bits 6-5 of SCSI_CFG1 register */
1808 ushort control_flag
; /* Microcode Control Flag */
1809 ushort mcode_date
; /* Microcode date */
1810 ushort mcode_version
; /* Microcode version */
1811 ushort serial1
; /* EEPROM serial number word 1 */
1812 ushort serial2
; /* EEPROM serial number word 2 */
1813 ushort serial3
; /* EEPROM serial number word 3 */
1817 struct adv_scsi_req_q
;
1819 typedef struct asc_sg_block
{
1823 uchar sg_cnt
; /* Valid entries in block. */
1824 ADV_PADDR sg_ptr
; /* Pointer to next sg block. */
1826 ADV_PADDR sg_addr
; /* SG element address. */
1827 ADV_DCNT sg_count
; /* SG element count. */
1828 } sg_list
[NO_OF_SG_PER_BLOCK
];
1832 * ADV_SCSI_REQ_Q - microcode request structure
1834 * All fields in this structure up to byte 60 are used by the microcode.
1835 * The microcode makes assumptions about the size and ordering of fields
1836 * in this structure. Do not change the structure definition here without
1837 * coordinating the change with the microcode.
1839 * All fields accessed by microcode must be maintained in little_endian
1842 typedef struct adv_scsi_req_q
{
1843 uchar cntl
; /* Ucode flags and state (ASC_MC_QC_*). */
1845 uchar target_id
; /* Device target identifier. */
1846 uchar target_lun
; /* Device target logical unit number. */
1847 ADV_PADDR data_addr
; /* Data buffer physical address. */
1848 ADV_DCNT data_cnt
; /* Data count. Ucode sets to residual. */
1849 ADV_PADDR sense_addr
;
1853 uchar cdb_len
; /* SCSI CDB length. Must <= 16 bytes. */
1855 uchar done_status
; /* Completion status. */
1856 uchar scsi_status
; /* SCSI status byte. */
1857 uchar host_status
; /* Ucode host status. */
1858 uchar sg_working_ix
;
1859 uchar cdb
[12]; /* SCSI CDB bytes 0-11. */
1860 ADV_PADDR sg_real_addr
; /* SG list physical address. */
1861 ADV_PADDR scsiq_rptr
;
1862 uchar cdb16
[4]; /* SCSI CDB bytes 12-15. */
1863 ADV_VADDR scsiq_ptr
;
1866 * End of microcode structure - 60 bytes. The rest of the structure
1867 * is used by the Adv Library and ignored by the microcode.
1870 ADV_SG_BLOCK
*sg_list_ptr
; /* SG list virtual address. */
1871 char *vdata_addr
; /* Data buffer virtual address. */
1873 uchar pad
[2]; /* Pad out to a word boundary. */
1877 * The following two structures are used to process Wide Board requests.
1879 * The ADV_SCSI_REQ_Q structure in adv_req_t is passed to the Adv Library
1880 * and microcode with the ADV_SCSI_REQ_Q field 'srb_ptr' pointing to the
1881 * adv_req_t. The adv_req_t structure 'cmndp' field in turn points to the
1882 * Mid-Level SCSI request structure.
1884 * Zero or more ADV_SG_BLOCK are used with each ADV_SCSI_REQ_Q. Each
1885 * ADV_SG_BLOCK structure holds 15 scatter-gather elements. Under Linux
1886 * up to 255 scatter-gather elements may be used per request or
1889 * Both structures must be 32 byte aligned.
1891 typedef struct adv_sgblk
{
1892 ADV_SG_BLOCK sg_block
; /* Sgblock structure. */
1893 uchar align
[32]; /* Sgblock structure padding. */
1894 struct adv_sgblk
*next_sgblkp
; /* Next scatter-gather structure. */
1897 typedef struct adv_req
{
1898 ADV_SCSI_REQ_Q scsi_req_q
; /* Adv Library request structure. */
1899 uchar align
[32]; /* Request structure padding. */
1900 struct scsi_cmnd
*cmndp
; /* Mid-Level SCSI command pointer. */
1901 adv_sgblk_t
*sgblkp
; /* Adv Library scatter-gather pointer. */
1902 struct adv_req
*next_reqp
; /* Next Request Structure. */
1906 * Adapter operation variable structure.
1908 * One structure is required per host adapter.
1910 * Field naming convention:
1912 * *_able indicates both whether a feature should be enabled or disabled
1913 * and whether a device isi capable of the feature. At initialization
1914 * this field may be set, but later if a device is found to be incapable
1915 * of the feature, the field is cleared.
1917 typedef struct adv_dvc_var
{
1918 AdvPortAddr iop_base
; /* I/O port address */
1919 ushort err_code
; /* fatal error code */
1920 ushort bios_ctrl
; /* BIOS control word, EEPROM word 12 */
1921 ushort wdtr_able
; /* try WDTR for a device */
1922 ushort sdtr_able
; /* try SDTR for a device */
1923 ushort ultra_able
; /* try SDTR Ultra speed for a device */
1924 ushort sdtr_speed1
; /* EEPROM SDTR Speed for TID 0-3 */
1925 ushort sdtr_speed2
; /* EEPROM SDTR Speed for TID 4-7 */
1926 ushort sdtr_speed3
; /* EEPROM SDTR Speed for TID 8-11 */
1927 ushort sdtr_speed4
; /* EEPROM SDTR Speed for TID 12-15 */
1928 ushort tagqng_able
; /* try tagged queuing with a device */
1929 ushort ppr_able
; /* PPR message capable per TID bitmask. */
1930 uchar max_dvc_qng
; /* maximum number of tagged commands per device */
1931 ushort start_motor
; /* start motor command allowed */
1932 uchar scsi_reset_wait
; /* delay in seconds after scsi bus reset */
1933 uchar chip_no
; /* should be assigned by caller */
1934 uchar max_host_qng
; /* maximum number of Q'ed command allowed */
1935 ushort no_scam
; /* scam_tolerant of EEPROM */
1936 struct asc_board
*drv_ptr
; /* driver pointer to private structure */
1937 uchar chip_scsi_id
; /* chip SCSI target ID */
1939 uchar bist_err_code
;
1940 ADV_CARR_T
*carrier_buf
;
1941 ADV_CARR_T
*carr_freelist
; /* Carrier free list. */
1942 ADV_CARR_T
*icq_sp
; /* Initiator command queue stopper pointer. */
1943 ADV_CARR_T
*irq_sp
; /* Initiator response queue stopper pointer. */
1944 ushort carr_pending_cnt
; /* Count of pending carriers. */
1945 struct adv_req
*orig_reqp
; /* adv_req_t memory block. */
1947 * Note: The following fields will not be used after initialization. The
1948 * driver may discard the buffer after initialization is done.
1950 ADV_DVC_CFG
*cfg
; /* temporary configuration structure */
1954 * Microcode idle loop commands
1956 #define IDLE_CMD_COMPLETED 0
1957 #define IDLE_CMD_STOP_CHIP 0x0001
1958 #define IDLE_CMD_STOP_CHIP_SEND_INT 0x0002
1959 #define IDLE_CMD_SEND_INT 0x0004
1960 #define IDLE_CMD_ABORT 0x0008
1961 #define IDLE_CMD_DEVICE_RESET 0x0010
1962 #define IDLE_CMD_SCSI_RESET_START 0x0020 /* Assert SCSI Bus Reset */
1963 #define IDLE_CMD_SCSI_RESET_END 0x0040 /* Deassert SCSI Bus Reset */
1964 #define IDLE_CMD_SCSIREQ 0x0080
1966 #define IDLE_CMD_STATUS_SUCCESS 0x0001
1967 #define IDLE_CMD_STATUS_FAILURE 0x0002
1970 * AdvSendIdleCmd() flag definitions.
1972 #define ADV_NOWAIT 0x01
1975 * Wait loop time out values.
1977 #define SCSI_WAIT_100_MSEC 100UL /* 100 milliseconds */
1978 #define SCSI_US_PER_MSEC 1000 /* microseconds per millisecond */
1979 #define SCSI_MAX_RETRY 10 /* retry count */
1981 #define ADV_ASYNC_RDMA_FAILURE 0x01 /* Fatal RDMA failure. */
1982 #define ADV_ASYNC_SCSI_BUS_RESET_DET 0x02 /* Detected SCSI Bus Reset. */
1983 #define ADV_ASYNC_CARRIER_READY_FAILURE 0x03 /* Carrier Ready failure. */
1984 #define ADV_RDMA_IN_CARR_AND_Q_INVALID 0x04 /* RDMAed-in data invalid. */
1986 #define ADV_HOST_SCSI_BUS_RESET 0x80 /* Host Initiated SCSI Bus Reset. */
1988 /* Read byte from a register. */
1989 #define AdvReadByteRegister(iop_base, reg_off) \
1990 (ADV_MEM_READB((iop_base) + (reg_off)))
1992 /* Write byte to a register. */
1993 #define AdvWriteByteRegister(iop_base, reg_off, byte) \
1994 (ADV_MEM_WRITEB((iop_base) + (reg_off), (byte)))
1996 /* Read word (2 bytes) from a register. */
1997 #define AdvReadWordRegister(iop_base, reg_off) \
1998 (ADV_MEM_READW((iop_base) + (reg_off)))
2000 /* Write word (2 bytes) to a register. */
2001 #define AdvWriteWordRegister(iop_base, reg_off, word) \
2002 (ADV_MEM_WRITEW((iop_base) + (reg_off), (word)))
2004 /* Write dword (4 bytes) to a register. */
2005 #define AdvWriteDWordRegister(iop_base, reg_off, dword) \
2006 (ADV_MEM_WRITEDW((iop_base) + (reg_off), (dword)))
2008 /* Read byte from LRAM. */
2009 #define AdvReadByteLram(iop_base, addr, byte) \
2011 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
2012 (byte) = ADV_MEM_READB((iop_base) + IOPB_RAM_DATA); \
2015 /* Write byte to LRAM. */
2016 #define AdvWriteByteLram(iop_base, addr, byte) \
2017 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2018 ADV_MEM_WRITEB((iop_base) + IOPB_RAM_DATA, (byte)))
2020 /* Read word (2 bytes) from LRAM. */
2021 #define AdvReadWordLram(iop_base, addr, word) \
2023 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
2024 (word) = (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)); \
2027 /* Write word (2 bytes) to LRAM. */
2028 #define AdvWriteWordLram(iop_base, addr, word) \
2029 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2030 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
2032 /* Write little-endian double word (4 bytes) to LRAM */
2033 /* Because of unspecified C language ordering don't use auto-increment. */
2034 #define AdvWriteDWordLramNoSwap(iop_base, addr, dword) \
2035 ((ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2036 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
2037 cpu_to_le16((ushort) ((dword) & 0xFFFF)))), \
2038 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr) + 2), \
2039 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
2040 cpu_to_le16((ushort) ((dword >> 16) & 0xFFFF)))))
2042 /* Read word (2 bytes) from LRAM assuming that the address is already set. */
2043 #define AdvReadWordAutoIncLram(iop_base) \
2044 (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA))
2046 /* Write word (2 bytes) to LRAM assuming that the address is already set. */
2047 #define AdvWriteWordAutoIncLram(iop_base, word) \
2048 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
2051 * Define macro to check for Condor signature.
2053 * Evaluate to ADV_TRUE if a Condor chip is found the specified port
2054 * address 'iop_base'. Otherwise evalue to ADV_FALSE.
2056 #define AdvFindSignature(iop_base) \
2057 (((AdvReadByteRegister((iop_base), IOPB_CHIP_ID_1) == \
2058 ADV_CHIP_ID_BYTE) && \
2059 (AdvReadWordRegister((iop_base), IOPW_CHIP_ID_0) == \
2060 ADV_CHIP_ID_WORD)) ? ADV_TRUE : ADV_FALSE)
2063 * Define macro to Return the version number of the chip at 'iop_base'.
2065 * The second parameter 'bus_type' is currently unused.
2067 #define AdvGetChipVersion(iop_base, bus_type) \
2068 AdvReadByteRegister((iop_base), IOPB_CHIP_TYPE_REV)
2071 * Abort an SRB in the chip's RISC Memory. The 'srb_ptr' argument must
2072 * match the ASC_SCSI_REQ_Q 'srb_ptr' field.
2074 * If the request has not yet been sent to the device it will simply be
2075 * aborted from RISC memory. If the request is disconnected it will be
2076 * aborted on reselection by sending an Abort Message to the target ID.
2079 * ADV_TRUE(1) - Queue was successfully aborted.
2080 * ADV_FALSE(0) - Queue was not found on the active queue list.
2082 #define AdvAbortQueue(asc_dvc, scsiq) \
2083 AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_ABORT, \
2087 * Send a Bus Device Reset Message to the specified target ID.
2089 * All outstanding commands will be purged if sending the
2090 * Bus Device Reset Message is successful.
2093 * ADV_TRUE(1) - All requests on the target are purged.
2094 * ADV_FALSE(0) - Couldn't issue Bus Device Reset Message; Requests
2097 #define AdvResetDevice(asc_dvc, target_id) \
2098 AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_DEVICE_RESET, \
2099 (ADV_DCNT) (target_id))
2102 * SCSI Wide Type definition.
2104 #define ADV_SCSI_BIT_ID_TYPE ushort
2107 * AdvInitScsiTarget() 'cntl_flag' options.
2109 #define ADV_SCAN_LUN 0x01
2110 #define ADV_CAPINFO_NOLUN 0x02
2113 * Convert target id to target id bit mask.
2115 #define ADV_TID_TO_TIDMASK(tid) (0x01 << ((tid) & ADV_MAX_TID))
2118 * ASC_SCSI_REQ_Q 'done_status' and 'host_status' return values.
2121 #define QD_NO_STATUS 0x00 /* Request not completed yet. */
2122 #define QD_NO_ERROR 0x01
2123 #define QD_ABORTED_BY_HOST 0x02
2124 #define QD_WITH_ERROR 0x04
2126 #define QHSTA_NO_ERROR 0x00
2127 #define QHSTA_M_SEL_TIMEOUT 0x11
2128 #define QHSTA_M_DATA_OVER_RUN 0x12
2129 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
2130 #define QHSTA_M_QUEUE_ABORTED 0x15
2131 #define QHSTA_M_SXFR_SDMA_ERR 0x16 /* SXFR_STATUS SCSI DMA Error */
2132 #define QHSTA_M_SXFR_SXFR_PERR 0x17 /* SXFR_STATUS SCSI Bus Parity Error */
2133 #define QHSTA_M_RDMA_PERR 0x18 /* RISC PCI DMA parity error */
2134 #define QHSTA_M_SXFR_OFF_UFLW 0x19 /* SXFR_STATUS Offset Underflow */
2135 #define QHSTA_M_SXFR_OFF_OFLW 0x20 /* SXFR_STATUS Offset Overflow */
2136 #define QHSTA_M_SXFR_WD_TMO 0x21 /* SXFR_STATUS Watchdog Timeout */
2137 #define QHSTA_M_SXFR_DESELECTED 0x22 /* SXFR_STATUS Deselected */
2138 /* Note: QHSTA_M_SXFR_XFR_OFLW is identical to QHSTA_M_DATA_OVER_RUN. */
2139 #define QHSTA_M_SXFR_XFR_OFLW 0x12 /* SXFR_STATUS Transfer Overflow */
2140 #define QHSTA_M_SXFR_XFR_PH_ERR 0x24 /* SXFR_STATUS Transfer Phase Error */
2141 #define QHSTA_M_SXFR_UNKNOWN_ERROR 0x25 /* SXFR_STATUS Unknown Error */
2142 #define QHSTA_M_SCSI_BUS_RESET 0x30 /* Request aborted from SBR */
2143 #define QHSTA_M_SCSI_BUS_RESET_UNSOL 0x31 /* Request aborted from unsol. SBR */
2144 #define QHSTA_M_BUS_DEVICE_RESET 0x32 /* Request aborted from BDR */
2145 #define QHSTA_M_DIRECTION_ERR 0x35 /* Data Phase mismatch */
2146 #define QHSTA_M_DIRECTION_ERR_HUNG 0x36 /* Data Phase mismatch and bus hang */
2147 #define QHSTA_M_WTM_TIMEOUT 0x41
2148 #define QHSTA_M_BAD_CMPL_STATUS_IN 0x42
2149 #define QHSTA_M_NO_AUTO_REQ_SENSE 0x43
2150 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
2151 #define QHSTA_M_INVALID_DEVICE 0x45 /* Bad target ID */
2152 #define QHSTA_M_FROZEN_TIDQ 0x46 /* TID Queue frozen. */
2153 #define QHSTA_M_SGBACKUP_ERROR 0x47 /* Scatter-Gather backup error */
2155 /* Return the address that is aligned at the next doubleword >= to 'addr'. */
2156 #define ADV_8BALIGN(addr) (((ulong) (addr) + 0x7) & ~0x7)
2157 #define ADV_16BALIGN(addr) (((ulong) (addr) + 0xF) & ~0xF)
2158 #define ADV_32BALIGN(addr) (((ulong) (addr) + 0x1F) & ~0x1F)
2161 * Total contiguous memory needed for driver SG blocks.
2163 * ADV_MAX_SG_LIST must be defined by a driver. It is the maximum
2164 * number of scatter-gather elements the driver supports in a
2168 #define ADV_SG_LIST_MAX_BYTE_SIZE \
2169 (sizeof(ADV_SG_BLOCK) * \
2170 ((ADV_MAX_SG_LIST + (NO_OF_SG_PER_BLOCK - 1))/NO_OF_SG_PER_BLOCK))
2172 /* struct asc_board flags */
2173 #define ASC_IS_WIDE_BOARD 0x04 /* AdvanSys Wide Board */
2175 #define ASC_NARROW_BOARD(boardp) (((boardp)->flags & ASC_IS_WIDE_BOARD) == 0)
2177 #define NO_ISA_DMA 0xff /* No ISA DMA Channel Used */
2179 #define ASC_INFO_SIZE 128 /* advansys_info() line size */
2181 /* Asc Library return codes */
2184 #define ASC_NOERROR 1
2186 #define ASC_ERROR (-1)
2188 /* struct scsi_cmnd function return codes */
2189 #define STATUS_BYTE(byte) (byte)
2190 #define MSG_BYTE(byte) ((byte) << 8)
2191 #define HOST_BYTE(byte) ((byte) << 16)
2192 #define DRIVER_BYTE(byte) ((byte) << 24)
2194 #define ASC_STATS(shost, counter) ASC_STATS_ADD(shost, counter, 1)
2195 #ifndef ADVANSYS_STATS
2196 #define ASC_STATS_ADD(shost, counter, count)
2197 #else /* ADVANSYS_STATS */
2198 #define ASC_STATS_ADD(shost, counter, count) \
2199 (((struct asc_board *) shost_priv(shost))->asc_stats.counter += (count))
2200 #endif /* ADVANSYS_STATS */
2202 /* If the result wraps when calculating tenths, return 0. */
2203 #define ASC_TENTHS(num, den) \
2204 (((10 * ((num)/(den))) > (((num) * 10)/(den))) ? \
2205 0 : ((((num) * 10)/(den)) - (10 * ((num)/(den)))))
2208 * Display a message to the console.
2210 #define ASC_PRINT(s) \
2212 printk("advansys: "); \
2216 #define ASC_PRINT1(s, a1) \
2218 printk("advansys: "); \
2219 printk((s), (a1)); \
2222 #define ASC_PRINT2(s, a1, a2) \
2224 printk("advansys: "); \
2225 printk((s), (a1), (a2)); \
2228 #define ASC_PRINT3(s, a1, a2, a3) \
2230 printk("advansys: "); \
2231 printk((s), (a1), (a2), (a3)); \
2234 #define ASC_PRINT4(s, a1, a2, a3, a4) \
2236 printk("advansys: "); \
2237 printk((s), (a1), (a2), (a3), (a4)); \
2240 #ifndef ADVANSYS_DEBUG
2242 #define ASC_DBG(lvl, s...)
2243 #define ASC_DBG_PRT_SCSI_HOST(lvl, s)
2244 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp)
2245 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2246 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone)
2247 #define ADV_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2248 #define ASC_DBG_PRT_HEX(lvl, name, start, length)
2249 #define ASC_DBG_PRT_CDB(lvl, cdb, len)
2250 #define ASC_DBG_PRT_SENSE(lvl, sense, len)
2251 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len)
2253 #else /* ADVANSYS_DEBUG */
2256 * Debugging Message Levels:
2258 * 1: High-Level Tracing
2259 * 2-N: Verbose Tracing
2262 #define ASC_DBG(lvl, format, arg...) { \
2263 if (asc_dbglvl >= (lvl)) \
2264 printk(KERN_DEBUG "%s: %s: " format, DRV_NAME, \
2265 __func__ , ## arg); \
2268 #define ASC_DBG_PRT_SCSI_HOST(lvl, s) \
2270 if (asc_dbglvl >= (lvl)) { \
2271 asc_prt_scsi_host(s); \
2275 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) \
2277 if (asc_dbglvl >= (lvl)) { \
2278 asc_prt_asc_scsi_q(scsiqp); \
2282 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) \
2284 if (asc_dbglvl >= (lvl)) { \
2285 asc_prt_asc_qdone_info(qdone); \
2289 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) \
2291 if (asc_dbglvl >= (lvl)) { \
2292 asc_prt_adv_scsi_req_q(scsiqp); \
2296 #define ASC_DBG_PRT_HEX(lvl, name, start, length) \
2298 if (asc_dbglvl >= (lvl)) { \
2299 asc_prt_hex((name), (start), (length)); \
2303 #define ASC_DBG_PRT_CDB(lvl, cdb, len) \
2304 ASC_DBG_PRT_HEX((lvl), "CDB", (uchar *) (cdb), (len));
2306 #define ASC_DBG_PRT_SENSE(lvl, sense, len) \
2307 ASC_DBG_PRT_HEX((lvl), "SENSE", (uchar *) (sense), (len));
2309 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len) \
2310 ASC_DBG_PRT_HEX((lvl), "INQUIRY", (uchar *) (inq), (len));
2311 #endif /* ADVANSYS_DEBUG */
2313 #ifdef ADVANSYS_STATS
2315 /* Per board statistics structure */
2317 /* Driver Entrypoint Statistics */
2318 ADV_DCNT queuecommand
; /* # calls to advansys_queuecommand() */
2319 ADV_DCNT reset
; /* # calls to advansys_eh_bus_reset() */
2320 ADV_DCNT biosparam
; /* # calls to advansys_biosparam() */
2321 ADV_DCNT interrupt
; /* # advansys_interrupt() calls */
2322 ADV_DCNT callback
; /* # calls to asc/adv_isr_callback() */
2323 ADV_DCNT done
; /* # calls to request's scsi_done function */
2324 ADV_DCNT build_error
; /* # asc/adv_build_req() ASC_ERROR returns. */
2325 ADV_DCNT adv_build_noreq
; /* # adv_build_req() adv_req_t alloc. fail. */
2326 ADV_DCNT adv_build_nosg
; /* # adv_build_req() adv_sgblk_t alloc. fail. */
2327 /* AscExeScsiQueue()/AdvExeScsiQueue() Statistics */
2328 ADV_DCNT exe_noerror
; /* # ASC_NOERROR returns. */
2329 ADV_DCNT exe_busy
; /* # ASC_BUSY returns. */
2330 ADV_DCNT exe_error
; /* # ASC_ERROR returns. */
2331 ADV_DCNT exe_unknown
; /* # unknown returns. */
2332 /* Data Transfer Statistics */
2333 ADV_DCNT xfer_cnt
; /* # I/O requests received */
2334 ADV_DCNT xfer_elem
; /* # scatter-gather elements */
2335 ADV_DCNT xfer_sect
; /* # 512-byte blocks */
2337 #endif /* ADVANSYS_STATS */
2340 * Structure allocated for each board.
2342 * This structure is allocated by scsi_host_alloc() at the end
2343 * of the 'Scsi_Host' structure starting at the 'hostdata'
2344 * field. It is guaranteed to be allocated from DMA-able memory.
2348 uint flags
; /* Board flags */
2351 ASC_DVC_VAR asc_dvc_var
; /* Narrow board */
2352 ADV_DVC_VAR adv_dvc_var
; /* Wide board */
2355 ASC_DVC_CFG asc_dvc_cfg
; /* Narrow board */
2356 ADV_DVC_CFG adv_dvc_cfg
; /* Wide board */
2358 ushort asc_n_io_port
; /* Number I/O ports. */
2359 ADV_SCSI_BIT_ID_TYPE init_tidmask
; /* Target init./valid mask */
2360 ushort reqcnt
[ADV_MAX_TID
+ 1]; /* Starvation request count */
2361 ADV_SCSI_BIT_ID_TYPE queue_full
; /* Queue full mask */
2362 ushort queue_full_cnt
[ADV_MAX_TID
+ 1]; /* Queue full count */
2364 ASCEEP_CONFIG asc_eep
; /* Narrow EEPROM config. */
2365 ADVEEP_3550_CONFIG adv_3550_eep
; /* 3550 EEPROM config. */
2366 ADVEEP_38C0800_CONFIG adv_38C0800_eep
; /* 38C0800 EEPROM config. */
2367 ADVEEP_38C1600_CONFIG adv_38C1600_eep
; /* 38C1600 EEPROM config. */
2369 ulong last_reset
; /* Saved last reset time */
2370 /* /proc/scsi/advansys/[0...] */
2371 #ifdef ADVANSYS_STATS
2372 struct asc_stats asc_stats
; /* Board statistics */
2373 #endif /* ADVANSYS_STATS */
2375 * The following fields are used only for Narrow Boards.
2377 uchar sdtr_data
[ASC_MAX_TID
+ 1]; /* SDTR information */
2379 * The following fields are used only for Wide Boards.
2381 void __iomem
*ioremap_addr
; /* I/O Memory remap address. */
2382 ushort ioport
; /* I/O Port address. */
2383 adv_req_t
*adv_reqp
; /* Request structures. */
2384 adv_sgblk_t
*adv_sgblkp
; /* Scatter-gather structures. */
2385 ushort bios_signature
; /* BIOS Signature. */
2386 ushort bios_version
; /* BIOS Version. */
2387 ushort bios_codeseg
; /* BIOS Code Segment. */
2388 ushort bios_codelen
; /* BIOS Code Segment Length. */
2391 #define asc_dvc_to_board(asc_dvc) container_of(asc_dvc, struct asc_board, \
2392 dvc_var.asc_dvc_var)
2393 #define adv_dvc_to_board(adv_dvc) container_of(adv_dvc, struct asc_board, \
2394 dvc_var.adv_dvc_var)
2395 #define adv_dvc_to_pdev(adv_dvc) to_pci_dev(adv_dvc_to_board(adv_dvc)->dev)
2397 #ifdef ADVANSYS_DEBUG
2398 static int asc_dbglvl
= 3;
2401 * asc_prt_asc_dvc_var()
2403 static void asc_prt_asc_dvc_var(ASC_DVC_VAR
*h
)
2405 printk("ASC_DVC_VAR at addr 0x%lx\n", (ulong
)h
);
2407 printk(" iop_base 0x%x, err_code 0x%x, dvc_cntl 0x%x, bug_fix_cntl "
2408 "%d,\n", h
->iop_base
, h
->err_code
, h
->dvc_cntl
, h
->bug_fix_cntl
);
2410 printk(" bus_type %d, init_sdtr 0x%x,\n", h
->bus_type
,
2411 (unsigned)h
->init_sdtr
);
2413 printk(" sdtr_done 0x%x, use_tagged_qng 0x%x, unit_not_ready 0x%x, "
2414 "chip_no 0x%x,\n", (unsigned)h
->sdtr_done
,
2415 (unsigned)h
->use_tagged_qng
, (unsigned)h
->unit_not_ready
,
2416 (unsigned)h
->chip_no
);
2418 printk(" queue_full_or_busy 0x%x, start_motor 0x%x, scsi_reset_wait "
2419 "%u,\n", (unsigned)h
->queue_full_or_busy
,
2420 (unsigned)h
->start_motor
, (unsigned)h
->scsi_reset_wait
);
2422 printk(" is_in_int %u, max_total_qng %u, cur_total_qng %u, "
2423 "in_critical_cnt %u,\n", (unsigned)h
->is_in_int
,
2424 (unsigned)h
->max_total_qng
, (unsigned)h
->cur_total_qng
,
2425 (unsigned)h
->in_critical_cnt
);
2427 printk(" last_q_shortage %u, init_state 0x%x, no_scam 0x%x, "
2428 "pci_fix_asyn_xfer 0x%x,\n", (unsigned)h
->last_q_shortage
,
2429 (unsigned)h
->init_state
, (unsigned)h
->no_scam
,
2430 (unsigned)h
->pci_fix_asyn_xfer
);
2432 printk(" cfg 0x%lx\n", (ulong
)h
->cfg
);
2436 * asc_prt_asc_dvc_cfg()
2438 static void asc_prt_asc_dvc_cfg(ASC_DVC_CFG
*h
)
2440 printk("ASC_DVC_CFG at addr 0x%lx\n", (ulong
)h
);
2442 printk(" can_tagged_qng 0x%x, cmd_qng_enabled 0x%x,\n",
2443 h
->can_tagged_qng
, h
->cmd_qng_enabled
);
2444 printk(" disc_enable 0x%x, sdtr_enable 0x%x,\n",
2445 h
->disc_enable
, h
->sdtr_enable
);
2447 printk(" chip_scsi_id %d, isa_dma_speed %d, isa_dma_channel %d, "
2448 "chip_version %d,\n", h
->chip_scsi_id
, h
->isa_dma_speed
,
2449 h
->isa_dma_channel
, h
->chip_version
);
2451 printk(" mcode_date 0x%x, mcode_version %d\n",
2452 h
->mcode_date
, h
->mcode_version
);
2456 * asc_prt_adv_dvc_var()
2458 * Display an ADV_DVC_VAR structure.
2460 static void asc_prt_adv_dvc_var(ADV_DVC_VAR
*h
)
2462 printk(" ADV_DVC_VAR at addr 0x%lx\n", (ulong
)h
);
2464 printk(" iop_base 0x%lx, err_code 0x%x, ultra_able 0x%x\n",
2465 (ulong
)h
->iop_base
, h
->err_code
, (unsigned)h
->ultra_able
);
2467 printk(" sdtr_able 0x%x, wdtr_able 0x%x\n",
2468 (unsigned)h
->sdtr_able
, (unsigned)h
->wdtr_able
);
2470 printk(" start_motor 0x%x, scsi_reset_wait 0x%x\n",
2471 (unsigned)h
->start_motor
, (unsigned)h
->scsi_reset_wait
);
2473 printk(" max_host_qng %u, max_dvc_qng %u, carr_freelist 0x%lxn\n",
2474 (unsigned)h
->max_host_qng
, (unsigned)h
->max_dvc_qng
,
2475 (ulong
)h
->carr_freelist
);
2477 printk(" icq_sp 0x%lx, irq_sp 0x%lx\n",
2478 (ulong
)h
->icq_sp
, (ulong
)h
->irq_sp
);
2480 printk(" no_scam 0x%x, tagqng_able 0x%x\n",
2481 (unsigned)h
->no_scam
, (unsigned)h
->tagqng_able
);
2483 printk(" chip_scsi_id 0x%x, cfg 0x%lx\n",
2484 (unsigned)h
->chip_scsi_id
, (ulong
)h
->cfg
);
2488 * asc_prt_adv_dvc_cfg()
2490 * Display an ADV_DVC_CFG structure.
2492 static void asc_prt_adv_dvc_cfg(ADV_DVC_CFG
*h
)
2494 printk(" ADV_DVC_CFG at addr 0x%lx\n", (ulong
)h
);
2496 printk(" disc_enable 0x%x, termination 0x%x\n",
2497 h
->disc_enable
, h
->termination
);
2499 printk(" chip_version 0x%x, mcode_date 0x%x\n",
2500 h
->chip_version
, h
->mcode_date
);
2502 printk(" mcode_version 0x%x, control_flag 0x%x\n",
2503 h
->mcode_version
, h
->control_flag
);
2507 * asc_prt_scsi_host()
2509 static void asc_prt_scsi_host(struct Scsi_Host
*s
)
2511 struct asc_board
*boardp
= shost_priv(s
);
2513 printk("Scsi_Host at addr 0x%p, device %s\n", s
, dev_name(boardp
->dev
));
2514 printk(" host_busy %u, host_no %d,\n",
2515 atomic_read(&s
->host_busy
), s
->host_no
);
2517 printk(" base 0x%lx, io_port 0x%lx, irq %d,\n",
2518 (ulong
)s
->base
, (ulong
)s
->io_port
, boardp
->irq
);
2520 printk(" dma_channel %d, this_id %d, can_queue %d,\n",
2521 s
->dma_channel
, s
->this_id
, s
->can_queue
);
2523 printk(" cmd_per_lun %d, sg_tablesize %d, unchecked_isa_dma %d\n",
2524 s
->cmd_per_lun
, s
->sg_tablesize
, s
->unchecked_isa_dma
);
2526 if (ASC_NARROW_BOARD(boardp
)) {
2527 asc_prt_asc_dvc_var(&boardp
->dvc_var
.asc_dvc_var
);
2528 asc_prt_asc_dvc_cfg(&boardp
->dvc_cfg
.asc_dvc_cfg
);
2530 asc_prt_adv_dvc_var(&boardp
->dvc_var
.adv_dvc_var
);
2531 asc_prt_adv_dvc_cfg(&boardp
->dvc_cfg
.adv_dvc_cfg
);
2538 * Print hexadecimal output in 4 byte groupings 32 bytes
2539 * or 8 double-words per line.
2541 static void asc_prt_hex(char *f
, uchar
*s
, int l
)
2548 printk("%s: (%d bytes)\n", f
, l
);
2550 for (i
= 0; i
< l
; i
+= 32) {
2552 /* Display a maximum of 8 double-words per line. */
2553 if ((k
= (l
- i
) / 4) >= 8) {
2560 for (j
= 0; j
< k
; j
++) {
2561 printk(" %2.2X%2.2X%2.2X%2.2X",
2562 (unsigned)s
[i
+ (j
* 4)],
2563 (unsigned)s
[i
+ (j
* 4) + 1],
2564 (unsigned)s
[i
+ (j
* 4) + 2],
2565 (unsigned)s
[i
+ (j
* 4) + 3]);
2573 printk(" %2.2X", (unsigned)s
[i
+ (j
* 4)]);
2576 printk(" %2.2X%2.2X",
2577 (unsigned)s
[i
+ (j
* 4)],
2578 (unsigned)s
[i
+ (j
* 4) + 1]);
2581 printk(" %2.2X%2.2X%2.2X",
2582 (unsigned)s
[i
+ (j
* 4) + 1],
2583 (unsigned)s
[i
+ (j
* 4) + 2],
2584 (unsigned)s
[i
+ (j
* 4) + 3]);
2593 * asc_prt_asc_scsi_q()
2595 static void asc_prt_asc_scsi_q(ASC_SCSI_Q
*q
)
2600 printk("ASC_SCSI_Q at addr 0x%lx\n", (ulong
)q
);
2603 (" target_ix 0x%x, target_lun %u, srb_ptr 0x%lx, tag_code 0x%x,\n",
2604 q
->q2
.target_ix
, q
->q1
.target_lun
, (ulong
)q
->q2
.srb_ptr
,
2608 (" data_addr 0x%lx, data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2609 (ulong
)le32_to_cpu(q
->q1
.data_addr
),
2610 (ulong
)le32_to_cpu(q
->q1
.data_cnt
),
2611 (ulong
)le32_to_cpu(q
->q1
.sense_addr
), q
->q1
.sense_len
);
2613 printk(" cdbptr 0x%lx, cdb_len %u, sg_head 0x%lx, sg_queue_cnt %u\n",
2614 (ulong
)q
->cdbptr
, q
->q2
.cdb_len
,
2615 (ulong
)q
->sg_head
, q
->q1
.sg_queue_cnt
);
2619 printk("ASC_SG_HEAD at addr 0x%lx\n", (ulong
)sgp
);
2620 printk(" entry_cnt %u, queue_cnt %u\n", sgp
->entry_cnt
,
2622 for (i
= 0; i
< sgp
->entry_cnt
; i
++) {
2623 printk(" [%u]: addr 0x%lx, bytes %lu\n",
2624 i
, (ulong
)le32_to_cpu(sgp
->sg_list
[i
].addr
),
2625 (ulong
)le32_to_cpu(sgp
->sg_list
[i
].bytes
));
2632 * asc_prt_asc_qdone_info()
2634 static void asc_prt_asc_qdone_info(ASC_QDONE_INFO
*q
)
2636 printk("ASC_QDONE_INFO at addr 0x%lx\n", (ulong
)q
);
2637 printk(" srb_ptr 0x%lx, target_ix %u, cdb_len %u, tag_code %u,\n",
2638 (ulong
)q
->d2
.srb_ptr
, q
->d2
.target_ix
, q
->d2
.cdb_len
,
2641 (" done_stat 0x%x, host_stat 0x%x, scsi_stat 0x%x, scsi_msg 0x%x\n",
2642 q
->d3
.done_stat
, q
->d3
.host_stat
, q
->d3
.scsi_stat
, q
->d3
.scsi_msg
);
2646 * asc_prt_adv_sgblock()
2648 * Display an ADV_SG_BLOCK structure.
2650 static void asc_prt_adv_sgblock(int sgblockno
, ADV_SG_BLOCK
*b
)
2654 printk(" ASC_SG_BLOCK at addr 0x%lx (sgblockno %d)\n",
2655 (ulong
)b
, sgblockno
);
2656 printk(" sg_cnt %u, sg_ptr 0x%lx\n",
2657 b
->sg_cnt
, (ulong
)le32_to_cpu(b
->sg_ptr
));
2658 BUG_ON(b
->sg_cnt
> NO_OF_SG_PER_BLOCK
);
2660 BUG_ON(b
->sg_cnt
!= NO_OF_SG_PER_BLOCK
);
2661 for (i
= 0; i
< b
->sg_cnt
; i
++) {
2662 printk(" [%u]: sg_addr 0x%lx, sg_count 0x%lx\n",
2663 i
, (ulong
)b
->sg_list
[i
].sg_addr
,
2664 (ulong
)b
->sg_list
[i
].sg_count
);
2669 * asc_prt_adv_scsi_req_q()
2671 * Display an ADV_SCSI_REQ_Q structure.
2673 static void asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q
*q
)
2676 struct asc_sg_block
*sg_ptr
;
2678 printk("ADV_SCSI_REQ_Q at addr 0x%lx\n", (ulong
)q
);
2680 printk(" target_id %u, target_lun %u, srb_ptr 0x%lx, a_flag 0x%x\n",
2681 q
->target_id
, q
->target_lun
, (ulong
)q
->srb_ptr
, q
->a_flag
);
2683 printk(" cntl 0x%x, data_addr 0x%lx, vdata_addr 0x%lx\n",
2684 q
->cntl
, (ulong
)le32_to_cpu(q
->data_addr
), (ulong
)q
->vdata_addr
);
2686 printk(" data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2687 (ulong
)le32_to_cpu(q
->data_cnt
),
2688 (ulong
)le32_to_cpu(q
->sense_addr
), q
->sense_len
);
2691 (" cdb_len %u, done_status 0x%x, host_status 0x%x, scsi_status 0x%x\n",
2692 q
->cdb_len
, q
->done_status
, q
->host_status
, q
->scsi_status
);
2694 printk(" sg_working_ix 0x%x, target_cmd %u\n",
2695 q
->sg_working_ix
, q
->target_cmd
);
2697 printk(" scsiq_rptr 0x%lx, sg_real_addr 0x%lx, sg_list_ptr 0x%lx\n",
2698 (ulong
)le32_to_cpu(q
->scsiq_rptr
),
2699 (ulong
)le32_to_cpu(q
->sg_real_addr
), (ulong
)q
->sg_list_ptr
);
2701 /* Display the request's ADV_SG_BLOCK structures. */
2702 if (q
->sg_list_ptr
!= NULL
) {
2706 * 'sg_ptr' is a physical address. Convert it to a virtual
2707 * address by indexing 'sg_blk_cnt' into the virtual address
2708 * array 'sg_list_ptr'.
2710 * XXX - Assumes all SG physical blocks are virtually contiguous.
2713 &(((ADV_SG_BLOCK
*)(q
->sg_list_ptr
))[sg_blk_cnt
]);
2714 asc_prt_adv_sgblock(sg_blk_cnt
, sg_ptr
);
2715 if (sg_ptr
->sg_ptr
== 0) {
2722 #endif /* ADVANSYS_DEBUG */
2725 * The advansys chip/microcode contains a 32-bit identifier for each command
2726 * known as the 'srb'. I don't know what it stands for. The driver used
2727 * to encode the scsi_cmnd pointer by calling virt_to_bus and retrieve it
2728 * with bus_to_virt. Now the driver keeps a per-host map of integers to
2729 * pointers. It auto-expands when full, unless it can't allocate memory.
2730 * Note that an srb of 0 is treated specially by the chip/firmware, hence
2731 * the return of i+1 in this routine, and the corresponding subtraction in
2732 * the inverse routine.
2735 static u32
advansys_ptr_to_srb(struct asc_dvc_var
*asc_dvc
, void *ptr
)
2740 for (i
= 0; i
< asc_dvc
->ptr_map_count
; i
++) {
2741 if (!asc_dvc
->ptr_map
[i
])
2745 if (asc_dvc
->ptr_map_count
== 0)
2746 asc_dvc
->ptr_map_count
= 1;
2748 asc_dvc
->ptr_map_count
*= 2;
2750 new_ptr
= krealloc(asc_dvc
->ptr_map
,
2751 asc_dvc
->ptr_map_count
* sizeof(void *), GFP_ATOMIC
);
2754 asc_dvc
->ptr_map
= new_ptr
;
2756 ASC_DBG(3, "Putting ptr %p into array offset %d\n", ptr
, i
);
2757 asc_dvc
->ptr_map
[i
] = ptr
;
2761 static void * advansys_srb_to_ptr(struct asc_dvc_var
*asc_dvc
, u32 srb
)
2766 if (srb
>= asc_dvc
->ptr_map_count
) {
2767 printk("advansys: bad SRB %u, max %u\n", srb
,
2768 asc_dvc
->ptr_map_count
);
2771 ptr
= asc_dvc
->ptr_map
[srb
];
2772 asc_dvc
->ptr_map
[srb
] = NULL
;
2773 ASC_DBG(3, "Returning ptr %p from array offset %d\n", ptr
, srb
);
2780 * Return suitable for printing on the console with the argument
2781 * adapter's configuration information.
2783 * Note: The information line should not exceed ASC_INFO_SIZE bytes,
2784 * otherwise the static 'info' array will be overrun.
2786 static const char *advansys_info(struct Scsi_Host
*shost
)
2788 static char info
[ASC_INFO_SIZE
];
2789 struct asc_board
*boardp
= shost_priv(shost
);
2790 ASC_DVC_VAR
*asc_dvc_varp
;
2791 ADV_DVC_VAR
*adv_dvc_varp
;
2793 char *widename
= NULL
;
2795 if (ASC_NARROW_BOARD(boardp
)) {
2796 asc_dvc_varp
= &boardp
->dvc_var
.asc_dvc_var
;
2797 ASC_DBG(1, "begin\n");
2798 if (asc_dvc_varp
->bus_type
& ASC_IS_ISA
) {
2799 if ((asc_dvc_varp
->bus_type
& ASC_IS_ISAPNP
) ==
2801 busname
= "ISA PnP";
2806 "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X, DMA 0x%X",
2807 ASC_VERSION
, busname
,
2808 (ulong
)shost
->io_port
,
2809 (ulong
)shost
->io_port
+ ASC_IOADR_GAP
- 1,
2810 boardp
->irq
, shost
->dma_channel
);
2812 if (asc_dvc_varp
->bus_type
& ASC_IS_VL
) {
2814 } else if (asc_dvc_varp
->bus_type
& ASC_IS_EISA
) {
2816 } else if (asc_dvc_varp
->bus_type
& ASC_IS_PCI
) {
2817 if ((asc_dvc_varp
->bus_type
& ASC_IS_PCI_ULTRA
)
2818 == ASC_IS_PCI_ULTRA
) {
2819 busname
= "PCI Ultra";
2825 shost_printk(KERN_ERR
, shost
, "unknown bus "
2826 "type %d\n", asc_dvc_varp
->bus_type
);
2829 "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X",
2830 ASC_VERSION
, busname
, (ulong
)shost
->io_port
,
2831 (ulong
)shost
->io_port
+ ASC_IOADR_GAP
- 1,
2836 * Wide Adapter Information
2838 * Memory-mapped I/O is used instead of I/O space to access
2839 * the adapter, but display the I/O Port range. The Memory
2840 * I/O address is displayed through the driver /proc file.
2842 adv_dvc_varp
= &boardp
->dvc_var
.adv_dvc_var
;
2843 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
2844 widename
= "Ultra-Wide";
2845 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
2846 widename
= "Ultra2-Wide";
2848 widename
= "Ultra3-Wide";
2851 "AdvanSys SCSI %s: PCI %s: PCIMEM 0x%lX-0x%lX, IRQ 0x%X",
2852 ASC_VERSION
, widename
, (ulong
)adv_dvc_varp
->iop_base
,
2853 (ulong
)adv_dvc_varp
->iop_base
+ boardp
->asc_n_io_port
- 1, boardp
->irq
);
2855 BUG_ON(strlen(info
) >= ASC_INFO_SIZE
);
2856 ASC_DBG(1, "end\n");
2860 #ifdef CONFIG_PROC_FS
2863 * asc_prt_board_devices()
2865 * Print driver information for devices attached to the board.
2867 static void asc_prt_board_devices(struct seq_file
*m
, struct Scsi_Host
*shost
)
2869 struct asc_board
*boardp
= shost_priv(shost
);
2874 "\nDevice Information for AdvanSys SCSI Host %d:\n",
2877 if (ASC_NARROW_BOARD(boardp
)) {
2878 chip_scsi_id
= boardp
->dvc_cfg
.asc_dvc_cfg
.chip_scsi_id
;
2880 chip_scsi_id
= boardp
->dvc_var
.adv_dvc_var
.chip_scsi_id
;
2883 seq_puts(m
, "Target IDs Detected:");
2884 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
2885 if (boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
))
2886 seq_printf(m
, " %X,", i
);
2888 seq_printf(m
, " (%X=Host Adapter)\n", chip_scsi_id
);
2892 * Display Wide Board BIOS Information.
2894 static void asc_prt_adv_bios(struct seq_file
*m
, struct Scsi_Host
*shost
)
2896 struct asc_board
*boardp
= shost_priv(shost
);
2897 ushort major
, minor
, letter
;
2899 seq_puts(m
, "\nROM BIOS Version: ");
2902 * If the BIOS saved a valid signature, then fill in
2903 * the BIOS code segment base address.
2905 if (boardp
->bios_signature
!= 0x55AA) {
2906 seq_puts(m
, "Disabled or Pre-3.1\n"
2907 "BIOS either disabled or Pre-3.1. If it is pre-3.1, then a newer version\n"
2908 "can be found at the ConnectCom FTP site: ftp://ftp.connectcom.net/pub\n");
2910 major
= (boardp
->bios_version
>> 12) & 0xF;
2911 minor
= (boardp
->bios_version
>> 8) & 0xF;
2912 letter
= (boardp
->bios_version
& 0xFF);
2914 seq_printf(m
, "%d.%d%c\n",
2916 letter
>= 26 ? '?' : letter
+ 'A');
2918 * Current available ROM BIOS release is 3.1I for UW
2919 * and 3.2I for U2W. This code doesn't differentiate
2920 * UW and U2W boards.
2922 if (major
< 3 || (major
<= 3 && minor
< 1) ||
2923 (major
<= 3 && minor
<= 1 && letter
< ('I' - 'A'))) {
2924 seq_puts(m
, "Newer version of ROM BIOS is available at the ConnectCom FTP site:\n"
2925 "ftp://ftp.connectcom.net/pub\n");
2931 * Add serial number to information bar if signature AAh
2932 * is found in at bit 15-9 (7 bits) of word 1.
2934 * Serial Number consists fo 12 alpha-numeric digits.
2936 * 1 - Product type (A,B,C,D..) Word0: 15-13 (3 bits)
2937 * 2 - MFG Location (A,B,C,D..) Word0: 12-10 (3 bits)
2938 * 3-4 - Product ID (0-99) Word0: 9-0 (10 bits)
2939 * 5 - Product revision (A-J) Word0: " "
2941 * Signature Word1: 15-9 (7 bits)
2942 * 6 - Year (0-9) Word1: 8-6 (3 bits) & Word2: 15 (1 bit)
2943 * 7-8 - Week of the year (1-52) Word1: 5-0 (6 bits)
2945 * 9-12 - Serial Number (A001-Z999) Word2: 14-0 (15 bits)
2947 * Note 1: Only production cards will have a serial number.
2949 * Note 2: Signature is most significant 7 bits (0xFE).
2951 * Returns ASC_TRUE if serial number found, otherwise returns ASC_FALSE.
2953 static int asc_get_eeprom_string(ushort
*serialnum
, uchar
*cp
)
2957 if ((serialnum
[1] & 0xFE00) != ((ushort
)0xAA << 8)) {
2961 * First word - 6 digits.
2965 /* Product type - 1st digit. */
2966 if ((*cp
= 'A' + ((w
& 0xE000) >> 13)) == 'H') {
2967 /* Product type is P=Prototype */
2972 /* Manufacturing location - 2nd digit. */
2973 *cp
++ = 'A' + ((w
& 0x1C00) >> 10);
2975 /* Product ID - 3rd, 4th digits. */
2977 *cp
++ = '0' + (num
/ 100);
2979 *cp
++ = '0' + (num
/ 10);
2981 /* Product revision - 5th digit. */
2982 *cp
++ = 'A' + (num
% 10);
2992 * If bit 15 of third word is set, then the
2993 * last digit of the year is greater than 7.
2995 if (serialnum
[2] & 0x8000) {
2996 *cp
++ = '8' + ((w
& 0x1C0) >> 6);
2998 *cp
++ = '0' + ((w
& 0x1C0) >> 6);
3001 /* Week of year - 7th, 8th digits. */
3003 *cp
++ = '0' + num
/ 10;
3010 w
= serialnum
[2] & 0x7FFF;
3012 /* Serial number - 9th digit. */
3013 *cp
++ = 'A' + (w
/ 1000);
3015 /* 10th, 11th, 12th digits. */
3017 *cp
++ = '0' + num
/ 100;
3019 *cp
++ = '0' + num
/ 10;
3023 *cp
= '\0'; /* Null Terminate the string. */
3029 * asc_prt_asc_board_eeprom()
3031 * Print board EEPROM configuration.
3033 static void asc_prt_asc_board_eeprom(struct seq_file
*m
, struct Scsi_Host
*shost
)
3035 struct asc_board
*boardp
= shost_priv(shost
);
3036 ASC_DVC_VAR
*asc_dvc_varp
;
3040 int isa_dma_speed
[] = { 10, 8, 7, 6, 5, 4, 3, 2 };
3041 #endif /* CONFIG_ISA */
3042 uchar serialstr
[13];
3044 asc_dvc_varp
= &boardp
->dvc_var
.asc_dvc_var
;
3045 ep
= &boardp
->eep_config
.asc_eep
;
3048 "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
3051 if (asc_get_eeprom_string((ushort
*)&ep
->adapter_info
[0], serialstr
)
3053 seq_printf(m
, " Serial Number: %s\n", serialstr
);
3054 else if (ep
->adapter_info
[5] == 0xBB)
3056 " Default Settings Used for EEPROM-less Adapter.\n");
3058 seq_puts(m
, " Serial Number Signature Not Present.\n");
3061 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3062 ASC_EEP_GET_CHIP_ID(ep
), ep
->max_total_qng
,
3066 " cntl 0x%x, no_scam 0x%x\n", ep
->cntl
, ep
->no_scam
);
3068 seq_puts(m
, " Target ID: ");
3069 for (i
= 0; i
<= ASC_MAX_TID
; i
++)
3070 seq_printf(m
, " %d", i
);
3072 seq_puts(m
, "\n Disconnects: ");
3073 for (i
= 0; i
<= ASC_MAX_TID
; i
++)
3074 seq_printf(m
, " %c",
3075 (ep
->disc_enable
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3077 seq_puts(m
, "\n Command Queuing: ");
3078 for (i
= 0; i
<= ASC_MAX_TID
; i
++)
3079 seq_printf(m
, " %c",
3080 (ep
->use_cmd_qng
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3082 seq_puts(m
, "\n Start Motor: ");
3083 for (i
= 0; i
<= ASC_MAX_TID
; i
++)
3084 seq_printf(m
, " %c",
3085 (ep
->start_motor
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3087 seq_puts(m
, "\n Synchronous Transfer:");
3088 for (i
= 0; i
<= ASC_MAX_TID
; i
++)
3089 seq_printf(m
, " %c",
3090 (ep
->init_sdtr
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3094 if (asc_dvc_varp
->bus_type
& ASC_IS_ISA
) {
3096 " Host ISA DMA speed: %d MB/S\n",
3097 isa_dma_speed
[ASC_EEP_GET_DMA_SPD(ep
)]);
3099 #endif /* CONFIG_ISA */
3103 * asc_prt_adv_board_eeprom()
3105 * Print board EEPROM configuration.
3107 static void asc_prt_adv_board_eeprom(struct seq_file
*m
, struct Scsi_Host
*shost
)
3109 struct asc_board
*boardp
= shost_priv(shost
);
3110 ADV_DVC_VAR
*adv_dvc_varp
;
3113 uchar serialstr
[13];
3114 ADVEEP_3550_CONFIG
*ep_3550
= NULL
;
3115 ADVEEP_38C0800_CONFIG
*ep_38C0800
= NULL
;
3116 ADVEEP_38C1600_CONFIG
*ep_38C1600
= NULL
;
3119 ushort sdtr_speed
= 0;
3121 adv_dvc_varp
= &boardp
->dvc_var
.adv_dvc_var
;
3122 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3123 ep_3550
= &boardp
->eep_config
.adv_3550_eep
;
3124 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
3125 ep_38C0800
= &boardp
->eep_config
.adv_38C0800_eep
;
3127 ep_38C1600
= &boardp
->eep_config
.adv_38C1600_eep
;
3131 "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
3134 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3135 wordp
= &ep_3550
->serial_number_word1
;
3136 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
3137 wordp
= &ep_38C0800
->serial_number_word1
;
3139 wordp
= &ep_38C1600
->serial_number_word1
;
3142 if (asc_get_eeprom_string(wordp
, serialstr
) == ASC_TRUE
)
3143 seq_printf(m
, " Serial Number: %s\n", serialstr
);
3145 seq_puts(m
, " Serial Number Signature Not Present.\n");
3147 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
)
3149 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3150 ep_3550
->adapter_scsi_id
,
3151 ep_3550
->max_host_qng
, ep_3550
->max_dvc_qng
);
3152 else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
)
3154 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3155 ep_38C0800
->adapter_scsi_id
,
3156 ep_38C0800
->max_host_qng
,
3157 ep_38C0800
->max_dvc_qng
);
3160 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3161 ep_38C1600
->adapter_scsi_id
,
3162 ep_38C1600
->max_host_qng
,
3163 ep_38C1600
->max_dvc_qng
);
3164 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3165 word
= ep_3550
->termination
;
3166 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
3167 word
= ep_38C0800
->termination_lvd
;
3169 word
= ep_38C1600
->termination_lvd
;
3173 termstr
= "Low Off/High Off";
3176 termstr
= "Low Off/High On";
3179 termstr
= "Low On/High On";
3183 termstr
= "Automatic";
3187 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
)
3189 " termination: %u (%s), bios_ctrl: 0x%x\n",
3190 ep_3550
->termination
, termstr
,
3191 ep_3550
->bios_ctrl
);
3192 else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
)
3194 " termination: %u (%s), bios_ctrl: 0x%x\n",
3195 ep_38C0800
->termination_lvd
, termstr
,
3196 ep_38C0800
->bios_ctrl
);
3199 " termination: %u (%s), bios_ctrl: 0x%x\n",
3200 ep_38C1600
->termination_lvd
, termstr
,
3201 ep_38C1600
->bios_ctrl
);
3203 seq_puts(m
, " Target ID: ");
3204 for (i
= 0; i
<= ADV_MAX_TID
; i
++)
3205 seq_printf(m
, " %X", i
);
3208 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3209 word
= ep_3550
->disc_enable
;
3210 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
3211 word
= ep_38C0800
->disc_enable
;
3213 word
= ep_38C1600
->disc_enable
;
3215 seq_puts(m
, " Disconnects: ");
3216 for (i
= 0; i
<= ADV_MAX_TID
; i
++)
3217 seq_printf(m
, " %c",
3218 (word
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3221 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3222 word
= ep_3550
->tagqng_able
;
3223 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
3224 word
= ep_38C0800
->tagqng_able
;
3226 word
= ep_38C1600
->tagqng_able
;
3228 seq_puts(m
, " Command Queuing: ");
3229 for (i
= 0; i
<= ADV_MAX_TID
; i
++)
3230 seq_printf(m
, " %c",
3231 (word
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3234 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3235 word
= ep_3550
->start_motor
;
3236 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
3237 word
= ep_38C0800
->start_motor
;
3239 word
= ep_38C1600
->start_motor
;
3241 seq_puts(m
, " Start Motor: ");
3242 for (i
= 0; i
<= ADV_MAX_TID
; i
++)
3243 seq_printf(m
, " %c",
3244 (word
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3247 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3248 seq_puts(m
, " Synchronous Transfer:");
3249 for (i
= 0; i
<= ADV_MAX_TID
; i
++)
3250 seq_printf(m
, " %c",
3251 (ep_3550
->sdtr_able
& ADV_TID_TO_TIDMASK(i
)) ?
3256 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3257 seq_puts(m
, " Ultra Transfer: ");
3258 for (i
= 0; i
<= ADV_MAX_TID
; i
++)
3259 seq_printf(m
, " %c",
3260 (ep_3550
->ultra_able
& ADV_TID_TO_TIDMASK(i
))
3265 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3266 word
= ep_3550
->wdtr_able
;
3267 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
3268 word
= ep_38C0800
->wdtr_able
;
3270 word
= ep_38C1600
->wdtr_able
;
3272 seq_puts(m
, " Wide Transfer: ");
3273 for (i
= 0; i
<= ADV_MAX_TID
; i
++)
3274 seq_printf(m
, " %c",
3275 (word
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3278 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
||
3279 adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C1600
) {
3280 seq_puts(m
, " Synchronous Transfer Speed (Mhz):\n ");
3281 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3285 sdtr_speed
= adv_dvc_varp
->sdtr_speed1
;
3286 } else if (i
== 4) {
3287 sdtr_speed
= adv_dvc_varp
->sdtr_speed2
;
3288 } else if (i
== 8) {
3289 sdtr_speed
= adv_dvc_varp
->sdtr_speed3
;
3290 } else if (i
== 12) {
3291 sdtr_speed
= adv_dvc_varp
->sdtr_speed4
;
3293 switch (sdtr_speed
& ADV_MAX_TID
) {
3316 seq_printf(m
, "%X:%s ", i
, speed_str
);
3326 * asc_prt_driver_conf()
3328 static void asc_prt_driver_conf(struct seq_file
*m
, struct Scsi_Host
*shost
)
3330 struct asc_board
*boardp
= shost_priv(shost
);
3334 "\nLinux Driver Configuration and Information for AdvanSys SCSI Host %d:\n",
3338 " host_busy %u, max_id %u, max_lun %llu, max_channel %u\n",
3339 atomic_read(&shost
->host_busy
), shost
->max_id
,
3340 shost
->max_lun
, shost
->max_channel
);
3343 " unique_id %d, can_queue %d, this_id %d, sg_tablesize %u, cmd_per_lun %u\n",
3344 shost
->unique_id
, shost
->can_queue
, shost
->this_id
,
3345 shost
->sg_tablesize
, shost
->cmd_per_lun
);
3348 " unchecked_isa_dma %d, use_clustering %d\n",
3349 shost
->unchecked_isa_dma
, shost
->use_clustering
);
3352 " flags 0x%x, last_reset 0x%lx, jiffies 0x%lx, asc_n_io_port 0x%x\n",
3353 boardp
->flags
, boardp
->last_reset
, jiffies
,
3354 boardp
->asc_n_io_port
);
3356 seq_printf(m
, " io_port 0x%lx\n", shost
->io_port
);
3358 if (ASC_NARROW_BOARD(boardp
)) {
3359 chip_scsi_id
= boardp
->dvc_cfg
.asc_dvc_cfg
.chip_scsi_id
;
3361 chip_scsi_id
= boardp
->dvc_var
.adv_dvc_var
.chip_scsi_id
;
3366 * asc_prt_asc_board_info()
3368 * Print dynamic board configuration information.
3370 static void asc_prt_asc_board_info(struct seq_file
*m
, struct Scsi_Host
*shost
)
3372 struct asc_board
*boardp
= shost_priv(shost
);
3377 int renegotiate
= 0;
3379 v
= &boardp
->dvc_var
.asc_dvc_var
;
3380 c
= &boardp
->dvc_cfg
.asc_dvc_cfg
;
3381 chip_scsi_id
= c
->chip_scsi_id
;
3384 "\nAsc Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3387 seq_printf(m
, " chip_version %u, mcode_date 0x%x, "
3388 "mcode_version 0x%x, err_code %u\n",
3389 c
->chip_version
, c
->mcode_date
, c
->mcode_version
,
3392 /* Current number of commands waiting for the host. */
3394 " Total Command Pending: %d\n", v
->cur_total_qng
);
3396 seq_puts(m
, " Command Queuing:");
3397 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3398 if ((chip_scsi_id
== i
) ||
3399 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3402 seq_printf(m
, " %X:%c",
3404 (v
->use_tagged_qng
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3407 /* Current number of commands waiting for a device. */
3408 seq_puts(m
, "\n Command Queue Pending:");
3409 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3410 if ((chip_scsi_id
== i
) ||
3411 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3414 seq_printf(m
, " %X:%u", i
, v
->cur_dvc_qng
[i
]);
3417 /* Current limit on number of commands that can be sent to a device. */
3418 seq_puts(m
, "\n Command Queue Limit:");
3419 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3420 if ((chip_scsi_id
== i
) ||
3421 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3424 seq_printf(m
, " %X:%u", i
, v
->max_dvc_qng
[i
]);
3427 /* Indicate whether the device has returned queue full status. */
3428 seq_puts(m
, "\n Command Queue Full:");
3429 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3430 if ((chip_scsi_id
== i
) ||
3431 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3434 if (boardp
->queue_full
& ADV_TID_TO_TIDMASK(i
))
3435 seq_printf(m
, " %X:Y-%d",
3436 i
, boardp
->queue_full_cnt
[i
]);
3438 seq_printf(m
, " %X:N", i
);
3441 seq_puts(m
, "\n Synchronous Transfer:");
3442 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3443 if ((chip_scsi_id
== i
) ||
3444 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3447 seq_printf(m
, " %X:%c",
3449 (v
->sdtr_done
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3453 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3454 uchar syn_period_ix
;
3456 if ((chip_scsi_id
== i
) ||
3457 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0) ||
3458 ((v
->init_sdtr
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3462 seq_printf(m
, " %X:", i
);
3464 if ((boardp
->sdtr_data
[i
] & ASC_SYN_MAX_OFFSET
) == 0) {
3465 seq_puts(m
, " Asynchronous");
3468 (boardp
->sdtr_data
[i
] >> 4) & (v
->max_sdtr_index
-
3472 " Transfer Period Factor: %d (%d.%d Mhz),",
3473 v
->sdtr_period_tbl
[syn_period_ix
],
3474 250 / v
->sdtr_period_tbl
[syn_period_ix
],
3476 v
->sdtr_period_tbl
[syn_period_ix
]));
3478 seq_printf(m
, " REQ/ACK Offset: %d",
3479 boardp
->sdtr_data
[i
] & ASC_SYN_MAX_OFFSET
);
3482 if ((v
->sdtr_done
& ADV_TID_TO_TIDMASK(i
)) == 0) {
3491 seq_puts(m
, " * = Re-negotiation pending before next command.\n");
3496 * asc_prt_adv_board_info()
3498 * Print dynamic board configuration information.
3500 static void asc_prt_adv_board_info(struct seq_file
*m
, struct Scsi_Host
*shost
)
3502 struct asc_board
*boardp
= shost_priv(shost
);
3506 AdvPortAddr iop_base
;
3507 ushort chip_scsi_id
;
3511 ushort sdtr_able
, wdtr_able
;
3512 ushort wdtr_done
, sdtr_done
;
3514 int renegotiate
= 0;
3516 v
= &boardp
->dvc_var
.adv_dvc_var
;
3517 c
= &boardp
->dvc_cfg
.adv_dvc_cfg
;
3518 iop_base
= v
->iop_base
;
3519 chip_scsi_id
= v
->chip_scsi_id
;
3522 "\nAdv Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3526 " iop_base 0x%lx, cable_detect: %X, err_code %u\n",
3527 (unsigned long)v
->iop_base
,
3528 AdvReadWordRegister(iop_base
,IOPW_SCSI_CFG1
) & CABLE_DETECT
,
3531 seq_printf(m
, " chip_version %u, mcode_date 0x%x, "
3532 "mcode_version 0x%x\n", c
->chip_version
,
3533 c
->mcode_date
, c
->mcode_version
);
3535 AdvReadWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
, tagqng_able
);
3536 seq_puts(m
, " Queuing Enabled:");
3537 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3538 if ((chip_scsi_id
== i
) ||
3539 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3543 seq_printf(m
, " %X:%c",
3545 (tagqng_able
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3548 seq_puts(m
, "\n Queue Limit:");
3549 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3550 if ((chip_scsi_id
== i
) ||
3551 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3555 AdvReadByteLram(iop_base
, ASC_MC_NUMBER_OF_MAX_CMD
+ i
,
3558 seq_printf(m
, " %X:%d", i
, lrambyte
);
3561 seq_puts(m
, "\n Command Pending:");
3562 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3563 if ((chip_scsi_id
== i
) ||
3564 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3568 AdvReadByteLram(iop_base
, ASC_MC_NUMBER_OF_QUEUED_CMD
+ i
,
3571 seq_printf(m
, " %X:%d", i
, lrambyte
);
3575 AdvReadWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
3576 seq_puts(m
, " Wide Enabled:");
3577 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3578 if ((chip_scsi_id
== i
) ||
3579 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3583 seq_printf(m
, " %X:%c",
3585 (wdtr_able
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3589 AdvReadWordLram(iop_base
, ASC_MC_WDTR_DONE
, wdtr_done
);
3590 seq_puts(m
, " Transfer Bit Width:");
3591 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3592 if ((chip_scsi_id
== i
) ||
3593 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3597 AdvReadWordLram(iop_base
,
3598 ASC_MC_DEVICE_HSHK_CFG_TABLE
+ (2 * i
),
3601 seq_printf(m
, " %X:%d",
3602 i
, (lramword
& 0x8000) ? 16 : 8);
3604 if ((wdtr_able
& ADV_TID_TO_TIDMASK(i
)) &&
3605 (wdtr_done
& ADV_TID_TO_TIDMASK(i
)) == 0) {
3612 AdvReadWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
3613 seq_puts(m
, " Synchronous Enabled:");
3614 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3615 if ((chip_scsi_id
== i
) ||
3616 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3620 seq_printf(m
, " %X:%c",
3622 (sdtr_able
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3626 AdvReadWordLram(iop_base
, ASC_MC_SDTR_DONE
, sdtr_done
);
3627 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3629 AdvReadWordLram(iop_base
,
3630 ASC_MC_DEVICE_HSHK_CFG_TABLE
+ (2 * i
),
3632 lramword
&= ~0x8000;
3634 if ((chip_scsi_id
== i
) ||
3635 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0) ||
3636 ((sdtr_able
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3640 seq_printf(m
, " %X:", i
);
3642 if ((lramword
& 0x1F) == 0) { /* Check for REQ/ACK Offset 0. */
3643 seq_puts(m
, " Asynchronous");
3645 seq_puts(m
, " Transfer Period Factor: ");
3647 if ((lramword
& 0x1F00) == 0x1100) { /* 80 Mhz */
3648 seq_puts(m
, "9 (80.0 Mhz),");
3649 } else if ((lramword
& 0x1F00) == 0x1000) { /* 40 Mhz */
3650 seq_puts(m
, "10 (40.0 Mhz),");
3651 } else { /* 20 Mhz or below. */
3653 period
= (((lramword
>> 8) * 25) + 50) / 4;
3655 if (period
== 0) { /* Should never happen. */
3656 seq_printf(m
, "%d (? Mhz), ", period
);
3660 period
, 250 / period
,
3661 ASC_TENTHS(250, period
));
3665 seq_printf(m
, " REQ/ACK Offset: %d",
3669 if ((sdtr_done
& ADV_TID_TO_TIDMASK(i
)) == 0) {
3678 seq_puts(m
, " * = Re-negotiation pending before next command.\n");
3682 #ifdef ADVANSYS_STATS
3684 * asc_prt_board_stats()
3686 static void asc_prt_board_stats(struct seq_file
*m
, struct Scsi_Host
*shost
)
3688 struct asc_board
*boardp
= shost_priv(shost
);
3689 struct asc_stats
*s
= &boardp
->asc_stats
;
3692 "\nLinux Driver Statistics for AdvanSys SCSI Host %d:\n",
3696 " queuecommand %u, reset %u, biosparam %u, interrupt %u\n",
3697 s
->queuecommand
, s
->reset
, s
->biosparam
,
3701 " callback %u, done %u, build_error %u, build_noreq %u, build_nosg %u\n",
3702 s
->callback
, s
->done
, s
->build_error
,
3703 s
->adv_build_noreq
, s
->adv_build_nosg
);
3706 " exe_noerror %u, exe_busy %u, exe_error %u, exe_unknown %u\n",
3707 s
->exe_noerror
, s
->exe_busy
, s
->exe_error
,
3711 * Display data transfer statistics.
3713 if (s
->xfer_cnt
> 0) {
3714 seq_printf(m
, " xfer_cnt %u, xfer_elem %u, ",
3715 s
->xfer_cnt
, s
->xfer_elem
);
3717 seq_printf(m
, "xfer_bytes %u.%01u kb\n",
3718 s
->xfer_sect
/ 2, ASC_TENTHS(s
->xfer_sect
, 2));
3720 /* Scatter gather transfer statistics */
3721 seq_printf(m
, " avg_num_elem %u.%01u, ",
3722 s
->xfer_elem
/ s
->xfer_cnt
,
3723 ASC_TENTHS(s
->xfer_elem
, s
->xfer_cnt
));
3725 seq_printf(m
, "avg_elem_size %u.%01u kb, ",
3726 (s
->xfer_sect
/ 2) / s
->xfer_elem
,
3727 ASC_TENTHS((s
->xfer_sect
/ 2), s
->xfer_elem
));
3729 seq_printf(m
, "avg_xfer_size %u.%01u kb\n",
3730 (s
->xfer_sect
/ 2) / s
->xfer_cnt
,
3731 ASC_TENTHS((s
->xfer_sect
/ 2), s
->xfer_cnt
));
3734 #endif /* ADVANSYS_STATS */
3737 * advansys_show_info() - /proc/scsi/advansys/{0,1,2,3,...}
3739 * m: seq_file to print into
3742 * Return the number of bytes read from or written to a
3743 * /proc/scsi/advansys/[0...] file.
3746 advansys_show_info(struct seq_file
*m
, struct Scsi_Host
*shost
)
3748 struct asc_board
*boardp
= shost_priv(shost
);
3750 ASC_DBG(1, "begin\n");
3753 * User read of /proc/scsi/advansys/[0...] file.
3757 * Get board configuration information.
3759 * advansys_info() returns the board string from its own static buffer.
3761 /* Copy board information. */
3762 seq_printf(m
, "%s\n", (char *)advansys_info(shost
));
3764 * Display Wide Board BIOS Information.
3766 if (!ASC_NARROW_BOARD(boardp
))
3767 asc_prt_adv_bios(m
, shost
);
3770 * Display driver information for each device attached to the board.
3772 asc_prt_board_devices(m
, shost
);
3775 * Display EEPROM configuration for the board.
3777 if (ASC_NARROW_BOARD(boardp
))
3778 asc_prt_asc_board_eeprom(m
, shost
);
3780 asc_prt_adv_board_eeprom(m
, shost
);
3783 * Display driver configuration and information for the board.
3785 asc_prt_driver_conf(m
, shost
);
3787 #ifdef ADVANSYS_STATS
3789 * Display driver statistics for the board.
3791 asc_prt_board_stats(m
, shost
);
3792 #endif /* ADVANSYS_STATS */
3795 * Display Asc Library dynamic configuration information
3798 if (ASC_NARROW_BOARD(boardp
))
3799 asc_prt_asc_board_info(m
, shost
);
3801 asc_prt_adv_board_info(m
, shost
);
3804 #endif /* CONFIG_PROC_FS */
3806 static void asc_scsi_done(struct scsi_cmnd
*scp
)
3808 scsi_dma_unmap(scp
);
3809 ASC_STATS(scp
->device
->host
, done
);
3810 scp
->scsi_done(scp
);
3813 static void AscSetBank(PortAddr iop_base
, uchar bank
)
3817 val
= AscGetChipControl(iop_base
) &
3819 (CC_SINGLE_STEP
| CC_TEST
| CC_DIAG
| CC_SCSI_RESET
|
3823 } else if (bank
== 2) {
3824 val
|= CC_DIAG
| CC_BANK_ONE
;
3826 val
&= ~CC_BANK_ONE
;
3828 AscSetChipControl(iop_base
, val
);
3831 static void AscSetChipIH(PortAddr iop_base
, ushort ins_code
)
3833 AscSetBank(iop_base
, 1);
3834 AscWriteChipIH(iop_base
, ins_code
);
3835 AscSetBank(iop_base
, 0);
3838 static int AscStartChip(PortAddr iop_base
)
3840 AscSetChipControl(iop_base
, 0);
3841 if ((AscGetChipStatus(iop_base
) & CSW_HALTED
) != 0) {
3847 static int AscStopChip(PortAddr iop_base
)
3852 AscGetChipControl(iop_base
) &
3853 (~(CC_SINGLE_STEP
| CC_TEST
| CC_DIAG
));
3854 AscSetChipControl(iop_base
, (uchar
)(cc_val
| CC_HALT
));
3855 AscSetChipIH(iop_base
, INS_HALT
);
3856 AscSetChipIH(iop_base
, INS_RFLAG_WTM
);
3857 if ((AscGetChipStatus(iop_base
) & CSW_HALTED
) == 0) {
3863 static int AscIsChipHalted(PortAddr iop_base
)
3865 if ((AscGetChipStatus(iop_base
) & CSW_HALTED
) != 0) {
3866 if ((AscGetChipControl(iop_base
) & CC_HALT
) != 0) {
3873 static int AscResetChipAndScsiBus(ASC_DVC_VAR
*asc_dvc
)
3878 iop_base
= asc_dvc
->iop_base
;
3879 while ((AscGetChipStatus(iop_base
) & CSW_SCSI_RESET_ACTIVE
)
3883 AscStopChip(iop_base
);
3884 AscSetChipControl(iop_base
, CC_CHIP_RESET
| CC_SCSI_RESET
| CC_HALT
);
3886 AscSetChipIH(iop_base
, INS_RFLAG_WTM
);
3887 AscSetChipIH(iop_base
, INS_HALT
);
3888 AscSetChipControl(iop_base
, CC_CHIP_RESET
| CC_HALT
);
3889 AscSetChipControl(iop_base
, CC_HALT
);
3891 AscSetChipStatus(iop_base
, CIW_CLR_SCSI_RESET_INT
);
3892 AscSetChipStatus(iop_base
, 0);
3893 return (AscIsChipHalted(iop_base
));
3896 static int AscFindSignature(PortAddr iop_base
)
3900 ASC_DBG(1, "AscGetChipSignatureByte(0x%x) 0x%x\n",
3901 iop_base
, AscGetChipSignatureByte(iop_base
));
3902 if (AscGetChipSignatureByte(iop_base
) == (uchar
)ASC_1000_ID1B
) {
3903 ASC_DBG(1, "AscGetChipSignatureWord(0x%x) 0x%x\n",
3904 iop_base
, AscGetChipSignatureWord(iop_base
));
3905 sig_word
= AscGetChipSignatureWord(iop_base
);
3906 if ((sig_word
== (ushort
)ASC_1000_ID0W
) ||
3907 (sig_word
== (ushort
)ASC_1000_ID0W_FIX
)) {
3914 static void AscEnableInterrupt(PortAddr iop_base
)
3918 cfg
= AscGetChipCfgLsw(iop_base
);
3919 AscSetChipCfgLsw(iop_base
, cfg
| ASC_CFG0_HOST_INT_ON
);
3922 static void AscDisableInterrupt(PortAddr iop_base
)
3926 cfg
= AscGetChipCfgLsw(iop_base
);
3927 AscSetChipCfgLsw(iop_base
, cfg
& (~ASC_CFG0_HOST_INT_ON
));
3930 static uchar
AscReadLramByte(PortAddr iop_base
, ushort addr
)
3932 unsigned char byte_data
;
3933 unsigned short word_data
;
3935 if (isodd_word(addr
)) {
3936 AscSetChipLramAddr(iop_base
, addr
- 1);
3937 word_data
= AscGetChipLramData(iop_base
);
3938 byte_data
= (word_data
>> 8) & 0xFF;
3940 AscSetChipLramAddr(iop_base
, addr
);
3941 word_data
= AscGetChipLramData(iop_base
);
3942 byte_data
= word_data
& 0xFF;
3947 static ushort
AscReadLramWord(PortAddr iop_base
, ushort addr
)
3951 AscSetChipLramAddr(iop_base
, addr
);
3952 word_data
= AscGetChipLramData(iop_base
);
3956 #if CC_VERY_LONG_SG_LIST
3957 static ASC_DCNT
AscReadLramDWord(PortAddr iop_base
, ushort addr
)
3959 ushort val_low
, val_high
;
3960 ASC_DCNT dword_data
;
3962 AscSetChipLramAddr(iop_base
, addr
);
3963 val_low
= AscGetChipLramData(iop_base
);
3964 val_high
= AscGetChipLramData(iop_base
);
3965 dword_data
= ((ASC_DCNT
) val_high
<< 16) | (ASC_DCNT
) val_low
;
3966 return (dword_data
);
3968 #endif /* CC_VERY_LONG_SG_LIST */
3971 AscMemWordSetLram(PortAddr iop_base
, ushort s_addr
, ushort set_wval
, int words
)
3975 AscSetChipLramAddr(iop_base
, s_addr
);
3976 for (i
= 0; i
< words
; i
++) {
3977 AscSetChipLramData(iop_base
, set_wval
);
3981 static void AscWriteLramWord(PortAddr iop_base
, ushort addr
, ushort word_val
)
3983 AscSetChipLramAddr(iop_base
, addr
);
3984 AscSetChipLramData(iop_base
, word_val
);
3987 static void AscWriteLramByte(PortAddr iop_base
, ushort addr
, uchar byte_val
)
3991 if (isodd_word(addr
)) {
3993 word_data
= AscReadLramWord(iop_base
, addr
);
3994 word_data
&= 0x00FF;
3995 word_data
|= (((ushort
)byte_val
<< 8) & 0xFF00);
3997 word_data
= AscReadLramWord(iop_base
, addr
);
3998 word_data
&= 0xFF00;
3999 word_data
|= ((ushort
)byte_val
& 0x00FF);
4001 AscWriteLramWord(iop_base
, addr
, word_data
);
4005 * Copy 2 bytes to LRAM.
4007 * The source data is assumed to be in little-endian order in memory
4008 * and is maintained in little-endian order when written to LRAM.
4011 AscMemWordCopyPtrToLram(PortAddr iop_base
, ushort s_addr
,
4012 const uchar
*s_buffer
, int words
)
4016 AscSetChipLramAddr(iop_base
, s_addr
);
4017 for (i
= 0; i
< 2 * words
; i
+= 2) {
4019 * On a little-endian system the second argument below
4020 * produces a little-endian ushort which is written to
4021 * LRAM in little-endian order. On a big-endian system
4022 * the second argument produces a big-endian ushort which
4023 * is "transparently" byte-swapped by outpw() and written
4024 * in little-endian order to LRAM.
4026 outpw(iop_base
+ IOP_RAM_DATA
,
4027 ((ushort
)s_buffer
[i
+ 1] << 8) | s_buffer
[i
]);
4032 * Copy 4 bytes to LRAM.
4034 * The source data is assumed to be in little-endian order in memory
4035 * and is maintained in little-endian order when written to LRAM.
4038 AscMemDWordCopyPtrToLram(PortAddr iop_base
,
4039 ushort s_addr
, uchar
*s_buffer
, int dwords
)
4043 AscSetChipLramAddr(iop_base
, s_addr
);
4044 for (i
= 0; i
< 4 * dwords
; i
+= 4) {
4045 outpw(iop_base
+ IOP_RAM_DATA
, ((ushort
)s_buffer
[i
+ 1] << 8) | s_buffer
[i
]); /* LSW */
4046 outpw(iop_base
+ IOP_RAM_DATA
, ((ushort
)s_buffer
[i
+ 3] << 8) | s_buffer
[i
+ 2]); /* MSW */
4051 * Copy 2 bytes from LRAM.
4053 * The source data is assumed to be in little-endian order in LRAM
4054 * and is maintained in little-endian order when written to memory.
4057 AscMemWordCopyPtrFromLram(PortAddr iop_base
,
4058 ushort s_addr
, uchar
*d_buffer
, int words
)
4063 AscSetChipLramAddr(iop_base
, s_addr
);
4064 for (i
= 0; i
< 2 * words
; i
+= 2) {
4065 word
= inpw(iop_base
+ IOP_RAM_DATA
);
4066 d_buffer
[i
] = word
& 0xff;
4067 d_buffer
[i
+ 1] = (word
>> 8) & 0xff;
4071 static ASC_DCNT
AscMemSumLramWord(PortAddr iop_base
, ushort s_addr
, int words
)
4077 for (i
= 0; i
< words
; i
++, s_addr
+= 2) {
4078 sum
+= AscReadLramWord(iop_base
, s_addr
);
4083 static ushort
AscInitLram(ASC_DVC_VAR
*asc_dvc
)
4090 iop_base
= asc_dvc
->iop_base
;
4092 AscMemWordSetLram(iop_base
, ASC_QADR_BEG
, 0,
4093 (ushort
)(((int)(asc_dvc
->max_total_qng
+ 2 + 1) *
4095 i
= ASC_MIN_ACTIVE_QNO
;
4096 s_addr
= ASC_QADR_BEG
+ ASC_QBLK_SIZE
;
4097 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_FWD
),
4099 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_BWD
),
4100 (uchar
)(asc_dvc
->max_total_qng
));
4101 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_QNO
),
4104 s_addr
+= ASC_QBLK_SIZE
;
4105 for (; i
< asc_dvc
->max_total_qng
; i
++, s_addr
+= ASC_QBLK_SIZE
) {
4106 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_FWD
),
4108 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_BWD
),
4110 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_QNO
),
4113 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_FWD
),
4114 (uchar
)ASC_QLINK_END
);
4115 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_BWD
),
4116 (uchar
)(asc_dvc
->max_total_qng
- 1));
4117 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_QNO
),
4118 (uchar
)asc_dvc
->max_total_qng
);
4120 s_addr
+= ASC_QBLK_SIZE
;
4121 for (; i
<= (uchar
)(asc_dvc
->max_total_qng
+ 3);
4122 i
++, s_addr
+= ASC_QBLK_SIZE
) {
4123 AscWriteLramByte(iop_base
,
4124 (ushort
)(s_addr
+ (ushort
)ASC_SCSIQ_B_FWD
), i
);
4125 AscWriteLramByte(iop_base
,
4126 (ushort
)(s_addr
+ (ushort
)ASC_SCSIQ_B_BWD
), i
);
4127 AscWriteLramByte(iop_base
,
4128 (ushort
)(s_addr
+ (ushort
)ASC_SCSIQ_B_QNO
), i
);
4134 AscLoadMicroCode(PortAddr iop_base
, ushort s_addr
,
4135 const uchar
*mcode_buf
, ushort mcode_size
)
4138 ushort mcode_word_size
;
4139 ushort mcode_chksum
;
4141 /* Write the microcode buffer starting at LRAM address 0. */
4142 mcode_word_size
= (ushort
)(mcode_size
>> 1);
4143 AscMemWordSetLram(iop_base
, s_addr
, 0, mcode_word_size
);
4144 AscMemWordCopyPtrToLram(iop_base
, s_addr
, mcode_buf
, mcode_word_size
);
4146 chksum
= AscMemSumLramWord(iop_base
, s_addr
, mcode_word_size
);
4147 ASC_DBG(1, "chksum 0x%lx\n", (ulong
)chksum
);
4148 mcode_chksum
= (ushort
)AscMemSumLramWord(iop_base
,
4149 (ushort
)ASC_CODE_SEC_BEG
,
4150 (ushort
)((mcode_size
-
4154 ASC_DBG(1, "mcode_chksum 0x%lx\n", (ulong
)mcode_chksum
);
4155 AscWriteLramWord(iop_base
, ASCV_MCODE_CHKSUM_W
, mcode_chksum
);
4156 AscWriteLramWord(iop_base
, ASCV_MCODE_SIZE_W
, mcode_size
);
4160 static void AscInitQLinkVar(ASC_DVC_VAR
*asc_dvc
)
4166 iop_base
= asc_dvc
->iop_base
;
4167 AscPutRiscVarFreeQHead(iop_base
, 1);
4168 AscPutRiscVarDoneQTail(iop_base
, asc_dvc
->max_total_qng
);
4169 AscPutVarFreeQHead(iop_base
, 1);
4170 AscPutVarDoneQTail(iop_base
, asc_dvc
->max_total_qng
);
4171 AscWriteLramByte(iop_base
, ASCV_BUSY_QHEAD_B
,
4172 (uchar
)((int)asc_dvc
->max_total_qng
+ 1));
4173 AscWriteLramByte(iop_base
, ASCV_DISC1_QHEAD_B
,
4174 (uchar
)((int)asc_dvc
->max_total_qng
+ 2));
4175 AscWriteLramByte(iop_base
, (ushort
)ASCV_TOTAL_READY_Q_B
,
4176 asc_dvc
->max_total_qng
);
4177 AscWriteLramWord(iop_base
, ASCV_ASCDVC_ERR_CODE_W
, 0);
4178 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
4179 AscWriteLramByte(iop_base
, ASCV_STOP_CODE_B
, 0);
4180 AscWriteLramByte(iop_base
, ASCV_SCSIBUSY_B
, 0);
4181 AscWriteLramByte(iop_base
, ASCV_WTM_FLAG_B
, 0);
4182 AscPutQDoneInProgress(iop_base
, 0);
4183 lram_addr
= ASC_QADR_BEG
;
4184 for (i
= 0; i
< 32; i
++, lram_addr
+= 2) {
4185 AscWriteLramWord(iop_base
, lram_addr
, 0);
4189 static ushort
AscInitMicroCodeVar(ASC_DVC_VAR
*asc_dvc
)
4196 struct asc_board
*board
= asc_dvc_to_board(asc_dvc
);
4198 iop_base
= asc_dvc
->iop_base
;
4200 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
4201 AscPutMCodeInitSDTRAtID(iop_base
, i
,
4202 asc_dvc
->cfg
->sdtr_period_offset
[i
]);
4205 AscInitQLinkVar(asc_dvc
);
4206 AscWriteLramByte(iop_base
, ASCV_DISC_ENABLE_B
,
4207 asc_dvc
->cfg
->disc_enable
);
4208 AscWriteLramByte(iop_base
, ASCV_HOSTSCSI_ID_B
,
4209 ASC_TID_TO_TARGET_ID(asc_dvc
->cfg
->chip_scsi_id
));
4211 /* Ensure overrun buffer is aligned on an 8 byte boundary. */
4212 BUG_ON((unsigned long)asc_dvc
->overrun_buf
& 7);
4213 asc_dvc
->overrun_dma
= dma_map_single(board
->dev
, asc_dvc
->overrun_buf
,
4214 ASC_OVERRUN_BSIZE
, DMA_FROM_DEVICE
);
4215 if (dma_mapping_error(board
->dev
, asc_dvc
->overrun_dma
)) {
4216 warn_code
= -ENOMEM
;
4219 phy_addr
= cpu_to_le32(asc_dvc
->overrun_dma
);
4220 AscMemDWordCopyPtrToLram(iop_base
, ASCV_OVERRUN_PADDR_D
,
4221 (uchar
*)&phy_addr
, 1);
4222 phy_size
= cpu_to_le32(ASC_OVERRUN_BSIZE
);
4223 AscMemDWordCopyPtrToLram(iop_base
, ASCV_OVERRUN_BSIZE_D
,
4224 (uchar
*)&phy_size
, 1);
4226 asc_dvc
->cfg
->mcode_date
=
4227 AscReadLramWord(iop_base
, (ushort
)ASCV_MC_DATE_W
);
4228 asc_dvc
->cfg
->mcode_version
=
4229 AscReadLramWord(iop_base
, (ushort
)ASCV_MC_VER_W
);
4231 AscSetPCAddr(iop_base
, ASC_MCODE_START_ADDR
);
4232 if (AscGetPCAddr(iop_base
) != ASC_MCODE_START_ADDR
) {
4233 asc_dvc
->err_code
|= ASC_IERR_SET_PC_ADDR
;
4235 goto err_mcode_start
;
4237 if (AscStartChip(iop_base
) != 1) {
4238 asc_dvc
->err_code
|= ASC_IERR_START_STOP_CHIP
;
4240 goto err_mcode_start
;
4246 dma_unmap_single(board
->dev
, asc_dvc
->overrun_dma
,
4247 ASC_OVERRUN_BSIZE
, DMA_FROM_DEVICE
);
4249 asc_dvc
->overrun_dma
= 0;
4253 static ushort
AscInitAsc1000Driver(ASC_DVC_VAR
*asc_dvc
)
4255 const struct firmware
*fw
;
4256 const char fwname
[] = "advansys/mcode.bin";
4258 unsigned long chksum
;
4262 iop_base
= asc_dvc
->iop_base
;
4264 if ((asc_dvc
->dvc_cntl
& ASC_CNTL_RESET_SCSI
) &&
4265 !(asc_dvc
->init_state
& ASC_INIT_RESET_SCSI_DONE
)) {
4266 AscResetChipAndScsiBus(asc_dvc
);
4267 mdelay(asc_dvc
->scsi_reset_wait
* 1000); /* XXX: msleep? */
4269 asc_dvc
->init_state
|= ASC_INIT_STATE_BEG_LOAD_MC
;
4270 if (asc_dvc
->err_code
!= 0)
4272 if (!AscFindSignature(asc_dvc
->iop_base
)) {
4273 asc_dvc
->err_code
= ASC_IERR_BAD_SIGNATURE
;
4276 AscDisableInterrupt(iop_base
);
4277 warn_code
|= AscInitLram(asc_dvc
);
4278 if (asc_dvc
->err_code
!= 0)
4281 err
= request_firmware(&fw
, fwname
, asc_dvc
->drv_ptr
->dev
);
4283 printk(KERN_ERR
"Failed to load image \"%s\" err %d\n",
4285 asc_dvc
->err_code
|= ASC_IERR_MCODE_CHKSUM
;
4289 printk(KERN_ERR
"Bogus length %zu in image \"%s\"\n",
4291 release_firmware(fw
);
4292 asc_dvc
->err_code
|= ASC_IERR_MCODE_CHKSUM
;
4295 chksum
= (fw
->data
[3] << 24) | (fw
->data
[2] << 16) |
4296 (fw
->data
[1] << 8) | fw
->data
[0];
4297 ASC_DBG(1, "_asc_mcode_chksum 0x%lx\n", (ulong
)chksum
);
4298 if (AscLoadMicroCode(iop_base
, 0, &fw
->data
[4],
4299 fw
->size
- 4) != chksum
) {
4300 asc_dvc
->err_code
|= ASC_IERR_MCODE_CHKSUM
;
4301 release_firmware(fw
);
4304 release_firmware(fw
);
4305 warn_code
|= AscInitMicroCodeVar(asc_dvc
);
4306 if (!asc_dvc
->overrun_dma
)
4308 asc_dvc
->init_state
|= ASC_INIT_STATE_END_LOAD_MC
;
4309 AscEnableInterrupt(iop_base
);
4314 * Load the Microcode
4316 * Write the microcode image to RISC memory starting at address 0.
4318 * The microcode is stored compressed in the following format:
4320 * 254 word (508 byte) table indexed by byte code followed
4321 * by the following byte codes:
4324 * 00: Emit word 0 in table.
4325 * 01: Emit word 1 in table.
4327 * FD: Emit word 253 in table.
4330 * FE WW WW: (3 byte code) Word to emit is the next word WW WW.
4331 * FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
4333 * Returns 0 or an error if the checksum doesn't match
4335 static int AdvLoadMicrocode(AdvPortAddr iop_base
, const unsigned char *buf
,
4336 int size
, int memsize
, int chksum
)
4338 int i
, j
, end
, len
= 0;
4341 AdvWriteWordRegister(iop_base
, IOPW_RAM_ADDR
, 0);
4343 for (i
= 253 * 2; i
< size
; i
++) {
4344 if (buf
[i
] == 0xff) {
4345 unsigned short word
= (buf
[i
+ 3] << 8) | buf
[i
+ 2];
4346 for (j
= 0; j
< buf
[i
+ 1]; j
++) {
4347 AdvWriteWordAutoIncLram(iop_base
, word
);
4351 } else if (buf
[i
] == 0xfe) {
4352 unsigned short word
= (buf
[i
+ 2] << 8) | buf
[i
+ 1];
4353 AdvWriteWordAutoIncLram(iop_base
, word
);
4357 unsigned int off
= buf
[i
] * 2;
4358 unsigned short word
= (buf
[off
+ 1] << 8) | buf
[off
];
4359 AdvWriteWordAutoIncLram(iop_base
, word
);
4366 while (len
< memsize
) {
4367 AdvWriteWordAutoIncLram(iop_base
, 0);
4371 /* Verify the microcode checksum. */
4373 AdvWriteWordRegister(iop_base
, IOPW_RAM_ADDR
, 0);
4375 for (len
= 0; len
< end
; len
+= 2) {
4376 sum
+= AdvReadWordAutoIncLram(iop_base
);
4380 return ASC_IERR_MCODE_CHKSUM
;
4385 static void AdvBuildCarrierFreelist(struct adv_dvc_var
*asc_dvc
)
4389 ADV_PADDR carr_paddr
;
4391 carrp
= (ADV_CARR_T
*) ADV_16BALIGN(asc_dvc
->carrier_buf
);
4392 asc_dvc
->carr_freelist
= NULL
;
4393 if (carrp
== asc_dvc
->carrier_buf
) {
4394 buf_size
= ADV_CARRIER_BUFSIZE
;
4396 buf_size
= ADV_CARRIER_BUFSIZE
- sizeof(ADV_CARR_T
);
4400 /* Get physical address of the carrier 'carrp'. */
4401 carr_paddr
= cpu_to_le32(virt_to_bus(carrp
));
4403 buf_size
-= sizeof(ADV_CARR_T
);
4405 carrp
->carr_pa
= carr_paddr
;
4406 carrp
->carr_va
= cpu_to_le32(ADV_VADDR_TO_U32(carrp
));
4409 * Insert the carrier at the beginning of the freelist.
4412 cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc
->carr_freelist
));
4413 asc_dvc
->carr_freelist
= carrp
;
4416 } while (buf_size
> 0);
4420 * Send an idle command to the chip and wait for completion.
4422 * Command completion is polled for once per microsecond.
4424 * The function can be called from anywhere including an interrupt handler.
4425 * But the function is not re-entrant, so it uses the DvcEnter/LeaveCritical()
4426 * functions to prevent reentrancy.
4429 * ADV_TRUE - command completed successfully
4430 * ADV_FALSE - command failed
4431 * ADV_ERROR - command timed out
4434 AdvSendIdleCmd(ADV_DVC_VAR
*asc_dvc
,
4435 ushort idle_cmd
, ADV_DCNT idle_cmd_parameter
)
4439 AdvPortAddr iop_base
;
4441 iop_base
= asc_dvc
->iop_base
;
4444 * Clear the idle command status which is set by the microcode
4445 * to a non-zero value to indicate when the command is completed.
4446 * The non-zero result is one of the IDLE_CMD_STATUS_* values
4448 AdvWriteWordLram(iop_base
, ASC_MC_IDLE_CMD_STATUS
, (ushort
)0);
4451 * Write the idle command value after the idle command parameter
4452 * has been written to avoid a race condition. If the order is not
4453 * followed, the microcode may process the idle command before the
4454 * parameters have been written to LRAM.
4456 AdvWriteDWordLramNoSwap(iop_base
, ASC_MC_IDLE_CMD_PARAMETER
,
4457 cpu_to_le32(idle_cmd_parameter
));
4458 AdvWriteWordLram(iop_base
, ASC_MC_IDLE_CMD
, idle_cmd
);
4461 * Tickle the RISC to tell it to process the idle command.
4463 AdvWriteByteRegister(iop_base
, IOPB_TICKLE
, ADV_TICKLE_B
);
4464 if (asc_dvc
->chip_type
== ADV_CHIP_ASC3550
) {
4466 * Clear the tickle value. In the ASC-3550 the RISC flag
4467 * command 'clr_tickle_b' does not work unless the host
4470 AdvWriteByteRegister(iop_base
, IOPB_TICKLE
, ADV_TICKLE_NOP
);
4473 /* Wait for up to 100 millisecond for the idle command to timeout. */
4474 for (i
= 0; i
< SCSI_WAIT_100_MSEC
; i
++) {
4475 /* Poll once each microsecond for command completion. */
4476 for (j
= 0; j
< SCSI_US_PER_MSEC
; j
++) {
4477 AdvReadWordLram(iop_base
, ASC_MC_IDLE_CMD_STATUS
,
4485 BUG(); /* The idle command should never timeout. */
4490 * Reset SCSI Bus and purge all outstanding requests.
4493 * ADV_TRUE(1) - All requests are purged and SCSI Bus is reset.
4494 * ADV_FALSE(0) - Microcode command failed.
4495 * ADV_ERROR(-1) - Microcode command timed-out. Microcode or IC
4496 * may be hung which requires driver recovery.
4498 static int AdvResetSB(ADV_DVC_VAR
*asc_dvc
)
4503 * Send the SCSI Bus Reset idle start idle command which asserts
4504 * the SCSI Bus Reset signal.
4506 status
= AdvSendIdleCmd(asc_dvc
, (ushort
)IDLE_CMD_SCSI_RESET_START
, 0L);
4507 if (status
!= ADV_TRUE
) {
4512 * Delay for the specified SCSI Bus Reset hold time.
4514 * The hold time delay is done on the host because the RISC has no
4515 * microsecond accurate timer.
4517 udelay(ASC_SCSI_RESET_HOLD_TIME_US
);
4520 * Send the SCSI Bus Reset end idle command which de-asserts
4521 * the SCSI Bus Reset signal and purges any pending requests.
4523 status
= AdvSendIdleCmd(asc_dvc
, (ushort
)IDLE_CMD_SCSI_RESET_END
, 0L);
4524 if (status
!= ADV_TRUE
) {
4528 mdelay(asc_dvc
->scsi_reset_wait
* 1000); /* XXX: msleep? */
4534 * Initialize the ASC-3550.
4536 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
4538 * For a non-fatal error return a warning code. If there are no warnings
4539 * then 0 is returned.
4541 * Needed after initialization for error recovery.
4543 static int AdvInitAsc3550Driver(ADV_DVC_VAR
*asc_dvc
)
4545 const struct firmware
*fw
;
4546 const char fwname
[] = "advansys/3550.bin";
4547 AdvPortAddr iop_base
;
4555 unsigned long chksum
;
4558 ushort bios_mem
[ASC_MC_BIOSLEN
/ 2]; /* BIOS RISC Memory 0x40-0x8F. */
4559 ushort wdtr_able
= 0, sdtr_able
, tagqng_able
;
4560 uchar max_cmd
[ADV_MAX_TID
+ 1];
4562 /* If there is already an error, don't continue. */
4563 if (asc_dvc
->err_code
!= 0)
4567 * The caller must set 'chip_type' to ADV_CHIP_ASC3550.
4569 if (asc_dvc
->chip_type
!= ADV_CHIP_ASC3550
) {
4570 asc_dvc
->err_code
= ASC_IERR_BAD_CHIPTYPE
;
4575 iop_base
= asc_dvc
->iop_base
;
4578 * Save the RISC memory BIOS region before writing the microcode.
4579 * The BIOS may already be loaded and using its RISC LRAM region
4580 * so its region must be saved and restored.
4582 * Note: This code makes the assumption, which is currently true,
4583 * that a chip reset does not clear RISC LRAM.
4585 for (i
= 0; i
< ASC_MC_BIOSLEN
/ 2; i
++) {
4586 AdvReadWordLram(iop_base
, ASC_MC_BIOSMEM
+ (2 * i
),
4591 * Save current per TID negotiated values.
4593 if (bios_mem
[(ASC_MC_BIOS_SIGNATURE
- ASC_MC_BIOSMEM
) / 2] == 0x55AA) {
4594 ushort bios_version
, major
, minor
;
4597 bios_mem
[(ASC_MC_BIOS_VERSION
- ASC_MC_BIOSMEM
) / 2];
4598 major
= (bios_version
>> 12) & 0xF;
4599 minor
= (bios_version
>> 8) & 0xF;
4600 if (major
< 3 || (major
== 3 && minor
== 1)) {
4601 /* BIOS 3.1 and earlier location of 'wdtr_able' variable. */
4602 AdvReadWordLram(iop_base
, 0x120, wdtr_able
);
4604 AdvReadWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
4607 AdvReadWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
4608 AdvReadWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
, tagqng_able
);
4609 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
4610 AdvReadByteLram(iop_base
, ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
4614 err
= request_firmware(&fw
, fwname
, asc_dvc
->drv_ptr
->dev
);
4616 printk(KERN_ERR
"Failed to load image \"%s\" err %d\n",
4618 asc_dvc
->err_code
= ASC_IERR_MCODE_CHKSUM
;
4622 printk(KERN_ERR
"Bogus length %zu in image \"%s\"\n",
4624 release_firmware(fw
);
4625 asc_dvc
->err_code
= ASC_IERR_MCODE_CHKSUM
;
4628 chksum
= (fw
->data
[3] << 24) | (fw
->data
[2] << 16) |
4629 (fw
->data
[1] << 8) | fw
->data
[0];
4630 asc_dvc
->err_code
= AdvLoadMicrocode(iop_base
, &fw
->data
[4],
4631 fw
->size
- 4, ADV_3550_MEMSIZE
,
4633 release_firmware(fw
);
4634 if (asc_dvc
->err_code
)
4638 * Restore the RISC memory BIOS region.
4640 for (i
= 0; i
< ASC_MC_BIOSLEN
/ 2; i
++) {
4641 AdvWriteWordLram(iop_base
, ASC_MC_BIOSMEM
+ (2 * i
),
4646 * Calculate and write the microcode code checksum to the microcode
4647 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
4649 AdvReadWordLram(iop_base
, ASC_MC_CODE_BEGIN_ADDR
, begin_addr
);
4650 AdvReadWordLram(iop_base
, ASC_MC_CODE_END_ADDR
, end_addr
);
4652 AdvWriteWordRegister(iop_base
, IOPW_RAM_ADDR
, begin_addr
);
4653 for (word
= begin_addr
; word
< end_addr
; word
+= 2) {
4654 code_sum
+= AdvReadWordAutoIncLram(iop_base
);
4656 AdvWriteWordLram(iop_base
, ASC_MC_CODE_CHK_SUM
, code_sum
);
4659 * Read and save microcode version and date.
4661 AdvReadWordLram(iop_base
, ASC_MC_VERSION_DATE
,
4662 asc_dvc
->cfg
->mcode_date
);
4663 AdvReadWordLram(iop_base
, ASC_MC_VERSION_NUM
,
4664 asc_dvc
->cfg
->mcode_version
);
4667 * Set the chip type to indicate the ASC3550.
4669 AdvWriteWordLram(iop_base
, ASC_MC_CHIP_TYPE
, ADV_CHIP_ASC3550
);
4672 * If the PCI Configuration Command Register "Parity Error Response
4673 * Control" Bit was clear (0), then set the microcode variable
4674 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
4675 * to ignore DMA parity errors.
4677 if (asc_dvc
->cfg
->control_flag
& CONTROL_FLAG_IGNORE_PERR
) {
4678 AdvReadWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
4679 word
|= CONTROL_FLAG_IGNORE_PERR
;
4680 AdvWriteWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
4684 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO
4685 * threshold of 128 bytes. This register is only accessible to the host.
4687 AdvWriteByteRegister(iop_base
, IOPB_DMA_CFG0
,
4688 START_CTL_EMFU
| READ_CMD_MRM
);
4691 * Microcode operating variables for WDTR, SDTR, and command tag
4692 * queuing will be set in slave_configure() based on what a
4693 * device reports it is capable of in Inquiry byte 7.
4695 * If SCSI Bus Resets have been disabled, then directly set
4696 * SDTR and WDTR from the EEPROM configuration. This will allow
4697 * the BIOS and warm boot to work without a SCSI bus hang on
4698 * the Inquiry caused by host and target mismatched DTR values.
4699 * Without the SCSI Bus Reset, before an Inquiry a device can't
4700 * be assumed to be in Asynchronous, Narrow mode.
4702 if ((asc_dvc
->bios_ctrl
& BIOS_CTRL_RESET_SCSI_BUS
) == 0) {
4703 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
,
4704 asc_dvc
->wdtr_able
);
4705 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
,
4706 asc_dvc
->sdtr_able
);
4710 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
4711 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
4712 * bitmask. These values determine the maximum SDTR speed negotiated
4715 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
4716 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
4717 * without determining here whether the device supports SDTR.
4719 * 4-bit speed SDTR speed name
4720 * =========== ===============
4721 * 0000b (0x0) SDTR disabled
4723 * 0010b (0x2) 10 Mhz
4724 * 0011b (0x3) 20 Mhz (Ultra)
4725 * 0100b (0x4) 40 Mhz (LVD/Ultra2)
4726 * 0101b (0x5) 80 Mhz (LVD2/Ultra3)
4727 * 0110b (0x6) Undefined
4729 * 1111b (0xF) Undefined
4732 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
4733 if (ADV_TID_TO_TIDMASK(tid
) & asc_dvc
->ultra_able
) {
4734 /* Set Ultra speed for TID 'tid'. */
4735 word
|= (0x3 << (4 * (tid
% 4)));
4737 /* Set Fast speed for TID 'tid'. */
4738 word
|= (0x2 << (4 * (tid
% 4)));
4740 if (tid
== 3) { /* Check if done with sdtr_speed1. */
4741 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED1
, word
);
4743 } else if (tid
== 7) { /* Check if done with sdtr_speed2. */
4744 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED2
, word
);
4746 } else if (tid
== 11) { /* Check if done with sdtr_speed3. */
4747 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED3
, word
);
4749 } else if (tid
== 15) { /* Check if done with sdtr_speed4. */
4750 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED4
, word
);
4756 * Set microcode operating variable for the disconnect per TID bitmask.
4758 AdvWriteWordLram(iop_base
, ASC_MC_DISC_ENABLE
,
4759 asc_dvc
->cfg
->disc_enable
);
4762 * Set SCSI_CFG0 Microcode Default Value.
4764 * The microcode will set the SCSI_CFG0 register using this value
4765 * after it is started below.
4767 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SCSI_CFG0
,
4768 PARITY_EN
| QUEUE_128
| SEL_TMO_LONG
| OUR_ID_EN
|
4769 asc_dvc
->chip_scsi_id
);
4772 * Determine SCSI_CFG1 Microcode Default Value.
4774 * The microcode will set the SCSI_CFG1 register using this value
4775 * after it is started below.
4778 /* Read current SCSI_CFG1 Register value. */
4779 scsi_cfg1
= AdvReadWordRegister(iop_base
, IOPW_SCSI_CFG1
);
4782 * If all three connectors are in use, return an error.
4784 if ((scsi_cfg1
& CABLE_ILLEGAL_A
) == 0 ||
4785 (scsi_cfg1
& CABLE_ILLEGAL_B
) == 0) {
4786 asc_dvc
->err_code
|= ASC_IERR_ILLEGAL_CONNECTION
;
4791 * If the internal narrow cable is reversed all of the SCSI_CTRL
4792 * register signals will be set. Check for and return an error if
4793 * this condition is found.
4795 if ((AdvReadWordRegister(iop_base
, IOPW_SCSI_CTRL
) & 0x3F07) == 0x3F07) {
4796 asc_dvc
->err_code
|= ASC_IERR_REVERSED_CABLE
;
4801 * If this is a differential board and a single-ended device
4802 * is attached to one of the connectors, return an error.
4804 if ((scsi_cfg1
& DIFF_MODE
) && (scsi_cfg1
& DIFF_SENSE
) == 0) {
4805 asc_dvc
->err_code
|= ASC_IERR_SINGLE_END_DEVICE
;
4810 * If automatic termination control is enabled, then set the
4811 * termination value based on a table listed in a_condor.h.
4813 * If manual termination was specified with an EEPROM setting
4814 * then 'termination' was set-up in AdvInitFrom3550EEPROM() and
4815 * is ready to be 'ored' into SCSI_CFG1.
4817 if (asc_dvc
->cfg
->termination
== 0) {
4819 * The software always controls termination by setting TERM_CTL_SEL.
4820 * If TERM_CTL_SEL were set to 0, the hardware would set termination.
4822 asc_dvc
->cfg
->termination
|= TERM_CTL_SEL
;
4824 switch (scsi_cfg1
& CABLE_DETECT
) {
4825 /* TERM_CTL_H: on, TERM_CTL_L: on */
4832 asc_dvc
->cfg
->termination
|= (TERM_CTL_H
| TERM_CTL_L
);
4835 /* TERM_CTL_H: on, TERM_CTL_L: off */
4841 asc_dvc
->cfg
->termination
|= TERM_CTL_H
;
4844 /* TERM_CTL_H: off, TERM_CTL_L: off */
4852 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
4854 scsi_cfg1
&= ~TERM_CTL
;
4857 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
4858 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
4859 * referenced, because the hardware internally inverts
4860 * the Termination High and Low bits if TERM_POL is set.
4862 scsi_cfg1
|= (TERM_CTL_SEL
| (~asc_dvc
->cfg
->termination
& TERM_CTL
));
4865 * Set SCSI_CFG1 Microcode Default Value
4867 * Set filter value and possibly modified termination control
4868 * bits in the Microcode SCSI_CFG1 Register Value.
4870 * The microcode will set the SCSI_CFG1 register using this value
4871 * after it is started below.
4873 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SCSI_CFG1
,
4874 FLTR_DISABLE
| scsi_cfg1
);
4877 * Set MEM_CFG Microcode Default Value
4879 * The microcode will set the MEM_CFG register using this value
4880 * after it is started below.
4882 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
4885 * ASC-3550 has 8KB internal memory.
4887 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_MEM_CFG
,
4888 BIOS_EN
| RAM_SZ_8KB
);
4891 * Set SEL_MASK Microcode Default Value
4893 * The microcode will set the SEL_MASK register using this value
4894 * after it is started below.
4896 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SEL_MASK
,
4897 ADV_TID_TO_TIDMASK(asc_dvc
->chip_scsi_id
));
4899 AdvBuildCarrierFreelist(asc_dvc
);
4902 * Set-up the Host->RISC Initiator Command Queue (ICQ).
4905 if ((asc_dvc
->icq_sp
= asc_dvc
->carr_freelist
) == NULL
) {
4906 asc_dvc
->err_code
|= ASC_IERR_NO_CARRIER
;
4909 asc_dvc
->carr_freelist
= (ADV_CARR_T
*)
4910 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc
->icq_sp
->next_vpa
));
4913 * The first command issued will be placed in the stopper carrier.
4915 asc_dvc
->icq_sp
->next_vpa
= cpu_to_le32(ASC_CQ_STOPPER
);
4918 * Set RISC ICQ physical address start value.
4920 AdvWriteDWordLramNoSwap(iop_base
, ASC_MC_ICQ
, asc_dvc
->icq_sp
->carr_pa
);
4923 * Set-up the RISC->Host Initiator Response Queue (IRQ).
4925 if ((asc_dvc
->irq_sp
= asc_dvc
->carr_freelist
) == NULL
) {
4926 asc_dvc
->err_code
|= ASC_IERR_NO_CARRIER
;
4929 asc_dvc
->carr_freelist
= (ADV_CARR_T
*)
4930 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc
->irq_sp
->next_vpa
));
4933 * The first command completed by the RISC will be placed in
4936 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
4937 * completed the RISC will set the ASC_RQ_STOPPER bit.
4939 asc_dvc
->irq_sp
->next_vpa
= cpu_to_le32(ASC_CQ_STOPPER
);
4942 * Set RISC IRQ physical address start value.
4944 AdvWriteDWordLramNoSwap(iop_base
, ASC_MC_IRQ
, asc_dvc
->irq_sp
->carr_pa
);
4945 asc_dvc
->carr_pending_cnt
= 0;
4947 AdvWriteByteRegister(iop_base
, IOPB_INTR_ENABLES
,
4948 (ADV_INTR_ENABLE_HOST_INTR
|
4949 ADV_INTR_ENABLE_GLOBAL_INTR
));
4951 AdvReadWordLram(iop_base
, ASC_MC_CODE_BEGIN_ADDR
, word
);
4952 AdvWriteWordRegister(iop_base
, IOPW_PC
, word
);
4954 /* finally, finally, gentlemen, start your engine */
4955 AdvWriteWordRegister(iop_base
, IOPW_RISC_CSR
, ADV_RISC_CSR_RUN
);
4958 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
4959 * Resets should be performed. The RISC has to be running
4960 * to issue a SCSI Bus Reset.
4962 if (asc_dvc
->bios_ctrl
& BIOS_CTRL_RESET_SCSI_BUS
) {
4964 * If the BIOS Signature is present in memory, restore the
4965 * BIOS Handshake Configuration Table and do not perform
4968 if (bios_mem
[(ASC_MC_BIOS_SIGNATURE
- ASC_MC_BIOSMEM
) / 2] ==
4971 * Restore per TID negotiated values.
4973 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
4974 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
4975 AdvWriteWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
,
4977 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
4978 AdvWriteByteLram(iop_base
,
4979 ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
4983 if (AdvResetSB(asc_dvc
) != ADV_TRUE
) {
4984 warn_code
= ASC_WARN_BUSRESET_ERROR
;
4993 * Initialize the ASC-38C0800.
4995 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
4997 * For a non-fatal error return a warning code. If there are no warnings
4998 * then 0 is returned.
5000 * Needed after initialization for error recovery.
5002 static int AdvInitAsc38C0800Driver(ADV_DVC_VAR
*asc_dvc
)
5004 const struct firmware
*fw
;
5005 const char fwname
[] = "advansys/38C0800.bin";
5006 AdvPortAddr iop_base
;
5014 unsigned long chksum
;
5018 ushort bios_mem
[ASC_MC_BIOSLEN
/ 2]; /* BIOS RISC Memory 0x40-0x8F. */
5019 ushort wdtr_able
, sdtr_able
, tagqng_able
;
5020 uchar max_cmd
[ADV_MAX_TID
+ 1];
5022 /* If there is already an error, don't continue. */
5023 if (asc_dvc
->err_code
!= 0)
5027 * The caller must set 'chip_type' to ADV_CHIP_ASC38C0800.
5029 if (asc_dvc
->chip_type
!= ADV_CHIP_ASC38C0800
) {
5030 asc_dvc
->err_code
= ASC_IERR_BAD_CHIPTYPE
;
5035 iop_base
= asc_dvc
->iop_base
;
5038 * Save the RISC memory BIOS region before writing the microcode.
5039 * The BIOS may already be loaded and using its RISC LRAM region
5040 * so its region must be saved and restored.
5042 * Note: This code makes the assumption, which is currently true,
5043 * that a chip reset does not clear RISC LRAM.
5045 for (i
= 0; i
< ASC_MC_BIOSLEN
/ 2; i
++) {
5046 AdvReadWordLram(iop_base
, ASC_MC_BIOSMEM
+ (2 * i
),
5051 * Save current per TID negotiated values.
5053 AdvReadWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
5054 AdvReadWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
5055 AdvReadWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
, tagqng_able
);
5056 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
5057 AdvReadByteLram(iop_base
, ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
5062 * RAM BIST (RAM Built-In Self Test)
5064 * Address : I/O base + offset 0x38h register (byte).
5065 * Function: Bit 7-6(RW) : RAM mode
5066 * Normal Mode : 0x00
5067 * Pre-test Mode : 0x40
5068 * RAM Test Mode : 0x80
5070 * Bit 4(RO) : Done bit
5071 * Bit 3-0(RO) : Status
5073 * Int_RAM Error : 0x04
5078 * Note: RAM BIST code should be put right here, before loading the
5079 * microcode and after saving the RISC memory BIOS region.
5085 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
5086 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
5087 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
5088 * to NORMAL_MODE, return an error too.
5090 for (i
= 0; i
< 2; i
++) {
5091 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, PRE_TEST_MODE
);
5092 mdelay(10); /* Wait for 10ms before reading back. */
5093 byte
= AdvReadByteRegister(iop_base
, IOPB_RAM_BIST
);
5094 if ((byte
& RAM_TEST_DONE
) == 0
5095 || (byte
& 0x0F) != PRE_TEST_VALUE
) {
5096 asc_dvc
->err_code
= ASC_IERR_BIST_PRE_TEST
;
5100 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, NORMAL_MODE
);
5101 mdelay(10); /* Wait for 10ms before reading back. */
5102 if (AdvReadByteRegister(iop_base
, IOPB_RAM_BIST
)
5104 asc_dvc
->err_code
= ASC_IERR_BIST_PRE_TEST
;
5110 * LRAM Test - It takes about 1.5 ms to run through the test.
5112 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
5113 * If Done bit not set or Status not 0, save register byte, set the
5114 * err_code, and return an error.
5116 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, RAM_TEST_MODE
);
5117 mdelay(10); /* Wait for 10ms before checking status. */
5119 byte
= AdvReadByteRegister(iop_base
, IOPB_RAM_BIST
);
5120 if ((byte
& RAM_TEST_DONE
) == 0 || (byte
& RAM_TEST_STATUS
) != 0) {
5121 /* Get here if Done bit not set or Status not 0. */
5122 asc_dvc
->bist_err_code
= byte
; /* for BIOS display message */
5123 asc_dvc
->err_code
= ASC_IERR_BIST_RAM_TEST
;
5127 /* We need to reset back to normal mode after LRAM test passes. */
5128 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, NORMAL_MODE
);
5130 err
= request_firmware(&fw
, fwname
, asc_dvc
->drv_ptr
->dev
);
5132 printk(KERN_ERR
"Failed to load image \"%s\" err %d\n",
5134 asc_dvc
->err_code
= ASC_IERR_MCODE_CHKSUM
;
5138 printk(KERN_ERR
"Bogus length %zu in image \"%s\"\n",
5140 release_firmware(fw
);
5141 asc_dvc
->err_code
= ASC_IERR_MCODE_CHKSUM
;
5144 chksum
= (fw
->data
[3] << 24) | (fw
->data
[2] << 16) |
5145 (fw
->data
[1] << 8) | fw
->data
[0];
5146 asc_dvc
->err_code
= AdvLoadMicrocode(iop_base
, &fw
->data
[4],
5147 fw
->size
- 4, ADV_38C0800_MEMSIZE
,
5149 release_firmware(fw
);
5150 if (asc_dvc
->err_code
)
5154 * Restore the RISC memory BIOS region.
5156 for (i
= 0; i
< ASC_MC_BIOSLEN
/ 2; i
++) {
5157 AdvWriteWordLram(iop_base
, ASC_MC_BIOSMEM
+ (2 * i
),
5162 * Calculate and write the microcode code checksum to the microcode
5163 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5165 AdvReadWordLram(iop_base
, ASC_MC_CODE_BEGIN_ADDR
, begin_addr
);
5166 AdvReadWordLram(iop_base
, ASC_MC_CODE_END_ADDR
, end_addr
);
5168 AdvWriteWordRegister(iop_base
, IOPW_RAM_ADDR
, begin_addr
);
5169 for (word
= begin_addr
; word
< end_addr
; word
+= 2) {
5170 code_sum
+= AdvReadWordAutoIncLram(iop_base
);
5172 AdvWriteWordLram(iop_base
, ASC_MC_CODE_CHK_SUM
, code_sum
);
5175 * Read microcode version and date.
5177 AdvReadWordLram(iop_base
, ASC_MC_VERSION_DATE
,
5178 asc_dvc
->cfg
->mcode_date
);
5179 AdvReadWordLram(iop_base
, ASC_MC_VERSION_NUM
,
5180 asc_dvc
->cfg
->mcode_version
);
5183 * Set the chip type to indicate the ASC38C0800.
5185 AdvWriteWordLram(iop_base
, ASC_MC_CHIP_TYPE
, ADV_CHIP_ASC38C0800
);
5188 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
5189 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
5190 * cable detection and then we are able to read C_DET[3:0].
5192 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
5193 * Microcode Default Value' section below.
5195 scsi_cfg1
= AdvReadWordRegister(iop_base
, IOPW_SCSI_CFG1
);
5196 AdvWriteWordRegister(iop_base
, IOPW_SCSI_CFG1
,
5197 scsi_cfg1
| DIS_TERM_DRV
);
5200 * If the PCI Configuration Command Register "Parity Error Response
5201 * Control" Bit was clear (0), then set the microcode variable
5202 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5203 * to ignore DMA parity errors.
5205 if (asc_dvc
->cfg
->control_flag
& CONTROL_FLAG_IGNORE_PERR
) {
5206 AdvReadWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
5207 word
|= CONTROL_FLAG_IGNORE_PERR
;
5208 AdvWriteWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
5212 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and START_CTL_TH [3:2]
5213 * bits for the default FIFO threshold.
5215 * Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes.
5217 * For DMA Errata #4 set the BC_THRESH_ENB bit.
5219 AdvWriteByteRegister(iop_base
, IOPB_DMA_CFG0
,
5220 BC_THRESH_ENB
| FIFO_THRESH_80B
| START_CTL_TH
|
5224 * Microcode operating variables for WDTR, SDTR, and command tag
5225 * queuing will be set in slave_configure() based on what a
5226 * device reports it is capable of in Inquiry byte 7.
5228 * If SCSI Bus Resets have been disabled, then directly set
5229 * SDTR and WDTR from the EEPROM configuration. This will allow
5230 * the BIOS and warm boot to work without a SCSI bus hang on
5231 * the Inquiry caused by host and target mismatched DTR values.
5232 * Without the SCSI Bus Reset, before an Inquiry a device can't
5233 * be assumed to be in Asynchronous, Narrow mode.
5235 if ((asc_dvc
->bios_ctrl
& BIOS_CTRL_RESET_SCSI_BUS
) == 0) {
5236 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
,
5237 asc_dvc
->wdtr_able
);
5238 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
,
5239 asc_dvc
->sdtr_able
);
5243 * Set microcode operating variables for DISC and SDTR_SPEED1,
5244 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5245 * configuration values.
5247 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5248 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5249 * without determining here whether the device supports SDTR.
5251 AdvWriteWordLram(iop_base
, ASC_MC_DISC_ENABLE
,
5252 asc_dvc
->cfg
->disc_enable
);
5253 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED1
, asc_dvc
->sdtr_speed1
);
5254 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED2
, asc_dvc
->sdtr_speed2
);
5255 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED3
, asc_dvc
->sdtr_speed3
);
5256 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED4
, asc_dvc
->sdtr_speed4
);
5259 * Set SCSI_CFG0 Microcode Default Value.
5261 * The microcode will set the SCSI_CFG0 register using this value
5262 * after it is started below.
5264 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SCSI_CFG0
,
5265 PARITY_EN
| QUEUE_128
| SEL_TMO_LONG
| OUR_ID_EN
|
5266 asc_dvc
->chip_scsi_id
);
5269 * Determine SCSI_CFG1 Microcode Default Value.
5271 * The microcode will set the SCSI_CFG1 register using this value
5272 * after it is started below.
5275 /* Read current SCSI_CFG1 Register value. */
5276 scsi_cfg1
= AdvReadWordRegister(iop_base
, IOPW_SCSI_CFG1
);
5279 * If the internal narrow cable is reversed all of the SCSI_CTRL
5280 * register signals will be set. Check for and return an error if
5281 * this condition is found.
5283 if ((AdvReadWordRegister(iop_base
, IOPW_SCSI_CTRL
) & 0x3F07) == 0x3F07) {
5284 asc_dvc
->err_code
|= ASC_IERR_REVERSED_CABLE
;
5289 * All kind of combinations of devices attached to one of four
5290 * connectors are acceptable except HVD device attached. For example,
5291 * LVD device can be attached to SE connector while SE device attached
5292 * to LVD connector. If LVD device attached to SE connector, it only
5293 * runs up to Ultra speed.
5295 * If an HVD device is attached to one of LVD connectors, return an
5296 * error. However, there is no way to detect HVD device attached to
5299 if (scsi_cfg1
& HVD
) {
5300 asc_dvc
->err_code
= ASC_IERR_HVD_DEVICE
;
5305 * If either SE or LVD automatic termination control is enabled, then
5306 * set the termination value based on a table listed in a_condor.h.
5308 * If manual termination was specified with an EEPROM setting then
5309 * 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready
5310 * to be 'ored' into SCSI_CFG1.
5312 if ((asc_dvc
->cfg
->termination
& TERM_SE
) == 0) {
5313 /* SE automatic termination control is enabled. */
5314 switch (scsi_cfg1
& C_DET_SE
) {
5315 /* TERM_SE_HI: on, TERM_SE_LO: on */
5319 asc_dvc
->cfg
->termination
|= TERM_SE
;
5322 /* TERM_SE_HI: on, TERM_SE_LO: off */
5324 asc_dvc
->cfg
->termination
|= TERM_SE_HI
;
5329 if ((asc_dvc
->cfg
->termination
& TERM_LVD
) == 0) {
5330 /* LVD automatic termination control is enabled. */
5331 switch (scsi_cfg1
& C_DET_LVD
) {
5332 /* TERM_LVD_HI: on, TERM_LVD_LO: on */
5336 asc_dvc
->cfg
->termination
|= TERM_LVD
;
5339 /* TERM_LVD_HI: off, TERM_LVD_LO: off */
5346 * Clear any set TERM_SE and TERM_LVD bits.
5348 scsi_cfg1
&= (~TERM_SE
& ~TERM_LVD
);
5351 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
5353 scsi_cfg1
|= (~asc_dvc
->cfg
->termination
& 0xF0);
5356 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE
5357 * bits and set possibly modified termination control bits in the
5358 * Microcode SCSI_CFG1 Register Value.
5360 scsi_cfg1
&= (~BIG_ENDIAN
& ~DIS_TERM_DRV
& ~TERM_POL
& ~HVD_LVD_SE
);
5363 * Set SCSI_CFG1 Microcode Default Value
5365 * Set possibly modified termination control and reset DIS_TERM_DRV
5366 * bits in the Microcode SCSI_CFG1 Register Value.
5368 * The microcode will set the SCSI_CFG1 register using this value
5369 * after it is started below.
5371 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SCSI_CFG1
, scsi_cfg1
);
5374 * Set MEM_CFG Microcode Default Value
5376 * The microcode will set the MEM_CFG register using this value
5377 * after it is started below.
5379 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5382 * ASC-38C0800 has 16KB internal memory.
5384 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_MEM_CFG
,
5385 BIOS_EN
| RAM_SZ_16KB
);
5388 * Set SEL_MASK Microcode Default Value
5390 * The microcode will set the SEL_MASK register using this value
5391 * after it is started below.
5393 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SEL_MASK
,
5394 ADV_TID_TO_TIDMASK(asc_dvc
->chip_scsi_id
));
5396 AdvBuildCarrierFreelist(asc_dvc
);
5399 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5402 if ((asc_dvc
->icq_sp
= asc_dvc
->carr_freelist
) == NULL
) {
5403 asc_dvc
->err_code
|= ASC_IERR_NO_CARRIER
;
5406 asc_dvc
->carr_freelist
= (ADV_CARR_T
*)
5407 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc
->icq_sp
->next_vpa
));
5410 * The first command issued will be placed in the stopper carrier.
5412 asc_dvc
->icq_sp
->next_vpa
= cpu_to_le32(ASC_CQ_STOPPER
);
5415 * Set RISC ICQ physical address start value.
5416 * carr_pa is LE, must be native before write
5418 AdvWriteDWordLramNoSwap(iop_base
, ASC_MC_ICQ
, asc_dvc
->icq_sp
->carr_pa
);
5421 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5423 if ((asc_dvc
->irq_sp
= asc_dvc
->carr_freelist
) == NULL
) {
5424 asc_dvc
->err_code
|= ASC_IERR_NO_CARRIER
;
5427 asc_dvc
->carr_freelist
= (ADV_CARR_T
*)
5428 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc
->irq_sp
->next_vpa
));
5431 * The first command completed by the RISC will be placed in
5434 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
5435 * completed the RISC will set the ASC_RQ_STOPPER bit.
5437 asc_dvc
->irq_sp
->next_vpa
= cpu_to_le32(ASC_CQ_STOPPER
);
5440 * Set RISC IRQ physical address start value.
5442 * carr_pa is LE, must be native before write *
5444 AdvWriteDWordLramNoSwap(iop_base
, ASC_MC_IRQ
, asc_dvc
->irq_sp
->carr_pa
);
5445 asc_dvc
->carr_pending_cnt
= 0;
5447 AdvWriteByteRegister(iop_base
, IOPB_INTR_ENABLES
,
5448 (ADV_INTR_ENABLE_HOST_INTR
|
5449 ADV_INTR_ENABLE_GLOBAL_INTR
));
5451 AdvReadWordLram(iop_base
, ASC_MC_CODE_BEGIN_ADDR
, word
);
5452 AdvWriteWordRegister(iop_base
, IOPW_PC
, word
);
5454 /* finally, finally, gentlemen, start your engine */
5455 AdvWriteWordRegister(iop_base
, IOPW_RISC_CSR
, ADV_RISC_CSR_RUN
);
5458 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5459 * Resets should be performed. The RISC has to be running
5460 * to issue a SCSI Bus Reset.
5462 if (asc_dvc
->bios_ctrl
& BIOS_CTRL_RESET_SCSI_BUS
) {
5464 * If the BIOS Signature is present in memory, restore the
5465 * BIOS Handshake Configuration Table and do not perform
5468 if (bios_mem
[(ASC_MC_BIOS_SIGNATURE
- ASC_MC_BIOSMEM
) / 2] ==
5471 * Restore per TID negotiated values.
5473 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
5474 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
5475 AdvWriteWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
,
5477 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
5478 AdvWriteByteLram(iop_base
,
5479 ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
5483 if (AdvResetSB(asc_dvc
) != ADV_TRUE
) {
5484 warn_code
= ASC_WARN_BUSRESET_ERROR
;
5493 * Initialize the ASC-38C1600.
5495 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
5497 * For a non-fatal error return a warning code. If there are no warnings
5498 * then 0 is returned.
5500 * Needed after initialization for error recovery.
5502 static int AdvInitAsc38C1600Driver(ADV_DVC_VAR
*asc_dvc
)
5504 const struct firmware
*fw
;
5505 const char fwname
[] = "advansys/38C1600.bin";
5506 AdvPortAddr iop_base
;
5514 unsigned long chksum
;
5518 ushort bios_mem
[ASC_MC_BIOSLEN
/ 2]; /* BIOS RISC Memory 0x40-0x8F. */
5519 ushort wdtr_able
, sdtr_able
, ppr_able
, tagqng_able
;
5520 uchar max_cmd
[ASC_MAX_TID
+ 1];
5522 /* If there is already an error, don't continue. */
5523 if (asc_dvc
->err_code
!= 0) {
5528 * The caller must set 'chip_type' to ADV_CHIP_ASC38C1600.
5530 if (asc_dvc
->chip_type
!= ADV_CHIP_ASC38C1600
) {
5531 asc_dvc
->err_code
= ASC_IERR_BAD_CHIPTYPE
;
5536 iop_base
= asc_dvc
->iop_base
;
5539 * Save the RISC memory BIOS region before writing the microcode.
5540 * The BIOS may already be loaded and using its RISC LRAM region
5541 * so its region must be saved and restored.
5543 * Note: This code makes the assumption, which is currently true,
5544 * that a chip reset does not clear RISC LRAM.
5546 for (i
= 0; i
< ASC_MC_BIOSLEN
/ 2; i
++) {
5547 AdvReadWordLram(iop_base
, ASC_MC_BIOSMEM
+ (2 * i
),
5552 * Save current per TID negotiated values.
5554 AdvReadWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
5555 AdvReadWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
5556 AdvReadWordLram(iop_base
, ASC_MC_PPR_ABLE
, ppr_able
);
5557 AdvReadWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
, tagqng_able
);
5558 for (tid
= 0; tid
<= ASC_MAX_TID
; tid
++) {
5559 AdvReadByteLram(iop_base
, ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
5564 * RAM BIST (Built-In Self Test)
5566 * Address : I/O base + offset 0x38h register (byte).
5567 * Function: Bit 7-6(RW) : RAM mode
5568 * Normal Mode : 0x00
5569 * Pre-test Mode : 0x40
5570 * RAM Test Mode : 0x80
5572 * Bit 4(RO) : Done bit
5573 * Bit 3-0(RO) : Status
5575 * Int_RAM Error : 0x04
5580 * Note: RAM BIST code should be put right here, before loading the
5581 * microcode and after saving the RISC memory BIOS region.
5587 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
5588 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
5589 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
5590 * to NORMAL_MODE, return an error too.
5592 for (i
= 0; i
< 2; i
++) {
5593 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, PRE_TEST_MODE
);
5594 mdelay(10); /* Wait for 10ms before reading back. */
5595 byte
= AdvReadByteRegister(iop_base
, IOPB_RAM_BIST
);
5596 if ((byte
& RAM_TEST_DONE
) == 0
5597 || (byte
& 0x0F) != PRE_TEST_VALUE
) {
5598 asc_dvc
->err_code
= ASC_IERR_BIST_PRE_TEST
;
5602 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, NORMAL_MODE
);
5603 mdelay(10); /* Wait for 10ms before reading back. */
5604 if (AdvReadByteRegister(iop_base
, IOPB_RAM_BIST
)
5606 asc_dvc
->err_code
= ASC_IERR_BIST_PRE_TEST
;
5612 * LRAM Test - It takes about 1.5 ms to run through the test.
5614 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
5615 * If Done bit not set or Status not 0, save register byte, set the
5616 * err_code, and return an error.
5618 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, RAM_TEST_MODE
);
5619 mdelay(10); /* Wait for 10ms before checking status. */
5621 byte
= AdvReadByteRegister(iop_base
, IOPB_RAM_BIST
);
5622 if ((byte
& RAM_TEST_DONE
) == 0 || (byte
& RAM_TEST_STATUS
) != 0) {
5623 /* Get here if Done bit not set or Status not 0. */
5624 asc_dvc
->bist_err_code
= byte
; /* for BIOS display message */
5625 asc_dvc
->err_code
= ASC_IERR_BIST_RAM_TEST
;
5629 /* We need to reset back to normal mode after LRAM test passes. */
5630 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, NORMAL_MODE
);
5632 err
= request_firmware(&fw
, fwname
, asc_dvc
->drv_ptr
->dev
);
5634 printk(KERN_ERR
"Failed to load image \"%s\" err %d\n",
5636 asc_dvc
->err_code
= ASC_IERR_MCODE_CHKSUM
;
5640 printk(KERN_ERR
"Bogus length %zu in image \"%s\"\n",
5642 release_firmware(fw
);
5643 asc_dvc
->err_code
= ASC_IERR_MCODE_CHKSUM
;
5646 chksum
= (fw
->data
[3] << 24) | (fw
->data
[2] << 16) |
5647 (fw
->data
[1] << 8) | fw
->data
[0];
5648 asc_dvc
->err_code
= AdvLoadMicrocode(iop_base
, &fw
->data
[4],
5649 fw
->size
- 4, ADV_38C1600_MEMSIZE
,
5651 release_firmware(fw
);
5652 if (asc_dvc
->err_code
)
5656 * Restore the RISC memory BIOS region.
5658 for (i
= 0; i
< ASC_MC_BIOSLEN
/ 2; i
++) {
5659 AdvWriteWordLram(iop_base
, ASC_MC_BIOSMEM
+ (2 * i
),
5664 * Calculate and write the microcode code checksum to the microcode
5665 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5667 AdvReadWordLram(iop_base
, ASC_MC_CODE_BEGIN_ADDR
, begin_addr
);
5668 AdvReadWordLram(iop_base
, ASC_MC_CODE_END_ADDR
, end_addr
);
5670 AdvWriteWordRegister(iop_base
, IOPW_RAM_ADDR
, begin_addr
);
5671 for (word
= begin_addr
; word
< end_addr
; word
+= 2) {
5672 code_sum
+= AdvReadWordAutoIncLram(iop_base
);
5674 AdvWriteWordLram(iop_base
, ASC_MC_CODE_CHK_SUM
, code_sum
);
5677 * Read microcode version and date.
5679 AdvReadWordLram(iop_base
, ASC_MC_VERSION_DATE
,
5680 asc_dvc
->cfg
->mcode_date
);
5681 AdvReadWordLram(iop_base
, ASC_MC_VERSION_NUM
,
5682 asc_dvc
->cfg
->mcode_version
);
5685 * Set the chip type to indicate the ASC38C1600.
5687 AdvWriteWordLram(iop_base
, ASC_MC_CHIP_TYPE
, ADV_CHIP_ASC38C1600
);
5690 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
5691 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
5692 * cable detection and then we are able to read C_DET[3:0].
5694 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
5695 * Microcode Default Value' section below.
5697 scsi_cfg1
= AdvReadWordRegister(iop_base
, IOPW_SCSI_CFG1
);
5698 AdvWriteWordRegister(iop_base
, IOPW_SCSI_CFG1
,
5699 scsi_cfg1
| DIS_TERM_DRV
);
5702 * If the PCI Configuration Command Register "Parity Error Response
5703 * Control" Bit was clear (0), then set the microcode variable
5704 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5705 * to ignore DMA parity errors.
5707 if (asc_dvc
->cfg
->control_flag
& CONTROL_FLAG_IGNORE_PERR
) {
5708 AdvReadWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
5709 word
|= CONTROL_FLAG_IGNORE_PERR
;
5710 AdvWriteWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
5714 * If the BIOS control flag AIPP (Asynchronous Information
5715 * Phase Protection) disable bit is not set, then set the firmware
5716 * 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to enable
5717 * AIPP checking and encoding.
5719 if ((asc_dvc
->bios_ctrl
& BIOS_CTRL_AIPP_DIS
) == 0) {
5720 AdvReadWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
5721 word
|= CONTROL_FLAG_ENABLE_AIPP
;
5722 AdvWriteWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
5726 * For ASC-38C1600 use DMA_CFG0 default values: FIFO_THRESH_80B [6:4],
5727 * and START_CTL_TH [3:2].
5729 AdvWriteByteRegister(iop_base
, IOPB_DMA_CFG0
,
5730 FIFO_THRESH_80B
| START_CTL_TH
| READ_CMD_MRM
);
5733 * Microcode operating variables for WDTR, SDTR, and command tag
5734 * queuing will be set in slave_configure() based on what a
5735 * device reports it is capable of in Inquiry byte 7.
5737 * If SCSI Bus Resets have been disabled, then directly set
5738 * SDTR and WDTR from the EEPROM configuration. This will allow
5739 * the BIOS and warm boot to work without a SCSI bus hang on
5740 * the Inquiry caused by host and target mismatched DTR values.
5741 * Without the SCSI Bus Reset, before an Inquiry a device can't
5742 * be assumed to be in Asynchronous, Narrow mode.
5744 if ((asc_dvc
->bios_ctrl
& BIOS_CTRL_RESET_SCSI_BUS
) == 0) {
5745 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
,
5746 asc_dvc
->wdtr_able
);
5747 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
,
5748 asc_dvc
->sdtr_able
);
5752 * Set microcode operating variables for DISC and SDTR_SPEED1,
5753 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5754 * configuration values.
5756 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5757 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5758 * without determining here whether the device supports SDTR.
5760 AdvWriteWordLram(iop_base
, ASC_MC_DISC_ENABLE
,
5761 asc_dvc
->cfg
->disc_enable
);
5762 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED1
, asc_dvc
->sdtr_speed1
);
5763 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED2
, asc_dvc
->sdtr_speed2
);
5764 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED3
, asc_dvc
->sdtr_speed3
);
5765 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED4
, asc_dvc
->sdtr_speed4
);
5768 * Set SCSI_CFG0 Microcode Default Value.
5770 * The microcode will set the SCSI_CFG0 register using this value
5771 * after it is started below.
5773 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SCSI_CFG0
,
5774 PARITY_EN
| QUEUE_128
| SEL_TMO_LONG
| OUR_ID_EN
|
5775 asc_dvc
->chip_scsi_id
);
5778 * Calculate SCSI_CFG1 Microcode Default Value.
5780 * The microcode will set the SCSI_CFG1 register using this value
5781 * after it is started below.
5783 * Each ASC-38C1600 function has only two cable detect bits.
5784 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
5786 scsi_cfg1
= AdvReadWordRegister(iop_base
, IOPW_SCSI_CFG1
);
5789 * If the cable is reversed all of the SCSI_CTRL register signals
5790 * will be set. Check for and return an error if this condition is
5793 if ((AdvReadWordRegister(iop_base
, IOPW_SCSI_CTRL
) & 0x3F07) == 0x3F07) {
5794 asc_dvc
->err_code
|= ASC_IERR_REVERSED_CABLE
;
5799 * Each ASC-38C1600 function has two connectors. Only an HVD device
5800 * can not be connected to either connector. An LVD device or SE device
5801 * may be connected to either connecor. If an SE device is connected,
5802 * then at most Ultra speed (20 Mhz) can be used on both connectors.
5804 * If an HVD device is attached, return an error.
5806 if (scsi_cfg1
& HVD
) {
5807 asc_dvc
->err_code
|= ASC_IERR_HVD_DEVICE
;
5812 * Each function in the ASC-38C1600 uses only the SE cable detect and
5813 * termination because there are two connectors for each function. Each
5814 * function may use either LVD or SE mode. Corresponding the SE automatic
5815 * termination control EEPROM bits are used for each function. Each
5816 * function has its own EEPROM. If SE automatic control is enabled for
5817 * the function, then set the termination value based on a table listed
5820 * If manual termination is specified in the EEPROM for the function,
5821 * then 'termination' was set-up in AscInitFrom38C1600EEPROM() and is
5822 * ready to be 'ored' into SCSI_CFG1.
5824 if ((asc_dvc
->cfg
->termination
& TERM_SE
) == 0) {
5825 struct pci_dev
*pdev
= adv_dvc_to_pdev(asc_dvc
);
5826 /* SE automatic termination control is enabled. */
5827 switch (scsi_cfg1
& C_DET_SE
) {
5828 /* TERM_SE_HI: on, TERM_SE_LO: on */
5832 asc_dvc
->cfg
->termination
|= TERM_SE
;
5836 if (PCI_FUNC(pdev
->devfn
) == 0) {
5837 /* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
5839 /* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
5840 asc_dvc
->cfg
->termination
|= TERM_SE_HI
;
5847 * Clear any set TERM_SE bits.
5849 scsi_cfg1
&= ~TERM_SE
;
5852 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
5854 scsi_cfg1
|= (~asc_dvc
->cfg
->termination
& TERM_SE
);
5857 * Clear Big Endian and Terminator Polarity bits and set possibly
5858 * modified termination control bits in the Microcode SCSI_CFG1
5861 * Big Endian bit is not used even on big endian machines.
5863 scsi_cfg1
&= (~BIG_ENDIAN
& ~DIS_TERM_DRV
& ~TERM_POL
);
5866 * Set SCSI_CFG1 Microcode Default Value
5868 * Set possibly modified termination control bits in the Microcode
5869 * SCSI_CFG1 Register Value.
5871 * The microcode will set the SCSI_CFG1 register using this value
5872 * after it is started below.
5874 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SCSI_CFG1
, scsi_cfg1
);
5877 * Set MEM_CFG Microcode Default Value
5879 * The microcode will set the MEM_CFG register using this value
5880 * after it is started below.
5882 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5885 * ASC-38C1600 has 32KB internal memory.
5887 * XXX - Since ASC38C1600 Rev.3 has a Local RAM failure issue, we come
5888 * out a special 16K Adv Library and Microcode version. After the issue
5889 * resolved, we should turn back to the 32K support. Both a_condor.h and
5890 * mcode.sas files also need to be updated.
5892 * AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5893 * BIOS_EN | RAM_SZ_32KB);
5895 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_MEM_CFG
,
5896 BIOS_EN
| RAM_SZ_16KB
);
5899 * Set SEL_MASK Microcode Default Value
5901 * The microcode will set the SEL_MASK register using this value
5902 * after it is started below.
5904 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SEL_MASK
,
5905 ADV_TID_TO_TIDMASK(asc_dvc
->chip_scsi_id
));
5907 AdvBuildCarrierFreelist(asc_dvc
);
5910 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5912 if ((asc_dvc
->icq_sp
= asc_dvc
->carr_freelist
) == NULL
) {
5913 asc_dvc
->err_code
|= ASC_IERR_NO_CARRIER
;
5916 asc_dvc
->carr_freelist
= (ADV_CARR_T
*)
5917 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc
->icq_sp
->next_vpa
));
5920 * The first command issued will be placed in the stopper carrier.
5922 asc_dvc
->icq_sp
->next_vpa
= cpu_to_le32(ASC_CQ_STOPPER
);
5925 * Set RISC ICQ physical address start value. Initialize the
5926 * COMMA register to the same value otherwise the RISC will
5927 * prematurely detect a command is available.
5929 AdvWriteDWordLramNoSwap(iop_base
, ASC_MC_ICQ
, asc_dvc
->icq_sp
->carr_pa
);
5930 AdvWriteDWordRegister(iop_base
, IOPDW_COMMA
,
5931 le32_to_cpu(asc_dvc
->icq_sp
->carr_pa
));
5934 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5936 if ((asc_dvc
->irq_sp
= asc_dvc
->carr_freelist
) == NULL
) {
5937 asc_dvc
->err_code
|= ASC_IERR_NO_CARRIER
;
5940 asc_dvc
->carr_freelist
= (ADV_CARR_T
*)
5941 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc
->irq_sp
->next_vpa
));
5944 * The first command completed by the RISC will be placed in
5947 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
5948 * completed the RISC will set the ASC_RQ_STOPPER bit.
5950 asc_dvc
->irq_sp
->next_vpa
= cpu_to_le32(ASC_CQ_STOPPER
);
5953 * Set RISC IRQ physical address start value.
5955 AdvWriteDWordLramNoSwap(iop_base
, ASC_MC_IRQ
, asc_dvc
->irq_sp
->carr_pa
);
5956 asc_dvc
->carr_pending_cnt
= 0;
5958 AdvWriteByteRegister(iop_base
, IOPB_INTR_ENABLES
,
5959 (ADV_INTR_ENABLE_HOST_INTR
|
5960 ADV_INTR_ENABLE_GLOBAL_INTR
));
5961 AdvReadWordLram(iop_base
, ASC_MC_CODE_BEGIN_ADDR
, word
);
5962 AdvWriteWordRegister(iop_base
, IOPW_PC
, word
);
5964 /* finally, finally, gentlemen, start your engine */
5965 AdvWriteWordRegister(iop_base
, IOPW_RISC_CSR
, ADV_RISC_CSR_RUN
);
5968 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5969 * Resets should be performed. The RISC has to be running
5970 * to issue a SCSI Bus Reset.
5972 if (asc_dvc
->bios_ctrl
& BIOS_CTRL_RESET_SCSI_BUS
) {
5974 * If the BIOS Signature is present in memory, restore the
5975 * per TID microcode operating variables.
5977 if (bios_mem
[(ASC_MC_BIOS_SIGNATURE
- ASC_MC_BIOSMEM
) / 2] ==
5980 * Restore per TID negotiated values.
5982 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
5983 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
5984 AdvWriteWordLram(iop_base
, ASC_MC_PPR_ABLE
, ppr_able
);
5985 AdvWriteWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
,
5987 for (tid
= 0; tid
<= ASC_MAX_TID
; tid
++) {
5988 AdvWriteByteLram(iop_base
,
5989 ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
5993 if (AdvResetSB(asc_dvc
) != ADV_TRUE
) {
5994 warn_code
= ASC_WARN_BUSRESET_ERROR
;
6003 * Reset chip and SCSI Bus.
6006 * ADV_TRUE(1) - Chip re-initialization and SCSI Bus Reset successful.
6007 * ADV_FALSE(0) - Chip re-initialization and SCSI Bus Reset failure.
6009 static int AdvResetChipAndSB(ADV_DVC_VAR
*asc_dvc
)
6012 ushort wdtr_able
, sdtr_able
, tagqng_able
;
6013 ushort ppr_able
= 0;
6014 uchar tid
, max_cmd
[ADV_MAX_TID
+ 1];
6015 AdvPortAddr iop_base
;
6018 iop_base
= asc_dvc
->iop_base
;
6021 * Save current per TID negotiated values.
6023 AdvReadWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
6024 AdvReadWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
6025 if (asc_dvc
->chip_type
== ADV_CHIP_ASC38C1600
) {
6026 AdvReadWordLram(iop_base
, ASC_MC_PPR_ABLE
, ppr_able
);
6028 AdvReadWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
, tagqng_able
);
6029 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
6030 AdvReadByteLram(iop_base
, ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
6035 * Force the AdvInitAsc3550/38C0800Driver() function to
6036 * perform a SCSI Bus Reset by clearing the BIOS signature word.
6037 * The initialization functions assumes a SCSI Bus Reset is not
6038 * needed if the BIOS signature word is present.
6040 AdvReadWordLram(iop_base
, ASC_MC_BIOS_SIGNATURE
, bios_sig
);
6041 AdvWriteWordLram(iop_base
, ASC_MC_BIOS_SIGNATURE
, 0);
6044 * Stop chip and reset it.
6046 AdvWriteWordRegister(iop_base
, IOPW_RISC_CSR
, ADV_RISC_CSR_STOP
);
6047 AdvWriteWordRegister(iop_base
, IOPW_CTRL_REG
, ADV_CTRL_REG_CMD_RESET
);
6049 AdvWriteWordRegister(iop_base
, IOPW_CTRL_REG
,
6050 ADV_CTRL_REG_CMD_WR_IO_REG
);
6053 * Reset Adv Library error code, if any, and try
6054 * re-initializing the chip.
6056 asc_dvc
->err_code
= 0;
6057 if (asc_dvc
->chip_type
== ADV_CHIP_ASC38C1600
) {
6058 status
= AdvInitAsc38C1600Driver(asc_dvc
);
6059 } else if (asc_dvc
->chip_type
== ADV_CHIP_ASC38C0800
) {
6060 status
= AdvInitAsc38C0800Driver(asc_dvc
);
6062 status
= AdvInitAsc3550Driver(asc_dvc
);
6065 /* Translate initialization return value to status value. */
6073 * Restore the BIOS signature word.
6075 AdvWriteWordLram(iop_base
, ASC_MC_BIOS_SIGNATURE
, bios_sig
);
6078 * Restore per TID negotiated values.
6080 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
6081 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
6082 if (asc_dvc
->chip_type
== ADV_CHIP_ASC38C1600
) {
6083 AdvWriteWordLram(iop_base
, ASC_MC_PPR_ABLE
, ppr_able
);
6085 AdvWriteWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
, tagqng_able
);
6086 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
6087 AdvWriteByteLram(iop_base
, ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
6095 * adv_async_callback() - Adv Library asynchronous event callback function.
6097 static void adv_async_callback(ADV_DVC_VAR
*adv_dvc_varp
, uchar code
)
6100 case ADV_ASYNC_SCSI_BUS_RESET_DET
:
6102 * The firmware detected a SCSI Bus reset.
6104 ASC_DBG(0, "ADV_ASYNC_SCSI_BUS_RESET_DET\n");
6107 case ADV_ASYNC_RDMA_FAILURE
:
6109 * Handle RDMA failure by resetting the SCSI Bus and
6110 * possibly the chip if it is unresponsive. Log the error
6111 * with a unique code.
6113 ASC_DBG(0, "ADV_ASYNC_RDMA_FAILURE\n");
6114 AdvResetChipAndSB(adv_dvc_varp
);
6117 case ADV_HOST_SCSI_BUS_RESET
:
6119 * Host generated SCSI bus reset occurred.
6121 ASC_DBG(0, "ADV_HOST_SCSI_BUS_RESET\n");
6125 ASC_DBG(0, "unknown code 0x%x\n", code
);
6131 * adv_isr_callback() - Second Level Interrupt Handler called by AdvISR().
6133 * Callback function for the Wide SCSI Adv Library.
6135 static void adv_isr_callback(ADV_DVC_VAR
*adv_dvc_varp
, ADV_SCSI_REQ_Q
*scsiqp
)
6137 struct asc_board
*boardp
;
6139 adv_sgblk_t
*sgblkp
;
6140 struct scsi_cmnd
*scp
;
6141 struct Scsi_Host
*shost
;
6144 ASC_DBG(1, "adv_dvc_varp 0x%lx, scsiqp 0x%lx\n",
6145 (ulong
)adv_dvc_varp
, (ulong
)scsiqp
);
6146 ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp
);
6149 * Get the adv_req_t structure for the command that has been
6150 * completed. The adv_req_t structure actually contains the
6151 * completed ADV_SCSI_REQ_Q structure.
6153 reqp
= (adv_req_t
*)ADV_U32_TO_VADDR(scsiqp
->srb_ptr
);
6154 ASC_DBG(1, "reqp 0x%lx\n", (ulong
)reqp
);
6156 ASC_PRINT("adv_isr_callback: reqp is NULL\n");
6161 * Get the struct scsi_cmnd structure and Scsi_Host structure for the
6162 * command that has been completed.
6164 * Note: The adv_req_t request structure and adv_sgblk_t structure,
6165 * if any, are dropped, because a board structure pointer can not be
6169 ASC_DBG(1, "scp 0x%p\n", scp
);
6172 ("adv_isr_callback: scp is NULL; adv_req_t dropped.\n");
6175 ASC_DBG_PRT_CDB(2, scp
->cmnd
, scp
->cmd_len
);
6177 shost
= scp
->device
->host
;
6178 ASC_STATS(shost
, callback
);
6179 ASC_DBG(1, "shost 0x%p\n", shost
);
6181 boardp
= shost_priv(shost
);
6182 BUG_ON(adv_dvc_varp
!= &boardp
->dvc_var
.adv_dvc_var
);
6185 * 'done_status' contains the command's ending status.
6187 switch (scsiqp
->done_status
) {
6189 ASC_DBG(2, "QD_NO_ERROR\n");
6193 * Check for an underrun condition.
6195 * If there was no error and an underrun condition, then
6196 * then return the number of underrun bytes.
6198 resid_cnt
= le32_to_cpu(scsiqp
->data_cnt
);
6199 if (scsi_bufflen(scp
) != 0 && resid_cnt
!= 0 &&
6200 resid_cnt
<= scsi_bufflen(scp
)) {
6201 ASC_DBG(1, "underrun condition %lu bytes\n",
6203 scsi_set_resid(scp
, resid_cnt
);
6208 ASC_DBG(2, "QD_WITH_ERROR\n");
6209 switch (scsiqp
->host_status
) {
6210 case QHSTA_NO_ERROR
:
6211 if (scsiqp
->scsi_status
== SAM_STAT_CHECK_CONDITION
) {
6212 ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
6213 ASC_DBG_PRT_SENSE(2, scp
->sense_buffer
,
6214 SCSI_SENSE_BUFFERSIZE
);
6216 * Note: The 'status_byte()' macro used by
6217 * target drivers defined in scsi.h shifts the
6218 * status byte returned by host drivers right
6219 * by 1 bit. This is why target drivers also
6220 * use right shifted status byte definitions.
6221 * For instance target drivers use
6222 * CHECK_CONDITION, defined to 0x1, instead of
6223 * the SCSI defined check condition value of
6224 * 0x2. Host drivers are supposed to return
6225 * the status byte as it is defined by SCSI.
6227 scp
->result
= DRIVER_BYTE(DRIVER_SENSE
) |
6228 STATUS_BYTE(scsiqp
->scsi_status
);
6230 scp
->result
= STATUS_BYTE(scsiqp
->scsi_status
);
6235 /* Some other QHSTA error occurred. */
6236 ASC_DBG(1, "host_status 0x%x\n", scsiqp
->host_status
);
6237 scp
->result
= HOST_BYTE(DID_BAD_TARGET
);
6242 case QD_ABORTED_BY_HOST
:
6243 ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
6245 HOST_BYTE(DID_ABORT
) | STATUS_BYTE(scsiqp
->scsi_status
);
6249 ASC_DBG(1, "done_status 0x%x\n", scsiqp
->done_status
);
6251 HOST_BYTE(DID_ERROR
) | STATUS_BYTE(scsiqp
->scsi_status
);
6256 * If the 'init_tidmask' bit isn't already set for the target and the
6257 * current request finished normally, then set the bit for the target
6258 * to indicate that a device is present.
6260 if ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(scp
->device
->id
)) == 0 &&
6261 scsiqp
->done_status
== QD_NO_ERROR
&&
6262 scsiqp
->host_status
== QHSTA_NO_ERROR
) {
6263 boardp
->init_tidmask
|= ADV_TID_TO_TIDMASK(scp
->device
->id
);
6269 * Free all 'adv_sgblk_t' structures allocated for the request.
6271 while ((sgblkp
= reqp
->sgblkp
) != NULL
) {
6272 /* Remove 'sgblkp' from the request list. */
6273 reqp
->sgblkp
= sgblkp
->next_sgblkp
;
6275 /* Add 'sgblkp' to the board free list. */
6276 sgblkp
->next_sgblkp
= boardp
->adv_sgblkp
;
6277 boardp
->adv_sgblkp
= sgblkp
;
6281 * Free the adv_req_t structure used with the command by adding
6282 * it back to the board free list.
6284 reqp
->next_reqp
= boardp
->adv_reqp
;
6285 boardp
->adv_reqp
= reqp
;
6287 ASC_DBG(1, "done\n");
6291 * Adv Library Interrupt Service Routine
6293 * This function is called by a driver's interrupt service routine.
6294 * The function disables and re-enables interrupts.
6296 * When a microcode idle command is completed, the ADV_DVC_VAR
6297 * 'idle_cmd_done' field is set to ADV_TRUE.
6299 * Note: AdvISR() can be called when interrupts are disabled or even
6300 * when there is no hardware interrupt condition present. It will
6301 * always check for completed idle commands and microcode requests.
6302 * This is an important feature that shouldn't be changed because it
6303 * allows commands to be completed from polling mode loops.
6306 * ADV_TRUE(1) - interrupt was pending
6307 * ADV_FALSE(0) - no interrupt was pending
6309 static int AdvISR(ADV_DVC_VAR
*asc_dvc
)
6311 AdvPortAddr iop_base
;
6314 ADV_CARR_T
*free_carrp
;
6315 ADV_VADDR irq_next_vpa
;
6316 ADV_SCSI_REQ_Q
*scsiq
;
6318 iop_base
= asc_dvc
->iop_base
;
6320 /* Reading the register clears the interrupt. */
6321 int_stat
= AdvReadByteRegister(iop_base
, IOPB_INTR_STATUS_REG
);
6323 if ((int_stat
& (ADV_INTR_STATUS_INTRA
| ADV_INTR_STATUS_INTRB
|
6324 ADV_INTR_STATUS_INTRC
)) == 0) {
6329 * Notify the driver of an asynchronous microcode condition by
6330 * calling the adv_async_callback function. The function
6331 * is passed the microcode ASC_MC_INTRB_CODE byte value.
6333 if (int_stat
& ADV_INTR_STATUS_INTRB
) {
6336 AdvReadByteLram(iop_base
, ASC_MC_INTRB_CODE
, intrb_code
);
6338 if (asc_dvc
->chip_type
== ADV_CHIP_ASC3550
||
6339 asc_dvc
->chip_type
== ADV_CHIP_ASC38C0800
) {
6340 if (intrb_code
== ADV_ASYNC_CARRIER_READY_FAILURE
&&
6341 asc_dvc
->carr_pending_cnt
!= 0) {
6342 AdvWriteByteRegister(iop_base
, IOPB_TICKLE
,
6344 if (asc_dvc
->chip_type
== ADV_CHIP_ASC3550
) {
6345 AdvWriteByteRegister(iop_base
,
6352 adv_async_callback(asc_dvc
, intrb_code
);
6356 * Check if the IRQ stopper carrier contains a completed request.
6358 while (((irq_next_vpa
=
6359 le32_to_cpu(asc_dvc
->irq_sp
->next_vpa
)) & ASC_RQ_DONE
) != 0) {
6361 * Get a pointer to the newly completed ADV_SCSI_REQ_Q structure.
6362 * The RISC will have set 'areq_vpa' to a virtual address.
6364 * The firmware will have copied the ASC_SCSI_REQ_Q.scsiq_ptr
6365 * field to the carrier ADV_CARR_T.areq_vpa field. The conversion
6366 * below complements the conversion of ASC_SCSI_REQ_Q.scsiq_ptr'
6367 * in AdvExeScsiQueue().
6369 scsiq
= (ADV_SCSI_REQ_Q
*)
6370 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc
->irq_sp
->areq_vpa
));
6373 * Request finished with good status and the queue was not
6374 * DMAed to host memory by the firmware. Set all status fields
6375 * to indicate good status.
6377 if ((irq_next_vpa
& ASC_RQ_GOOD
) != 0) {
6378 scsiq
->done_status
= QD_NO_ERROR
;
6379 scsiq
->host_status
= scsiq
->scsi_status
= 0;
6380 scsiq
->data_cnt
= 0L;
6384 * Advance the stopper pointer to the next carrier
6385 * ignoring the lower four bits. Free the previous
6388 free_carrp
= asc_dvc
->irq_sp
;
6389 asc_dvc
->irq_sp
= (ADV_CARR_T
*)
6390 ADV_U32_TO_VADDR(ASC_GET_CARRP(irq_next_vpa
));
6392 free_carrp
->next_vpa
=
6393 cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc
->carr_freelist
));
6394 asc_dvc
->carr_freelist
= free_carrp
;
6395 asc_dvc
->carr_pending_cnt
--;
6397 target_bit
= ADV_TID_TO_TIDMASK(scsiq
->target_id
);
6400 * Clear request microcode control flag.
6405 * Notify the driver of the completed request by passing
6406 * the ADV_SCSI_REQ_Q pointer to its callback function.
6408 scsiq
->a_flag
|= ADV_SCSIQ_DONE
;
6409 adv_isr_callback(asc_dvc
, scsiq
);
6411 * Note: After the driver callback function is called, 'scsiq'
6412 * can no longer be referenced.
6414 * Fall through and continue processing other completed
6421 static int AscSetLibErrorCode(ASC_DVC_VAR
*asc_dvc
, ushort err_code
)
6423 if (asc_dvc
->err_code
== 0) {
6424 asc_dvc
->err_code
= err_code
;
6425 AscWriteLramWord(asc_dvc
->iop_base
, ASCV_ASCDVC_ERR_CODE_W
,
6431 static void AscAckInterrupt(PortAddr iop_base
)
6439 risc_flag
= AscReadLramByte(iop_base
, ASCV_RISC_FLAG_B
);
6440 if (loop
++ > 0x7FFF) {
6443 } while ((risc_flag
& ASC_RISC_FLAG_GEN_INT
) != 0);
6445 AscReadLramByte(iop_base
,
6446 ASCV_HOST_FLAG_B
) & (~ASC_HOST_FLAG_ACK_INT
);
6447 AscWriteLramByte(iop_base
, ASCV_HOST_FLAG_B
,
6448 (uchar
)(host_flag
| ASC_HOST_FLAG_ACK_INT
));
6449 AscSetChipStatus(iop_base
, CIW_INT_ACK
);
6451 while (AscGetChipStatus(iop_base
) & CSW_INT_PENDING
) {
6452 AscSetChipStatus(iop_base
, CIW_INT_ACK
);
6457 AscWriteLramByte(iop_base
, ASCV_HOST_FLAG_B
, host_flag
);
6460 static uchar
AscGetSynPeriodIndex(ASC_DVC_VAR
*asc_dvc
, uchar syn_time
)
6462 const uchar
*period_table
;
6467 period_table
= asc_dvc
->sdtr_period_tbl
;
6468 max_index
= (int)asc_dvc
->max_sdtr_index
;
6469 min_index
= (int)asc_dvc
->min_sdtr_index
;
6470 if ((syn_time
<= period_table
[max_index
])) {
6471 for (i
= min_index
; i
< (max_index
- 1); i
++) {
6472 if (syn_time
<= period_table
[i
]) {
6476 return (uchar
)max_index
;
6478 return (uchar
)(max_index
+ 1);
6483 AscMsgOutSDTR(ASC_DVC_VAR
*asc_dvc
, uchar sdtr_period
, uchar sdtr_offset
)
6486 uchar sdtr_period_index
;
6489 iop_base
= asc_dvc
->iop_base
;
6490 sdtr_buf
.msg_type
= EXTENDED_MESSAGE
;
6491 sdtr_buf
.msg_len
= MS_SDTR_LEN
;
6492 sdtr_buf
.msg_req
= EXTENDED_SDTR
;
6493 sdtr_buf
.xfer_period
= sdtr_period
;
6494 sdtr_offset
&= ASC_SYN_MAX_OFFSET
;
6495 sdtr_buf
.req_ack_offset
= sdtr_offset
;
6496 sdtr_period_index
= AscGetSynPeriodIndex(asc_dvc
, sdtr_period
);
6497 if (sdtr_period_index
<= asc_dvc
->max_sdtr_index
) {
6498 AscMemWordCopyPtrToLram(iop_base
, ASCV_MSGOUT_BEG
,
6500 sizeof(EXT_MSG
) >> 1);
6501 return ((sdtr_period_index
<< 4) | sdtr_offset
);
6503 sdtr_buf
.req_ack_offset
= 0;
6504 AscMemWordCopyPtrToLram(iop_base
, ASCV_MSGOUT_BEG
,
6506 sizeof(EXT_MSG
) >> 1);
6512 AscCalSDTRData(ASC_DVC_VAR
*asc_dvc
, uchar sdtr_period
, uchar syn_offset
)
6515 uchar sdtr_period_ix
;
6517 sdtr_period_ix
= AscGetSynPeriodIndex(asc_dvc
, sdtr_period
);
6518 if (sdtr_period_ix
> asc_dvc
->max_sdtr_index
)
6520 byte
= (sdtr_period_ix
<< 4) | (syn_offset
& ASC_SYN_MAX_OFFSET
);
6524 static int AscSetChipSynRegAtID(PortAddr iop_base
, uchar id
, uchar sdtr_data
)
6526 ASC_SCSI_BIT_ID_TYPE org_id
;
6530 AscSetBank(iop_base
, 1);
6531 org_id
= AscReadChipDvcID(iop_base
);
6532 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
6533 if (org_id
== (0x01 << i
))
6536 org_id
= (ASC_SCSI_BIT_ID_TYPE
) i
;
6537 AscWriteChipDvcID(iop_base
, id
);
6538 if (AscReadChipDvcID(iop_base
) == (0x01 << id
)) {
6539 AscSetBank(iop_base
, 0);
6540 AscSetChipSyn(iop_base
, sdtr_data
);
6541 if (AscGetChipSyn(iop_base
) != sdtr_data
) {
6547 AscSetBank(iop_base
, 1);
6548 AscWriteChipDvcID(iop_base
, org_id
);
6549 AscSetBank(iop_base
, 0);
6553 static void AscSetChipSDTR(PortAddr iop_base
, uchar sdtr_data
, uchar tid_no
)
6555 AscSetChipSynRegAtID(iop_base
, tid_no
, sdtr_data
);
6556 AscPutMCodeSDTRDoneAtID(iop_base
, tid_no
, sdtr_data
);
6559 static int AscIsrChipHalted(ASC_DVC_VAR
*asc_dvc
)
6565 ushort int_halt_code
;
6566 ASC_SCSI_BIT_ID_TYPE scsi_busy
;
6567 ASC_SCSI_BIT_ID_TYPE target_id
;
6574 uchar q_cntl
, tid_no
;
6578 struct asc_board
*boardp
;
6580 BUG_ON(!asc_dvc
->drv_ptr
);
6581 boardp
= asc_dvc
->drv_ptr
;
6583 iop_base
= asc_dvc
->iop_base
;
6584 int_halt_code
= AscReadLramWord(iop_base
, ASCV_HALTCODE_W
);
6586 halt_qp
= AscReadLramByte(iop_base
, ASCV_CURCDB_B
);
6587 halt_q_addr
= ASC_QNO_TO_QADDR(halt_qp
);
6588 target_ix
= AscReadLramByte(iop_base
,
6589 (ushort
)(halt_q_addr
+
6590 (ushort
)ASC_SCSIQ_B_TARGET_IX
));
6591 q_cntl
= AscReadLramByte(iop_base
,
6592 (ushort
)(halt_q_addr
+ (ushort
)ASC_SCSIQ_B_CNTL
));
6593 tid_no
= ASC_TIX_TO_TID(target_ix
);
6594 target_id
= (uchar
)ASC_TID_TO_TARGET_ID(tid_no
);
6595 if (asc_dvc
->pci_fix_asyn_xfer
& target_id
) {
6596 asyn_sdtr
= ASYN_SDTR_DATA_FIX_PCI_REV_AB
;
6600 if (int_halt_code
== ASC_HALT_DISABLE_ASYN_USE_SYN_FIX
) {
6601 if (asc_dvc
->pci_fix_asyn_xfer
& target_id
) {
6602 AscSetChipSDTR(iop_base
, 0, tid_no
);
6603 boardp
->sdtr_data
[tid_no
] = 0;
6605 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
6607 } else if (int_halt_code
== ASC_HALT_ENABLE_ASYN_USE_SYN_FIX
) {
6608 if (asc_dvc
->pci_fix_asyn_xfer
& target_id
) {
6609 AscSetChipSDTR(iop_base
, asyn_sdtr
, tid_no
);
6610 boardp
->sdtr_data
[tid_no
] = asyn_sdtr
;
6612 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
6614 } else if (int_halt_code
== ASC_HALT_EXTMSG_IN
) {
6615 AscMemWordCopyPtrFromLram(iop_base
,
6618 sizeof(EXT_MSG
) >> 1);
6620 if (ext_msg
.msg_type
== EXTENDED_MESSAGE
&&
6621 ext_msg
.msg_req
== EXTENDED_SDTR
&&
6622 ext_msg
.msg_len
== MS_SDTR_LEN
) {
6624 if ((ext_msg
.req_ack_offset
> ASC_SYN_MAX_OFFSET
)) {
6626 sdtr_accept
= FALSE
;
6627 ext_msg
.req_ack_offset
= ASC_SYN_MAX_OFFSET
;
6629 if ((ext_msg
.xfer_period
<
6630 asc_dvc
->sdtr_period_tbl
[asc_dvc
->min_sdtr_index
])
6631 || (ext_msg
.xfer_period
>
6632 asc_dvc
->sdtr_period_tbl
[asc_dvc
->
6634 sdtr_accept
= FALSE
;
6635 ext_msg
.xfer_period
=
6636 asc_dvc
->sdtr_period_tbl
[asc_dvc
->
6641 AscCalSDTRData(asc_dvc
, ext_msg
.xfer_period
,
6642 ext_msg
.req_ack_offset
);
6643 if ((sdtr_data
== 0xFF)) {
6645 q_cntl
|= QC_MSG_OUT
;
6646 asc_dvc
->init_sdtr
&= ~target_id
;
6647 asc_dvc
->sdtr_done
&= ~target_id
;
6648 AscSetChipSDTR(iop_base
, asyn_sdtr
,
6650 boardp
->sdtr_data
[tid_no
] = asyn_sdtr
;
6653 if (ext_msg
.req_ack_offset
== 0) {
6655 q_cntl
&= ~QC_MSG_OUT
;
6656 asc_dvc
->init_sdtr
&= ~target_id
;
6657 asc_dvc
->sdtr_done
&= ~target_id
;
6658 AscSetChipSDTR(iop_base
, asyn_sdtr
, tid_no
);
6660 if (sdtr_accept
&& (q_cntl
& QC_MSG_OUT
)) {
6661 q_cntl
&= ~QC_MSG_OUT
;
6662 asc_dvc
->sdtr_done
|= target_id
;
6663 asc_dvc
->init_sdtr
|= target_id
;
6664 asc_dvc
->pci_fix_asyn_xfer
&=
6667 AscCalSDTRData(asc_dvc
,
6668 ext_msg
.xfer_period
,
6671 AscSetChipSDTR(iop_base
, sdtr_data
,
6673 boardp
->sdtr_data
[tid_no
] = sdtr_data
;
6675 q_cntl
|= QC_MSG_OUT
;
6676 AscMsgOutSDTR(asc_dvc
,
6677 ext_msg
.xfer_period
,
6678 ext_msg
.req_ack_offset
);
6679 asc_dvc
->pci_fix_asyn_xfer
&=
6682 AscCalSDTRData(asc_dvc
,
6683 ext_msg
.xfer_period
,
6686 AscSetChipSDTR(iop_base
, sdtr_data
,
6688 boardp
->sdtr_data
[tid_no
] = sdtr_data
;
6689 asc_dvc
->sdtr_done
|= target_id
;
6690 asc_dvc
->init_sdtr
|= target_id
;
6694 AscWriteLramByte(iop_base
,
6695 (ushort
)(halt_q_addr
+
6696 (ushort
)ASC_SCSIQ_B_CNTL
),
6698 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
6700 } else if (ext_msg
.msg_type
== EXTENDED_MESSAGE
&&
6701 ext_msg
.msg_req
== EXTENDED_WDTR
&&
6702 ext_msg
.msg_len
== MS_WDTR_LEN
) {
6704 ext_msg
.wdtr_width
= 0;
6705 AscMemWordCopyPtrToLram(iop_base
,
6708 sizeof(EXT_MSG
) >> 1);
6709 q_cntl
|= QC_MSG_OUT
;
6710 AscWriteLramByte(iop_base
,
6711 (ushort
)(halt_q_addr
+
6712 (ushort
)ASC_SCSIQ_B_CNTL
),
6714 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
6718 ext_msg
.msg_type
= MESSAGE_REJECT
;
6719 AscMemWordCopyPtrToLram(iop_base
,
6722 sizeof(EXT_MSG
) >> 1);
6723 q_cntl
|= QC_MSG_OUT
;
6724 AscWriteLramByte(iop_base
,
6725 (ushort
)(halt_q_addr
+
6726 (ushort
)ASC_SCSIQ_B_CNTL
),
6728 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
6731 } else if (int_halt_code
== ASC_HALT_CHK_CONDITION
) {
6733 q_cntl
|= QC_REQ_SENSE
;
6735 if ((asc_dvc
->init_sdtr
& target_id
) != 0) {
6737 asc_dvc
->sdtr_done
&= ~target_id
;
6739 sdtr_data
= AscGetMCodeInitSDTRAtID(iop_base
, tid_no
);
6740 q_cntl
|= QC_MSG_OUT
;
6741 AscMsgOutSDTR(asc_dvc
,
6743 sdtr_period_tbl
[(sdtr_data
>> 4) &
6747 (uchar
)(sdtr_data
& (uchar
)
6748 ASC_SYN_MAX_OFFSET
));
6751 AscWriteLramByte(iop_base
,
6752 (ushort
)(halt_q_addr
+
6753 (ushort
)ASC_SCSIQ_B_CNTL
), q_cntl
);
6755 tag_code
= AscReadLramByte(iop_base
,
6756 (ushort
)(halt_q_addr
+ (ushort
)
6757 ASC_SCSIQ_B_TAG_CODE
));
6759 if ((asc_dvc
->pci_fix_asyn_xfer
& target_id
)
6760 && !(asc_dvc
->pci_fix_asyn_xfer_always
& target_id
)
6763 tag_code
|= (ASC_TAG_FLAG_DISABLE_DISCONNECT
6764 | ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX
);
6767 AscWriteLramByte(iop_base
,
6768 (ushort
)(halt_q_addr
+
6769 (ushort
)ASC_SCSIQ_B_TAG_CODE
),
6772 q_status
= AscReadLramByte(iop_base
,
6773 (ushort
)(halt_q_addr
+ (ushort
)
6774 ASC_SCSIQ_B_STATUS
));
6775 q_status
|= (QS_READY
| QS_BUSY
);
6776 AscWriteLramByte(iop_base
,
6777 (ushort
)(halt_q_addr
+
6778 (ushort
)ASC_SCSIQ_B_STATUS
),
6781 scsi_busy
= AscReadLramByte(iop_base
, (ushort
)ASCV_SCSIBUSY_B
);
6782 scsi_busy
&= ~target_id
;
6783 AscWriteLramByte(iop_base
, (ushort
)ASCV_SCSIBUSY_B
, scsi_busy
);
6785 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
6787 } else if (int_halt_code
== ASC_HALT_SDTR_REJECTED
) {
6789 AscMemWordCopyPtrFromLram(iop_base
,
6792 sizeof(EXT_MSG
) >> 1);
6794 if ((out_msg
.msg_type
== EXTENDED_MESSAGE
) &&
6795 (out_msg
.msg_len
== MS_SDTR_LEN
) &&
6796 (out_msg
.msg_req
== EXTENDED_SDTR
)) {
6798 asc_dvc
->init_sdtr
&= ~target_id
;
6799 asc_dvc
->sdtr_done
&= ~target_id
;
6800 AscSetChipSDTR(iop_base
, asyn_sdtr
, tid_no
);
6801 boardp
->sdtr_data
[tid_no
] = asyn_sdtr
;
6803 q_cntl
&= ~QC_MSG_OUT
;
6804 AscWriteLramByte(iop_base
,
6805 (ushort
)(halt_q_addr
+
6806 (ushort
)ASC_SCSIQ_B_CNTL
), q_cntl
);
6807 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
6809 } else if (int_halt_code
== ASC_HALT_SS_QUEUE_FULL
) {
6811 scsi_status
= AscReadLramByte(iop_base
,
6812 (ushort
)((ushort
)halt_q_addr
+
6814 ASC_SCSIQ_SCSI_STATUS
));
6816 AscReadLramByte(iop_base
,
6817 (ushort
)((ushort
)ASC_QADR_BEG
+
6818 (ushort
)target_ix
));
6819 if ((cur_dvc_qng
> 0) && (asc_dvc
->cur_dvc_qng
[tid_no
] > 0)) {
6821 scsi_busy
= AscReadLramByte(iop_base
,
6822 (ushort
)ASCV_SCSIBUSY_B
);
6823 scsi_busy
|= target_id
;
6824 AscWriteLramByte(iop_base
,
6825 (ushort
)ASCV_SCSIBUSY_B
, scsi_busy
);
6826 asc_dvc
->queue_full_or_busy
|= target_id
;
6828 if (scsi_status
== SAM_STAT_TASK_SET_FULL
) {
6829 if (cur_dvc_qng
> ASC_MIN_TAGGED_CMD
) {
6831 asc_dvc
->max_dvc_qng
[tid_no
] =
6834 AscWriteLramByte(iop_base
,
6836 ASCV_MAX_DVC_QNG_BEG
6842 * Set the device queue depth to the
6843 * number of active requests when the
6844 * QUEUE FULL condition was encountered.
6846 boardp
->queue_full
|= target_id
;
6847 boardp
->queue_full_cnt
[tid_no
] =
6852 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
6855 #if CC_VERY_LONG_SG_LIST
6856 else if (int_halt_code
== ASC_HALT_HOST_COPY_SG_LIST_TO_RISC
) {
6860 uchar first_sg_wk_q_no
;
6861 ASC_SCSI_Q
*scsiq
; /* Ptr to driver request. */
6862 ASC_SG_HEAD
*sg_head
; /* Ptr to driver SG request. */
6863 ASC_SG_LIST_Q scsi_sg_q
; /* Structure written to queue. */
6864 ushort sg_list_dwords
;
6865 ushort sg_entry_cnt
;
6869 q_no
= AscReadLramByte(iop_base
, (ushort
)ASCV_REQ_SG_LIST_QP
);
6870 if (q_no
== ASC_QLINK_END
)
6873 q_addr
= ASC_QNO_TO_QADDR(q_no
);
6876 * Convert the request's SRB pointer to a host ASC_SCSI_REQ
6877 * structure pointer using a macro provided by the driver.
6878 * The ASC_SCSI_REQ pointer provides a pointer to the
6879 * host ASC_SG_HEAD structure.
6881 /* Read request's SRB pointer. */
6882 scsiq
= (ASC_SCSI_Q
*)
6883 ASC_SRB2SCSIQ(ASC_U32_TO_VADDR(AscReadLramDWord(iop_base
,
6886 ASC_SCSIQ_D_SRBPTR
))));
6889 * Get request's first and working SG queue.
6891 sg_wk_q_no
= AscReadLramByte(iop_base
,
6893 ASC_SCSIQ_B_SG_WK_QP
));
6895 first_sg_wk_q_no
= AscReadLramByte(iop_base
,
6897 ASC_SCSIQ_B_FIRST_SG_WK_QP
));
6900 * Reset request's working SG queue back to the
6903 AscWriteLramByte(iop_base
,
6905 (ushort
)ASC_SCSIQ_B_SG_WK_QP
),
6908 sg_head
= scsiq
->sg_head
;
6911 * Set sg_entry_cnt to the number of SG elements
6912 * that will be completed on this interrupt.
6914 * Note: The allocated SG queues contain ASC_MAX_SG_LIST - 1
6915 * SG elements. The data_cnt and data_addr fields which
6916 * add 1 to the SG element capacity are not used when
6917 * restarting SG handling after a halt.
6919 if (scsiq
->remain_sg_entry_cnt
> (ASC_MAX_SG_LIST
- 1)) {
6920 sg_entry_cnt
= ASC_MAX_SG_LIST
- 1;
6923 * Keep track of remaining number of SG elements that
6924 * will need to be handled on the next interrupt.
6926 scsiq
->remain_sg_entry_cnt
-= (ASC_MAX_SG_LIST
- 1);
6928 sg_entry_cnt
= scsiq
->remain_sg_entry_cnt
;
6929 scsiq
->remain_sg_entry_cnt
= 0;
6933 * Copy SG elements into the list of allocated SG queues.
6935 * Last index completed is saved in scsiq->next_sg_index.
6937 next_qp
= first_sg_wk_q_no
;
6938 q_addr
= ASC_QNO_TO_QADDR(next_qp
);
6939 scsi_sg_q
.sg_head_qp
= q_no
;
6940 scsi_sg_q
.cntl
= QCSG_SG_XFER_LIST
;
6941 for (i
= 0; i
< sg_head
->queue_cnt
; i
++) {
6942 scsi_sg_q
.seq_no
= i
+ 1;
6943 if (sg_entry_cnt
> ASC_SG_LIST_PER_Q
) {
6944 sg_list_dwords
= (uchar
)(ASC_SG_LIST_PER_Q
* 2);
6945 sg_entry_cnt
-= ASC_SG_LIST_PER_Q
;
6947 * After very first SG queue RISC FW uses next
6948 * SG queue first element then checks sg_list_cnt
6949 * against zero and then decrements, so set
6950 * sg_list_cnt 1 less than number of SG elements
6953 scsi_sg_q
.sg_list_cnt
= ASC_SG_LIST_PER_Q
- 1;
6954 scsi_sg_q
.sg_cur_list_cnt
=
6955 ASC_SG_LIST_PER_Q
- 1;
6958 * This is the last SG queue in the list of
6959 * allocated SG queues. If there are more
6960 * SG elements than will fit in the allocated
6961 * queues, then set the QCSG_SG_XFER_MORE flag.
6963 if (scsiq
->remain_sg_entry_cnt
!= 0) {
6964 scsi_sg_q
.cntl
|= QCSG_SG_XFER_MORE
;
6966 scsi_sg_q
.cntl
|= QCSG_SG_XFER_END
;
6968 /* equals sg_entry_cnt * 2 */
6969 sg_list_dwords
= sg_entry_cnt
<< 1;
6970 scsi_sg_q
.sg_list_cnt
= sg_entry_cnt
- 1;
6971 scsi_sg_q
.sg_cur_list_cnt
= sg_entry_cnt
- 1;
6975 scsi_sg_q
.q_no
= next_qp
;
6976 AscMemWordCopyPtrToLram(iop_base
,
6977 q_addr
+ ASC_SCSIQ_SGHD_CPY_BEG
,
6978 (uchar
*)&scsi_sg_q
,
6979 sizeof(ASC_SG_LIST_Q
) >> 1);
6981 AscMemDWordCopyPtrToLram(iop_base
,
6982 q_addr
+ ASC_SGQ_LIST_BEG
,
6984 sg_list
[scsiq
->next_sg_index
],
6987 scsiq
->next_sg_index
+= ASC_SG_LIST_PER_Q
;
6990 * If the just completed SG queue contained the
6991 * last SG element, then no more SG queues need
6994 if (scsi_sg_q
.cntl
& QCSG_SG_XFER_END
) {
6998 next_qp
= AscReadLramByte(iop_base
,
7001 q_addr
= ASC_QNO_TO_QADDR(next_qp
);
7005 * Clear the halt condition so the RISC will be restarted
7008 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
7011 #endif /* CC_VERY_LONG_SG_LIST */
7017 * DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
7019 * Calling/Exit State:
7023 * Input an ASC_QDONE_INFO structure from the chip
7026 DvcGetQinfo(PortAddr iop_base
, ushort s_addr
, uchar
*inbuf
, int words
)
7031 AscSetChipLramAddr(iop_base
, s_addr
);
7032 for (i
= 0; i
< 2 * words
; i
+= 2) {
7036 word
= inpw(iop_base
+ IOP_RAM_DATA
);
7037 inbuf
[i
] = word
& 0xff;
7038 inbuf
[i
+ 1] = (word
>> 8) & 0xff;
7040 ASC_DBG_PRT_HEX(2, "DvcGetQinfo", inbuf
, 2 * words
);
7044 _AscCopyLramScsiDoneQ(PortAddr iop_base
,
7046 ASC_QDONE_INFO
*scsiq
, ASC_DCNT max_dma_count
)
7051 DvcGetQinfo(iop_base
,
7052 q_addr
+ ASC_SCSIQ_DONE_INFO_BEG
,
7054 (sizeof(ASC_SCSIQ_2
) + sizeof(ASC_SCSIQ_3
)) / 2);
7056 _val
= AscReadLramWord(iop_base
,
7057 (ushort
)(q_addr
+ (ushort
)ASC_SCSIQ_B_STATUS
));
7058 scsiq
->q_status
= (uchar
)_val
;
7059 scsiq
->q_no
= (uchar
)(_val
>> 8);
7060 _val
= AscReadLramWord(iop_base
,
7061 (ushort
)(q_addr
+ (ushort
)ASC_SCSIQ_B_CNTL
));
7062 scsiq
->cntl
= (uchar
)_val
;
7063 sg_queue_cnt
= (uchar
)(_val
>> 8);
7064 _val
= AscReadLramWord(iop_base
,
7066 (ushort
)ASC_SCSIQ_B_SENSE_LEN
));
7067 scsiq
->sense_len
= (uchar
)_val
;
7068 scsiq
->extra_bytes
= (uchar
)(_val
>> 8);
7071 * Read high word of remain bytes from alternate location.
7073 scsiq
->remain_bytes
= (((ADV_DCNT
)AscReadLramWord(iop_base
,
7076 ASC_SCSIQ_W_ALT_DC1
)))
7079 * Read low word of remain bytes from original location.
7081 scsiq
->remain_bytes
+= AscReadLramWord(iop_base
,
7082 (ushort
)(q_addr
+ (ushort
)
7083 ASC_SCSIQ_DW_REMAIN_XFER_CNT
));
7085 scsiq
->remain_bytes
&= max_dma_count
;
7086 return sg_queue_cnt
;
7090 * asc_isr_callback() - Second Level Interrupt Handler called by AscISR().
7092 * Interrupt callback function for the Narrow SCSI Asc Library.
7094 static void asc_isr_callback(ASC_DVC_VAR
*asc_dvc_varp
, ASC_QDONE_INFO
*qdonep
)
7096 struct asc_board
*boardp
;
7097 struct scsi_cmnd
*scp
;
7098 struct Scsi_Host
*shost
;
7100 ASC_DBG(1, "asc_dvc_varp 0x%p, qdonep 0x%p\n", asc_dvc_varp
, qdonep
);
7101 ASC_DBG_PRT_ASC_QDONE_INFO(2, qdonep
);
7103 scp
= advansys_srb_to_ptr(asc_dvc_varp
, qdonep
->d2
.srb_ptr
);
7107 ASC_DBG_PRT_CDB(2, scp
->cmnd
, scp
->cmd_len
);
7109 shost
= scp
->device
->host
;
7110 ASC_STATS(shost
, callback
);
7111 ASC_DBG(1, "shost 0x%p\n", shost
);
7113 boardp
= shost_priv(shost
);
7114 BUG_ON(asc_dvc_varp
!= &boardp
->dvc_var
.asc_dvc_var
);
7116 dma_unmap_single(boardp
->dev
, scp
->SCp
.dma_handle
,
7117 SCSI_SENSE_BUFFERSIZE
, DMA_FROM_DEVICE
);
7119 * 'qdonep' contains the command's ending status.
7121 switch (qdonep
->d3
.done_stat
) {
7123 ASC_DBG(2, "QD_NO_ERROR\n");
7127 * Check for an underrun condition.
7129 * If there was no error and an underrun condition, then
7130 * return the number of underrun bytes.
7132 if (scsi_bufflen(scp
) != 0 && qdonep
->remain_bytes
!= 0 &&
7133 qdonep
->remain_bytes
<= scsi_bufflen(scp
)) {
7134 ASC_DBG(1, "underrun condition %u bytes\n",
7135 (unsigned)qdonep
->remain_bytes
);
7136 scsi_set_resid(scp
, qdonep
->remain_bytes
);
7141 ASC_DBG(2, "QD_WITH_ERROR\n");
7142 switch (qdonep
->d3
.host_stat
) {
7143 case QHSTA_NO_ERROR
:
7144 if (qdonep
->d3
.scsi_stat
== SAM_STAT_CHECK_CONDITION
) {
7145 ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
7146 ASC_DBG_PRT_SENSE(2, scp
->sense_buffer
,
7147 SCSI_SENSE_BUFFERSIZE
);
7149 * Note: The 'status_byte()' macro used by
7150 * target drivers defined in scsi.h shifts the
7151 * status byte returned by host drivers right
7152 * by 1 bit. This is why target drivers also
7153 * use right shifted status byte definitions.
7154 * For instance target drivers use
7155 * CHECK_CONDITION, defined to 0x1, instead of
7156 * the SCSI defined check condition value of
7157 * 0x2. Host drivers are supposed to return
7158 * the status byte as it is defined by SCSI.
7160 scp
->result
= DRIVER_BYTE(DRIVER_SENSE
) |
7161 STATUS_BYTE(qdonep
->d3
.scsi_stat
);
7163 scp
->result
= STATUS_BYTE(qdonep
->d3
.scsi_stat
);
7168 /* QHSTA error occurred */
7169 ASC_DBG(1, "host_stat 0x%x\n", qdonep
->d3
.host_stat
);
7170 scp
->result
= HOST_BYTE(DID_BAD_TARGET
);
7175 case QD_ABORTED_BY_HOST
:
7176 ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
7178 HOST_BYTE(DID_ABORT
) | MSG_BYTE(qdonep
->d3
.
7180 STATUS_BYTE(qdonep
->d3
.scsi_stat
);
7184 ASC_DBG(1, "done_stat 0x%x\n", qdonep
->d3
.done_stat
);
7186 HOST_BYTE(DID_ERROR
) | MSG_BYTE(qdonep
->d3
.
7188 STATUS_BYTE(qdonep
->d3
.scsi_stat
);
7193 * If the 'init_tidmask' bit isn't already set for the target and the
7194 * current request finished normally, then set the bit for the target
7195 * to indicate that a device is present.
7197 if ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(scp
->device
->id
)) == 0 &&
7198 qdonep
->d3
.done_stat
== QD_NO_ERROR
&&
7199 qdonep
->d3
.host_stat
== QHSTA_NO_ERROR
) {
7200 boardp
->init_tidmask
|= ADV_TID_TO_TIDMASK(scp
->device
->id
);
7206 static int AscIsrQDone(ASC_DVC_VAR
*asc_dvc
)
7215 ASC_SCSI_BIT_ID_TYPE scsi_busy
;
7216 ASC_SCSI_BIT_ID_TYPE target_id
;
7220 uchar cur_target_qng
;
7221 ASC_QDONE_INFO scsiq_buf
;
7222 ASC_QDONE_INFO
*scsiq
;
7225 iop_base
= asc_dvc
->iop_base
;
7227 scsiq
= (ASC_QDONE_INFO
*)&scsiq_buf
;
7228 done_q_tail
= (uchar
)AscGetVarDoneQTail(iop_base
);
7229 q_addr
= ASC_QNO_TO_QADDR(done_q_tail
);
7230 next_qp
= AscReadLramByte(iop_base
,
7231 (ushort
)(q_addr
+ (ushort
)ASC_SCSIQ_B_FWD
));
7232 if (next_qp
!= ASC_QLINK_END
) {
7233 AscPutVarDoneQTail(iop_base
, next_qp
);
7234 q_addr
= ASC_QNO_TO_QADDR(next_qp
);
7235 sg_queue_cnt
= _AscCopyLramScsiDoneQ(iop_base
, q_addr
, scsiq
,
7236 asc_dvc
->max_dma_count
);
7237 AscWriteLramByte(iop_base
,
7239 (ushort
)ASC_SCSIQ_B_STATUS
),
7241 q_status
& (uchar
)~(QS_READY
|
7243 tid_no
= ASC_TIX_TO_TID(scsiq
->d2
.target_ix
);
7244 target_id
= ASC_TIX_TO_TARGET_ID(scsiq
->d2
.target_ix
);
7245 if ((scsiq
->cntl
& QC_SG_HEAD
) != 0) {
7247 sg_list_qp
= next_qp
;
7248 for (q_cnt
= 0; q_cnt
< sg_queue_cnt
; q_cnt
++) {
7249 sg_list_qp
= AscReadLramByte(iop_base
,
7253 sg_q_addr
= ASC_QNO_TO_QADDR(sg_list_qp
);
7254 if (sg_list_qp
== ASC_QLINK_END
) {
7255 AscSetLibErrorCode(asc_dvc
,
7256 ASCQ_ERR_SG_Q_LINKS
);
7257 scsiq
->d3
.done_stat
= QD_WITH_ERROR
;
7258 scsiq
->d3
.host_stat
=
7259 QHSTA_D_QDONE_SG_LIST_CORRUPTED
;
7260 goto FATAL_ERR_QDONE
;
7262 AscWriteLramByte(iop_base
,
7263 (ushort
)(sg_q_addr
+ (ushort
)
7264 ASC_SCSIQ_B_STATUS
),
7267 n_q_used
= sg_queue_cnt
+ 1;
7268 AscPutVarDoneQTail(iop_base
, sg_list_qp
);
7270 if (asc_dvc
->queue_full_or_busy
& target_id
) {
7271 cur_target_qng
= AscReadLramByte(iop_base
,
7277 if (cur_target_qng
< asc_dvc
->max_dvc_qng
[tid_no
]) {
7278 scsi_busy
= AscReadLramByte(iop_base
, (ushort
)
7280 scsi_busy
&= ~target_id
;
7281 AscWriteLramByte(iop_base
,
7282 (ushort
)ASCV_SCSIBUSY_B
,
7284 asc_dvc
->queue_full_or_busy
&= ~target_id
;
7287 if (asc_dvc
->cur_total_qng
>= n_q_used
) {
7288 asc_dvc
->cur_total_qng
-= n_q_used
;
7289 if (asc_dvc
->cur_dvc_qng
[tid_no
] != 0) {
7290 asc_dvc
->cur_dvc_qng
[tid_no
]--;
7293 AscSetLibErrorCode(asc_dvc
, ASCQ_ERR_CUR_QNG
);
7294 scsiq
->d3
.done_stat
= QD_WITH_ERROR
;
7295 goto FATAL_ERR_QDONE
;
7297 if ((scsiq
->d2
.srb_ptr
== 0UL) ||
7298 ((scsiq
->q_status
& QS_ABORTED
) != 0)) {
7300 } else if (scsiq
->q_status
== QS_DONE
) {
7301 false_overrun
= FALSE
;
7302 if (scsiq
->extra_bytes
!= 0) {
7303 scsiq
->remain_bytes
+=
7304 (ADV_DCNT
)scsiq
->extra_bytes
;
7306 if (scsiq
->d3
.done_stat
== QD_WITH_ERROR
) {
7307 if (scsiq
->d3
.host_stat
==
7308 QHSTA_M_DATA_OVER_RUN
) {
7310 cntl
& (QC_DATA_IN
| QC_DATA_OUT
))
7312 scsiq
->d3
.done_stat
=
7314 scsiq
->d3
.host_stat
=
7316 } else if (false_overrun
) {
7317 scsiq
->d3
.done_stat
=
7319 scsiq
->d3
.host_stat
=
7322 } else if (scsiq
->d3
.host_stat
==
7323 QHSTA_M_HUNG_REQ_SCSI_BUS_RESET
) {
7324 AscStopChip(iop_base
);
7325 AscSetChipControl(iop_base
,
7326 (uchar
)(CC_SCSI_RESET
7329 AscSetChipControl(iop_base
, CC_HALT
);
7330 AscSetChipStatus(iop_base
,
7331 CIW_CLR_SCSI_RESET_INT
);
7332 AscSetChipStatus(iop_base
, 0);
7333 AscSetChipControl(iop_base
, 0);
7336 if ((scsiq
->cntl
& QC_NO_CALLBACK
) == 0) {
7337 asc_isr_callback(asc_dvc
, scsiq
);
7339 if ((AscReadLramByte(iop_base
,
7340 (ushort
)(q_addr
+ (ushort
)
7343 asc_dvc
->unit_not_ready
&= ~target_id
;
7344 if (scsiq
->d3
.done_stat
!= QD_NO_ERROR
) {
7345 asc_dvc
->start_motor
&=
7352 AscSetLibErrorCode(asc_dvc
, ASCQ_ERR_Q_STATUS
);
7354 if ((scsiq
->cntl
& QC_NO_CALLBACK
) == 0) {
7355 asc_isr_callback(asc_dvc
, scsiq
);
7363 static int AscISR(ASC_DVC_VAR
*asc_dvc
)
7365 ASC_CS_TYPE chipstat
;
7367 ushort saved_ram_addr
;
7369 uchar saved_ctrl_reg
;
7374 iop_base
= asc_dvc
->iop_base
;
7375 int_pending
= FALSE
;
7377 if (AscIsIntPending(iop_base
) == 0)
7380 if ((asc_dvc
->init_state
& ASC_INIT_STATE_END_LOAD_MC
) == 0) {
7383 if (asc_dvc
->in_critical_cnt
!= 0) {
7384 AscSetLibErrorCode(asc_dvc
, ASCQ_ERR_ISR_ON_CRITICAL
);
7387 if (asc_dvc
->is_in_int
) {
7388 AscSetLibErrorCode(asc_dvc
, ASCQ_ERR_ISR_RE_ENTRY
);
7391 asc_dvc
->is_in_int
= TRUE
;
7392 ctrl_reg
= AscGetChipControl(iop_base
);
7393 saved_ctrl_reg
= ctrl_reg
& (~(CC_SCSI_RESET
| CC_CHIP_RESET
|
7394 CC_SINGLE_STEP
| CC_DIAG
| CC_TEST
));
7395 chipstat
= AscGetChipStatus(iop_base
);
7396 if (chipstat
& CSW_SCSI_RESET_LATCH
) {
7397 if (!(asc_dvc
->bus_type
& (ASC_IS_VL
| ASC_IS_EISA
))) {
7400 asc_dvc
->sdtr_done
= 0;
7401 saved_ctrl_reg
&= (uchar
)(~CC_HALT
);
7402 while ((AscGetChipStatus(iop_base
) &
7403 CSW_SCSI_RESET_ACTIVE
) && (i
-- > 0)) {
7406 AscSetChipControl(iop_base
, (CC_CHIP_RESET
| CC_HALT
));
7407 AscSetChipControl(iop_base
, CC_HALT
);
7408 AscSetChipStatus(iop_base
, CIW_CLR_SCSI_RESET_INT
);
7409 AscSetChipStatus(iop_base
, 0);
7410 chipstat
= AscGetChipStatus(iop_base
);
7413 saved_ram_addr
= AscGetChipLramAddr(iop_base
);
7414 host_flag
= AscReadLramByte(iop_base
,
7416 (uchar
)(~ASC_HOST_FLAG_IN_ISR
);
7417 AscWriteLramByte(iop_base
, ASCV_HOST_FLAG_B
,
7418 (uchar
)(host_flag
| (uchar
)ASC_HOST_FLAG_IN_ISR
));
7419 if ((chipstat
& CSW_INT_PENDING
) || (int_pending
)) {
7420 AscAckInterrupt(iop_base
);
7422 if ((chipstat
& CSW_HALTED
) && (ctrl_reg
& CC_SINGLE_STEP
)) {
7423 if (AscIsrChipHalted(asc_dvc
) == ERR
) {
7424 goto ISR_REPORT_QDONE_FATAL_ERROR
;
7426 saved_ctrl_reg
&= (uchar
)(~CC_HALT
);
7429 ISR_REPORT_QDONE_FATAL_ERROR
:
7430 if ((asc_dvc
->dvc_cntl
& ASC_CNTL_INT_MULTI_Q
) != 0) {
7432 AscIsrQDone(asc_dvc
)) & 0x01) != 0) {
7437 AscIsrQDone(asc_dvc
)) == 1) {
7440 } while (status
== 0x11);
7442 if ((status
& 0x80) != 0)
7446 AscWriteLramByte(iop_base
, ASCV_HOST_FLAG_B
, host_flag
);
7447 AscSetChipLramAddr(iop_base
, saved_ram_addr
);
7448 AscSetChipControl(iop_base
, saved_ctrl_reg
);
7449 asc_dvc
->is_in_int
= FALSE
;
7456 * Reset the bus associated with the command 'scp'.
7458 * This function runs its own thread. Interrupts must be blocked but
7459 * sleeping is allowed and no locking other than for host structures is
7460 * required. Returns SUCCESS or FAILED.
7462 static int advansys_reset(struct scsi_cmnd
*scp
)
7464 struct Scsi_Host
*shost
= scp
->device
->host
;
7465 struct asc_board
*boardp
= shost_priv(shost
);
7466 unsigned long flags
;
7470 ASC_DBG(1, "0x%p\n", scp
);
7472 ASC_STATS(shost
, reset
);
7474 scmd_printk(KERN_INFO
, scp
, "SCSI bus reset started...\n");
7476 if (ASC_NARROW_BOARD(boardp
)) {
7477 ASC_DVC_VAR
*asc_dvc
= &boardp
->dvc_var
.asc_dvc_var
;
7479 /* Reset the chip and SCSI bus. */
7480 ASC_DBG(1, "before AscInitAsc1000Driver()\n");
7481 status
= AscInitAsc1000Driver(asc_dvc
);
7483 /* Refer to ASC_IERR_* definitions for meaning of 'err_code'. */
7484 if (asc_dvc
->err_code
|| !asc_dvc
->overrun_dma
) {
7485 scmd_printk(KERN_INFO
, scp
, "SCSI bus reset error: "
7486 "0x%x, status: 0x%x\n", asc_dvc
->err_code
,
7489 } else if (status
) {
7490 scmd_printk(KERN_INFO
, scp
, "SCSI bus reset warning: "
7493 scmd_printk(KERN_INFO
, scp
, "SCSI bus reset "
7497 ASC_DBG(1, "after AscInitAsc1000Driver()\n");
7498 spin_lock_irqsave(shost
->host_lock
, flags
);
7501 * If the suggest reset bus flags are set, then reset the bus.
7502 * Otherwise only reset the device.
7504 ADV_DVC_VAR
*adv_dvc
= &boardp
->dvc_var
.adv_dvc_var
;
7507 * Reset the target's SCSI bus.
7509 ASC_DBG(1, "before AdvResetChipAndSB()\n");
7510 switch (AdvResetChipAndSB(adv_dvc
)) {
7512 scmd_printk(KERN_INFO
, scp
, "SCSI bus reset "
7517 scmd_printk(KERN_INFO
, scp
, "SCSI bus reset error\n");
7521 spin_lock_irqsave(shost
->host_lock
, flags
);
7525 /* Save the time of the most recently completed reset. */
7526 boardp
->last_reset
= jiffies
;
7527 spin_unlock_irqrestore(shost
->host_lock
, flags
);
7529 ASC_DBG(1, "ret %d\n", ret
);
7535 * advansys_biosparam()
7537 * Translate disk drive geometry if the "BIOS greater than 1 GB"
7538 * support is enabled for a drive.
7540 * ip (information pointer) is an int array with the following definition:
7546 advansys_biosparam(struct scsi_device
*sdev
, struct block_device
*bdev
,
7547 sector_t capacity
, int ip
[])
7549 struct asc_board
*boardp
= shost_priv(sdev
->host
);
7551 ASC_DBG(1, "begin\n");
7552 ASC_STATS(sdev
->host
, biosparam
);
7553 if (ASC_NARROW_BOARD(boardp
)) {
7554 if ((boardp
->dvc_var
.asc_dvc_var
.dvc_cntl
&
7555 ASC_CNTL_BIOS_GT_1GB
) && capacity
> 0x200000) {
7563 if ((boardp
->dvc_var
.adv_dvc_var
.bios_ctrl
&
7564 BIOS_CTRL_EXTENDED_XLAT
) && capacity
> 0x200000) {
7572 ip
[2] = (unsigned long)capacity
/ (ip
[0] * ip
[1]);
7573 ASC_DBG(1, "end\n");
7578 * First-level interrupt handler.
7580 * 'dev_id' is a pointer to the interrupting adapter's Scsi_Host.
7582 static irqreturn_t
advansys_interrupt(int irq
, void *dev_id
)
7584 struct Scsi_Host
*shost
= dev_id
;
7585 struct asc_board
*boardp
= shost_priv(shost
);
7586 irqreturn_t result
= IRQ_NONE
;
7588 ASC_DBG(2, "boardp 0x%p\n", boardp
);
7589 spin_lock(shost
->host_lock
);
7590 if (ASC_NARROW_BOARD(boardp
)) {
7591 if (AscIsIntPending(shost
->io_port
)) {
7592 result
= IRQ_HANDLED
;
7593 ASC_STATS(shost
, interrupt
);
7594 ASC_DBG(1, "before AscISR()\n");
7595 AscISR(&boardp
->dvc_var
.asc_dvc_var
);
7598 ASC_DBG(1, "before AdvISR()\n");
7599 if (AdvISR(&boardp
->dvc_var
.adv_dvc_var
)) {
7600 result
= IRQ_HANDLED
;
7601 ASC_STATS(shost
, interrupt
);
7604 spin_unlock(shost
->host_lock
);
7606 ASC_DBG(1, "end\n");
7610 static int AscHostReqRiscHalt(PortAddr iop_base
)
7614 uchar saved_stop_code
;
7616 if (AscIsChipHalted(iop_base
))
7618 saved_stop_code
= AscReadLramByte(iop_base
, ASCV_STOP_CODE_B
);
7619 AscWriteLramByte(iop_base
, ASCV_STOP_CODE_B
,
7620 ASC_STOP_HOST_REQ_RISC_HALT
| ASC_STOP_REQ_RISC_STOP
);
7622 if (AscIsChipHalted(iop_base
)) {
7627 } while (count
++ < 20);
7628 AscWriteLramByte(iop_base
, ASCV_STOP_CODE_B
, saved_stop_code
);
7633 AscSetRunChipSynRegAtID(PortAddr iop_base
, uchar tid_no
, uchar sdtr_data
)
7637 if (AscHostReqRiscHalt(iop_base
)) {
7638 sta
= AscSetChipSynRegAtID(iop_base
, tid_no
, sdtr_data
);
7639 AscStartChip(iop_base
);
7644 static void AscAsyncFix(ASC_DVC_VAR
*asc_dvc
, struct scsi_device
*sdev
)
7646 char type
= sdev
->type
;
7647 ASC_SCSI_BIT_ID_TYPE tid_bits
= 1 << sdev
->id
;
7649 if (!(asc_dvc
->bug_fix_cntl
& ASC_BUG_FIX_ASYN_USE_SYN
))
7651 if (asc_dvc
->init_sdtr
& tid_bits
)
7654 if ((type
== TYPE_ROM
) && (strncmp(sdev
->vendor
, "HP ", 3) == 0))
7655 asc_dvc
->pci_fix_asyn_xfer_always
|= tid_bits
;
7657 asc_dvc
->pci_fix_asyn_xfer
|= tid_bits
;
7658 if ((type
== TYPE_PROCESSOR
) || (type
== TYPE_SCANNER
) ||
7659 (type
== TYPE_ROM
) || (type
== TYPE_TAPE
))
7660 asc_dvc
->pci_fix_asyn_xfer
&= ~tid_bits
;
7662 if (asc_dvc
->pci_fix_asyn_xfer
& tid_bits
)
7663 AscSetRunChipSynRegAtID(asc_dvc
->iop_base
, sdev
->id
,
7664 ASYN_SDTR_DATA_FIX_PCI_REV_AB
);
7668 advansys_narrow_slave_configure(struct scsi_device
*sdev
, ASC_DVC_VAR
*asc_dvc
)
7670 ASC_SCSI_BIT_ID_TYPE tid_bit
= 1 << sdev
->id
;
7671 ASC_SCSI_BIT_ID_TYPE orig_use_tagged_qng
= asc_dvc
->use_tagged_qng
;
7673 if (sdev
->lun
== 0) {
7674 ASC_SCSI_BIT_ID_TYPE orig_init_sdtr
= asc_dvc
->init_sdtr
;
7675 if ((asc_dvc
->cfg
->sdtr_enable
& tid_bit
) && sdev
->sdtr
) {
7676 asc_dvc
->init_sdtr
|= tid_bit
;
7678 asc_dvc
->init_sdtr
&= ~tid_bit
;
7681 if (orig_init_sdtr
!= asc_dvc
->init_sdtr
)
7682 AscAsyncFix(asc_dvc
, sdev
);
7685 if (sdev
->tagged_supported
) {
7686 if (asc_dvc
->cfg
->cmd_qng_enabled
& tid_bit
) {
7687 if (sdev
->lun
== 0) {
7688 asc_dvc
->cfg
->can_tagged_qng
|= tid_bit
;
7689 asc_dvc
->use_tagged_qng
|= tid_bit
;
7691 scsi_change_queue_depth(sdev
,
7692 asc_dvc
->max_dvc_qng
[sdev
->id
]);
7695 if (sdev
->lun
== 0) {
7696 asc_dvc
->cfg
->can_tagged_qng
&= ~tid_bit
;
7697 asc_dvc
->use_tagged_qng
&= ~tid_bit
;
7701 if ((sdev
->lun
== 0) &&
7702 (orig_use_tagged_qng
!= asc_dvc
->use_tagged_qng
)) {
7703 AscWriteLramByte(asc_dvc
->iop_base
, ASCV_DISC_ENABLE_B
,
7704 asc_dvc
->cfg
->disc_enable
);
7705 AscWriteLramByte(asc_dvc
->iop_base
, ASCV_USE_TAGGED_QNG_B
,
7706 asc_dvc
->use_tagged_qng
);
7707 AscWriteLramByte(asc_dvc
->iop_base
, ASCV_CAN_TAGGED_QNG_B
,
7708 asc_dvc
->cfg
->can_tagged_qng
);
7710 asc_dvc
->max_dvc_qng
[sdev
->id
] =
7711 asc_dvc
->cfg
->max_tag_qng
[sdev
->id
];
7712 AscWriteLramByte(asc_dvc
->iop_base
,
7713 (ushort
)(ASCV_MAX_DVC_QNG_BEG
+ sdev
->id
),
7714 asc_dvc
->max_dvc_qng
[sdev
->id
]);
7721 * If the EEPROM enabled WDTR for the device and the device supports wide
7722 * bus (16 bit) transfers, then turn on the device's 'wdtr_able' bit and
7723 * write the new value to the microcode.
7726 advansys_wide_enable_wdtr(AdvPortAddr iop_base
, unsigned short tidmask
)
7728 unsigned short cfg_word
;
7729 AdvReadWordLram(iop_base
, ASC_MC_WDTR_ABLE
, cfg_word
);
7730 if ((cfg_word
& tidmask
) != 0)
7733 cfg_word
|= tidmask
;
7734 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
, cfg_word
);
7737 * Clear the microcode SDTR and WDTR negotiation done indicators for
7738 * the target to cause it to negotiate with the new setting set above.
7739 * WDTR when accepted causes the target to enter asynchronous mode, so
7740 * SDTR must be negotiated.
7742 AdvReadWordLram(iop_base
, ASC_MC_SDTR_DONE
, cfg_word
);
7743 cfg_word
&= ~tidmask
;
7744 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_DONE
, cfg_word
);
7745 AdvReadWordLram(iop_base
, ASC_MC_WDTR_DONE
, cfg_word
);
7746 cfg_word
&= ~tidmask
;
7747 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_DONE
, cfg_word
);
7751 * Synchronous Transfers
7753 * If the EEPROM enabled SDTR for the device and the device
7754 * supports synchronous transfers, then turn on the device's
7755 * 'sdtr_able' bit. Write the new value to the microcode.
7758 advansys_wide_enable_sdtr(AdvPortAddr iop_base
, unsigned short tidmask
)
7760 unsigned short cfg_word
;
7761 AdvReadWordLram(iop_base
, ASC_MC_SDTR_ABLE
, cfg_word
);
7762 if ((cfg_word
& tidmask
) != 0)
7765 cfg_word
|= tidmask
;
7766 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
, cfg_word
);
7769 * Clear the microcode "SDTR negotiation" done indicator for the
7770 * target to cause it to negotiate with the new setting set above.
7772 AdvReadWordLram(iop_base
, ASC_MC_SDTR_DONE
, cfg_word
);
7773 cfg_word
&= ~tidmask
;
7774 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_DONE
, cfg_word
);
7778 * PPR (Parallel Protocol Request) Capable
7780 * If the device supports DT mode, then it must be PPR capable.
7781 * The PPR message will be used in place of the SDTR and WDTR
7782 * messages to negotiate synchronous speed and offset, transfer
7783 * width, and protocol options.
7785 static void advansys_wide_enable_ppr(ADV_DVC_VAR
*adv_dvc
,
7786 AdvPortAddr iop_base
, unsigned short tidmask
)
7788 AdvReadWordLram(iop_base
, ASC_MC_PPR_ABLE
, adv_dvc
->ppr_able
);
7789 adv_dvc
->ppr_able
|= tidmask
;
7790 AdvWriteWordLram(iop_base
, ASC_MC_PPR_ABLE
, adv_dvc
->ppr_able
);
7794 advansys_wide_slave_configure(struct scsi_device
*sdev
, ADV_DVC_VAR
*adv_dvc
)
7796 AdvPortAddr iop_base
= adv_dvc
->iop_base
;
7797 unsigned short tidmask
= 1 << sdev
->id
;
7799 if (sdev
->lun
== 0) {
7801 * Handle WDTR, SDTR, and Tag Queuing. If the feature
7802 * is enabled in the EEPROM and the device supports the
7803 * feature, then enable it in the microcode.
7806 if ((adv_dvc
->wdtr_able
& tidmask
) && sdev
->wdtr
)
7807 advansys_wide_enable_wdtr(iop_base
, tidmask
);
7808 if ((adv_dvc
->sdtr_able
& tidmask
) && sdev
->sdtr
)
7809 advansys_wide_enable_sdtr(iop_base
, tidmask
);
7810 if (adv_dvc
->chip_type
== ADV_CHIP_ASC38C1600
&& sdev
->ppr
)
7811 advansys_wide_enable_ppr(adv_dvc
, iop_base
, tidmask
);
7814 * Tag Queuing is disabled for the BIOS which runs in polled
7815 * mode and would see no benefit from Tag Queuing. Also by
7816 * disabling Tag Queuing in the BIOS devices with Tag Queuing
7817 * bugs will at least work with the BIOS.
7819 if ((adv_dvc
->tagqng_able
& tidmask
) &&
7820 sdev
->tagged_supported
) {
7821 unsigned short cfg_word
;
7822 AdvReadWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
, cfg_word
);
7823 cfg_word
|= tidmask
;
7824 AdvWriteWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
,
7826 AdvWriteByteLram(iop_base
,
7827 ASC_MC_NUMBER_OF_MAX_CMD
+ sdev
->id
,
7828 adv_dvc
->max_dvc_qng
);
7832 if ((adv_dvc
->tagqng_able
& tidmask
) && sdev
->tagged_supported
)
7833 scsi_change_queue_depth(sdev
, adv_dvc
->max_dvc_qng
);
7837 * Set the number of commands to queue per device for the
7838 * specified host adapter.
7840 static int advansys_slave_configure(struct scsi_device
*sdev
)
7842 struct asc_board
*boardp
= shost_priv(sdev
->host
);
7844 if (ASC_NARROW_BOARD(boardp
))
7845 advansys_narrow_slave_configure(sdev
,
7846 &boardp
->dvc_var
.asc_dvc_var
);
7848 advansys_wide_slave_configure(sdev
,
7849 &boardp
->dvc_var
.adv_dvc_var
);
7854 static __le32
advansys_get_sense_buffer_dma(struct scsi_cmnd
*scp
)
7856 struct asc_board
*board
= shost_priv(scp
->device
->host
);
7857 scp
->SCp
.dma_handle
= dma_map_single(board
->dev
, scp
->sense_buffer
,
7858 SCSI_SENSE_BUFFERSIZE
, DMA_FROM_DEVICE
);
7859 dma_cache_sync(board
->dev
, scp
->sense_buffer
,
7860 SCSI_SENSE_BUFFERSIZE
, DMA_FROM_DEVICE
);
7861 return cpu_to_le32(scp
->SCp
.dma_handle
);
7864 static int asc_build_req(struct asc_board
*boardp
, struct scsi_cmnd
*scp
,
7865 struct asc_scsi_q
*asc_scsi_q
)
7867 struct asc_dvc_var
*asc_dvc
= &boardp
->dvc_var
.asc_dvc_var
;
7870 memset(asc_scsi_q
, 0, sizeof(*asc_scsi_q
));
7873 * Point the ASC_SCSI_Q to the 'struct scsi_cmnd'.
7875 asc_scsi_q
->q2
.srb_ptr
= advansys_ptr_to_srb(asc_dvc
, scp
);
7876 if (asc_scsi_q
->q2
.srb_ptr
== BAD_SRB
) {
7877 scp
->result
= HOST_BYTE(DID_SOFT_ERROR
);
7882 * Build the ASC_SCSI_Q request.
7884 asc_scsi_q
->cdbptr
= &scp
->cmnd
[0];
7885 asc_scsi_q
->q2
.cdb_len
= scp
->cmd_len
;
7886 asc_scsi_q
->q1
.target_id
= ASC_TID_TO_TARGET_ID(scp
->device
->id
);
7887 asc_scsi_q
->q1
.target_lun
= scp
->device
->lun
;
7888 asc_scsi_q
->q2
.target_ix
=
7889 ASC_TIDLUN_TO_IX(scp
->device
->id
, scp
->device
->lun
);
7890 asc_scsi_q
->q1
.sense_addr
= advansys_get_sense_buffer_dma(scp
);
7891 asc_scsi_q
->q1
.sense_len
= SCSI_SENSE_BUFFERSIZE
;
7894 * If there are any outstanding requests for the current target,
7895 * then every 255th request send an ORDERED request. This heuristic
7896 * tries to retain the benefit of request sorting while preventing
7897 * request starvation. 255 is the max number of tags or pending commands
7898 * a device may have outstanding.
7900 * The request count is incremented below for every successfully
7904 if ((asc_dvc
->cur_dvc_qng
[scp
->device
->id
] > 0) &&
7905 (boardp
->reqcnt
[scp
->device
->id
] % 255) == 0) {
7906 asc_scsi_q
->q2
.tag_code
= ORDERED_QUEUE_TAG
;
7908 asc_scsi_q
->q2
.tag_code
= SIMPLE_QUEUE_TAG
;
7911 /* Build ASC_SCSI_Q */
7912 use_sg
= scsi_dma_map(scp
);
7915 struct scatterlist
*slp
;
7916 struct asc_sg_head
*asc_sg_head
;
7918 if (use_sg
> scp
->device
->host
->sg_tablesize
) {
7919 scmd_printk(KERN_ERR
, scp
, "use_sg %d > "
7920 "sg_tablesize %d\n", use_sg
,
7921 scp
->device
->host
->sg_tablesize
);
7922 scsi_dma_unmap(scp
);
7923 scp
->result
= HOST_BYTE(DID_ERROR
);
7927 asc_sg_head
= kzalloc(sizeof(asc_scsi_q
->sg_head
) +
7928 use_sg
* sizeof(struct asc_sg_list
), GFP_ATOMIC
);
7930 scsi_dma_unmap(scp
);
7931 scp
->result
= HOST_BYTE(DID_SOFT_ERROR
);
7935 asc_scsi_q
->q1
.cntl
|= QC_SG_HEAD
;
7936 asc_scsi_q
->sg_head
= asc_sg_head
;
7937 asc_scsi_q
->q1
.data_cnt
= 0;
7938 asc_scsi_q
->q1
.data_addr
= 0;
7939 /* This is a byte value, otherwise it would need to be swapped. */
7940 asc_sg_head
->entry_cnt
= asc_scsi_q
->q1
.sg_queue_cnt
= use_sg
;
7941 ASC_STATS_ADD(scp
->device
->host
, xfer_elem
,
7942 asc_sg_head
->entry_cnt
);
7945 * Convert scatter-gather list into ASC_SG_HEAD list.
7947 scsi_for_each_sg(scp
, slp
, use_sg
, sgcnt
) {
7948 asc_sg_head
->sg_list
[sgcnt
].addr
=
7949 cpu_to_le32(sg_dma_address(slp
));
7950 asc_sg_head
->sg_list
[sgcnt
].bytes
=
7951 cpu_to_le32(sg_dma_len(slp
));
7952 ASC_STATS_ADD(scp
->device
->host
, xfer_sect
,
7953 DIV_ROUND_UP(sg_dma_len(slp
), 512));
7957 ASC_STATS(scp
->device
->host
, xfer_cnt
);
7959 ASC_DBG_PRT_ASC_SCSI_Q(2, asc_scsi_q
);
7960 ASC_DBG_PRT_CDB(1, scp
->cmnd
, scp
->cmd_len
);
7966 * Build scatter-gather list for Adv Library (Wide Board).
7968 * Additional ADV_SG_BLOCK structures will need to be allocated
7969 * if the total number of scatter-gather elements exceeds
7970 * NO_OF_SG_PER_BLOCK (15). The ADV_SG_BLOCK structures are
7971 * assumed to be physically contiguous.
7974 * ADV_SUCCESS(1) - SG List successfully created
7975 * ADV_ERROR(-1) - SG List creation failed
7978 adv_get_sglist(struct asc_board
*boardp
, adv_req_t
*reqp
, struct scsi_cmnd
*scp
,
7981 adv_sgblk_t
*sgblkp
;
7982 ADV_SCSI_REQ_Q
*scsiqp
;
7983 struct scatterlist
*slp
;
7985 ADV_SG_BLOCK
*sg_block
, *prev_sg_block
;
7986 ADV_PADDR sg_block_paddr
;
7989 scsiqp
= (ADV_SCSI_REQ_Q
*)ADV_32BALIGN(&reqp
->scsi_req_q
);
7990 slp
= scsi_sglist(scp
);
7991 sg_elem_cnt
= use_sg
;
7992 prev_sg_block
= NULL
;
7993 reqp
->sgblkp
= NULL
;
7997 * Allocate a 'adv_sgblk_t' structure from the board free
7998 * list. One 'adv_sgblk_t' structure holds NO_OF_SG_PER_BLOCK
7999 * (15) scatter-gather elements.
8001 if ((sgblkp
= boardp
->adv_sgblkp
) == NULL
) {
8002 ASC_DBG(1, "no free adv_sgblk_t\n");
8003 ASC_STATS(scp
->device
->host
, adv_build_nosg
);
8006 * Allocation failed. Free 'adv_sgblk_t' structures
8007 * already allocated for the request.
8009 while ((sgblkp
= reqp
->sgblkp
) != NULL
) {
8010 /* Remove 'sgblkp' from the request list. */
8011 reqp
->sgblkp
= sgblkp
->next_sgblkp
;
8013 /* Add 'sgblkp' to the board free list. */
8014 sgblkp
->next_sgblkp
= boardp
->adv_sgblkp
;
8015 boardp
->adv_sgblkp
= sgblkp
;
8020 /* Complete 'adv_sgblk_t' board allocation. */
8021 boardp
->adv_sgblkp
= sgblkp
->next_sgblkp
;
8022 sgblkp
->next_sgblkp
= NULL
;
8025 * Get 8 byte aligned virtual and physical addresses
8026 * for the allocated ADV_SG_BLOCK structure.
8028 sg_block
= (ADV_SG_BLOCK
*)ADV_8BALIGN(&sgblkp
->sg_block
);
8029 sg_block_paddr
= virt_to_bus(sg_block
);
8032 * Check if this is the first 'adv_sgblk_t' for the
8035 if (reqp
->sgblkp
== NULL
) {
8036 /* Request's first scatter-gather block. */
8037 reqp
->sgblkp
= sgblkp
;
8040 * Set ADV_SCSI_REQ_T ADV_SG_BLOCK virtual and physical
8043 scsiqp
->sg_list_ptr
= sg_block
;
8044 scsiqp
->sg_real_addr
= cpu_to_le32(sg_block_paddr
);
8046 /* Request's second or later scatter-gather block. */
8047 sgblkp
->next_sgblkp
= reqp
->sgblkp
;
8048 reqp
->sgblkp
= sgblkp
;
8051 * Point the previous ADV_SG_BLOCK structure to
8052 * the newly allocated ADV_SG_BLOCK structure.
8054 prev_sg_block
->sg_ptr
= cpu_to_le32(sg_block_paddr
);
8057 for (i
= 0; i
< NO_OF_SG_PER_BLOCK
; i
++) {
8058 sg_block
->sg_list
[i
].sg_addr
=
8059 cpu_to_le32(sg_dma_address(slp
));
8060 sg_block
->sg_list
[i
].sg_count
=
8061 cpu_to_le32(sg_dma_len(slp
));
8062 ASC_STATS_ADD(scp
->device
->host
, xfer_sect
,
8063 DIV_ROUND_UP(sg_dma_len(slp
), 512));
8065 if (--sg_elem_cnt
== 0) { /* Last ADV_SG_BLOCK and scatter-gather entry. */
8066 sg_block
->sg_cnt
= i
+ 1;
8067 sg_block
->sg_ptr
= 0L; /* Last ADV_SG_BLOCK in list. */
8072 sg_block
->sg_cnt
= NO_OF_SG_PER_BLOCK
;
8073 prev_sg_block
= sg_block
;
8078 * Build a request structure for the Adv Library (Wide Board).
8080 * If an adv_req_t can not be allocated to issue the request,
8081 * then return ASC_BUSY. If an error occurs, then return ASC_ERROR.
8083 * Multi-byte fields in the ASC_SCSI_REQ_Q that are used by the
8084 * microcode for DMA addresses or math operations are byte swapped
8085 * to little-endian order.
8088 adv_build_req(struct asc_board
*boardp
, struct scsi_cmnd
*scp
,
8089 ADV_SCSI_REQ_Q
**adv_scsiqpp
)
8092 ADV_SCSI_REQ_Q
*scsiqp
;
8098 * Allocate an adv_req_t structure from the board to execute
8101 if (boardp
->adv_reqp
== NULL
) {
8102 ASC_DBG(1, "no free adv_req_t\n");
8103 ASC_STATS(scp
->device
->host
, adv_build_noreq
);
8106 reqp
= boardp
->adv_reqp
;
8107 boardp
->adv_reqp
= reqp
->next_reqp
;
8108 reqp
->next_reqp
= NULL
;
8112 * Get 32-byte aligned ADV_SCSI_REQ_Q and ADV_SG_BLOCK pointers.
8114 scsiqp
= (ADV_SCSI_REQ_Q
*)ADV_32BALIGN(&reqp
->scsi_req_q
);
8117 * Initialize the structure.
8119 scsiqp
->cntl
= scsiqp
->scsi_cntl
= scsiqp
->done_status
= 0;
8122 * Set the ADV_SCSI_REQ_Q 'srb_ptr' to point to the adv_req_t structure.
8124 scsiqp
->srb_ptr
= ADV_VADDR_TO_U32(reqp
);
8127 * Set the adv_req_t 'cmndp' to point to the struct scsi_cmnd structure.
8132 * Build the ADV_SCSI_REQ_Q request.
8135 /* Set CDB length and copy it to the request structure. */
8136 scsiqp
->cdb_len
= scp
->cmd_len
;
8137 /* Copy first 12 CDB bytes to cdb[]. */
8138 for (i
= 0; i
< scp
->cmd_len
&& i
< 12; i
++) {
8139 scsiqp
->cdb
[i
] = scp
->cmnd
[i
];
8141 /* Copy last 4 CDB bytes, if present, to cdb16[]. */
8142 for (; i
< scp
->cmd_len
; i
++) {
8143 scsiqp
->cdb16
[i
- 12] = scp
->cmnd
[i
];
8146 scsiqp
->target_id
= scp
->device
->id
;
8147 scsiqp
->target_lun
= scp
->device
->lun
;
8149 scsiqp
->sense_addr
= cpu_to_le32(virt_to_bus(&scp
->sense_buffer
[0]));
8150 scsiqp
->sense_len
= SCSI_SENSE_BUFFERSIZE
;
8152 /* Build ADV_SCSI_REQ_Q */
8154 use_sg
= scsi_dma_map(scp
);
8156 /* Zero-length transfer */
8157 reqp
->sgblkp
= NULL
;
8158 scsiqp
->data_cnt
= 0;
8159 scsiqp
->vdata_addr
= NULL
;
8161 scsiqp
->data_addr
= 0;
8162 scsiqp
->sg_list_ptr
= NULL
;
8163 scsiqp
->sg_real_addr
= 0;
8165 if (use_sg
> ADV_MAX_SG_LIST
) {
8166 scmd_printk(KERN_ERR
, scp
, "use_sg %d > "
8167 "ADV_MAX_SG_LIST %d\n", use_sg
,
8168 scp
->device
->host
->sg_tablesize
);
8169 scsi_dma_unmap(scp
);
8170 scp
->result
= HOST_BYTE(DID_ERROR
);
8173 * Free the 'adv_req_t' structure by adding it back
8174 * to the board free list.
8176 reqp
->next_reqp
= boardp
->adv_reqp
;
8177 boardp
->adv_reqp
= reqp
;
8182 scsiqp
->data_cnt
= cpu_to_le32(scsi_bufflen(scp
));
8184 ret
= adv_get_sglist(boardp
, reqp
, scp
, use_sg
);
8185 if (ret
!= ADV_SUCCESS
) {
8187 * Free the adv_req_t structure by adding it back to
8188 * the board free list.
8190 reqp
->next_reqp
= boardp
->adv_reqp
;
8191 boardp
->adv_reqp
= reqp
;
8196 ASC_STATS_ADD(scp
->device
->host
, xfer_elem
, use_sg
);
8199 ASC_STATS(scp
->device
->host
, xfer_cnt
);
8201 ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp
);
8202 ASC_DBG_PRT_CDB(1, scp
->cmnd
, scp
->cmd_len
);
8204 *adv_scsiqpp
= scsiqp
;
8209 static int AscSgListToQueue(int sg_list
)
8213 n_sg_list_qs
= ((sg_list
- 1) / ASC_SG_LIST_PER_Q
);
8214 if (((sg_list
- 1) % ASC_SG_LIST_PER_Q
) != 0)
8216 return n_sg_list_qs
+ 1;
8220 AscGetNumOfFreeQueue(ASC_DVC_VAR
*asc_dvc
, uchar target_ix
, uchar n_qs
)
8224 ASC_SCSI_BIT_ID_TYPE target_id
;
8227 target_id
= ASC_TIX_TO_TARGET_ID(target_ix
);
8228 tid_no
= ASC_TIX_TO_TID(target_ix
);
8229 if ((asc_dvc
->unit_not_ready
& target_id
) ||
8230 (asc_dvc
->queue_full_or_busy
& target_id
)) {
8234 cur_used_qs
= (uint
) asc_dvc
->cur_total_qng
+
8235 (uint
) asc_dvc
->last_q_shortage
+ (uint
) ASC_MIN_FREE_Q
;
8237 cur_used_qs
= (uint
) asc_dvc
->cur_total_qng
+
8238 (uint
) ASC_MIN_FREE_Q
;
8240 if ((uint
) (cur_used_qs
+ n_qs
) <= (uint
) asc_dvc
->max_total_qng
) {
8241 cur_free_qs
= (uint
) asc_dvc
->max_total_qng
- cur_used_qs
;
8242 if (asc_dvc
->cur_dvc_qng
[tid_no
] >=
8243 asc_dvc
->max_dvc_qng
[tid_no
]) {
8249 if ((n_qs
> asc_dvc
->last_q_shortage
)
8250 && (n_qs
<= (asc_dvc
->max_total_qng
- ASC_MIN_FREE_Q
))) {
8251 asc_dvc
->last_q_shortage
= n_qs
;
8257 static uchar
AscAllocFreeQueue(PortAddr iop_base
, uchar free_q_head
)
8263 q_addr
= ASC_QNO_TO_QADDR(free_q_head
);
8264 q_status
= (uchar
)AscReadLramByte(iop_base
,
8266 ASC_SCSIQ_B_STATUS
));
8267 next_qp
= AscReadLramByte(iop_base
, (ushort
)(q_addr
+ ASC_SCSIQ_B_FWD
));
8268 if (((q_status
& QS_READY
) == 0) && (next_qp
!= ASC_QLINK_END
))
8270 return ASC_QLINK_END
;
8274 AscAllocMultipleFreeQueue(PortAddr iop_base
, uchar free_q_head
, uchar n_free_q
)
8278 for (i
= 0; i
< n_free_q
; i
++) {
8279 free_q_head
= AscAllocFreeQueue(iop_base
, free_q_head
);
8280 if (free_q_head
== ASC_QLINK_END
)
8288 * DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
8290 * Calling/Exit State:
8294 * Output an ASC_SCSI_Q structure to the chip
8297 DvcPutScsiQ(PortAddr iop_base
, ushort s_addr
, uchar
*outbuf
, int words
)
8301 ASC_DBG_PRT_HEX(2, "DvcPutScsiQ", outbuf
, 2 * words
);
8302 AscSetChipLramAddr(iop_base
, s_addr
);
8303 for (i
= 0; i
< 2 * words
; i
+= 2) {
8304 if (i
== 4 || i
== 20) {
8307 outpw(iop_base
+ IOP_RAM_DATA
,
8308 ((ushort
)outbuf
[i
+ 1] << 8) | outbuf
[i
]);
8312 static int AscPutReadyQueue(ASC_DVC_VAR
*asc_dvc
, ASC_SCSI_Q
*scsiq
, uchar q_no
)
8317 uchar syn_period_ix
;
8321 iop_base
= asc_dvc
->iop_base
;
8322 if (((asc_dvc
->init_sdtr
& scsiq
->q1
.target_id
) != 0) &&
8323 ((asc_dvc
->sdtr_done
& scsiq
->q1
.target_id
) == 0)) {
8324 tid_no
= ASC_TIX_TO_TID(scsiq
->q2
.target_ix
);
8325 sdtr_data
= AscGetMCodeInitSDTRAtID(iop_base
, tid_no
);
8327 (sdtr_data
>> 4) & (asc_dvc
->max_sdtr_index
- 1);
8328 syn_offset
= sdtr_data
& ASC_SYN_MAX_OFFSET
;
8329 AscMsgOutSDTR(asc_dvc
,
8330 asc_dvc
->sdtr_period_tbl
[syn_period_ix
],
8332 scsiq
->q1
.cntl
|= QC_MSG_OUT
;
8334 q_addr
= ASC_QNO_TO_QADDR(q_no
);
8335 if ((scsiq
->q1
.target_id
& asc_dvc
->use_tagged_qng
) == 0) {
8336 scsiq
->q2
.tag_code
&= ~SIMPLE_QUEUE_TAG
;
8338 scsiq
->q1
.status
= QS_FREE
;
8339 AscMemWordCopyPtrToLram(iop_base
,
8340 q_addr
+ ASC_SCSIQ_CDB_BEG
,
8341 (uchar
*)scsiq
->cdbptr
, scsiq
->q2
.cdb_len
>> 1);
8343 DvcPutScsiQ(iop_base
,
8344 q_addr
+ ASC_SCSIQ_CPY_BEG
,
8345 (uchar
*)&scsiq
->q1
.cntl
,
8346 ((sizeof(ASC_SCSIQ_1
) + sizeof(ASC_SCSIQ_2
)) / 2) - 1);
8347 AscWriteLramWord(iop_base
,
8348 (ushort
)(q_addr
+ (ushort
)ASC_SCSIQ_B_STATUS
),
8349 (ushort
)(((ushort
)scsiq
->q1
.
8350 q_no
<< 8) | (ushort
)QS_READY
));
8355 AscPutReadySgListQueue(ASC_DVC_VAR
*asc_dvc
, ASC_SCSI_Q
*scsiq
, uchar q_no
)
8359 ASC_SG_HEAD
*sg_head
;
8360 ASC_SG_LIST_Q scsi_sg_q
;
8361 ASC_DCNT saved_data_addr
;
8362 ASC_DCNT saved_data_cnt
;
8364 ushort sg_list_dwords
;
8366 ushort sg_entry_cnt
;
8370 iop_base
= asc_dvc
->iop_base
;
8371 sg_head
= scsiq
->sg_head
;
8372 saved_data_addr
= scsiq
->q1
.data_addr
;
8373 saved_data_cnt
= scsiq
->q1
.data_cnt
;
8374 scsiq
->q1
.data_addr
= (ASC_PADDR
) sg_head
->sg_list
[0].addr
;
8375 scsiq
->q1
.data_cnt
= (ASC_DCNT
) sg_head
->sg_list
[0].bytes
;
8376 #if CC_VERY_LONG_SG_LIST
8378 * If sg_head->entry_cnt is greater than ASC_MAX_SG_LIST
8379 * then not all SG elements will fit in the allocated queues.
8380 * The rest of the SG elements will be copied when the RISC
8381 * completes the SG elements that fit and halts.
8383 if (sg_head
->entry_cnt
> ASC_MAX_SG_LIST
) {
8385 * Set sg_entry_cnt to be the number of SG elements that
8386 * will fit in the allocated SG queues. It is minus 1, because
8387 * the first SG element is handled above. ASC_MAX_SG_LIST is
8388 * already inflated by 1 to account for this. For example it
8389 * may be 50 which is 1 + 7 queues * 7 SG elements.
8391 sg_entry_cnt
= ASC_MAX_SG_LIST
- 1;
8394 * Keep track of remaining number of SG elements that will
8395 * need to be handled from a_isr.c.
8397 scsiq
->remain_sg_entry_cnt
=
8398 sg_head
->entry_cnt
- ASC_MAX_SG_LIST
;
8400 #endif /* CC_VERY_LONG_SG_LIST */
8402 * Set sg_entry_cnt to be the number of SG elements that
8403 * will fit in the allocated SG queues. It is minus 1, because
8404 * the first SG element is handled above.
8406 sg_entry_cnt
= sg_head
->entry_cnt
- 1;
8407 #if CC_VERY_LONG_SG_LIST
8409 #endif /* CC_VERY_LONG_SG_LIST */
8410 if (sg_entry_cnt
!= 0) {
8411 scsiq
->q1
.cntl
|= QC_SG_HEAD
;
8412 q_addr
= ASC_QNO_TO_QADDR(q_no
);
8414 scsiq
->q1
.sg_queue_cnt
= sg_head
->queue_cnt
;
8415 scsi_sg_q
.sg_head_qp
= q_no
;
8416 scsi_sg_q
.cntl
= QCSG_SG_XFER_LIST
;
8417 for (i
= 0; i
< sg_head
->queue_cnt
; i
++) {
8418 scsi_sg_q
.seq_no
= i
+ 1;
8419 if (sg_entry_cnt
> ASC_SG_LIST_PER_Q
) {
8420 sg_list_dwords
= (uchar
)(ASC_SG_LIST_PER_Q
* 2);
8421 sg_entry_cnt
-= ASC_SG_LIST_PER_Q
;
8423 scsi_sg_q
.sg_list_cnt
=
8425 scsi_sg_q
.sg_cur_list_cnt
=
8428 scsi_sg_q
.sg_list_cnt
=
8429 ASC_SG_LIST_PER_Q
- 1;
8430 scsi_sg_q
.sg_cur_list_cnt
=
8431 ASC_SG_LIST_PER_Q
- 1;
8434 #if CC_VERY_LONG_SG_LIST
8436 * This is the last SG queue in the list of
8437 * allocated SG queues. If there are more
8438 * SG elements than will fit in the allocated
8439 * queues, then set the QCSG_SG_XFER_MORE flag.
8441 if (sg_head
->entry_cnt
> ASC_MAX_SG_LIST
) {
8442 scsi_sg_q
.cntl
|= QCSG_SG_XFER_MORE
;
8444 #endif /* CC_VERY_LONG_SG_LIST */
8445 scsi_sg_q
.cntl
|= QCSG_SG_XFER_END
;
8446 #if CC_VERY_LONG_SG_LIST
8448 #endif /* CC_VERY_LONG_SG_LIST */
8449 sg_list_dwords
= sg_entry_cnt
<< 1;
8451 scsi_sg_q
.sg_list_cnt
= sg_entry_cnt
;
8452 scsi_sg_q
.sg_cur_list_cnt
=
8455 scsi_sg_q
.sg_list_cnt
=
8457 scsi_sg_q
.sg_cur_list_cnt
=
8462 next_qp
= AscReadLramByte(iop_base
,
8465 scsi_sg_q
.q_no
= next_qp
;
8466 q_addr
= ASC_QNO_TO_QADDR(next_qp
);
8467 AscMemWordCopyPtrToLram(iop_base
,
8468 q_addr
+ ASC_SCSIQ_SGHD_CPY_BEG
,
8469 (uchar
*)&scsi_sg_q
,
8470 sizeof(ASC_SG_LIST_Q
) >> 1);
8471 AscMemDWordCopyPtrToLram(iop_base
,
8472 q_addr
+ ASC_SGQ_LIST_BEG
,
8476 sg_index
+= ASC_SG_LIST_PER_Q
;
8477 scsiq
->next_sg_index
= sg_index
;
8480 scsiq
->q1
.cntl
&= ~QC_SG_HEAD
;
8482 sta
= AscPutReadyQueue(asc_dvc
, scsiq
, q_no
);
8483 scsiq
->q1
.data_addr
= saved_data_addr
;
8484 scsiq
->q1
.data_cnt
= saved_data_cnt
;
8489 AscSendScsiQueue(ASC_DVC_VAR
*asc_dvc
, ASC_SCSI_Q
*scsiq
, uchar n_q_required
)
8498 iop_base
= asc_dvc
->iop_base
;
8499 target_ix
= scsiq
->q2
.target_ix
;
8500 tid_no
= ASC_TIX_TO_TID(target_ix
);
8502 free_q_head
= (uchar
)AscGetVarFreeQHead(iop_base
);
8503 if (n_q_required
> 1) {
8504 next_qp
= AscAllocMultipleFreeQueue(iop_base
, free_q_head
,
8505 (uchar
)n_q_required
);
8506 if (next_qp
!= ASC_QLINK_END
) {
8507 asc_dvc
->last_q_shortage
= 0;
8508 scsiq
->sg_head
->queue_cnt
= n_q_required
- 1;
8509 scsiq
->q1
.q_no
= free_q_head
;
8510 sta
= AscPutReadySgListQueue(asc_dvc
, scsiq
,
8513 } else if (n_q_required
== 1) {
8514 next_qp
= AscAllocFreeQueue(iop_base
, free_q_head
);
8515 if (next_qp
!= ASC_QLINK_END
) {
8516 scsiq
->q1
.q_no
= free_q_head
;
8517 sta
= AscPutReadyQueue(asc_dvc
, scsiq
, free_q_head
);
8521 AscPutVarFreeQHead(iop_base
, next_qp
);
8522 asc_dvc
->cur_total_qng
+= n_q_required
;
8523 asc_dvc
->cur_dvc_qng
[tid_no
]++;
8528 #define ASC_SYN_OFFSET_ONE_DISABLE_LIST 16
8529 static uchar _syn_offset_one_disable_cmd
[ASC_SYN_OFFSET_ONE_DISABLE_LIST
] = {
8548 static int AscExeScsiQueue(ASC_DVC_VAR
*asc_dvc
, ASC_SCSI_Q
*scsiq
)
8553 int disable_syn_offset_one_fix
;
8556 ushort sg_entry_cnt
= 0;
8557 ushort sg_entry_cnt_minus_one
= 0;
8564 ASC_SG_HEAD
*sg_head
;
8567 iop_base
= asc_dvc
->iop_base
;
8568 sg_head
= scsiq
->sg_head
;
8569 if (asc_dvc
->err_code
!= 0)
8572 if ((scsiq
->q2
.tag_code
& ASC_TAG_FLAG_EXTRA_BYTES
) == 0) {
8573 scsiq
->q1
.extra_bytes
= 0;
8576 target_ix
= scsiq
->q2
.target_ix
;
8577 tid_no
= ASC_TIX_TO_TID(target_ix
);
8579 if (scsiq
->cdbptr
[0] == REQUEST_SENSE
) {
8580 if ((asc_dvc
->init_sdtr
& scsiq
->q1
.target_id
) != 0) {
8581 asc_dvc
->sdtr_done
&= ~scsiq
->q1
.target_id
;
8582 sdtr_data
= AscGetMCodeInitSDTRAtID(iop_base
, tid_no
);
8583 AscMsgOutSDTR(asc_dvc
,
8585 sdtr_period_tbl
[(sdtr_data
>> 4) &
8589 (uchar
)(sdtr_data
& (uchar
)
8590 ASC_SYN_MAX_OFFSET
));
8591 scsiq
->q1
.cntl
|= (QC_MSG_OUT
| QC_URGENT
);
8594 if (asc_dvc
->in_critical_cnt
!= 0) {
8595 AscSetLibErrorCode(asc_dvc
, ASCQ_ERR_CRITICAL_RE_ENTRY
);
8598 asc_dvc
->in_critical_cnt
++;
8599 if ((scsiq
->q1
.cntl
& QC_SG_HEAD
) != 0) {
8600 if ((sg_entry_cnt
= sg_head
->entry_cnt
) == 0) {
8601 asc_dvc
->in_critical_cnt
--;
8604 #if !CC_VERY_LONG_SG_LIST
8605 if (sg_entry_cnt
> ASC_MAX_SG_LIST
) {
8606 asc_dvc
->in_critical_cnt
--;
8609 #endif /* !CC_VERY_LONG_SG_LIST */
8610 if (sg_entry_cnt
== 1) {
8611 scsiq
->q1
.data_addr
=
8612 (ADV_PADDR
)sg_head
->sg_list
[0].addr
;
8613 scsiq
->q1
.data_cnt
=
8614 (ADV_DCNT
)sg_head
->sg_list
[0].bytes
;
8615 scsiq
->q1
.cntl
&= ~(QC_SG_HEAD
| QC_SG_SWAP_QUEUE
);
8617 sg_entry_cnt_minus_one
= sg_entry_cnt
- 1;
8619 scsi_cmd
= scsiq
->cdbptr
[0];
8620 disable_syn_offset_one_fix
= FALSE
;
8621 if ((asc_dvc
->pci_fix_asyn_xfer
& scsiq
->q1
.target_id
) &&
8622 !(asc_dvc
->pci_fix_asyn_xfer_always
& scsiq
->q1
.target_id
)) {
8623 if (scsiq
->q1
.cntl
& QC_SG_HEAD
) {
8625 for (i
= 0; i
< sg_entry_cnt
; i
++) {
8627 (ADV_DCNT
)le32_to_cpu(sg_head
->sg_list
[i
].
8631 data_cnt
= le32_to_cpu(scsiq
->q1
.data_cnt
);
8633 if (data_cnt
!= 0UL) {
8634 if (data_cnt
< 512UL) {
8635 disable_syn_offset_one_fix
= TRUE
;
8637 for (i
= 0; i
< ASC_SYN_OFFSET_ONE_DISABLE_LIST
;
8640 _syn_offset_one_disable_cmd
[i
];
8641 if (disable_cmd
== 0xFF) {
8644 if (scsi_cmd
== disable_cmd
) {
8645 disable_syn_offset_one_fix
=
8653 if (disable_syn_offset_one_fix
) {
8654 scsiq
->q2
.tag_code
&= ~SIMPLE_QUEUE_TAG
;
8655 scsiq
->q2
.tag_code
|= (ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX
|
8656 ASC_TAG_FLAG_DISABLE_DISCONNECT
);
8658 scsiq
->q2
.tag_code
&= 0x27;
8660 if ((scsiq
->q1
.cntl
& QC_SG_HEAD
) != 0) {
8661 if (asc_dvc
->bug_fix_cntl
) {
8662 if (asc_dvc
->bug_fix_cntl
& ASC_BUG_FIX_IF_NOT_DWB
) {
8663 if ((scsi_cmd
== READ_6
) ||
8664 (scsi_cmd
== READ_10
)) {
8666 (ADV_PADDR
)le32_to_cpu(sg_head
->
8668 [sg_entry_cnt_minus_one
].
8670 (ADV_DCNT
)le32_to_cpu(sg_head
->
8672 [sg_entry_cnt_minus_one
].
8675 (uchar
)((ushort
)addr
& 0x0003);
8676 if ((extra_bytes
!= 0)
8680 ASC_TAG_FLAG_EXTRA_BYTES
)
8682 scsiq
->q2
.tag_code
|=
8683 ASC_TAG_FLAG_EXTRA_BYTES
;
8684 scsiq
->q1
.extra_bytes
=
8687 le32_to_cpu(sg_head
->
8689 [sg_entry_cnt_minus_one
].
8692 (ASC_DCNT
) extra_bytes
;
8695 [sg_entry_cnt_minus_one
].
8697 cpu_to_le32(data_cnt
);
8702 sg_head
->entry_to_copy
= sg_head
->entry_cnt
;
8703 #if CC_VERY_LONG_SG_LIST
8705 * Set the sg_entry_cnt to the maximum possible. The rest of
8706 * the SG elements will be copied when the RISC completes the
8707 * SG elements that fit and halts.
8709 if (sg_entry_cnt
> ASC_MAX_SG_LIST
) {
8710 sg_entry_cnt
= ASC_MAX_SG_LIST
;
8712 #endif /* CC_VERY_LONG_SG_LIST */
8713 n_q_required
= AscSgListToQueue(sg_entry_cnt
);
8714 if ((AscGetNumOfFreeQueue(asc_dvc
, target_ix
, n_q_required
) >=
8715 (uint
) n_q_required
)
8716 || ((scsiq
->q1
.cntl
& QC_URGENT
) != 0)) {
8718 AscSendScsiQueue(asc_dvc
, scsiq
,
8719 n_q_required
)) == 1) {
8720 asc_dvc
->in_critical_cnt
--;
8725 if (asc_dvc
->bug_fix_cntl
) {
8726 if (asc_dvc
->bug_fix_cntl
& ASC_BUG_FIX_IF_NOT_DWB
) {
8727 if ((scsi_cmd
== READ_6
) ||
8728 (scsi_cmd
== READ_10
)) {
8730 le32_to_cpu(scsiq
->q1
.data_addr
) +
8731 le32_to_cpu(scsiq
->q1
.data_cnt
);
8733 (uchar
)((ushort
)addr
& 0x0003);
8734 if ((extra_bytes
!= 0)
8738 ASC_TAG_FLAG_EXTRA_BYTES
)
8741 le32_to_cpu(scsiq
->q1
.
8743 if (((ushort
)data_cnt
& 0x01FF)
8745 scsiq
->q2
.tag_code
|=
8746 ASC_TAG_FLAG_EXTRA_BYTES
;
8747 data_cnt
-= (ASC_DCNT
)
8749 scsiq
->q1
.data_cnt
=
8752 scsiq
->q1
.extra_bytes
=
8760 if ((AscGetNumOfFreeQueue(asc_dvc
, target_ix
, 1) >= 1) ||
8761 ((scsiq
->q1
.cntl
& QC_URGENT
) != 0)) {
8762 if ((sta
= AscSendScsiQueue(asc_dvc
, scsiq
,
8763 n_q_required
)) == 1) {
8764 asc_dvc
->in_critical_cnt
--;
8769 asc_dvc
->in_critical_cnt
--;
8774 * AdvExeScsiQueue() - Send a request to the RISC microcode program.
8776 * Allocate a carrier structure, point the carrier to the ADV_SCSI_REQ_Q,
8777 * add the carrier to the ICQ (Initiator Command Queue), and tickle the
8778 * RISC to notify it a new command is ready to be executed.
8780 * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
8781 * set to SCSI_MAX_RETRY.
8783 * Multi-byte fields in the ASC_SCSI_REQ_Q that are used by the microcode
8784 * for DMA addresses or math operations are byte swapped to little-endian
8788 * ADV_SUCCESS(1) - The request was successfully queued.
8789 * ADV_BUSY(0) - Resource unavailable; Retry again after pending
8790 * request completes.
8791 * ADV_ERROR(-1) - Invalid ADV_SCSI_REQ_Q request structure
8794 static int AdvExeScsiQueue(ADV_DVC_VAR
*asc_dvc
, ADV_SCSI_REQ_Q
*scsiq
)
8796 AdvPortAddr iop_base
;
8797 ADV_PADDR req_paddr
;
8798 ADV_CARR_T
*new_carrp
;
8801 * The ADV_SCSI_REQ_Q 'target_id' field should never exceed ADV_MAX_TID.
8803 if (scsiq
->target_id
> ADV_MAX_TID
) {
8804 scsiq
->host_status
= QHSTA_M_INVALID_DEVICE
;
8805 scsiq
->done_status
= QD_WITH_ERROR
;
8809 iop_base
= asc_dvc
->iop_base
;
8812 * Allocate a carrier ensuring at least one carrier always
8813 * remains on the freelist and initialize fields.
8815 if ((new_carrp
= asc_dvc
->carr_freelist
) == NULL
) {
8818 asc_dvc
->carr_freelist
= (ADV_CARR_T
*)
8819 ADV_U32_TO_VADDR(le32_to_cpu(new_carrp
->next_vpa
));
8820 asc_dvc
->carr_pending_cnt
++;
8823 * Set the carrier to be a stopper by setting 'next_vpa'
8824 * to the stopper value. The current stopper will be changed
8825 * below to point to the new stopper.
8827 new_carrp
->next_vpa
= cpu_to_le32(ASC_CQ_STOPPER
);
8830 * Clear the ADV_SCSI_REQ_Q done flag.
8832 scsiq
->a_flag
&= ~ADV_SCSIQ_DONE
;
8834 req_paddr
= virt_to_bus(scsiq
);
8835 BUG_ON(req_paddr
& 31);
8836 /* Wait for assertion before making little-endian */
8837 req_paddr
= cpu_to_le32(req_paddr
);
8839 /* Save virtual and physical address of ADV_SCSI_REQ_Q and carrier. */
8840 scsiq
->scsiq_ptr
= cpu_to_le32(ADV_VADDR_TO_U32(scsiq
));
8841 scsiq
->scsiq_rptr
= req_paddr
;
8843 scsiq
->carr_va
= cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc
->icq_sp
));
8845 * Every ADV_CARR_T.carr_pa is byte swapped to little-endian
8846 * order during initialization.
8848 scsiq
->carr_pa
= asc_dvc
->icq_sp
->carr_pa
;
8851 * Use the current stopper to send the ADV_SCSI_REQ_Q command to
8852 * the microcode. The newly allocated stopper will become the new
8855 asc_dvc
->icq_sp
->areq_vpa
= req_paddr
;
8858 * Set the 'next_vpa' pointer for the old stopper to be the
8859 * physical address of the new stopper. The RISC can only
8860 * follow physical addresses.
8862 asc_dvc
->icq_sp
->next_vpa
= new_carrp
->carr_pa
;
8865 * Set the host adapter stopper pointer to point to the new carrier.
8867 asc_dvc
->icq_sp
= new_carrp
;
8869 if (asc_dvc
->chip_type
== ADV_CHIP_ASC3550
||
8870 asc_dvc
->chip_type
== ADV_CHIP_ASC38C0800
) {
8872 * Tickle the RISC to tell it to read its Command Queue Head pointer.
8874 AdvWriteByteRegister(iop_base
, IOPB_TICKLE
, ADV_TICKLE_A
);
8875 if (asc_dvc
->chip_type
== ADV_CHIP_ASC3550
) {
8877 * Clear the tickle value. In the ASC-3550 the RISC flag
8878 * command 'clr_tickle_a' does not work unless the host
8881 AdvWriteByteRegister(iop_base
, IOPB_TICKLE
,
8884 } else if (asc_dvc
->chip_type
== ADV_CHIP_ASC38C1600
) {
8886 * Notify the RISC a carrier is ready by writing the physical
8887 * address of the new carrier stopper to the COMMA register.
8889 AdvWriteDWordRegister(iop_base
, IOPDW_COMMA
,
8890 le32_to_cpu(new_carrp
->carr_pa
));
8897 * Execute a single 'Scsi_Cmnd'.
8899 static int asc_execute_scsi_cmnd(struct scsi_cmnd
*scp
)
8902 struct asc_board
*boardp
= shost_priv(scp
->device
->host
);
8904 ASC_DBG(1, "scp 0x%p\n", scp
);
8906 if (ASC_NARROW_BOARD(boardp
)) {
8907 ASC_DVC_VAR
*asc_dvc
= &boardp
->dvc_var
.asc_dvc_var
;
8908 struct asc_scsi_q asc_scsi_q
;
8910 /* asc_build_req() can not return ASC_BUSY. */
8911 ret
= asc_build_req(boardp
, scp
, &asc_scsi_q
);
8912 if (ret
== ASC_ERROR
) {
8913 ASC_STATS(scp
->device
->host
, build_error
);
8917 ret
= AscExeScsiQueue(asc_dvc
, &asc_scsi_q
);
8918 kfree(asc_scsi_q
.sg_head
);
8919 err_code
= asc_dvc
->err_code
;
8921 ADV_DVC_VAR
*adv_dvc
= &boardp
->dvc_var
.adv_dvc_var
;
8922 ADV_SCSI_REQ_Q
*adv_scsiqp
;
8924 switch (adv_build_req(boardp
, scp
, &adv_scsiqp
)) {
8926 ASC_DBG(3, "adv_build_req ASC_NOERROR\n");
8929 ASC_DBG(1, "adv_build_req ASC_BUSY\n");
8931 * The asc_stats fields 'adv_build_noreq' and
8932 * 'adv_build_nosg' count wide board busy conditions.
8933 * They are updated in adv_build_req and
8934 * adv_get_sglist, respectively.
8939 ASC_DBG(1, "adv_build_req ASC_ERROR\n");
8940 ASC_STATS(scp
->device
->host
, build_error
);
8944 ret
= AdvExeScsiQueue(adv_dvc
, adv_scsiqp
);
8945 err_code
= adv_dvc
->err_code
;
8950 ASC_STATS(scp
->device
->host
, exe_noerror
);
8952 * Increment monotonically increasing per device
8953 * successful request counter. Wrapping doesn't matter.
8955 boardp
->reqcnt
[scp
->device
->id
]++;
8956 ASC_DBG(1, "ExeScsiQueue() ASC_NOERROR\n");
8959 ASC_STATS(scp
->device
->host
, exe_busy
);
8962 scmd_printk(KERN_ERR
, scp
, "ExeScsiQueue() ASC_ERROR, "
8963 "err_code 0x%x\n", err_code
);
8964 ASC_STATS(scp
->device
->host
, exe_error
);
8965 scp
->result
= HOST_BYTE(DID_ERROR
);
8968 scmd_printk(KERN_ERR
, scp
, "ExeScsiQueue() unknown, "
8969 "err_code 0x%x\n", err_code
);
8970 ASC_STATS(scp
->device
->host
, exe_unknown
);
8971 scp
->result
= HOST_BYTE(DID_ERROR
);
8975 ASC_DBG(1, "end\n");
8980 * advansys_queuecommand() - interrupt-driven I/O entrypoint.
8982 * This function always returns 0. Command return status is saved
8983 * in the 'scp' result field.
8986 advansys_queuecommand_lck(struct scsi_cmnd
*scp
, void (*done
)(struct scsi_cmnd
*))
8988 struct Scsi_Host
*shost
= scp
->device
->host
;
8989 int asc_res
, result
= 0;
8991 ASC_STATS(shost
, queuecommand
);
8992 scp
->scsi_done
= done
;
8994 asc_res
= asc_execute_scsi_cmnd(scp
);
9000 result
= SCSI_MLQUEUE_HOST_BUSY
;
9011 static DEF_SCSI_QCMD(advansys_queuecommand
)
9013 static ushort
AscGetEisaChipCfg(PortAddr iop_base
)
9015 PortAddr eisa_cfg_iop
= (PortAddr
) ASC_GET_EISA_SLOT(iop_base
) |
9016 (PortAddr
) (ASC_EISA_CFG_IOP_MASK
);
9017 return inpw(eisa_cfg_iop
);
9021 * Return the BIOS address of the adapter at the specified
9022 * I/O port and with the specified bus type.
9024 static unsigned short AscGetChipBiosAddress(PortAddr iop_base
,
9025 unsigned short bus_type
)
9027 unsigned short cfg_lsw
;
9028 unsigned short bios_addr
;
9031 * The PCI BIOS is re-located by the motherboard BIOS. Because
9032 * of this the driver can not determine where a PCI BIOS is
9033 * loaded and executes.
9035 if (bus_type
& ASC_IS_PCI
)
9038 if ((bus_type
& ASC_IS_EISA
) != 0) {
9039 cfg_lsw
= AscGetEisaChipCfg(iop_base
);
9041 bios_addr
= ASC_BIOS_MIN_ADDR
+ cfg_lsw
* ASC_BIOS_BANK_SIZE
;
9045 cfg_lsw
= AscGetChipCfgLsw(iop_base
);
9048 * ISA PnP uses the top bit as the 32K BIOS flag
9050 if (bus_type
== ASC_IS_ISAPNP
)
9052 bios_addr
= ASC_BIOS_MIN_ADDR
+ (cfg_lsw
>> 12) * ASC_BIOS_BANK_SIZE
;
9056 static uchar
AscSetChipScsiID(PortAddr iop_base
, uchar new_host_id
)
9060 if (AscGetChipScsiID(iop_base
) == new_host_id
) {
9061 return (new_host_id
);
9063 cfg_lsw
= AscGetChipCfgLsw(iop_base
);
9065 cfg_lsw
|= (ushort
)((new_host_id
& ASC_MAX_TID
) << 8);
9066 AscSetChipCfgLsw(iop_base
, cfg_lsw
);
9067 return (AscGetChipScsiID(iop_base
));
9070 static unsigned char AscGetChipScsiCtrl(PortAddr iop_base
)
9074 AscSetBank(iop_base
, 1);
9075 sc
= inp(iop_base
+ IOP_REG_SC
);
9076 AscSetBank(iop_base
, 0);
9080 static unsigned char AscGetChipVersion(PortAddr iop_base
,
9081 unsigned short bus_type
)
9083 if (bus_type
& ASC_IS_EISA
) {
9085 unsigned char revision
;
9086 eisa_iop
= (PortAddr
) ASC_GET_EISA_SLOT(iop_base
) |
9087 (PortAddr
) ASC_EISA_REV_IOP_MASK
;
9088 revision
= inp(eisa_iop
);
9089 return ASC_CHIP_MIN_VER_EISA
- 1 + revision
;
9091 return AscGetChipVerNo(iop_base
);
9095 static void AscEnableIsaDma(uchar dma_channel
)
9097 if (dma_channel
< 4) {
9098 outp(0x000B, (ushort
)(0xC0 | dma_channel
));
9099 outp(0x000A, dma_channel
);
9100 } else if (dma_channel
< 8) {
9101 outp(0x00D6, (ushort
)(0xC0 | (dma_channel
- 4)));
9102 outp(0x00D4, (ushort
)(dma_channel
- 4));
9105 #endif /* CONFIG_ISA */
9107 static int AscStopQueueExe(PortAddr iop_base
)
9111 if (AscReadLramByte(iop_base
, ASCV_STOP_CODE_B
) == 0) {
9112 AscWriteLramByte(iop_base
, ASCV_STOP_CODE_B
,
9113 ASC_STOP_REQ_RISC_STOP
);
9115 if (AscReadLramByte(iop_base
, ASCV_STOP_CODE_B
) &
9116 ASC_STOP_ACK_RISC_STOP
) {
9120 } while (count
++ < 20);
9125 static ASC_DCNT
AscGetMaxDmaCount(ushort bus_type
)
9127 if (bus_type
& ASC_IS_ISA
)
9128 return ASC_MAX_ISA_DMA_COUNT
;
9129 else if (bus_type
& (ASC_IS_EISA
| ASC_IS_VL
))
9130 return ASC_MAX_VL_DMA_COUNT
;
9131 return ASC_MAX_PCI_DMA_COUNT
;
9135 static ushort
AscGetIsaDmaChannel(PortAddr iop_base
)
9139 channel
= AscGetChipCfgLsw(iop_base
) & 0x0003;
9140 if (channel
== 0x03)
9142 else if (channel
== 0x00)
9144 return (channel
+ 4);
9147 static ushort
AscSetIsaDmaChannel(PortAddr iop_base
, ushort dma_channel
)
9152 if ((dma_channel
>= 5) && (dma_channel
<= 7)) {
9153 if (dma_channel
== 7)
9156 value
= dma_channel
- 4;
9157 cfg_lsw
= AscGetChipCfgLsw(iop_base
) & 0xFFFC;
9159 AscSetChipCfgLsw(iop_base
, cfg_lsw
);
9160 return (AscGetIsaDmaChannel(iop_base
));
9165 static uchar
AscGetIsaDmaSpeed(PortAddr iop_base
)
9169 AscSetBank(iop_base
, 1);
9170 speed_value
= AscReadChipDmaSpeed(iop_base
);
9171 speed_value
&= 0x07;
9172 AscSetBank(iop_base
, 0);
9176 static uchar
AscSetIsaDmaSpeed(PortAddr iop_base
, uchar speed_value
)
9178 speed_value
&= 0x07;
9179 AscSetBank(iop_base
, 1);
9180 AscWriteChipDmaSpeed(iop_base
, speed_value
);
9181 AscSetBank(iop_base
, 0);
9182 return AscGetIsaDmaSpeed(iop_base
);
9184 #endif /* CONFIG_ISA */
9186 static ushort
AscInitAscDvcVar(ASC_DVC_VAR
*asc_dvc
)
9193 iop_base
= asc_dvc
->iop_base
;
9195 asc_dvc
->err_code
= 0;
9196 if ((asc_dvc
->bus_type
&
9197 (ASC_IS_ISA
| ASC_IS_PCI
| ASC_IS_EISA
| ASC_IS_VL
)) == 0) {
9198 asc_dvc
->err_code
|= ASC_IERR_NO_BUS_TYPE
;
9200 AscSetChipControl(iop_base
, CC_HALT
);
9201 AscSetChipStatus(iop_base
, 0);
9202 asc_dvc
->bug_fix_cntl
= 0;
9203 asc_dvc
->pci_fix_asyn_xfer
= 0;
9204 asc_dvc
->pci_fix_asyn_xfer_always
= 0;
9205 /* asc_dvc->init_state initialized in AscInitGetConfig(). */
9206 asc_dvc
->sdtr_done
= 0;
9207 asc_dvc
->cur_total_qng
= 0;
9208 asc_dvc
->is_in_int
= 0;
9209 asc_dvc
->in_critical_cnt
= 0;
9210 asc_dvc
->last_q_shortage
= 0;
9211 asc_dvc
->use_tagged_qng
= 0;
9212 asc_dvc
->no_scam
= 0;
9213 asc_dvc
->unit_not_ready
= 0;
9214 asc_dvc
->queue_full_or_busy
= 0;
9215 asc_dvc
->redo_scam
= 0;
9217 asc_dvc
->min_sdtr_index
= 0;
9218 asc_dvc
->cfg
->can_tagged_qng
= 0;
9219 asc_dvc
->cfg
->cmd_qng_enabled
= 0;
9220 asc_dvc
->dvc_cntl
= ASC_DEF_DVC_CNTL
;
9221 asc_dvc
->init_sdtr
= 0;
9222 asc_dvc
->max_total_qng
= ASC_DEF_MAX_TOTAL_QNG
;
9223 asc_dvc
->scsi_reset_wait
= 3;
9224 asc_dvc
->start_motor
= ASC_SCSI_WIDTH_BIT_SET
;
9225 asc_dvc
->max_dma_count
= AscGetMaxDmaCount(asc_dvc
->bus_type
);
9226 asc_dvc
->cfg
->sdtr_enable
= ASC_SCSI_WIDTH_BIT_SET
;
9227 asc_dvc
->cfg
->disc_enable
= ASC_SCSI_WIDTH_BIT_SET
;
9228 asc_dvc
->cfg
->chip_scsi_id
= ASC_DEF_CHIP_SCSI_ID
;
9229 chip_version
= AscGetChipVersion(iop_base
, asc_dvc
->bus_type
);
9230 asc_dvc
->cfg
->chip_version
= chip_version
;
9231 asc_dvc
->sdtr_period_tbl
= asc_syn_xfer_period
;
9232 asc_dvc
->max_sdtr_index
= 7;
9233 if ((asc_dvc
->bus_type
& ASC_IS_PCI
) &&
9234 (chip_version
>= ASC_CHIP_VER_PCI_ULTRA_3150
)) {
9235 asc_dvc
->bus_type
= ASC_IS_PCI_ULTRA
;
9236 asc_dvc
->sdtr_period_tbl
= asc_syn_ultra_xfer_period
;
9237 asc_dvc
->max_sdtr_index
= 15;
9238 if (chip_version
== ASC_CHIP_VER_PCI_ULTRA_3150
) {
9239 AscSetExtraControl(iop_base
,
9240 (SEC_ACTIVE_NEGATE
| SEC_SLEW_RATE
));
9241 } else if (chip_version
>= ASC_CHIP_VER_PCI_ULTRA_3050
) {
9242 AscSetExtraControl(iop_base
,
9243 (SEC_ACTIVE_NEGATE
|
9244 SEC_ENABLE_FILTER
));
9247 if (asc_dvc
->bus_type
== ASC_IS_PCI
) {
9248 AscSetExtraControl(iop_base
,
9249 (SEC_ACTIVE_NEGATE
| SEC_SLEW_RATE
));
9252 asc_dvc
->cfg
->isa_dma_speed
= ASC_DEF_ISA_DMA_SPEED
;
9254 if ((asc_dvc
->bus_type
& ASC_IS_ISA
) != 0) {
9255 if (chip_version
>= ASC_CHIP_MIN_VER_ISA_PNP
) {
9256 AscSetChipIFC(iop_base
, IFC_INIT_DEFAULT
);
9257 asc_dvc
->bus_type
= ASC_IS_ISAPNP
;
9259 asc_dvc
->cfg
->isa_dma_channel
=
9260 (uchar
)AscGetIsaDmaChannel(iop_base
);
9262 #endif /* CONFIG_ISA */
9263 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
9264 asc_dvc
->cur_dvc_qng
[i
] = 0;
9265 asc_dvc
->max_dvc_qng
[i
] = ASC_MAX_SCSI1_QNG
;
9266 asc_dvc
->scsiq_busy_head
[i
] = (ASC_SCSI_Q
*)0L;
9267 asc_dvc
->scsiq_busy_tail
[i
] = (ASC_SCSI_Q
*)0L;
9268 asc_dvc
->cfg
->max_tag_qng
[i
] = ASC_MAX_INRAM_TAG_QNG
;
9273 static int AscWriteEEPCmdReg(PortAddr iop_base
, uchar cmd_reg
)
9277 for (retry
= 0; retry
< ASC_EEP_MAX_RETRY
; retry
++) {
9278 unsigned char read_back
;
9279 AscSetChipEEPCmd(iop_base
, cmd_reg
);
9281 read_back
= AscGetChipEEPCmd(iop_base
);
9282 if (read_back
== cmd_reg
)
9288 static void AscWaitEEPRead(void)
9293 static ushort
AscReadEEPWord(PortAddr iop_base
, uchar addr
)
9298 AscWriteEEPCmdReg(iop_base
, ASC_EEP_CMD_WRITE_DISABLE
);
9300 cmd_reg
= addr
| ASC_EEP_CMD_READ
;
9301 AscWriteEEPCmdReg(iop_base
, cmd_reg
);
9303 read_wval
= AscGetChipEEPData(iop_base
);
9308 static ushort
AscGetEEPConfig(PortAddr iop_base
, ASCEEP_CONFIG
*cfg_buf
,
9316 int uchar_end_in_config
= ASC_EEP_MAX_DVC_ADDR
- 2;
9319 wbuf
= (ushort
*)cfg_buf
;
9321 /* Read two config words; Byte-swapping done by AscReadEEPWord(). */
9322 for (s_addr
= 0; s_addr
< 2; s_addr
++, wbuf
++) {
9323 *wbuf
= AscReadEEPWord(iop_base
, (uchar
)s_addr
);
9326 if (bus_type
& ASC_IS_VL
) {
9327 cfg_beg
= ASC_EEP_DVC_CFG_BEG_VL
;
9328 cfg_end
= ASC_EEP_MAX_DVC_ADDR_VL
;
9330 cfg_beg
= ASC_EEP_DVC_CFG_BEG
;
9331 cfg_end
= ASC_EEP_MAX_DVC_ADDR
;
9333 for (s_addr
= cfg_beg
; s_addr
<= (cfg_end
- 1); s_addr
++, wbuf
++) {
9334 wval
= AscReadEEPWord(iop_base
, (uchar
)s_addr
);
9335 if (s_addr
<= uchar_end_in_config
) {
9337 * Swap all char fields - must unswap bytes already swapped
9338 * by AscReadEEPWord().
9340 *wbuf
= le16_to_cpu(wval
);
9342 /* Don't swap word field at the end - cntl field. */
9345 sum
+= wval
; /* Checksum treats all EEPROM data as words. */
9348 * Read the checksum word which will be compared against 'sum'
9349 * by the caller. Word field already swapped.
9351 *wbuf
= AscReadEEPWord(iop_base
, (uchar
)s_addr
);
9355 static int AscTestExternalLram(ASC_DVC_VAR
*asc_dvc
)
9362 iop_base
= asc_dvc
->iop_base
;
9364 q_addr
= ASC_QNO_TO_QADDR(241);
9365 saved_word
= AscReadLramWord(iop_base
, q_addr
);
9366 AscSetChipLramAddr(iop_base
, q_addr
);
9367 AscSetChipLramData(iop_base
, 0x55AA);
9369 AscSetChipLramAddr(iop_base
, q_addr
);
9370 if (AscGetChipLramData(iop_base
) == 0x55AA) {
9372 AscWriteLramWord(iop_base
, q_addr
, saved_word
);
9377 static void AscWaitEEPWrite(void)
9382 static int AscWriteEEPDataReg(PortAddr iop_base
, ushort data_reg
)
9389 AscSetChipEEPData(iop_base
, data_reg
);
9391 read_back
= AscGetChipEEPData(iop_base
);
9392 if (read_back
== data_reg
) {
9395 if (retry
++ > ASC_EEP_MAX_RETRY
) {
9401 static ushort
AscWriteEEPWord(PortAddr iop_base
, uchar addr
, ushort word_val
)
9405 read_wval
= AscReadEEPWord(iop_base
, addr
);
9406 if (read_wval
!= word_val
) {
9407 AscWriteEEPCmdReg(iop_base
, ASC_EEP_CMD_WRITE_ABLE
);
9409 AscWriteEEPDataReg(iop_base
, word_val
);
9411 AscWriteEEPCmdReg(iop_base
,
9412 (uchar
)((uchar
)ASC_EEP_CMD_WRITE
| addr
));
9414 AscWriteEEPCmdReg(iop_base
, ASC_EEP_CMD_WRITE_DISABLE
);
9416 return (AscReadEEPWord(iop_base
, addr
));
9421 static int AscSetEEPConfigOnce(PortAddr iop_base
, ASCEEP_CONFIG
*cfg_buf
,
9431 int uchar_end_in_config
= ASC_EEP_MAX_DVC_ADDR
- 2;
9433 wbuf
= (ushort
*)cfg_buf
;
9436 /* Write two config words; AscWriteEEPWord() will swap bytes. */
9437 for (s_addr
= 0; s_addr
< 2; s_addr
++, wbuf
++) {
9439 if (*wbuf
!= AscWriteEEPWord(iop_base
, (uchar
)s_addr
, *wbuf
)) {
9443 if (bus_type
& ASC_IS_VL
) {
9444 cfg_beg
= ASC_EEP_DVC_CFG_BEG_VL
;
9445 cfg_end
= ASC_EEP_MAX_DVC_ADDR_VL
;
9447 cfg_beg
= ASC_EEP_DVC_CFG_BEG
;
9448 cfg_end
= ASC_EEP_MAX_DVC_ADDR
;
9450 for (s_addr
= cfg_beg
; s_addr
<= (cfg_end
- 1); s_addr
++, wbuf
++) {
9451 if (s_addr
<= uchar_end_in_config
) {
9453 * This is a char field. Swap char fields before they are
9454 * swapped again by AscWriteEEPWord().
9456 word
= cpu_to_le16(*wbuf
);
9458 AscWriteEEPWord(iop_base
, (uchar
)s_addr
, word
)) {
9462 /* Don't swap word field at the end - cntl field. */
9464 AscWriteEEPWord(iop_base
, (uchar
)s_addr
, *wbuf
)) {
9468 sum
+= *wbuf
; /* Checksum calculated from word values. */
9470 /* Write checksum word. It will be swapped by AscWriteEEPWord(). */
9472 if (sum
!= AscWriteEEPWord(iop_base
, (uchar
)s_addr
, sum
)) {
9476 /* Read EEPROM back again. */
9477 wbuf
= (ushort
*)cfg_buf
;
9479 * Read two config words; Byte-swapping done by AscReadEEPWord().
9481 for (s_addr
= 0; s_addr
< 2; s_addr
++, wbuf
++) {
9482 if (*wbuf
!= AscReadEEPWord(iop_base
, (uchar
)s_addr
)) {
9486 if (bus_type
& ASC_IS_VL
) {
9487 cfg_beg
= ASC_EEP_DVC_CFG_BEG_VL
;
9488 cfg_end
= ASC_EEP_MAX_DVC_ADDR_VL
;
9490 cfg_beg
= ASC_EEP_DVC_CFG_BEG
;
9491 cfg_end
= ASC_EEP_MAX_DVC_ADDR
;
9493 for (s_addr
= cfg_beg
; s_addr
<= (cfg_end
- 1); s_addr
++, wbuf
++) {
9494 if (s_addr
<= uchar_end_in_config
) {
9496 * Swap all char fields. Must unswap bytes already swapped
9497 * by AscReadEEPWord().
9500 le16_to_cpu(AscReadEEPWord
9501 (iop_base
, (uchar
)s_addr
));
9503 /* Don't swap word field at the end - cntl field. */
9504 word
= AscReadEEPWord(iop_base
, (uchar
)s_addr
);
9506 if (*wbuf
!= word
) {
9510 /* Read checksum; Byte swapping not needed. */
9511 if (AscReadEEPWord(iop_base
, (uchar
)s_addr
) != sum
) {
9517 static int AscSetEEPConfig(PortAddr iop_base
, ASCEEP_CONFIG
*cfg_buf
,
9525 if ((n_error
= AscSetEEPConfigOnce(iop_base
, cfg_buf
,
9529 if (++retry
> ASC_EEP_MAX_RETRY
) {
9536 static ushort
AscInitFromEEP(ASC_DVC_VAR
*asc_dvc
)
9538 ASCEEP_CONFIG eep_config_buf
;
9539 ASCEEP_CONFIG
*eep_config
;
9543 ushort cfg_msw
, cfg_lsw
;
9547 iop_base
= asc_dvc
->iop_base
;
9549 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0x00FE);
9550 AscStopQueueExe(iop_base
);
9551 if ((AscStopChip(iop_base
) == FALSE
) ||
9552 (AscGetChipScsiCtrl(iop_base
) != 0)) {
9553 asc_dvc
->init_state
|= ASC_INIT_RESET_SCSI_DONE
;
9554 AscResetChipAndScsiBus(asc_dvc
);
9555 mdelay(asc_dvc
->scsi_reset_wait
* 1000); /* XXX: msleep? */
9557 if (AscIsChipHalted(iop_base
) == FALSE
) {
9558 asc_dvc
->err_code
|= ASC_IERR_START_STOP_CHIP
;
9561 AscSetPCAddr(iop_base
, ASC_MCODE_START_ADDR
);
9562 if (AscGetPCAddr(iop_base
) != ASC_MCODE_START_ADDR
) {
9563 asc_dvc
->err_code
|= ASC_IERR_SET_PC_ADDR
;
9566 eep_config
= (ASCEEP_CONFIG
*)&eep_config_buf
;
9567 cfg_msw
= AscGetChipCfgMsw(iop_base
);
9568 cfg_lsw
= AscGetChipCfgLsw(iop_base
);
9569 if ((cfg_msw
& ASC_CFG_MSW_CLR_MASK
) != 0) {
9570 cfg_msw
&= ~ASC_CFG_MSW_CLR_MASK
;
9571 warn_code
|= ASC_WARN_CFG_MSW_RECOVER
;
9572 AscSetChipCfgMsw(iop_base
, cfg_msw
);
9574 chksum
= AscGetEEPConfig(iop_base
, eep_config
, asc_dvc
->bus_type
);
9575 ASC_DBG(1, "chksum 0x%x\n", chksum
);
9579 if (AscGetChipStatus(iop_base
) & CSW_AUTO_CONFIG
) {
9580 warn_code
|= ASC_WARN_AUTO_CONFIG
;
9581 if (asc_dvc
->cfg
->chip_version
== 3) {
9582 if (eep_config
->cfg_lsw
!= cfg_lsw
) {
9583 warn_code
|= ASC_WARN_EEPROM_RECOVER
;
9584 eep_config
->cfg_lsw
=
9585 AscGetChipCfgLsw(iop_base
);
9587 if (eep_config
->cfg_msw
!= cfg_msw
) {
9588 warn_code
|= ASC_WARN_EEPROM_RECOVER
;
9589 eep_config
->cfg_msw
=
9590 AscGetChipCfgMsw(iop_base
);
9594 eep_config
->cfg_msw
&= ~ASC_CFG_MSW_CLR_MASK
;
9595 eep_config
->cfg_lsw
|= ASC_CFG0_HOST_INT_ON
;
9596 ASC_DBG(1, "eep_config->chksum 0x%x\n", eep_config
->chksum
);
9597 if (chksum
!= eep_config
->chksum
) {
9598 if (AscGetChipVersion(iop_base
, asc_dvc
->bus_type
) ==
9599 ASC_CHIP_VER_PCI_ULTRA_3050
) {
9600 ASC_DBG(1, "chksum error ignored; EEPROM-less board\n");
9601 eep_config
->init_sdtr
= 0xFF;
9602 eep_config
->disc_enable
= 0xFF;
9603 eep_config
->start_motor
= 0xFF;
9604 eep_config
->use_cmd_qng
= 0;
9605 eep_config
->max_total_qng
= 0xF0;
9606 eep_config
->max_tag_qng
= 0x20;
9607 eep_config
->cntl
= 0xBFFF;
9608 ASC_EEP_SET_CHIP_ID(eep_config
, 7);
9609 eep_config
->no_scam
= 0;
9610 eep_config
->adapter_info
[0] = 0;
9611 eep_config
->adapter_info
[1] = 0;
9612 eep_config
->adapter_info
[2] = 0;
9613 eep_config
->adapter_info
[3] = 0;
9614 eep_config
->adapter_info
[4] = 0;
9615 /* Indicate EEPROM-less board. */
9616 eep_config
->adapter_info
[5] = 0xBB;
9619 ("AscInitFromEEP: EEPROM checksum error; Will try to re-write EEPROM.\n");
9621 warn_code
|= ASC_WARN_EEPROM_CHKSUM
;
9624 asc_dvc
->cfg
->sdtr_enable
= eep_config
->init_sdtr
;
9625 asc_dvc
->cfg
->disc_enable
= eep_config
->disc_enable
;
9626 asc_dvc
->cfg
->cmd_qng_enabled
= eep_config
->use_cmd_qng
;
9627 asc_dvc
->cfg
->isa_dma_speed
= ASC_EEP_GET_DMA_SPD(eep_config
);
9628 asc_dvc
->start_motor
= eep_config
->start_motor
;
9629 asc_dvc
->dvc_cntl
= eep_config
->cntl
;
9630 asc_dvc
->no_scam
= eep_config
->no_scam
;
9631 asc_dvc
->cfg
->adapter_info
[0] = eep_config
->adapter_info
[0];
9632 asc_dvc
->cfg
->adapter_info
[1] = eep_config
->adapter_info
[1];
9633 asc_dvc
->cfg
->adapter_info
[2] = eep_config
->adapter_info
[2];
9634 asc_dvc
->cfg
->adapter_info
[3] = eep_config
->adapter_info
[3];
9635 asc_dvc
->cfg
->adapter_info
[4] = eep_config
->adapter_info
[4];
9636 asc_dvc
->cfg
->adapter_info
[5] = eep_config
->adapter_info
[5];
9637 if (!AscTestExternalLram(asc_dvc
)) {
9638 if (((asc_dvc
->bus_type
& ASC_IS_PCI_ULTRA
) ==
9639 ASC_IS_PCI_ULTRA
)) {
9640 eep_config
->max_total_qng
=
9641 ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG
;
9642 eep_config
->max_tag_qng
=
9643 ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG
;
9645 eep_config
->cfg_msw
|= 0x0800;
9647 AscSetChipCfgMsw(iop_base
, cfg_msw
);
9648 eep_config
->max_total_qng
= ASC_MAX_PCI_INRAM_TOTAL_QNG
;
9649 eep_config
->max_tag_qng
= ASC_MAX_INRAM_TAG_QNG
;
9653 if (eep_config
->max_total_qng
< ASC_MIN_TOTAL_QNG
) {
9654 eep_config
->max_total_qng
= ASC_MIN_TOTAL_QNG
;
9656 if (eep_config
->max_total_qng
> ASC_MAX_TOTAL_QNG
) {
9657 eep_config
->max_total_qng
= ASC_MAX_TOTAL_QNG
;
9659 if (eep_config
->max_tag_qng
> eep_config
->max_total_qng
) {
9660 eep_config
->max_tag_qng
= eep_config
->max_total_qng
;
9662 if (eep_config
->max_tag_qng
< ASC_MIN_TAG_Q_PER_DVC
) {
9663 eep_config
->max_tag_qng
= ASC_MIN_TAG_Q_PER_DVC
;
9665 asc_dvc
->max_total_qng
= eep_config
->max_total_qng
;
9666 if ((eep_config
->use_cmd_qng
& eep_config
->disc_enable
) !=
9667 eep_config
->use_cmd_qng
) {
9668 eep_config
->disc_enable
= eep_config
->use_cmd_qng
;
9669 warn_code
|= ASC_WARN_CMD_QNG_CONFLICT
;
9671 ASC_EEP_SET_CHIP_ID(eep_config
,
9672 ASC_EEP_GET_CHIP_ID(eep_config
) & ASC_MAX_TID
);
9673 asc_dvc
->cfg
->chip_scsi_id
= ASC_EEP_GET_CHIP_ID(eep_config
);
9674 if (((asc_dvc
->bus_type
& ASC_IS_PCI_ULTRA
) == ASC_IS_PCI_ULTRA
) &&
9675 !(asc_dvc
->dvc_cntl
& ASC_CNTL_SDTR_ENABLE_ULTRA
)) {
9676 asc_dvc
->min_sdtr_index
= ASC_SDTR_ULTRA_PCI_10MB_INDEX
;
9679 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
9680 asc_dvc
->dos_int13_table
[i
] = eep_config
->dos_int13_table
[i
];
9681 asc_dvc
->cfg
->max_tag_qng
[i
] = eep_config
->max_tag_qng
;
9682 asc_dvc
->cfg
->sdtr_period_offset
[i
] =
9683 (uchar
)(ASC_DEF_SDTR_OFFSET
|
9684 (asc_dvc
->min_sdtr_index
<< 4));
9686 eep_config
->cfg_msw
= AscGetChipCfgMsw(iop_base
);
9688 if ((i
= AscSetEEPConfig(iop_base
, eep_config
,
9689 asc_dvc
->bus_type
)) != 0) {
9691 ("AscInitFromEEP: Failed to re-write EEPROM with %d errors.\n",
9695 ("AscInitFromEEP: Successfully re-wrote EEPROM.\n");
9701 static int AscInitGetConfig(struct Scsi_Host
*shost
)
9703 struct asc_board
*board
= shost_priv(shost
);
9704 ASC_DVC_VAR
*asc_dvc
= &board
->dvc_var
.asc_dvc_var
;
9705 unsigned short warn_code
= 0;
9707 asc_dvc
->init_state
= ASC_INIT_STATE_BEG_GET_CFG
;
9708 if (asc_dvc
->err_code
!= 0)
9709 return asc_dvc
->err_code
;
9711 if (AscFindSignature(asc_dvc
->iop_base
)) {
9712 warn_code
|= AscInitAscDvcVar(asc_dvc
);
9713 warn_code
|= AscInitFromEEP(asc_dvc
);
9714 asc_dvc
->init_state
|= ASC_INIT_STATE_END_GET_CFG
;
9715 if (asc_dvc
->scsi_reset_wait
> ASC_MAX_SCSI_RESET_WAIT
)
9716 asc_dvc
->scsi_reset_wait
= ASC_MAX_SCSI_RESET_WAIT
;
9718 asc_dvc
->err_code
= ASC_IERR_BAD_SIGNATURE
;
9721 switch (warn_code
) {
9722 case 0: /* No error */
9724 case ASC_WARN_IO_PORT_ROTATE
:
9725 shost_printk(KERN_WARNING
, shost
, "I/O port address "
9728 case ASC_WARN_AUTO_CONFIG
:
9729 shost_printk(KERN_WARNING
, shost
, "I/O port increment switch "
9732 case ASC_WARN_EEPROM_CHKSUM
:
9733 shost_printk(KERN_WARNING
, shost
, "EEPROM checksum error\n");
9735 case ASC_WARN_IRQ_MODIFIED
:
9736 shost_printk(KERN_WARNING
, shost
, "IRQ modified\n");
9738 case ASC_WARN_CMD_QNG_CONFLICT
:
9739 shost_printk(KERN_WARNING
, shost
, "tag queuing enabled w/o "
9743 shost_printk(KERN_WARNING
, shost
, "unknown warning: 0x%x\n",
9748 if (asc_dvc
->err_code
!= 0)
9749 shost_printk(KERN_ERR
, shost
, "error 0x%x at init_state "
9750 "0x%x\n", asc_dvc
->err_code
, asc_dvc
->init_state
);
9752 return asc_dvc
->err_code
;
9755 static int AscInitSetConfig(struct pci_dev
*pdev
, struct Scsi_Host
*shost
)
9757 struct asc_board
*board
= shost_priv(shost
);
9758 ASC_DVC_VAR
*asc_dvc
= &board
->dvc_var
.asc_dvc_var
;
9759 PortAddr iop_base
= asc_dvc
->iop_base
;
9760 unsigned short cfg_msw
;
9761 unsigned short warn_code
= 0;
9763 asc_dvc
->init_state
|= ASC_INIT_STATE_BEG_SET_CFG
;
9764 if (asc_dvc
->err_code
!= 0)
9765 return asc_dvc
->err_code
;
9766 if (!AscFindSignature(asc_dvc
->iop_base
)) {
9767 asc_dvc
->err_code
= ASC_IERR_BAD_SIGNATURE
;
9768 return asc_dvc
->err_code
;
9771 cfg_msw
= AscGetChipCfgMsw(iop_base
);
9772 if ((cfg_msw
& ASC_CFG_MSW_CLR_MASK
) != 0) {
9773 cfg_msw
&= ~ASC_CFG_MSW_CLR_MASK
;
9774 warn_code
|= ASC_WARN_CFG_MSW_RECOVER
;
9775 AscSetChipCfgMsw(iop_base
, cfg_msw
);
9777 if ((asc_dvc
->cfg
->cmd_qng_enabled
& asc_dvc
->cfg
->disc_enable
) !=
9778 asc_dvc
->cfg
->cmd_qng_enabled
) {
9779 asc_dvc
->cfg
->disc_enable
= asc_dvc
->cfg
->cmd_qng_enabled
;
9780 warn_code
|= ASC_WARN_CMD_QNG_CONFLICT
;
9782 if (AscGetChipStatus(iop_base
) & CSW_AUTO_CONFIG
) {
9783 warn_code
|= ASC_WARN_AUTO_CONFIG
;
9786 if (asc_dvc
->bus_type
& ASC_IS_PCI
) {
9788 AscSetChipCfgMsw(iop_base
, cfg_msw
);
9789 if ((asc_dvc
->bus_type
& ASC_IS_PCI_ULTRA
) == ASC_IS_PCI_ULTRA
) {
9791 if ((pdev
->device
== PCI_DEVICE_ID_ASP_1200A
) ||
9792 (pdev
->device
== PCI_DEVICE_ID_ASP_ABP940
)) {
9793 asc_dvc
->bug_fix_cntl
|= ASC_BUG_FIX_IF_NOT_DWB
;
9794 asc_dvc
->bug_fix_cntl
|=
9795 ASC_BUG_FIX_ASYN_USE_SYN
;
9799 #endif /* CONFIG_PCI */
9800 if (asc_dvc
->bus_type
== ASC_IS_ISAPNP
) {
9801 if (AscGetChipVersion(iop_base
, asc_dvc
->bus_type
)
9802 == ASC_CHIP_VER_ASYN_BUG
) {
9803 asc_dvc
->bug_fix_cntl
|= ASC_BUG_FIX_ASYN_USE_SYN
;
9806 if (AscSetChipScsiID(iop_base
, asc_dvc
->cfg
->chip_scsi_id
) !=
9807 asc_dvc
->cfg
->chip_scsi_id
) {
9808 asc_dvc
->err_code
|= ASC_IERR_SET_SCSI_ID
;
9811 if (asc_dvc
->bus_type
& ASC_IS_ISA
) {
9812 AscSetIsaDmaChannel(iop_base
, asc_dvc
->cfg
->isa_dma_channel
);
9813 AscSetIsaDmaSpeed(iop_base
, asc_dvc
->cfg
->isa_dma_speed
);
9815 #endif /* CONFIG_ISA */
9817 asc_dvc
->init_state
|= ASC_INIT_STATE_END_SET_CFG
;
9819 switch (warn_code
) {
9820 case 0: /* No error. */
9822 case ASC_WARN_IO_PORT_ROTATE
:
9823 shost_printk(KERN_WARNING
, shost
, "I/O port address "
9826 case ASC_WARN_AUTO_CONFIG
:
9827 shost_printk(KERN_WARNING
, shost
, "I/O port increment switch "
9830 case ASC_WARN_EEPROM_CHKSUM
:
9831 shost_printk(KERN_WARNING
, shost
, "EEPROM checksum error\n");
9833 case ASC_WARN_IRQ_MODIFIED
:
9834 shost_printk(KERN_WARNING
, shost
, "IRQ modified\n");
9836 case ASC_WARN_CMD_QNG_CONFLICT
:
9837 shost_printk(KERN_WARNING
, shost
, "tag queuing w/o "
9841 shost_printk(KERN_WARNING
, shost
, "unknown warning: 0x%x\n",
9846 if (asc_dvc
->err_code
!= 0)
9847 shost_printk(KERN_ERR
, shost
, "error 0x%x at init_state "
9848 "0x%x\n", asc_dvc
->err_code
, asc_dvc
->init_state
);
9850 return asc_dvc
->err_code
;
9854 * EEPROM Configuration.
9856 * All drivers should use this structure to set the default EEPROM
9857 * configuration. The BIOS now uses this structure when it is built.
9858 * Additional structure information can be found in a_condor.h where
9859 * the structure is defined.
9861 * The *_Field_IsChar structs are needed to correct for endianness.
9862 * These values are read from the board 16 bits at a time directly
9863 * into the structs. Because some fields are char, the values will be
9864 * in the wrong order. The *_Field_IsChar tells when to flip the
9865 * bytes. Data read and written to PCI memory is automatically swapped
9866 * on big-endian platforms so char fields read as words are actually being
9867 * unswapped on big-endian platforms.
9869 static ADVEEP_3550_CONFIG Default_3550_EEPROM_Config
= {
9870 ADV_EEPROM_BIOS_ENABLE
, /* cfg_lsw */
9871 0x0000, /* cfg_msw */
9872 0xFFFF, /* disc_enable */
9873 0xFFFF, /* wdtr_able */
9874 0xFFFF, /* sdtr_able */
9875 0xFFFF, /* start_motor */
9876 0xFFFF, /* tagqng_able */
9877 0xFFFF, /* bios_scan */
9878 0, /* scam_tolerant */
9879 7, /* adapter_scsi_id */
9880 0, /* bios_boot_delay */
9881 3, /* scsi_reset_delay */
9882 0, /* bios_id_lun */
9883 0, /* termination */
9885 0xFFE7, /* bios_ctrl */
9886 0xFFFF, /* ultra_able */
9888 ASC_DEF_MAX_HOST_QNG
, /* max_host_qng */
9889 ASC_DEF_MAX_DVC_QNG
, /* max_dvc_qng */
9892 0, /* serial_number_word1 */
9893 0, /* serial_number_word2 */
9894 0, /* serial_number_word3 */
9896 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9897 , /* oem_name[16] */
9898 0, /* dvc_err_code */
9899 0, /* adv_err_code */
9900 0, /* adv_err_addr */
9901 0, /* saved_dvc_err_code */
9902 0, /* saved_adv_err_code */
9903 0, /* saved_adv_err_addr */
9907 static ADVEEP_3550_CONFIG ADVEEP_3550_Config_Field_IsChar
= {
9910 0, /* -disc_enable */
9913 0, /* start_motor */
9914 0, /* tagqng_able */
9916 0, /* scam_tolerant */
9917 1, /* adapter_scsi_id */
9918 1, /* bios_boot_delay */
9919 1, /* scsi_reset_delay */
9920 1, /* bios_id_lun */
9921 1, /* termination */
9926 1, /* max_host_qng */
9927 1, /* max_dvc_qng */
9930 0, /* serial_number_word1 */
9931 0, /* serial_number_word2 */
9932 0, /* serial_number_word3 */
9934 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9935 , /* oem_name[16] */
9936 0, /* dvc_err_code */
9937 0, /* adv_err_code */
9938 0, /* adv_err_addr */
9939 0, /* saved_dvc_err_code */
9940 0, /* saved_adv_err_code */
9941 0, /* saved_adv_err_addr */
9945 static ADVEEP_38C0800_CONFIG Default_38C0800_EEPROM_Config
= {
9946 ADV_EEPROM_BIOS_ENABLE
, /* 00 cfg_lsw */
9947 0x0000, /* 01 cfg_msw */
9948 0xFFFF, /* 02 disc_enable */
9949 0xFFFF, /* 03 wdtr_able */
9950 0x4444, /* 04 sdtr_speed1 */
9951 0xFFFF, /* 05 start_motor */
9952 0xFFFF, /* 06 tagqng_able */
9953 0xFFFF, /* 07 bios_scan */
9954 0, /* 08 scam_tolerant */
9955 7, /* 09 adapter_scsi_id */
9956 0, /* bios_boot_delay */
9957 3, /* 10 scsi_reset_delay */
9958 0, /* bios_id_lun */
9959 0, /* 11 termination_se */
9960 0, /* termination_lvd */
9961 0xFFE7, /* 12 bios_ctrl */
9962 0x4444, /* 13 sdtr_speed2 */
9963 0x4444, /* 14 sdtr_speed3 */
9964 ASC_DEF_MAX_HOST_QNG
, /* 15 max_host_qng */
9965 ASC_DEF_MAX_DVC_QNG
, /* max_dvc_qng */
9966 0, /* 16 dvc_cntl */
9967 0x4444, /* 17 sdtr_speed4 */
9968 0, /* 18 serial_number_word1 */
9969 0, /* 19 serial_number_word2 */
9970 0, /* 20 serial_number_word3 */
9971 0, /* 21 check_sum */
9972 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9973 , /* 22-29 oem_name[16] */
9974 0, /* 30 dvc_err_code */
9975 0, /* 31 adv_err_code */
9976 0, /* 32 adv_err_addr */
9977 0, /* 33 saved_dvc_err_code */
9978 0, /* 34 saved_adv_err_code */
9979 0, /* 35 saved_adv_err_addr */
9980 0, /* 36 reserved */
9981 0, /* 37 reserved */
9982 0, /* 38 reserved */
9983 0, /* 39 reserved */
9984 0, /* 40 reserved */
9985 0, /* 41 reserved */
9986 0, /* 42 reserved */
9987 0, /* 43 reserved */
9988 0, /* 44 reserved */
9989 0, /* 45 reserved */
9990 0, /* 46 reserved */
9991 0, /* 47 reserved */
9992 0, /* 48 reserved */
9993 0, /* 49 reserved */
9994 0, /* 50 reserved */
9995 0, /* 51 reserved */
9996 0, /* 52 reserved */
9997 0, /* 53 reserved */
9998 0, /* 54 reserved */
9999 0, /* 55 reserved */
10000 0, /* 56 cisptr_lsw */
10001 0, /* 57 cisprt_msw */
10002 PCI_VENDOR_ID_ASP
, /* 58 subsysvid */
10003 PCI_DEVICE_ID_38C0800_REV1
, /* 59 subsysid */
10004 0, /* 60 reserved */
10005 0, /* 61 reserved */
10006 0, /* 62 reserved */
10007 0 /* 63 reserved */
10010 static ADVEEP_38C0800_CONFIG ADVEEP_38C0800_Config_Field_IsChar
= {
10011 0, /* 00 cfg_lsw */
10012 0, /* 01 cfg_msw */
10013 0, /* 02 disc_enable */
10014 0, /* 03 wdtr_able */
10015 0, /* 04 sdtr_speed1 */
10016 0, /* 05 start_motor */
10017 0, /* 06 tagqng_able */
10018 0, /* 07 bios_scan */
10019 0, /* 08 scam_tolerant */
10020 1, /* 09 adapter_scsi_id */
10021 1, /* bios_boot_delay */
10022 1, /* 10 scsi_reset_delay */
10023 1, /* bios_id_lun */
10024 1, /* 11 termination_se */
10025 1, /* termination_lvd */
10026 0, /* 12 bios_ctrl */
10027 0, /* 13 sdtr_speed2 */
10028 0, /* 14 sdtr_speed3 */
10029 1, /* 15 max_host_qng */
10030 1, /* max_dvc_qng */
10031 0, /* 16 dvc_cntl */
10032 0, /* 17 sdtr_speed4 */
10033 0, /* 18 serial_number_word1 */
10034 0, /* 19 serial_number_word2 */
10035 0, /* 20 serial_number_word3 */
10036 0, /* 21 check_sum */
10037 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
10038 , /* 22-29 oem_name[16] */
10039 0, /* 30 dvc_err_code */
10040 0, /* 31 adv_err_code */
10041 0, /* 32 adv_err_addr */
10042 0, /* 33 saved_dvc_err_code */
10043 0, /* 34 saved_adv_err_code */
10044 0, /* 35 saved_adv_err_addr */
10045 0, /* 36 reserved */
10046 0, /* 37 reserved */
10047 0, /* 38 reserved */
10048 0, /* 39 reserved */
10049 0, /* 40 reserved */
10050 0, /* 41 reserved */
10051 0, /* 42 reserved */
10052 0, /* 43 reserved */
10053 0, /* 44 reserved */
10054 0, /* 45 reserved */
10055 0, /* 46 reserved */
10056 0, /* 47 reserved */
10057 0, /* 48 reserved */
10058 0, /* 49 reserved */
10059 0, /* 50 reserved */
10060 0, /* 51 reserved */
10061 0, /* 52 reserved */
10062 0, /* 53 reserved */
10063 0, /* 54 reserved */
10064 0, /* 55 reserved */
10065 0, /* 56 cisptr_lsw */
10066 0, /* 57 cisprt_msw */
10067 0, /* 58 subsysvid */
10068 0, /* 59 subsysid */
10069 0, /* 60 reserved */
10070 0, /* 61 reserved */
10071 0, /* 62 reserved */
10072 0 /* 63 reserved */
10075 static ADVEEP_38C1600_CONFIG Default_38C1600_EEPROM_Config
= {
10076 ADV_EEPROM_BIOS_ENABLE
, /* 00 cfg_lsw */
10077 0x0000, /* 01 cfg_msw */
10078 0xFFFF, /* 02 disc_enable */
10079 0xFFFF, /* 03 wdtr_able */
10080 0x5555, /* 04 sdtr_speed1 */
10081 0xFFFF, /* 05 start_motor */
10082 0xFFFF, /* 06 tagqng_able */
10083 0xFFFF, /* 07 bios_scan */
10084 0, /* 08 scam_tolerant */
10085 7, /* 09 adapter_scsi_id */
10086 0, /* bios_boot_delay */
10087 3, /* 10 scsi_reset_delay */
10088 0, /* bios_id_lun */
10089 0, /* 11 termination_se */
10090 0, /* termination_lvd */
10091 0xFFE7, /* 12 bios_ctrl */
10092 0x5555, /* 13 sdtr_speed2 */
10093 0x5555, /* 14 sdtr_speed3 */
10094 ASC_DEF_MAX_HOST_QNG
, /* 15 max_host_qng */
10095 ASC_DEF_MAX_DVC_QNG
, /* max_dvc_qng */
10096 0, /* 16 dvc_cntl */
10097 0x5555, /* 17 sdtr_speed4 */
10098 0, /* 18 serial_number_word1 */
10099 0, /* 19 serial_number_word2 */
10100 0, /* 20 serial_number_word3 */
10101 0, /* 21 check_sum */
10102 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
10103 , /* 22-29 oem_name[16] */
10104 0, /* 30 dvc_err_code */
10105 0, /* 31 adv_err_code */
10106 0, /* 32 adv_err_addr */
10107 0, /* 33 saved_dvc_err_code */
10108 0, /* 34 saved_adv_err_code */
10109 0, /* 35 saved_adv_err_addr */
10110 0, /* 36 reserved */
10111 0, /* 37 reserved */
10112 0, /* 38 reserved */
10113 0, /* 39 reserved */
10114 0, /* 40 reserved */
10115 0, /* 41 reserved */
10116 0, /* 42 reserved */
10117 0, /* 43 reserved */
10118 0, /* 44 reserved */
10119 0, /* 45 reserved */
10120 0, /* 46 reserved */
10121 0, /* 47 reserved */
10122 0, /* 48 reserved */
10123 0, /* 49 reserved */
10124 0, /* 50 reserved */
10125 0, /* 51 reserved */
10126 0, /* 52 reserved */
10127 0, /* 53 reserved */
10128 0, /* 54 reserved */
10129 0, /* 55 reserved */
10130 0, /* 56 cisptr_lsw */
10131 0, /* 57 cisprt_msw */
10132 PCI_VENDOR_ID_ASP
, /* 58 subsysvid */
10133 PCI_DEVICE_ID_38C1600_REV1
, /* 59 subsysid */
10134 0, /* 60 reserved */
10135 0, /* 61 reserved */
10136 0, /* 62 reserved */
10137 0 /* 63 reserved */
10140 static ADVEEP_38C1600_CONFIG ADVEEP_38C1600_Config_Field_IsChar
= {
10141 0, /* 00 cfg_lsw */
10142 0, /* 01 cfg_msw */
10143 0, /* 02 disc_enable */
10144 0, /* 03 wdtr_able */
10145 0, /* 04 sdtr_speed1 */
10146 0, /* 05 start_motor */
10147 0, /* 06 tagqng_able */
10148 0, /* 07 bios_scan */
10149 0, /* 08 scam_tolerant */
10150 1, /* 09 adapter_scsi_id */
10151 1, /* bios_boot_delay */
10152 1, /* 10 scsi_reset_delay */
10153 1, /* bios_id_lun */
10154 1, /* 11 termination_se */
10155 1, /* termination_lvd */
10156 0, /* 12 bios_ctrl */
10157 0, /* 13 sdtr_speed2 */
10158 0, /* 14 sdtr_speed3 */
10159 1, /* 15 max_host_qng */
10160 1, /* max_dvc_qng */
10161 0, /* 16 dvc_cntl */
10162 0, /* 17 sdtr_speed4 */
10163 0, /* 18 serial_number_word1 */
10164 0, /* 19 serial_number_word2 */
10165 0, /* 20 serial_number_word3 */
10166 0, /* 21 check_sum */
10167 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
10168 , /* 22-29 oem_name[16] */
10169 0, /* 30 dvc_err_code */
10170 0, /* 31 adv_err_code */
10171 0, /* 32 adv_err_addr */
10172 0, /* 33 saved_dvc_err_code */
10173 0, /* 34 saved_adv_err_code */
10174 0, /* 35 saved_adv_err_addr */
10175 0, /* 36 reserved */
10176 0, /* 37 reserved */
10177 0, /* 38 reserved */
10178 0, /* 39 reserved */
10179 0, /* 40 reserved */
10180 0, /* 41 reserved */
10181 0, /* 42 reserved */
10182 0, /* 43 reserved */
10183 0, /* 44 reserved */
10184 0, /* 45 reserved */
10185 0, /* 46 reserved */
10186 0, /* 47 reserved */
10187 0, /* 48 reserved */
10188 0, /* 49 reserved */
10189 0, /* 50 reserved */
10190 0, /* 51 reserved */
10191 0, /* 52 reserved */
10192 0, /* 53 reserved */
10193 0, /* 54 reserved */
10194 0, /* 55 reserved */
10195 0, /* 56 cisptr_lsw */
10196 0, /* 57 cisprt_msw */
10197 0, /* 58 subsysvid */
10198 0, /* 59 subsysid */
10199 0, /* 60 reserved */
10200 0, /* 61 reserved */
10201 0, /* 62 reserved */
10202 0 /* 63 reserved */
10207 * Wait for EEPROM command to complete
10209 static void AdvWaitEEPCmd(AdvPortAddr iop_base
)
10213 for (eep_delay_ms
= 0; eep_delay_ms
< ADV_EEP_DELAY_MS
; eep_delay_ms
++) {
10214 if (AdvReadWordRegister(iop_base
, IOPW_EE_CMD
) &
10215 ASC_EEP_CMD_DONE
) {
10220 if ((AdvReadWordRegister(iop_base
, IOPW_EE_CMD
) & ASC_EEP_CMD_DONE
) ==
10226 * Read the EEPROM from specified location
10228 static ushort
AdvReadEEPWord(AdvPortAddr iop_base
, int eep_word_addr
)
10230 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
,
10231 ASC_EEP_CMD_READ
| eep_word_addr
);
10232 AdvWaitEEPCmd(iop_base
);
10233 return AdvReadWordRegister(iop_base
, IOPW_EE_DATA
);
10237 * Write the EEPROM from 'cfg_buf'.
10239 static void AdvSet3550EEPConfig(AdvPortAddr iop_base
,
10240 ADVEEP_3550_CONFIG
*cfg_buf
)
10243 ushort addr
, chksum
;
10244 ushort
*charfields
;
10246 wbuf
= (ushort
*)cfg_buf
;
10247 charfields
= (ushort
*)&ADVEEP_3550_Config_Field_IsChar
;
10250 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE_ABLE
);
10251 AdvWaitEEPCmd(iop_base
);
10254 * Write EEPROM from word 0 to word 20.
10256 for (addr
= ADV_EEP_DVC_CFG_BEGIN
;
10257 addr
< ADV_EEP_DVC_CFG_END
; addr
++, wbuf
++) {
10260 if (*charfields
++) {
10261 word
= cpu_to_le16(*wbuf
);
10265 chksum
+= *wbuf
; /* Checksum is calculated from word values. */
10266 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, word
);
10267 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
,
10268 ASC_EEP_CMD_WRITE
| addr
);
10269 AdvWaitEEPCmd(iop_base
);
10270 mdelay(ADV_EEP_DELAY_MS
);
10274 * Write EEPROM checksum at word 21.
10276 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, chksum
);
10277 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE
| addr
);
10278 AdvWaitEEPCmd(iop_base
);
10283 * Write EEPROM OEM name at words 22 to 29.
10285 for (addr
= ADV_EEP_DVC_CTL_BEGIN
;
10286 addr
< ADV_EEP_MAX_WORD_ADDR
; addr
++, wbuf
++) {
10289 if (*charfields
++) {
10290 word
= cpu_to_le16(*wbuf
);
10294 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, word
);
10295 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
,
10296 ASC_EEP_CMD_WRITE
| addr
);
10297 AdvWaitEEPCmd(iop_base
);
10299 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE_DISABLE
);
10300 AdvWaitEEPCmd(iop_base
);
10304 * Write the EEPROM from 'cfg_buf'.
10306 static void AdvSet38C0800EEPConfig(AdvPortAddr iop_base
,
10307 ADVEEP_38C0800_CONFIG
*cfg_buf
)
10310 ushort
*charfields
;
10311 ushort addr
, chksum
;
10313 wbuf
= (ushort
*)cfg_buf
;
10314 charfields
= (ushort
*)&ADVEEP_38C0800_Config_Field_IsChar
;
10317 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE_ABLE
);
10318 AdvWaitEEPCmd(iop_base
);
10321 * Write EEPROM from word 0 to word 20.
10323 for (addr
= ADV_EEP_DVC_CFG_BEGIN
;
10324 addr
< ADV_EEP_DVC_CFG_END
; addr
++, wbuf
++) {
10327 if (*charfields
++) {
10328 word
= cpu_to_le16(*wbuf
);
10332 chksum
+= *wbuf
; /* Checksum is calculated from word values. */
10333 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, word
);
10334 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
,
10335 ASC_EEP_CMD_WRITE
| addr
);
10336 AdvWaitEEPCmd(iop_base
);
10337 mdelay(ADV_EEP_DELAY_MS
);
10341 * Write EEPROM checksum at word 21.
10343 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, chksum
);
10344 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE
| addr
);
10345 AdvWaitEEPCmd(iop_base
);
10350 * Write EEPROM OEM name at words 22 to 29.
10352 for (addr
= ADV_EEP_DVC_CTL_BEGIN
;
10353 addr
< ADV_EEP_MAX_WORD_ADDR
; addr
++, wbuf
++) {
10356 if (*charfields
++) {
10357 word
= cpu_to_le16(*wbuf
);
10361 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, word
);
10362 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
,
10363 ASC_EEP_CMD_WRITE
| addr
);
10364 AdvWaitEEPCmd(iop_base
);
10366 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE_DISABLE
);
10367 AdvWaitEEPCmd(iop_base
);
10371 * Write the EEPROM from 'cfg_buf'.
10373 static void AdvSet38C1600EEPConfig(AdvPortAddr iop_base
,
10374 ADVEEP_38C1600_CONFIG
*cfg_buf
)
10377 ushort
*charfields
;
10378 ushort addr
, chksum
;
10380 wbuf
= (ushort
*)cfg_buf
;
10381 charfields
= (ushort
*)&ADVEEP_38C1600_Config_Field_IsChar
;
10384 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE_ABLE
);
10385 AdvWaitEEPCmd(iop_base
);
10388 * Write EEPROM from word 0 to word 20.
10390 for (addr
= ADV_EEP_DVC_CFG_BEGIN
;
10391 addr
< ADV_EEP_DVC_CFG_END
; addr
++, wbuf
++) {
10394 if (*charfields
++) {
10395 word
= cpu_to_le16(*wbuf
);
10399 chksum
+= *wbuf
; /* Checksum is calculated from word values. */
10400 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, word
);
10401 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
,
10402 ASC_EEP_CMD_WRITE
| addr
);
10403 AdvWaitEEPCmd(iop_base
);
10404 mdelay(ADV_EEP_DELAY_MS
);
10408 * Write EEPROM checksum at word 21.
10410 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, chksum
);
10411 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE
| addr
);
10412 AdvWaitEEPCmd(iop_base
);
10417 * Write EEPROM OEM name at words 22 to 29.
10419 for (addr
= ADV_EEP_DVC_CTL_BEGIN
;
10420 addr
< ADV_EEP_MAX_WORD_ADDR
; addr
++, wbuf
++) {
10423 if (*charfields
++) {
10424 word
= cpu_to_le16(*wbuf
);
10428 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, word
);
10429 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
,
10430 ASC_EEP_CMD_WRITE
| addr
);
10431 AdvWaitEEPCmd(iop_base
);
10433 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE_DISABLE
);
10434 AdvWaitEEPCmd(iop_base
);
10438 * Read EEPROM configuration into the specified buffer.
10440 * Return a checksum based on the EEPROM configuration read.
10442 static ushort
AdvGet3550EEPConfig(AdvPortAddr iop_base
,
10443 ADVEEP_3550_CONFIG
*cfg_buf
)
10445 ushort wval
, chksum
;
10448 ushort
*charfields
;
10450 charfields
= (ushort
*)&ADVEEP_3550_Config_Field_IsChar
;
10451 wbuf
= (ushort
*)cfg_buf
;
10454 for (eep_addr
= ADV_EEP_DVC_CFG_BEGIN
;
10455 eep_addr
< ADV_EEP_DVC_CFG_END
; eep_addr
++, wbuf
++) {
10456 wval
= AdvReadEEPWord(iop_base
, eep_addr
);
10457 chksum
+= wval
; /* Checksum is calculated from word values. */
10458 if (*charfields
++) {
10459 *wbuf
= le16_to_cpu(wval
);
10464 /* Read checksum word. */
10465 *wbuf
= AdvReadEEPWord(iop_base
, eep_addr
);
10469 /* Read rest of EEPROM not covered by the checksum. */
10470 for (eep_addr
= ADV_EEP_DVC_CTL_BEGIN
;
10471 eep_addr
< ADV_EEP_MAX_WORD_ADDR
; eep_addr
++, wbuf
++) {
10472 *wbuf
= AdvReadEEPWord(iop_base
, eep_addr
);
10473 if (*charfields
++) {
10474 *wbuf
= le16_to_cpu(*wbuf
);
10481 * Read EEPROM configuration into the specified buffer.
10483 * Return a checksum based on the EEPROM configuration read.
10485 static ushort
AdvGet38C0800EEPConfig(AdvPortAddr iop_base
,
10486 ADVEEP_38C0800_CONFIG
*cfg_buf
)
10488 ushort wval
, chksum
;
10491 ushort
*charfields
;
10493 charfields
= (ushort
*)&ADVEEP_38C0800_Config_Field_IsChar
;
10494 wbuf
= (ushort
*)cfg_buf
;
10497 for (eep_addr
= ADV_EEP_DVC_CFG_BEGIN
;
10498 eep_addr
< ADV_EEP_DVC_CFG_END
; eep_addr
++, wbuf
++) {
10499 wval
= AdvReadEEPWord(iop_base
, eep_addr
);
10500 chksum
+= wval
; /* Checksum is calculated from word values. */
10501 if (*charfields
++) {
10502 *wbuf
= le16_to_cpu(wval
);
10507 /* Read checksum word. */
10508 *wbuf
= AdvReadEEPWord(iop_base
, eep_addr
);
10512 /* Read rest of EEPROM not covered by the checksum. */
10513 for (eep_addr
= ADV_EEP_DVC_CTL_BEGIN
;
10514 eep_addr
< ADV_EEP_MAX_WORD_ADDR
; eep_addr
++, wbuf
++) {
10515 *wbuf
= AdvReadEEPWord(iop_base
, eep_addr
);
10516 if (*charfields
++) {
10517 *wbuf
= le16_to_cpu(*wbuf
);
10524 * Read EEPROM configuration into the specified buffer.
10526 * Return a checksum based on the EEPROM configuration read.
10528 static ushort
AdvGet38C1600EEPConfig(AdvPortAddr iop_base
,
10529 ADVEEP_38C1600_CONFIG
*cfg_buf
)
10531 ushort wval
, chksum
;
10534 ushort
*charfields
;
10536 charfields
= (ushort
*)&ADVEEP_38C1600_Config_Field_IsChar
;
10537 wbuf
= (ushort
*)cfg_buf
;
10540 for (eep_addr
= ADV_EEP_DVC_CFG_BEGIN
;
10541 eep_addr
< ADV_EEP_DVC_CFG_END
; eep_addr
++, wbuf
++) {
10542 wval
= AdvReadEEPWord(iop_base
, eep_addr
);
10543 chksum
+= wval
; /* Checksum is calculated from word values. */
10544 if (*charfields
++) {
10545 *wbuf
= le16_to_cpu(wval
);
10550 /* Read checksum word. */
10551 *wbuf
= AdvReadEEPWord(iop_base
, eep_addr
);
10555 /* Read rest of EEPROM not covered by the checksum. */
10556 for (eep_addr
= ADV_EEP_DVC_CTL_BEGIN
;
10557 eep_addr
< ADV_EEP_MAX_WORD_ADDR
; eep_addr
++, wbuf
++) {
10558 *wbuf
= AdvReadEEPWord(iop_base
, eep_addr
);
10559 if (*charfields
++) {
10560 *wbuf
= le16_to_cpu(*wbuf
);
10567 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
10568 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
10569 * all of this is done.
10571 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10573 * For a non-fatal error return a warning code. If there are no warnings
10574 * then 0 is returned.
10576 * Note: Chip is stopped on entry.
10578 static int AdvInitFrom3550EEP(ADV_DVC_VAR
*asc_dvc
)
10580 AdvPortAddr iop_base
;
10582 ADVEEP_3550_CONFIG eep_config
;
10584 iop_base
= asc_dvc
->iop_base
;
10589 * Read the board's EEPROM configuration.
10591 * Set default values if a bad checksum is found.
10593 if (AdvGet3550EEPConfig(iop_base
, &eep_config
) != eep_config
.check_sum
) {
10594 warn_code
|= ASC_WARN_EEPROM_CHKSUM
;
10597 * Set EEPROM default values.
10599 memcpy(&eep_config
, &Default_3550_EEPROM_Config
,
10600 sizeof(ADVEEP_3550_CONFIG
));
10603 * Assume the 6 byte board serial number that was read from
10604 * EEPROM is correct even if the EEPROM checksum failed.
10606 eep_config
.serial_number_word3
=
10607 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 1);
10609 eep_config
.serial_number_word2
=
10610 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 2);
10612 eep_config
.serial_number_word1
=
10613 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 3);
10615 AdvSet3550EEPConfig(iop_base
, &eep_config
);
10618 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
10619 * EEPROM configuration that was read.
10621 * This is the mapping of EEPROM fields to Adv Library fields.
10623 asc_dvc
->wdtr_able
= eep_config
.wdtr_able
;
10624 asc_dvc
->sdtr_able
= eep_config
.sdtr_able
;
10625 asc_dvc
->ultra_able
= eep_config
.ultra_able
;
10626 asc_dvc
->tagqng_able
= eep_config
.tagqng_able
;
10627 asc_dvc
->cfg
->disc_enable
= eep_config
.disc_enable
;
10628 asc_dvc
->max_host_qng
= eep_config
.max_host_qng
;
10629 asc_dvc
->max_dvc_qng
= eep_config
.max_dvc_qng
;
10630 asc_dvc
->chip_scsi_id
= (eep_config
.adapter_scsi_id
& ADV_MAX_TID
);
10631 asc_dvc
->start_motor
= eep_config
.start_motor
;
10632 asc_dvc
->scsi_reset_wait
= eep_config
.scsi_reset_delay
;
10633 asc_dvc
->bios_ctrl
= eep_config
.bios_ctrl
;
10634 asc_dvc
->no_scam
= eep_config
.scam_tolerant
;
10635 asc_dvc
->cfg
->serial1
= eep_config
.serial_number_word1
;
10636 asc_dvc
->cfg
->serial2
= eep_config
.serial_number_word2
;
10637 asc_dvc
->cfg
->serial3
= eep_config
.serial_number_word3
;
10640 * Set the host maximum queuing (max. 253, min. 16) and the per device
10641 * maximum queuing (max. 63, min. 4).
10643 if (eep_config
.max_host_qng
> ASC_DEF_MAX_HOST_QNG
) {
10644 eep_config
.max_host_qng
= ASC_DEF_MAX_HOST_QNG
;
10645 } else if (eep_config
.max_host_qng
< ASC_DEF_MIN_HOST_QNG
) {
10646 /* If the value is zero, assume it is uninitialized. */
10647 if (eep_config
.max_host_qng
== 0) {
10648 eep_config
.max_host_qng
= ASC_DEF_MAX_HOST_QNG
;
10650 eep_config
.max_host_qng
= ASC_DEF_MIN_HOST_QNG
;
10654 if (eep_config
.max_dvc_qng
> ASC_DEF_MAX_DVC_QNG
) {
10655 eep_config
.max_dvc_qng
= ASC_DEF_MAX_DVC_QNG
;
10656 } else if (eep_config
.max_dvc_qng
< ASC_DEF_MIN_DVC_QNG
) {
10657 /* If the value is zero, assume it is uninitialized. */
10658 if (eep_config
.max_dvc_qng
== 0) {
10659 eep_config
.max_dvc_qng
= ASC_DEF_MAX_DVC_QNG
;
10661 eep_config
.max_dvc_qng
= ASC_DEF_MIN_DVC_QNG
;
10666 * If 'max_dvc_qng' is greater than 'max_host_qng', then
10667 * set 'max_dvc_qng' to 'max_host_qng'.
10669 if (eep_config
.max_dvc_qng
> eep_config
.max_host_qng
) {
10670 eep_config
.max_dvc_qng
= eep_config
.max_host_qng
;
10674 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
10675 * values based on possibly adjusted EEPROM values.
10677 asc_dvc
->max_host_qng
= eep_config
.max_host_qng
;
10678 asc_dvc
->max_dvc_qng
= eep_config
.max_dvc_qng
;
10681 * If the EEPROM 'termination' field is set to automatic (0), then set
10682 * the ADV_DVC_CFG 'termination' field to automatic also.
10684 * If the termination is specified with a non-zero 'termination'
10685 * value check that a legal value is set and set the ADV_DVC_CFG
10686 * 'termination' field appropriately.
10688 if (eep_config
.termination
== 0) {
10689 asc_dvc
->cfg
->termination
= 0; /* auto termination */
10691 /* Enable manual control with low off / high off. */
10692 if (eep_config
.termination
== 1) {
10693 asc_dvc
->cfg
->termination
= TERM_CTL_SEL
;
10695 /* Enable manual control with low off / high on. */
10696 } else if (eep_config
.termination
== 2) {
10697 asc_dvc
->cfg
->termination
= TERM_CTL_SEL
| TERM_CTL_H
;
10699 /* Enable manual control with low on / high on. */
10700 } else if (eep_config
.termination
== 3) {
10701 asc_dvc
->cfg
->termination
=
10702 TERM_CTL_SEL
| TERM_CTL_H
| TERM_CTL_L
;
10705 * The EEPROM 'termination' field contains a bad value. Use
10706 * automatic termination instead.
10708 asc_dvc
->cfg
->termination
= 0;
10709 warn_code
|= ASC_WARN_EEPROM_TERMINATION
;
10717 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
10718 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
10719 * all of this is done.
10721 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10723 * For a non-fatal error return a warning code. If there are no warnings
10724 * then 0 is returned.
10726 * Note: Chip is stopped on entry.
10728 static int AdvInitFrom38C0800EEP(ADV_DVC_VAR
*asc_dvc
)
10730 AdvPortAddr iop_base
;
10732 ADVEEP_38C0800_CONFIG eep_config
;
10733 uchar tid
, termination
;
10734 ushort sdtr_speed
= 0;
10736 iop_base
= asc_dvc
->iop_base
;
10741 * Read the board's EEPROM configuration.
10743 * Set default values if a bad checksum is found.
10745 if (AdvGet38C0800EEPConfig(iop_base
, &eep_config
) !=
10746 eep_config
.check_sum
) {
10747 warn_code
|= ASC_WARN_EEPROM_CHKSUM
;
10750 * Set EEPROM default values.
10752 memcpy(&eep_config
, &Default_38C0800_EEPROM_Config
,
10753 sizeof(ADVEEP_38C0800_CONFIG
));
10756 * Assume the 6 byte board serial number that was read from
10757 * EEPROM is correct even if the EEPROM checksum failed.
10759 eep_config
.serial_number_word3
=
10760 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 1);
10762 eep_config
.serial_number_word2
=
10763 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 2);
10765 eep_config
.serial_number_word1
=
10766 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 3);
10768 AdvSet38C0800EEPConfig(iop_base
, &eep_config
);
10771 * Set ADV_DVC_VAR and ADV_DVC_CFG variables from the
10772 * EEPROM configuration that was read.
10774 * This is the mapping of EEPROM fields to Adv Library fields.
10776 asc_dvc
->wdtr_able
= eep_config
.wdtr_able
;
10777 asc_dvc
->sdtr_speed1
= eep_config
.sdtr_speed1
;
10778 asc_dvc
->sdtr_speed2
= eep_config
.sdtr_speed2
;
10779 asc_dvc
->sdtr_speed3
= eep_config
.sdtr_speed3
;
10780 asc_dvc
->sdtr_speed4
= eep_config
.sdtr_speed4
;
10781 asc_dvc
->tagqng_able
= eep_config
.tagqng_able
;
10782 asc_dvc
->cfg
->disc_enable
= eep_config
.disc_enable
;
10783 asc_dvc
->max_host_qng
= eep_config
.max_host_qng
;
10784 asc_dvc
->max_dvc_qng
= eep_config
.max_dvc_qng
;
10785 asc_dvc
->chip_scsi_id
= (eep_config
.adapter_scsi_id
& ADV_MAX_TID
);
10786 asc_dvc
->start_motor
= eep_config
.start_motor
;
10787 asc_dvc
->scsi_reset_wait
= eep_config
.scsi_reset_delay
;
10788 asc_dvc
->bios_ctrl
= eep_config
.bios_ctrl
;
10789 asc_dvc
->no_scam
= eep_config
.scam_tolerant
;
10790 asc_dvc
->cfg
->serial1
= eep_config
.serial_number_word1
;
10791 asc_dvc
->cfg
->serial2
= eep_config
.serial_number_word2
;
10792 asc_dvc
->cfg
->serial3
= eep_config
.serial_number_word3
;
10795 * For every Target ID if any of its 'sdtr_speed[1234]' bits
10796 * are set, then set an 'sdtr_able' bit for it.
10798 asc_dvc
->sdtr_able
= 0;
10799 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
10801 sdtr_speed
= asc_dvc
->sdtr_speed1
;
10802 } else if (tid
== 4) {
10803 sdtr_speed
= asc_dvc
->sdtr_speed2
;
10804 } else if (tid
== 8) {
10805 sdtr_speed
= asc_dvc
->sdtr_speed3
;
10806 } else if (tid
== 12) {
10807 sdtr_speed
= asc_dvc
->sdtr_speed4
;
10809 if (sdtr_speed
& ADV_MAX_TID
) {
10810 asc_dvc
->sdtr_able
|= (1 << tid
);
10816 * Set the host maximum queuing (max. 253, min. 16) and the per device
10817 * maximum queuing (max. 63, min. 4).
10819 if (eep_config
.max_host_qng
> ASC_DEF_MAX_HOST_QNG
) {
10820 eep_config
.max_host_qng
= ASC_DEF_MAX_HOST_QNG
;
10821 } else if (eep_config
.max_host_qng
< ASC_DEF_MIN_HOST_QNG
) {
10822 /* If the value is zero, assume it is uninitialized. */
10823 if (eep_config
.max_host_qng
== 0) {
10824 eep_config
.max_host_qng
= ASC_DEF_MAX_HOST_QNG
;
10826 eep_config
.max_host_qng
= ASC_DEF_MIN_HOST_QNG
;
10830 if (eep_config
.max_dvc_qng
> ASC_DEF_MAX_DVC_QNG
) {
10831 eep_config
.max_dvc_qng
= ASC_DEF_MAX_DVC_QNG
;
10832 } else if (eep_config
.max_dvc_qng
< ASC_DEF_MIN_DVC_QNG
) {
10833 /* If the value is zero, assume it is uninitialized. */
10834 if (eep_config
.max_dvc_qng
== 0) {
10835 eep_config
.max_dvc_qng
= ASC_DEF_MAX_DVC_QNG
;
10837 eep_config
.max_dvc_qng
= ASC_DEF_MIN_DVC_QNG
;
10842 * If 'max_dvc_qng' is greater than 'max_host_qng', then
10843 * set 'max_dvc_qng' to 'max_host_qng'.
10845 if (eep_config
.max_dvc_qng
> eep_config
.max_host_qng
) {
10846 eep_config
.max_dvc_qng
= eep_config
.max_host_qng
;
10850 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
10851 * values based on possibly adjusted EEPROM values.
10853 asc_dvc
->max_host_qng
= eep_config
.max_host_qng
;
10854 asc_dvc
->max_dvc_qng
= eep_config
.max_dvc_qng
;
10857 * If the EEPROM 'termination' field is set to automatic (0), then set
10858 * the ADV_DVC_CFG 'termination' field to automatic also.
10860 * If the termination is specified with a non-zero 'termination'
10861 * value check that a legal value is set and set the ADV_DVC_CFG
10862 * 'termination' field appropriately.
10864 if (eep_config
.termination_se
== 0) {
10865 termination
= 0; /* auto termination for SE */
10867 /* Enable manual control with low off / high off. */
10868 if (eep_config
.termination_se
== 1) {
10871 /* Enable manual control with low off / high on. */
10872 } else if (eep_config
.termination_se
== 2) {
10873 termination
= TERM_SE_HI
;
10875 /* Enable manual control with low on / high on. */
10876 } else if (eep_config
.termination_se
== 3) {
10877 termination
= TERM_SE
;
10880 * The EEPROM 'termination_se' field contains a bad value.
10881 * Use automatic termination instead.
10884 warn_code
|= ASC_WARN_EEPROM_TERMINATION
;
10888 if (eep_config
.termination_lvd
== 0) {
10889 asc_dvc
->cfg
->termination
= termination
; /* auto termination for LVD */
10891 /* Enable manual control with low off / high off. */
10892 if (eep_config
.termination_lvd
== 1) {
10893 asc_dvc
->cfg
->termination
= termination
;
10895 /* Enable manual control with low off / high on. */
10896 } else if (eep_config
.termination_lvd
== 2) {
10897 asc_dvc
->cfg
->termination
= termination
| TERM_LVD_HI
;
10899 /* Enable manual control with low on / high on. */
10900 } else if (eep_config
.termination_lvd
== 3) {
10901 asc_dvc
->cfg
->termination
= termination
| TERM_LVD
;
10904 * The EEPROM 'termination_lvd' field contains a bad value.
10905 * Use automatic termination instead.
10907 asc_dvc
->cfg
->termination
= termination
;
10908 warn_code
|= ASC_WARN_EEPROM_TERMINATION
;
10916 * Read the board's EEPROM configuration. Set fields in ASC_DVC_VAR and
10917 * ASC_DVC_CFG based on the EEPROM settings. The chip is stopped while
10918 * all of this is done.
10920 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
10922 * For a non-fatal error return a warning code. If there are no warnings
10923 * then 0 is returned.
10925 * Note: Chip is stopped on entry.
10927 static int AdvInitFrom38C1600EEP(ADV_DVC_VAR
*asc_dvc
)
10929 AdvPortAddr iop_base
;
10931 ADVEEP_38C1600_CONFIG eep_config
;
10932 uchar tid
, termination
;
10933 ushort sdtr_speed
= 0;
10935 iop_base
= asc_dvc
->iop_base
;
10940 * Read the board's EEPROM configuration.
10942 * Set default values if a bad checksum is found.
10944 if (AdvGet38C1600EEPConfig(iop_base
, &eep_config
) !=
10945 eep_config
.check_sum
) {
10946 struct pci_dev
*pdev
= adv_dvc_to_pdev(asc_dvc
);
10947 warn_code
|= ASC_WARN_EEPROM_CHKSUM
;
10950 * Set EEPROM default values.
10952 memcpy(&eep_config
, &Default_38C1600_EEPROM_Config
,
10953 sizeof(ADVEEP_38C1600_CONFIG
));
10955 if (PCI_FUNC(pdev
->devfn
) != 0) {
10958 * Disable Bit 14 (BIOS_ENABLE) to fix SPARC Ultra 60
10959 * and old Mac system booting problem. The Expansion
10960 * ROM must be disabled in Function 1 for these systems
10962 eep_config
.cfg_lsw
&= ~ADV_EEPROM_BIOS_ENABLE
;
10964 * Clear the INTAB (bit 11) if the GPIO 0 input
10965 * indicates the Function 1 interrupt line is wired
10968 * Set/Clear Bit 11 (INTAB) from the GPIO bit 0 input:
10969 * 1 - Function 1 interrupt line wired to INT A.
10970 * 0 - Function 1 interrupt line wired to INT B.
10972 * Note: Function 0 is always wired to INTA.
10973 * Put all 5 GPIO bits in input mode and then read
10974 * their input values.
10976 AdvWriteByteRegister(iop_base
, IOPB_GPIO_CNTL
, 0);
10977 ints
= AdvReadByteRegister(iop_base
, IOPB_GPIO_DATA
);
10978 if ((ints
& 0x01) == 0)
10979 eep_config
.cfg_lsw
&= ~ADV_EEPROM_INTAB
;
10983 * Assume the 6 byte board serial number that was read from
10984 * EEPROM is correct even if the EEPROM checksum failed.
10986 eep_config
.serial_number_word3
=
10987 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 1);
10988 eep_config
.serial_number_word2
=
10989 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 2);
10990 eep_config
.serial_number_word1
=
10991 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 3);
10993 AdvSet38C1600EEPConfig(iop_base
, &eep_config
);
10997 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
10998 * EEPROM configuration that was read.
11000 * This is the mapping of EEPROM fields to Adv Library fields.
11002 asc_dvc
->wdtr_able
= eep_config
.wdtr_able
;
11003 asc_dvc
->sdtr_speed1
= eep_config
.sdtr_speed1
;
11004 asc_dvc
->sdtr_speed2
= eep_config
.sdtr_speed2
;
11005 asc_dvc
->sdtr_speed3
= eep_config
.sdtr_speed3
;
11006 asc_dvc
->sdtr_speed4
= eep_config
.sdtr_speed4
;
11007 asc_dvc
->ppr_able
= 0;
11008 asc_dvc
->tagqng_able
= eep_config
.tagqng_able
;
11009 asc_dvc
->cfg
->disc_enable
= eep_config
.disc_enable
;
11010 asc_dvc
->max_host_qng
= eep_config
.max_host_qng
;
11011 asc_dvc
->max_dvc_qng
= eep_config
.max_dvc_qng
;
11012 asc_dvc
->chip_scsi_id
= (eep_config
.adapter_scsi_id
& ASC_MAX_TID
);
11013 asc_dvc
->start_motor
= eep_config
.start_motor
;
11014 asc_dvc
->scsi_reset_wait
= eep_config
.scsi_reset_delay
;
11015 asc_dvc
->bios_ctrl
= eep_config
.bios_ctrl
;
11016 asc_dvc
->no_scam
= eep_config
.scam_tolerant
;
11019 * For every Target ID if any of its 'sdtr_speed[1234]' bits
11020 * are set, then set an 'sdtr_able' bit for it.
11022 asc_dvc
->sdtr_able
= 0;
11023 for (tid
= 0; tid
<= ASC_MAX_TID
; tid
++) {
11025 sdtr_speed
= asc_dvc
->sdtr_speed1
;
11026 } else if (tid
== 4) {
11027 sdtr_speed
= asc_dvc
->sdtr_speed2
;
11028 } else if (tid
== 8) {
11029 sdtr_speed
= asc_dvc
->sdtr_speed3
;
11030 } else if (tid
== 12) {
11031 sdtr_speed
= asc_dvc
->sdtr_speed4
;
11033 if (sdtr_speed
& ASC_MAX_TID
) {
11034 asc_dvc
->sdtr_able
|= (1 << tid
);
11040 * Set the host maximum queuing (max. 253, min. 16) and the per device
11041 * maximum queuing (max. 63, min. 4).
11043 if (eep_config
.max_host_qng
> ASC_DEF_MAX_HOST_QNG
) {
11044 eep_config
.max_host_qng
= ASC_DEF_MAX_HOST_QNG
;
11045 } else if (eep_config
.max_host_qng
< ASC_DEF_MIN_HOST_QNG
) {
11046 /* If the value is zero, assume it is uninitialized. */
11047 if (eep_config
.max_host_qng
== 0) {
11048 eep_config
.max_host_qng
= ASC_DEF_MAX_HOST_QNG
;
11050 eep_config
.max_host_qng
= ASC_DEF_MIN_HOST_QNG
;
11054 if (eep_config
.max_dvc_qng
> ASC_DEF_MAX_DVC_QNG
) {
11055 eep_config
.max_dvc_qng
= ASC_DEF_MAX_DVC_QNG
;
11056 } else if (eep_config
.max_dvc_qng
< ASC_DEF_MIN_DVC_QNG
) {
11057 /* If the value is zero, assume it is uninitialized. */
11058 if (eep_config
.max_dvc_qng
== 0) {
11059 eep_config
.max_dvc_qng
= ASC_DEF_MAX_DVC_QNG
;
11061 eep_config
.max_dvc_qng
= ASC_DEF_MIN_DVC_QNG
;
11066 * If 'max_dvc_qng' is greater than 'max_host_qng', then
11067 * set 'max_dvc_qng' to 'max_host_qng'.
11069 if (eep_config
.max_dvc_qng
> eep_config
.max_host_qng
) {
11070 eep_config
.max_dvc_qng
= eep_config
.max_host_qng
;
11074 * Set ASC_DVC_VAR 'max_host_qng' and ASC_DVC_VAR 'max_dvc_qng'
11075 * values based on possibly adjusted EEPROM values.
11077 asc_dvc
->max_host_qng
= eep_config
.max_host_qng
;
11078 asc_dvc
->max_dvc_qng
= eep_config
.max_dvc_qng
;
11081 * If the EEPROM 'termination' field is set to automatic (0), then set
11082 * the ASC_DVC_CFG 'termination' field to automatic also.
11084 * If the termination is specified with a non-zero 'termination'
11085 * value check that a legal value is set and set the ASC_DVC_CFG
11086 * 'termination' field appropriately.
11088 if (eep_config
.termination_se
== 0) {
11089 termination
= 0; /* auto termination for SE */
11091 /* Enable manual control with low off / high off. */
11092 if (eep_config
.termination_se
== 1) {
11095 /* Enable manual control with low off / high on. */
11096 } else if (eep_config
.termination_se
== 2) {
11097 termination
= TERM_SE_HI
;
11099 /* Enable manual control with low on / high on. */
11100 } else if (eep_config
.termination_se
== 3) {
11101 termination
= TERM_SE
;
11104 * The EEPROM 'termination_se' field contains a bad value.
11105 * Use automatic termination instead.
11108 warn_code
|= ASC_WARN_EEPROM_TERMINATION
;
11112 if (eep_config
.termination_lvd
== 0) {
11113 asc_dvc
->cfg
->termination
= termination
; /* auto termination for LVD */
11115 /* Enable manual control with low off / high off. */
11116 if (eep_config
.termination_lvd
== 1) {
11117 asc_dvc
->cfg
->termination
= termination
;
11119 /* Enable manual control with low off / high on. */
11120 } else if (eep_config
.termination_lvd
== 2) {
11121 asc_dvc
->cfg
->termination
= termination
| TERM_LVD_HI
;
11123 /* Enable manual control with low on / high on. */
11124 } else if (eep_config
.termination_lvd
== 3) {
11125 asc_dvc
->cfg
->termination
= termination
| TERM_LVD
;
11128 * The EEPROM 'termination_lvd' field contains a bad value.
11129 * Use automatic termination instead.
11131 asc_dvc
->cfg
->termination
= termination
;
11132 warn_code
|= ASC_WARN_EEPROM_TERMINATION
;
11140 * Initialize the ADV_DVC_VAR structure.
11142 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
11144 * For a non-fatal error return a warning code. If there are no warnings
11145 * then 0 is returned.
11147 static int AdvInitGetConfig(struct pci_dev
*pdev
, struct Scsi_Host
*shost
)
11149 struct asc_board
*board
= shost_priv(shost
);
11150 ADV_DVC_VAR
*asc_dvc
= &board
->dvc_var
.adv_dvc_var
;
11151 unsigned short warn_code
= 0;
11152 AdvPortAddr iop_base
= asc_dvc
->iop_base
;
11156 asc_dvc
->err_code
= 0;
11159 * Save the state of the PCI Configuration Command Register
11160 * "Parity Error Response Control" Bit. If the bit is clear (0),
11161 * in AdvInitAsc3550/38C0800Driver() tell the microcode to ignore
11162 * DMA parity errors.
11164 asc_dvc
->cfg
->control_flag
= 0;
11165 pci_read_config_word(pdev
, PCI_COMMAND
, &cmd
);
11166 if ((cmd
& PCI_COMMAND_PARITY
) == 0)
11167 asc_dvc
->cfg
->control_flag
|= CONTROL_FLAG_IGNORE_PERR
;
11169 asc_dvc
->cfg
->chip_version
=
11170 AdvGetChipVersion(iop_base
, asc_dvc
->bus_type
);
11172 ASC_DBG(1, "iopb_chip_id_1: 0x%x 0x%x\n",
11173 (ushort
)AdvReadByteRegister(iop_base
, IOPB_CHIP_ID_1
),
11174 (ushort
)ADV_CHIP_ID_BYTE
);
11176 ASC_DBG(1, "iopw_chip_id_0: 0x%x 0x%x\n",
11177 (ushort
)AdvReadWordRegister(iop_base
, IOPW_CHIP_ID_0
),
11178 (ushort
)ADV_CHIP_ID_WORD
);
11181 * Reset the chip to start and allow register writes.
11183 if (AdvFindSignature(iop_base
) == 0) {
11184 asc_dvc
->err_code
= ASC_IERR_BAD_SIGNATURE
;
11188 * The caller must set 'chip_type' to a valid setting.
11190 if (asc_dvc
->chip_type
!= ADV_CHIP_ASC3550
&&
11191 asc_dvc
->chip_type
!= ADV_CHIP_ASC38C0800
&&
11192 asc_dvc
->chip_type
!= ADV_CHIP_ASC38C1600
) {
11193 asc_dvc
->err_code
|= ASC_IERR_BAD_CHIPTYPE
;
11200 AdvWriteWordRegister(iop_base
, IOPW_CTRL_REG
,
11201 ADV_CTRL_REG_CMD_RESET
);
11203 AdvWriteWordRegister(iop_base
, IOPW_CTRL_REG
,
11204 ADV_CTRL_REG_CMD_WR_IO_REG
);
11206 if (asc_dvc
->chip_type
== ADV_CHIP_ASC38C1600
) {
11207 status
= AdvInitFrom38C1600EEP(asc_dvc
);
11208 } else if (asc_dvc
->chip_type
== ADV_CHIP_ASC38C0800
) {
11209 status
= AdvInitFrom38C0800EEP(asc_dvc
);
11211 status
= AdvInitFrom3550EEP(asc_dvc
);
11213 warn_code
|= status
;
11216 if (warn_code
!= 0)
11217 shost_printk(KERN_WARNING
, shost
, "warning: 0x%x\n", warn_code
);
11219 if (asc_dvc
->err_code
)
11220 shost_printk(KERN_ERR
, shost
, "error code 0x%x\n",
11221 asc_dvc
->err_code
);
11223 return asc_dvc
->err_code
;
11227 static struct scsi_host_template advansys_template
= {
11228 .proc_name
= DRV_NAME
,
11229 #ifdef CONFIG_PROC_FS
11230 .show_info
= advansys_show_info
,
11233 .info
= advansys_info
,
11234 .queuecommand
= advansys_queuecommand
,
11235 .eh_bus_reset_handler
= advansys_reset
,
11236 .bios_param
= advansys_biosparam
,
11237 .slave_configure
= advansys_slave_configure
,
11239 * Because the driver may control an ISA adapter 'unchecked_isa_dma'
11240 * must be set. The flag will be cleared in advansys_board_found
11241 * for non-ISA adapters.
11243 .unchecked_isa_dma
= 1,
11245 * All adapters controlled by this driver are capable of large
11246 * scatter-gather lists. According to the mid-level SCSI documentation
11247 * this obviates any performance gain provided by setting
11248 * 'use_clustering'. But empirically while CPU utilization is increased
11249 * by enabling clustering, I/O throughput increases as well.
11251 .use_clustering
= ENABLE_CLUSTERING
,
11254 static int advansys_wide_init_chip(struct Scsi_Host
*shost
)
11256 struct asc_board
*board
= shost_priv(shost
);
11257 struct adv_dvc_var
*adv_dvc
= &board
->dvc_var
.adv_dvc_var
;
11259 adv_req_t
*reqp
= NULL
;
11262 int warn_code
, err_code
;
11265 * Allocate buffer carrier structures. The total size
11266 * is about 4 KB, so allocate all at once.
11268 adv_dvc
->carrier_buf
= kmalloc(ADV_CARRIER_BUFSIZE
, GFP_KERNEL
);
11269 ASC_DBG(1, "carrier_buf 0x%p\n", adv_dvc
->carrier_buf
);
11271 if (!adv_dvc
->carrier_buf
)
11272 goto kmalloc_failed
;
11275 * Allocate up to 'max_host_qng' request structures for the Wide
11276 * board. The total size is about 16 KB, so allocate all at once.
11277 * If the allocation fails decrement and try again.
11279 for (req_cnt
= adv_dvc
->max_host_qng
; req_cnt
> 0; req_cnt
--) {
11280 reqp
= kmalloc(sizeof(adv_req_t
) * req_cnt
, GFP_KERNEL
);
11282 ASC_DBG(1, "reqp 0x%p, req_cnt %d, bytes %lu\n", reqp
, req_cnt
,
11283 (ulong
)sizeof(adv_req_t
) * req_cnt
);
11290 goto kmalloc_failed
;
11292 adv_dvc
->orig_reqp
= reqp
;
11295 * Allocate up to ADV_TOT_SG_BLOCK request structures for
11296 * the Wide board. Each structure is about 136 bytes.
11298 board
->adv_sgblkp
= NULL
;
11299 for (sg_cnt
= 0; sg_cnt
< ADV_TOT_SG_BLOCK
; sg_cnt
++) {
11300 sgp
= kmalloc(sizeof(adv_sgblk_t
), GFP_KERNEL
);
11305 sgp
->next_sgblkp
= board
->adv_sgblkp
;
11306 board
->adv_sgblkp
= sgp
;
11310 ASC_DBG(1, "sg_cnt %d * %lu = %lu bytes\n", sg_cnt
, sizeof(adv_sgblk_t
),
11311 sizeof(adv_sgblk_t
) * sg_cnt
);
11313 if (!board
->adv_sgblkp
)
11314 goto kmalloc_failed
;
11317 * Point 'adv_reqp' to the request structures and
11318 * link them together.
11321 reqp
[req_cnt
].next_reqp
= NULL
;
11322 for (; req_cnt
> 0; req_cnt
--) {
11323 reqp
[req_cnt
- 1].next_reqp
= &reqp
[req_cnt
];
11325 board
->adv_reqp
= &reqp
[0];
11327 if (adv_dvc
->chip_type
== ADV_CHIP_ASC3550
) {
11328 ASC_DBG(2, "AdvInitAsc3550Driver()\n");
11329 warn_code
= AdvInitAsc3550Driver(adv_dvc
);
11330 } else if (adv_dvc
->chip_type
== ADV_CHIP_ASC38C0800
) {
11331 ASC_DBG(2, "AdvInitAsc38C0800Driver()\n");
11332 warn_code
= AdvInitAsc38C0800Driver(adv_dvc
);
11334 ASC_DBG(2, "AdvInitAsc38C1600Driver()\n");
11335 warn_code
= AdvInitAsc38C1600Driver(adv_dvc
);
11337 err_code
= adv_dvc
->err_code
;
11339 if (warn_code
|| err_code
) {
11340 shost_printk(KERN_WARNING
, shost
, "error: warn 0x%x, error "
11341 "0x%x\n", warn_code
, err_code
);
11347 shost_printk(KERN_ERR
, shost
, "error: kmalloc() failed\n");
11348 err_code
= ADV_ERROR
;
11353 static void advansys_wide_free_mem(struct asc_board
*board
)
11355 struct adv_dvc_var
*adv_dvc
= &board
->dvc_var
.adv_dvc_var
;
11356 kfree(adv_dvc
->carrier_buf
);
11357 adv_dvc
->carrier_buf
= NULL
;
11358 kfree(adv_dvc
->orig_reqp
);
11359 adv_dvc
->orig_reqp
= board
->adv_reqp
= NULL
;
11360 while (board
->adv_sgblkp
) {
11361 adv_sgblk_t
*sgp
= board
->adv_sgblkp
;
11362 board
->adv_sgblkp
= sgp
->next_sgblkp
;
11367 static int advansys_board_found(struct Scsi_Host
*shost
, unsigned int iop
,
11370 struct pci_dev
*pdev
;
11371 struct asc_board
*boardp
= shost_priv(shost
);
11372 ASC_DVC_VAR
*asc_dvc_varp
= NULL
;
11373 ADV_DVC_VAR
*adv_dvc_varp
= NULL
;
11374 int share_irq
, warn_code
, ret
;
11376 pdev
= (bus_type
== ASC_IS_PCI
) ? to_pci_dev(boardp
->dev
) : NULL
;
11378 if (ASC_NARROW_BOARD(boardp
)) {
11379 ASC_DBG(1, "narrow board\n");
11380 asc_dvc_varp
= &boardp
->dvc_var
.asc_dvc_var
;
11381 asc_dvc_varp
->bus_type
= bus_type
;
11382 asc_dvc_varp
->drv_ptr
= boardp
;
11383 asc_dvc_varp
->cfg
= &boardp
->dvc_cfg
.asc_dvc_cfg
;
11384 asc_dvc_varp
->iop_base
= iop
;
11387 adv_dvc_varp
= &boardp
->dvc_var
.adv_dvc_var
;
11388 adv_dvc_varp
->drv_ptr
= boardp
;
11389 adv_dvc_varp
->cfg
= &boardp
->dvc_cfg
.adv_dvc_cfg
;
11390 if (pdev
->device
== PCI_DEVICE_ID_ASP_ABP940UW
) {
11391 ASC_DBG(1, "wide board ASC-3550\n");
11392 adv_dvc_varp
->chip_type
= ADV_CHIP_ASC3550
;
11393 } else if (pdev
->device
== PCI_DEVICE_ID_38C0800_REV1
) {
11394 ASC_DBG(1, "wide board ASC-38C0800\n");
11395 adv_dvc_varp
->chip_type
= ADV_CHIP_ASC38C0800
;
11397 ASC_DBG(1, "wide board ASC-38C1600\n");
11398 adv_dvc_varp
->chip_type
= ADV_CHIP_ASC38C1600
;
11401 boardp
->asc_n_io_port
= pci_resource_len(pdev
, 1);
11402 boardp
->ioremap_addr
= pci_ioremap_bar(pdev
, 1);
11403 if (!boardp
->ioremap_addr
) {
11404 shost_printk(KERN_ERR
, shost
, "ioremap(%lx, %d) "
11406 (long)pci_resource_start(pdev
, 1),
11407 boardp
->asc_n_io_port
);
11411 adv_dvc_varp
->iop_base
= (AdvPortAddr
)boardp
->ioremap_addr
;
11412 ASC_DBG(1, "iop_base: 0x%p\n", adv_dvc_varp
->iop_base
);
11415 * Even though it isn't used to access wide boards, other
11416 * than for the debug line below, save I/O Port address so
11417 * that it can be reported.
11419 boardp
->ioport
= iop
;
11421 ASC_DBG(1, "iopb_chip_id_1 0x%x, iopw_chip_id_0 0x%x\n",
11422 (ushort
)inp(iop
+ 1), (ushort
)inpw(iop
));
11423 #endif /* CONFIG_PCI */
11426 if (ASC_NARROW_BOARD(boardp
)) {
11428 * Set the board bus type and PCI IRQ before
11429 * calling AscInitGetConfig().
11431 switch (asc_dvc_varp
->bus_type
) {
11434 shost
->unchecked_isa_dma
= TRUE
;
11438 shost
->unchecked_isa_dma
= FALSE
;
11442 shost
->unchecked_isa_dma
= FALSE
;
11443 share_irq
= IRQF_SHARED
;
11445 #endif /* CONFIG_ISA */
11448 shost
->unchecked_isa_dma
= FALSE
;
11449 share_irq
= IRQF_SHARED
;
11451 #endif /* CONFIG_PCI */
11453 shost_printk(KERN_ERR
, shost
, "unknown adapter type: "
11454 "%d\n", asc_dvc_varp
->bus_type
);
11455 shost
->unchecked_isa_dma
= TRUE
;
11461 * NOTE: AscInitGetConfig() may change the board's
11462 * bus_type value. The bus_type value should no
11463 * longer be used. If the bus_type field must be
11464 * referenced only use the bit-wise AND operator "&".
11466 ASC_DBG(2, "AscInitGetConfig()\n");
11467 ret
= AscInitGetConfig(shost
) ? -ENODEV
: 0;
11471 * For Wide boards set PCI information before calling
11472 * AdvInitGetConfig().
11474 shost
->unchecked_isa_dma
= FALSE
;
11475 share_irq
= IRQF_SHARED
;
11476 ASC_DBG(2, "AdvInitGetConfig()\n");
11478 ret
= AdvInitGetConfig(pdev
, shost
) ? -ENODEV
: 0;
11479 #endif /* CONFIG_PCI */
11486 * Save the EEPROM configuration so that it can be displayed
11487 * from /proc/scsi/advansys/[0...].
11489 if (ASC_NARROW_BOARD(boardp
)) {
11494 * Set the adapter's target id bit in the 'init_tidmask' field.
11496 boardp
->init_tidmask
|=
11497 ADV_TID_TO_TIDMASK(asc_dvc_varp
->cfg
->chip_scsi_id
);
11500 * Save EEPROM settings for the board.
11502 ep
= &boardp
->eep_config
.asc_eep
;
11504 ep
->init_sdtr
= asc_dvc_varp
->cfg
->sdtr_enable
;
11505 ep
->disc_enable
= asc_dvc_varp
->cfg
->disc_enable
;
11506 ep
->use_cmd_qng
= asc_dvc_varp
->cfg
->cmd_qng_enabled
;
11507 ASC_EEP_SET_DMA_SPD(ep
, asc_dvc_varp
->cfg
->isa_dma_speed
);
11508 ep
->start_motor
= asc_dvc_varp
->start_motor
;
11509 ep
->cntl
= asc_dvc_varp
->dvc_cntl
;
11510 ep
->no_scam
= asc_dvc_varp
->no_scam
;
11511 ep
->max_total_qng
= asc_dvc_varp
->max_total_qng
;
11512 ASC_EEP_SET_CHIP_ID(ep
, asc_dvc_varp
->cfg
->chip_scsi_id
);
11513 /* 'max_tag_qng' is set to the same value for every device. */
11514 ep
->max_tag_qng
= asc_dvc_varp
->cfg
->max_tag_qng
[0];
11515 ep
->adapter_info
[0] = asc_dvc_varp
->cfg
->adapter_info
[0];
11516 ep
->adapter_info
[1] = asc_dvc_varp
->cfg
->adapter_info
[1];
11517 ep
->adapter_info
[2] = asc_dvc_varp
->cfg
->adapter_info
[2];
11518 ep
->adapter_info
[3] = asc_dvc_varp
->cfg
->adapter_info
[3];
11519 ep
->adapter_info
[4] = asc_dvc_varp
->cfg
->adapter_info
[4];
11520 ep
->adapter_info
[5] = asc_dvc_varp
->cfg
->adapter_info
[5];
11523 * Modify board configuration.
11525 ASC_DBG(2, "AscInitSetConfig()\n");
11526 ret
= AscInitSetConfig(pdev
, shost
) ? -ENODEV
: 0;
11530 ADVEEP_3550_CONFIG
*ep_3550
;
11531 ADVEEP_38C0800_CONFIG
*ep_38C0800
;
11532 ADVEEP_38C1600_CONFIG
*ep_38C1600
;
11535 * Save Wide EEP Configuration Information.
11537 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
11538 ep_3550
= &boardp
->eep_config
.adv_3550_eep
;
11540 ep_3550
->adapter_scsi_id
= adv_dvc_varp
->chip_scsi_id
;
11541 ep_3550
->max_host_qng
= adv_dvc_varp
->max_host_qng
;
11542 ep_3550
->max_dvc_qng
= adv_dvc_varp
->max_dvc_qng
;
11543 ep_3550
->termination
= adv_dvc_varp
->cfg
->termination
;
11544 ep_3550
->disc_enable
= adv_dvc_varp
->cfg
->disc_enable
;
11545 ep_3550
->bios_ctrl
= adv_dvc_varp
->bios_ctrl
;
11546 ep_3550
->wdtr_able
= adv_dvc_varp
->wdtr_able
;
11547 ep_3550
->sdtr_able
= adv_dvc_varp
->sdtr_able
;
11548 ep_3550
->ultra_able
= adv_dvc_varp
->ultra_able
;
11549 ep_3550
->tagqng_able
= adv_dvc_varp
->tagqng_able
;
11550 ep_3550
->start_motor
= adv_dvc_varp
->start_motor
;
11551 ep_3550
->scsi_reset_delay
=
11552 adv_dvc_varp
->scsi_reset_wait
;
11553 ep_3550
->serial_number_word1
=
11554 adv_dvc_varp
->cfg
->serial1
;
11555 ep_3550
->serial_number_word2
=
11556 adv_dvc_varp
->cfg
->serial2
;
11557 ep_3550
->serial_number_word3
=
11558 adv_dvc_varp
->cfg
->serial3
;
11559 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
11560 ep_38C0800
= &boardp
->eep_config
.adv_38C0800_eep
;
11562 ep_38C0800
->adapter_scsi_id
=
11563 adv_dvc_varp
->chip_scsi_id
;
11564 ep_38C0800
->max_host_qng
= adv_dvc_varp
->max_host_qng
;
11565 ep_38C0800
->max_dvc_qng
= adv_dvc_varp
->max_dvc_qng
;
11566 ep_38C0800
->termination_lvd
=
11567 adv_dvc_varp
->cfg
->termination
;
11568 ep_38C0800
->disc_enable
=
11569 adv_dvc_varp
->cfg
->disc_enable
;
11570 ep_38C0800
->bios_ctrl
= adv_dvc_varp
->bios_ctrl
;
11571 ep_38C0800
->wdtr_able
= adv_dvc_varp
->wdtr_able
;
11572 ep_38C0800
->tagqng_able
= adv_dvc_varp
->tagqng_able
;
11573 ep_38C0800
->sdtr_speed1
= adv_dvc_varp
->sdtr_speed1
;
11574 ep_38C0800
->sdtr_speed2
= adv_dvc_varp
->sdtr_speed2
;
11575 ep_38C0800
->sdtr_speed3
= adv_dvc_varp
->sdtr_speed3
;
11576 ep_38C0800
->sdtr_speed4
= adv_dvc_varp
->sdtr_speed4
;
11577 ep_38C0800
->tagqng_able
= adv_dvc_varp
->tagqng_able
;
11578 ep_38C0800
->start_motor
= adv_dvc_varp
->start_motor
;
11579 ep_38C0800
->scsi_reset_delay
=
11580 adv_dvc_varp
->scsi_reset_wait
;
11581 ep_38C0800
->serial_number_word1
=
11582 adv_dvc_varp
->cfg
->serial1
;
11583 ep_38C0800
->serial_number_word2
=
11584 adv_dvc_varp
->cfg
->serial2
;
11585 ep_38C0800
->serial_number_word3
=
11586 adv_dvc_varp
->cfg
->serial3
;
11588 ep_38C1600
= &boardp
->eep_config
.adv_38C1600_eep
;
11590 ep_38C1600
->adapter_scsi_id
=
11591 adv_dvc_varp
->chip_scsi_id
;
11592 ep_38C1600
->max_host_qng
= adv_dvc_varp
->max_host_qng
;
11593 ep_38C1600
->max_dvc_qng
= adv_dvc_varp
->max_dvc_qng
;
11594 ep_38C1600
->termination_lvd
=
11595 adv_dvc_varp
->cfg
->termination
;
11596 ep_38C1600
->disc_enable
=
11597 adv_dvc_varp
->cfg
->disc_enable
;
11598 ep_38C1600
->bios_ctrl
= adv_dvc_varp
->bios_ctrl
;
11599 ep_38C1600
->wdtr_able
= adv_dvc_varp
->wdtr_able
;
11600 ep_38C1600
->tagqng_able
= adv_dvc_varp
->tagqng_able
;
11601 ep_38C1600
->sdtr_speed1
= adv_dvc_varp
->sdtr_speed1
;
11602 ep_38C1600
->sdtr_speed2
= adv_dvc_varp
->sdtr_speed2
;
11603 ep_38C1600
->sdtr_speed3
= adv_dvc_varp
->sdtr_speed3
;
11604 ep_38C1600
->sdtr_speed4
= adv_dvc_varp
->sdtr_speed4
;
11605 ep_38C1600
->tagqng_able
= adv_dvc_varp
->tagqng_able
;
11606 ep_38C1600
->start_motor
= adv_dvc_varp
->start_motor
;
11607 ep_38C1600
->scsi_reset_delay
=
11608 adv_dvc_varp
->scsi_reset_wait
;
11609 ep_38C1600
->serial_number_word1
=
11610 adv_dvc_varp
->cfg
->serial1
;
11611 ep_38C1600
->serial_number_word2
=
11612 adv_dvc_varp
->cfg
->serial2
;
11613 ep_38C1600
->serial_number_word3
=
11614 adv_dvc_varp
->cfg
->serial3
;
11618 * Set the adapter's target id bit in the 'init_tidmask' field.
11620 boardp
->init_tidmask
|=
11621 ADV_TID_TO_TIDMASK(adv_dvc_varp
->chip_scsi_id
);
11625 * Channels are numbered beginning with 0. For AdvanSys one host
11626 * structure supports one channel. Multi-channel boards have a
11627 * separate host structure for each channel.
11629 shost
->max_channel
= 0;
11630 if (ASC_NARROW_BOARD(boardp
)) {
11631 shost
->max_id
= ASC_MAX_TID
+ 1;
11632 shost
->max_lun
= ASC_MAX_LUN
+ 1;
11633 shost
->max_cmd_len
= ASC_MAX_CDB_LEN
;
11635 shost
->io_port
= asc_dvc_varp
->iop_base
;
11636 boardp
->asc_n_io_port
= ASC_IOADR_GAP
;
11637 shost
->this_id
= asc_dvc_varp
->cfg
->chip_scsi_id
;
11639 /* Set maximum number of queues the adapter can handle. */
11640 shost
->can_queue
= asc_dvc_varp
->max_total_qng
;
11642 shost
->max_id
= ADV_MAX_TID
+ 1;
11643 shost
->max_lun
= ADV_MAX_LUN
+ 1;
11644 shost
->max_cmd_len
= ADV_MAX_CDB_LEN
;
11647 * Save the I/O Port address and length even though
11648 * I/O ports are not used to access Wide boards.
11649 * Instead the Wide boards are accessed with
11650 * PCI Memory Mapped I/O.
11652 shost
->io_port
= iop
;
11654 shost
->this_id
= adv_dvc_varp
->chip_scsi_id
;
11656 /* Set maximum number of queues the adapter can handle. */
11657 shost
->can_queue
= adv_dvc_varp
->max_host_qng
;
11661 * Following v1.3.89, 'cmd_per_lun' is no longer needed
11662 * and should be set to zero.
11664 * But because of a bug introduced in v1.3.89 if the driver is
11665 * compiled as a module and 'cmd_per_lun' is zero, the Mid-Level
11666 * SCSI function 'allocate_device' will panic. To allow the driver
11667 * to work as a module in these kernels set 'cmd_per_lun' to 1.
11669 * Note: This is wrong. cmd_per_lun should be set to the depth
11670 * you want on untagged devices always.
11673 shost
->cmd_per_lun
= 1;
11675 shost->cmd_per_lun = 0;
11679 * Set the maximum number of scatter-gather elements the
11680 * adapter can handle.
11682 if (ASC_NARROW_BOARD(boardp
)) {
11684 * Allow two commands with 'sg_tablesize' scatter-gather
11685 * elements to be executed simultaneously. This value is
11686 * the theoretical hardware limit. It may be decreased
11689 shost
->sg_tablesize
=
11690 (((asc_dvc_varp
->max_total_qng
- 2) / 2) *
11691 ASC_SG_LIST_PER_Q
) + 1;
11693 shost
->sg_tablesize
= ADV_MAX_SG_LIST
;
11697 * The value of 'sg_tablesize' can not exceed the SCSI
11698 * mid-level driver definition of SG_ALL. SG_ALL also
11699 * must not be exceeded, because it is used to define the
11700 * size of the scatter-gather table in 'struct asc_sg_head'.
11702 if (shost
->sg_tablesize
> SG_ALL
) {
11703 shost
->sg_tablesize
= SG_ALL
;
11706 ASC_DBG(1, "sg_tablesize: %d\n", shost
->sg_tablesize
);
11708 /* BIOS start address. */
11709 if (ASC_NARROW_BOARD(boardp
)) {
11710 shost
->base
= AscGetChipBiosAddress(asc_dvc_varp
->iop_base
,
11711 asc_dvc_varp
->bus_type
);
11714 * Fill-in BIOS board variables. The Wide BIOS saves
11715 * information in LRAM that is used by the driver.
11717 AdvReadWordLram(adv_dvc_varp
->iop_base
,
11718 BIOS_SIGNATURE
, boardp
->bios_signature
);
11719 AdvReadWordLram(adv_dvc_varp
->iop_base
,
11720 BIOS_VERSION
, boardp
->bios_version
);
11721 AdvReadWordLram(adv_dvc_varp
->iop_base
,
11722 BIOS_CODESEG
, boardp
->bios_codeseg
);
11723 AdvReadWordLram(adv_dvc_varp
->iop_base
,
11724 BIOS_CODELEN
, boardp
->bios_codelen
);
11726 ASC_DBG(1, "bios_signature 0x%x, bios_version 0x%x\n",
11727 boardp
->bios_signature
, boardp
->bios_version
);
11729 ASC_DBG(1, "bios_codeseg 0x%x, bios_codelen 0x%x\n",
11730 boardp
->bios_codeseg
, boardp
->bios_codelen
);
11733 * If the BIOS saved a valid signature, then fill in
11734 * the BIOS code segment base address.
11736 if (boardp
->bios_signature
== 0x55AA) {
11738 * Convert x86 realmode code segment to a linear
11739 * address by shifting left 4.
11741 shost
->base
= ((ulong
)boardp
->bios_codeseg
<< 4);
11748 * Register Board Resources - I/O Port, DMA, IRQ
11751 /* Register DMA Channel for Narrow boards. */
11752 shost
->dma_channel
= NO_ISA_DMA
; /* Default to no ISA DMA. */
11754 if (ASC_NARROW_BOARD(boardp
)) {
11755 /* Register DMA channel for ISA bus. */
11756 if (asc_dvc_varp
->bus_type
& ASC_IS_ISA
) {
11757 shost
->dma_channel
= asc_dvc_varp
->cfg
->isa_dma_channel
;
11758 ret
= request_dma(shost
->dma_channel
, DRV_NAME
);
11760 shost_printk(KERN_ERR
, shost
, "request_dma() "
11762 shost
->dma_channel
, ret
);
11765 AscEnableIsaDma(shost
->dma_channel
);
11768 #endif /* CONFIG_ISA */
11770 /* Register IRQ Number. */
11771 ASC_DBG(2, "request_irq(%d, %p)\n", boardp
->irq
, shost
);
11773 ret
= request_irq(boardp
->irq
, advansys_interrupt
, share_irq
,
11777 if (ret
== -EBUSY
) {
11778 shost_printk(KERN_ERR
, shost
, "request_irq(): IRQ 0x%x "
11779 "already in use\n", boardp
->irq
);
11780 } else if (ret
== -EINVAL
) {
11781 shost_printk(KERN_ERR
, shost
, "request_irq(): IRQ 0x%x "
11782 "not valid\n", boardp
->irq
);
11784 shost_printk(KERN_ERR
, shost
, "request_irq(): IRQ 0x%x "
11785 "failed with %d\n", boardp
->irq
, ret
);
11791 * Initialize board RISC chip and enable interrupts.
11793 if (ASC_NARROW_BOARD(boardp
)) {
11794 ASC_DBG(2, "AscInitAsc1000Driver()\n");
11796 asc_dvc_varp
->overrun_buf
= kzalloc(ASC_OVERRUN_BSIZE
, GFP_KERNEL
);
11797 if (!asc_dvc_varp
->overrun_buf
) {
11801 warn_code
= AscInitAsc1000Driver(asc_dvc_varp
);
11803 if (warn_code
|| asc_dvc_varp
->err_code
) {
11804 shost_printk(KERN_ERR
, shost
, "error: init_state 0x%x, "
11805 "warn 0x%x, error 0x%x\n",
11806 asc_dvc_varp
->init_state
, warn_code
,
11807 asc_dvc_varp
->err_code
);
11808 if (!asc_dvc_varp
->overrun_dma
) {
11814 if (advansys_wide_init_chip(shost
)) {
11820 ASC_DBG_PRT_SCSI_HOST(2, shost
);
11822 ret
= scsi_add_host(shost
, boardp
->dev
);
11826 scsi_scan_host(shost
);
11830 if (ASC_NARROW_BOARD(boardp
)) {
11831 if (asc_dvc_varp
->overrun_dma
)
11832 dma_unmap_single(boardp
->dev
, asc_dvc_varp
->overrun_dma
,
11833 ASC_OVERRUN_BSIZE
, DMA_FROM_DEVICE
);
11834 kfree(asc_dvc_varp
->overrun_buf
);
11836 advansys_wide_free_mem(boardp
);
11838 free_irq(boardp
->irq
, shost
);
11841 if (shost
->dma_channel
!= NO_ISA_DMA
)
11842 free_dma(shost
->dma_channel
);
11845 if (boardp
->ioremap_addr
)
11846 iounmap(boardp
->ioremap_addr
);
11852 * advansys_release()
11854 * Release resources allocated for a single AdvanSys adapter.
11856 static int advansys_release(struct Scsi_Host
*shost
)
11858 struct asc_board
*board
= shost_priv(shost
);
11859 ASC_DBG(1, "begin\n");
11860 scsi_remove_host(shost
);
11861 free_irq(board
->irq
, shost
);
11863 if (shost
->dma_channel
!= NO_ISA_DMA
) {
11864 ASC_DBG(1, "free_dma()\n");
11865 free_dma(shost
->dma_channel
);
11868 if (ASC_NARROW_BOARD(board
)) {
11869 dma_unmap_single(board
->dev
,
11870 board
->dvc_var
.asc_dvc_var
.overrun_dma
,
11871 ASC_OVERRUN_BSIZE
, DMA_FROM_DEVICE
);
11872 kfree(board
->dvc_var
.asc_dvc_var
.overrun_buf
);
11874 iounmap(board
->ioremap_addr
);
11875 advansys_wide_free_mem(board
);
11877 scsi_host_put(shost
);
11878 ASC_DBG(1, "end\n");
11882 #define ASC_IOADR_TABLE_MAX_IX 11
11884 static PortAddr _asc_def_iop_base
[ASC_IOADR_TABLE_MAX_IX
] = {
11885 0x100, 0x0110, 0x120, 0x0130, 0x140, 0x0150, 0x0190,
11886 0x0210, 0x0230, 0x0250, 0x0330
11890 * The ISA IRQ number is found in bits 2 and 3 of the CfgLsw. It decodes as:
11896 static unsigned int advansys_isa_irq_no(PortAddr iop_base
)
11898 unsigned short cfg_lsw
= AscGetChipCfgLsw(iop_base
);
11899 unsigned int chip_irq
= ((cfg_lsw
>> 2) & 0x03) + 10;
11900 if (chip_irq
== 13)
11905 static int advansys_isa_probe(struct device
*dev
, unsigned int id
)
11908 PortAddr iop_base
= _asc_def_iop_base
[id
];
11909 struct Scsi_Host
*shost
;
11910 struct asc_board
*board
;
11912 if (!request_region(iop_base
, ASC_IOADR_GAP
, DRV_NAME
)) {
11913 ASC_DBG(1, "I/O port 0x%x busy\n", iop_base
);
11916 ASC_DBG(1, "probing I/O port 0x%x\n", iop_base
);
11917 if (!AscFindSignature(iop_base
))
11918 goto release_region
;
11919 if (!(AscGetChipVersion(iop_base
, ASC_IS_ISA
) & ASC_CHIP_VER_ISA_BIT
))
11920 goto release_region
;
11923 shost
= scsi_host_alloc(&advansys_template
, sizeof(*board
));
11925 goto release_region
;
11927 board
= shost_priv(shost
);
11928 board
->irq
= advansys_isa_irq_no(iop_base
);
11931 err
= advansys_board_found(shost
, iop_base
, ASC_IS_ISA
);
11935 dev_set_drvdata(dev
, shost
);
11939 scsi_host_put(shost
);
11941 release_region(iop_base
, ASC_IOADR_GAP
);
11945 static int advansys_isa_remove(struct device
*dev
, unsigned int id
)
11947 int ioport
= _asc_def_iop_base
[id
];
11948 advansys_release(dev_get_drvdata(dev
));
11949 release_region(ioport
, ASC_IOADR_GAP
);
11953 static struct isa_driver advansys_isa_driver
= {
11954 .probe
= advansys_isa_probe
,
11955 .remove
= advansys_isa_remove
,
11957 .owner
= THIS_MODULE
,
11963 * The VLB IRQ number is found in bits 2 to 4 of the CfgLsw. It decodes as:
11973 static unsigned int advansys_vlb_irq_no(PortAddr iop_base
)
11975 unsigned short cfg_lsw
= AscGetChipCfgLsw(iop_base
);
11976 unsigned int chip_irq
= ((cfg_lsw
>> 2) & 0x07) + 9;
11977 if ((chip_irq
< 10) || (chip_irq
== 13) || (chip_irq
> 15))
11982 static int advansys_vlb_probe(struct device
*dev
, unsigned int id
)
11985 PortAddr iop_base
= _asc_def_iop_base
[id
];
11986 struct Scsi_Host
*shost
;
11987 struct asc_board
*board
;
11989 if (!request_region(iop_base
, ASC_IOADR_GAP
, DRV_NAME
)) {
11990 ASC_DBG(1, "I/O port 0x%x busy\n", iop_base
);
11993 ASC_DBG(1, "probing I/O port 0x%x\n", iop_base
);
11994 if (!AscFindSignature(iop_base
))
11995 goto release_region
;
11997 * I don't think this condition can actually happen, but the old
11998 * driver did it, and the chances of finding a VLB setup in 2007
11999 * to do testing with is slight to none.
12001 if (AscGetChipVersion(iop_base
, ASC_IS_VL
) > ASC_CHIP_MAX_VER_VL
)
12002 goto release_region
;
12005 shost
= scsi_host_alloc(&advansys_template
, sizeof(*board
));
12007 goto release_region
;
12009 board
= shost_priv(shost
);
12010 board
->irq
= advansys_vlb_irq_no(iop_base
);
12013 err
= advansys_board_found(shost
, iop_base
, ASC_IS_VL
);
12017 dev_set_drvdata(dev
, shost
);
12021 scsi_host_put(shost
);
12023 release_region(iop_base
, ASC_IOADR_GAP
);
12027 static struct isa_driver advansys_vlb_driver
= {
12028 .probe
= advansys_vlb_probe
,
12029 .remove
= advansys_isa_remove
,
12031 .owner
= THIS_MODULE
,
12032 .name
= "advansys_vlb",
12036 static struct eisa_device_id advansys_eisa_table
[] = {
12042 MODULE_DEVICE_TABLE(eisa
, advansys_eisa_table
);
12045 * EISA is a little more tricky than PCI; each EISA device may have two
12046 * channels, and this driver is written to make each channel its own Scsi_Host
12048 struct eisa_scsi_data
{
12049 struct Scsi_Host
*host
[2];
12053 * The EISA IRQ number is found in bits 8 to 10 of the CfgLsw. It decodes as:
12063 static unsigned int advansys_eisa_irq_no(struct eisa_device
*edev
)
12065 unsigned short cfg_lsw
= inw(edev
->base_addr
+ 0xc86);
12066 unsigned int chip_irq
= ((cfg_lsw
>> 8) & 0x07) + 10;
12067 if ((chip_irq
== 13) || (chip_irq
> 15))
12072 static int advansys_eisa_probe(struct device
*dev
)
12074 int i
, ioport
, irq
= 0;
12076 struct eisa_device
*edev
= to_eisa_device(dev
);
12077 struct eisa_scsi_data
*data
;
12080 data
= kzalloc(sizeof(*data
), GFP_KERNEL
);
12083 ioport
= edev
->base_addr
+ 0xc30;
12086 for (i
= 0; i
< 2; i
++, ioport
+= 0x20) {
12087 struct asc_board
*board
;
12088 struct Scsi_Host
*shost
;
12089 if (!request_region(ioport
, ASC_IOADR_GAP
, DRV_NAME
)) {
12090 printk(KERN_WARNING
"Region %x-%x busy\n", ioport
,
12091 ioport
+ ASC_IOADR_GAP
- 1);
12094 if (!AscFindSignature(ioport
)) {
12095 release_region(ioport
, ASC_IOADR_GAP
);
12100 * I don't know why we need to do this for EISA chips, but
12101 * not for any others. It looks to be equivalent to
12102 * AscGetChipCfgMsw, but I may have overlooked something,
12103 * so I'm not converting it until I get an EISA board to
12109 irq
= advansys_eisa_irq_no(edev
);
12112 shost
= scsi_host_alloc(&advansys_template
, sizeof(*board
));
12114 goto release_region
;
12116 board
= shost_priv(shost
);
12120 err
= advansys_board_found(shost
, ioport
, ASC_IS_EISA
);
12122 data
->host
[i
] = shost
;
12126 scsi_host_put(shost
);
12128 release_region(ioport
, ASC_IOADR_GAP
);
12134 dev_set_drvdata(dev
, data
);
12138 kfree(data
->host
[0]);
12139 kfree(data
->host
[1]);
12145 static int advansys_eisa_remove(struct device
*dev
)
12148 struct eisa_scsi_data
*data
= dev_get_drvdata(dev
);
12150 for (i
= 0; i
< 2; i
++) {
12152 struct Scsi_Host
*shost
= data
->host
[i
];
12155 ioport
= shost
->io_port
;
12156 advansys_release(shost
);
12157 release_region(ioport
, ASC_IOADR_GAP
);
12164 static struct eisa_driver advansys_eisa_driver
= {
12165 .id_table
= advansys_eisa_table
,
12168 .probe
= advansys_eisa_probe
,
12169 .remove
= advansys_eisa_remove
,
12173 /* PCI Devices supported by this driver */
12174 static struct pci_device_id advansys_pci_tbl
[] = {
12175 {PCI_VENDOR_ID_ASP
, PCI_DEVICE_ID_ASP_1200A
,
12176 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
12177 {PCI_VENDOR_ID_ASP
, PCI_DEVICE_ID_ASP_ABP940
,
12178 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
12179 {PCI_VENDOR_ID_ASP
, PCI_DEVICE_ID_ASP_ABP940U
,
12180 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
12181 {PCI_VENDOR_ID_ASP
, PCI_DEVICE_ID_ASP_ABP940UW
,
12182 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
12183 {PCI_VENDOR_ID_ASP
, PCI_DEVICE_ID_38C0800_REV1
,
12184 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
12185 {PCI_VENDOR_ID_ASP
, PCI_DEVICE_ID_38C1600_REV1
,
12186 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
12190 MODULE_DEVICE_TABLE(pci
, advansys_pci_tbl
);
12192 static void advansys_set_latency(struct pci_dev
*pdev
)
12194 if ((pdev
->device
== PCI_DEVICE_ID_ASP_1200A
) ||
12195 (pdev
->device
== PCI_DEVICE_ID_ASP_ABP940
)) {
12196 pci_write_config_byte(pdev
, PCI_LATENCY_TIMER
, 0);
12199 pci_read_config_byte(pdev
, PCI_LATENCY_TIMER
, &latency
);
12200 if (latency
< 0x20)
12201 pci_write_config_byte(pdev
, PCI_LATENCY_TIMER
, 0x20);
12205 static int advansys_pci_probe(struct pci_dev
*pdev
,
12206 const struct pci_device_id
*ent
)
12209 struct Scsi_Host
*shost
;
12210 struct asc_board
*board
;
12212 err
= pci_enable_device(pdev
);
12215 err
= pci_request_regions(pdev
, DRV_NAME
);
12217 goto disable_device
;
12218 pci_set_master(pdev
);
12219 advansys_set_latency(pdev
);
12222 if (pci_resource_len(pdev
, 0) == 0)
12223 goto release_region
;
12225 ioport
= pci_resource_start(pdev
, 0);
12228 shost
= scsi_host_alloc(&advansys_template
, sizeof(*board
));
12230 goto release_region
;
12232 board
= shost_priv(shost
);
12233 board
->irq
= pdev
->irq
;
12234 board
->dev
= &pdev
->dev
;
12236 if (pdev
->device
== PCI_DEVICE_ID_ASP_ABP940UW
||
12237 pdev
->device
== PCI_DEVICE_ID_38C0800_REV1
||
12238 pdev
->device
== PCI_DEVICE_ID_38C1600_REV1
) {
12239 board
->flags
|= ASC_IS_WIDE_BOARD
;
12242 err
= advansys_board_found(shost
, ioport
, ASC_IS_PCI
);
12246 pci_set_drvdata(pdev
, shost
);
12250 scsi_host_put(shost
);
12252 pci_release_regions(pdev
);
12254 pci_disable_device(pdev
);
12259 static void advansys_pci_remove(struct pci_dev
*pdev
)
12261 advansys_release(pci_get_drvdata(pdev
));
12262 pci_release_regions(pdev
);
12263 pci_disable_device(pdev
);
12266 static struct pci_driver advansys_pci_driver
= {
12268 .id_table
= advansys_pci_tbl
,
12269 .probe
= advansys_pci_probe
,
12270 .remove
= advansys_pci_remove
,
12273 static int __init
advansys_init(void)
12277 error
= isa_register_driver(&advansys_isa_driver
,
12278 ASC_IOADR_TABLE_MAX_IX
);
12282 error
= isa_register_driver(&advansys_vlb_driver
,
12283 ASC_IOADR_TABLE_MAX_IX
);
12285 goto unregister_isa
;
12287 error
= eisa_driver_register(&advansys_eisa_driver
);
12289 goto unregister_vlb
;
12291 error
= pci_register_driver(&advansys_pci_driver
);
12293 goto unregister_eisa
;
12298 eisa_driver_unregister(&advansys_eisa_driver
);
12300 isa_unregister_driver(&advansys_vlb_driver
);
12302 isa_unregister_driver(&advansys_isa_driver
);
12307 static void __exit
advansys_exit(void)
12309 pci_unregister_driver(&advansys_pci_driver
);
12310 eisa_driver_unregister(&advansys_eisa_driver
);
12311 isa_unregister_driver(&advansys_vlb_driver
);
12312 isa_unregister_driver(&advansys_isa_driver
);
12315 module_init(advansys_init
);
12316 module_exit(advansys_exit
);
12318 MODULE_LICENSE("GPL");
12319 MODULE_FIRMWARE("advansys/mcode.bin");
12320 MODULE_FIRMWARE("advansys/3550.bin");
12321 MODULE_FIRMWARE("advansys/38C0800.bin");
12322 MODULE_FIRMWARE("advansys/38C1600.bin");