udf: improve error management in udf_CS0toUTF8()
[linux/fpc-iii.git] / drivers / scsi / advansys.c
blobae95e347f37d6a505eee3ba89006bb9bc17dd13b
1 #define DRV_NAME "advansys"
2 #define ASC_VERSION "3.4" /* AdvanSys Driver Version */
4 /*
5 * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
7 * Copyright (c) 1995-2000 Advanced System Products, Inc.
8 * Copyright (c) 2000-2001 ConnectCom Solutions, Inc.
9 * Copyright (c) 2007 Matthew Wilcox <matthew@wil.cx>
10 * All Rights Reserved.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
19 * As of March 8, 2000 Advanced System Products, Inc. (AdvanSys)
20 * changed its name to ConnectCom Solutions, Inc.
21 * On June 18, 2001 Initio Corp. acquired ConnectCom's SCSI assets
24 #include <linux/module.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/types.h>
28 #include <linux/ioport.h>
29 #include <linux/interrupt.h>
30 #include <linux/delay.h>
31 #include <linux/slab.h>
32 #include <linux/mm.h>
33 #include <linux/proc_fs.h>
34 #include <linux/init.h>
35 #include <linux/blkdev.h>
36 #include <linux/isa.h>
37 #include <linux/eisa.h>
38 #include <linux/pci.h>
39 #include <linux/spinlock.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/firmware.h>
43 #include <asm/io.h>
44 #include <asm/dma.h>
46 #include <scsi/scsi_cmnd.h>
47 #include <scsi/scsi_device.h>
48 #include <scsi/scsi_tcq.h>
49 #include <scsi/scsi.h>
50 #include <scsi/scsi_host.h>
52 /* FIXME:
54 * 1. Although all of the necessary command mapping places have the
55 * appropriate dma_map.. APIs, the driver still processes its internal
56 * queue using bus_to_virt() and virt_to_bus() which are illegal under
57 * the API. The entire queue processing structure will need to be
58 * altered to fix this.
59 * 2. Need to add memory mapping workaround. Test the memory mapping.
60 * If it doesn't work revert to I/O port access. Can a test be done
61 * safely?
62 * 3. Handle an interrupt not working. Keep an interrupt counter in
63 * the interrupt handler. In the timeout function if the interrupt
64 * has not occurred then print a message and run in polled mode.
65 * 4. Need to add support for target mode commands, cf. CAM XPT.
66 * 5. check DMA mapping functions for failure
67 * 6. Use scsi_transport_spi
68 * 7. advansys_info is not safe against multiple simultaneous callers
69 * 8. Add module_param to override ISA/VLB ioport array
71 #warning this driver is still not properly converted to the DMA API
73 /* Enable driver /proc statistics. */
74 #define ADVANSYS_STATS
76 /* Enable driver tracing. */
77 #undef ADVANSYS_DEBUG
80 * Portable Data Types
82 * Any instance where a 32-bit long or pointer type is assumed
83 * for precision or HW defined structures, the following define
84 * types must be used. In Linux the char, short, and int types
85 * are all consistent at 8, 16, and 32 bits respectively. Pointers
86 * and long types are 64 bits on Alpha and UltraSPARC.
88 #define ASC_PADDR __u32 /* Physical/Bus address data type. */
89 #define ASC_VADDR __u32 /* Virtual address data type. */
90 #define ASC_DCNT __u32 /* Unsigned Data count type. */
91 #define ASC_SDCNT __s32 /* Signed Data count type. */
93 typedef unsigned char uchar;
95 #ifndef TRUE
96 #define TRUE (1)
97 #endif
98 #ifndef FALSE
99 #define FALSE (0)
100 #endif
102 #define ERR (-1)
103 #define UW_ERR (uint)(0xFFFF)
104 #define isodd_word(val) ((((uint)val) & (uint)0x0001) != 0)
106 #define PCI_VENDOR_ID_ASP 0x10cd
107 #define PCI_DEVICE_ID_ASP_1200A 0x1100
108 #define PCI_DEVICE_ID_ASP_ABP940 0x1200
109 #define PCI_DEVICE_ID_ASP_ABP940U 0x1300
110 #define PCI_DEVICE_ID_ASP_ABP940UW 0x2300
111 #define PCI_DEVICE_ID_38C0800_REV1 0x2500
112 #define PCI_DEVICE_ID_38C1600_REV1 0x2700
115 * Enable CC_VERY_LONG_SG_LIST to support up to 64K element SG lists.
116 * The SRB structure will have to be changed and the ASC_SRB2SCSIQ()
117 * macro re-defined to be able to obtain a ASC_SCSI_Q pointer from the
118 * SRB structure.
120 #define CC_VERY_LONG_SG_LIST 0
121 #define ASC_SRB2SCSIQ(srb_ptr) (srb_ptr)
123 #define PortAddr unsigned int /* port address size */
124 #define inp(port) inb(port)
125 #define outp(port, byte) outb((byte), (port))
127 #define inpw(port) inw(port)
128 #define outpw(port, word) outw((word), (port))
130 #define ASC_MAX_SG_QUEUE 7
131 #define ASC_MAX_SG_LIST 255
133 #define ASC_CS_TYPE unsigned short
135 #define ASC_IS_ISA (0x0001)
136 #define ASC_IS_ISAPNP (0x0081)
137 #define ASC_IS_EISA (0x0002)
138 #define ASC_IS_PCI (0x0004)
139 #define ASC_IS_PCI_ULTRA (0x0104)
140 #define ASC_IS_PCMCIA (0x0008)
141 #define ASC_IS_MCA (0x0020)
142 #define ASC_IS_VL (0x0040)
143 #define ASC_IS_WIDESCSI_16 (0x0100)
144 #define ASC_IS_WIDESCSI_32 (0x0200)
145 #define ASC_IS_BIG_ENDIAN (0x8000)
147 #define ASC_CHIP_MIN_VER_VL (0x01)
148 #define ASC_CHIP_MAX_VER_VL (0x07)
149 #define ASC_CHIP_MIN_VER_PCI (0x09)
150 #define ASC_CHIP_MAX_VER_PCI (0x0F)
151 #define ASC_CHIP_VER_PCI_BIT (0x08)
152 #define ASC_CHIP_MIN_VER_ISA (0x11)
153 #define ASC_CHIP_MIN_VER_ISA_PNP (0x21)
154 #define ASC_CHIP_MAX_VER_ISA (0x27)
155 #define ASC_CHIP_VER_ISA_BIT (0x30)
156 #define ASC_CHIP_VER_ISAPNP_BIT (0x20)
157 #define ASC_CHIP_VER_ASYN_BUG (0x21)
158 #define ASC_CHIP_VER_PCI 0x08
159 #define ASC_CHIP_VER_PCI_ULTRA_3150 (ASC_CHIP_VER_PCI | 0x02)
160 #define ASC_CHIP_VER_PCI_ULTRA_3050 (ASC_CHIP_VER_PCI | 0x03)
161 #define ASC_CHIP_MIN_VER_EISA (0x41)
162 #define ASC_CHIP_MAX_VER_EISA (0x47)
163 #define ASC_CHIP_VER_EISA_BIT (0x40)
164 #define ASC_CHIP_LATEST_VER_EISA ((ASC_CHIP_MIN_VER_EISA - 1) + 3)
165 #define ASC_MAX_VL_DMA_COUNT (0x07FFFFFFL)
166 #define ASC_MAX_PCI_DMA_COUNT (0xFFFFFFFFL)
167 #define ASC_MAX_ISA_DMA_COUNT (0x00FFFFFFL)
169 #define ASC_SCSI_ID_BITS 3
170 #define ASC_SCSI_TIX_TYPE uchar
171 #define ASC_ALL_DEVICE_BIT_SET 0xFF
172 #define ASC_SCSI_BIT_ID_TYPE uchar
173 #define ASC_MAX_TID 7
174 #define ASC_MAX_LUN 7
175 #define ASC_SCSI_WIDTH_BIT_SET 0xFF
176 #define ASC_MAX_SENSE_LEN 32
177 #define ASC_MIN_SENSE_LEN 14
178 #define ASC_SCSI_RESET_HOLD_TIME_US 60
181 * Narrow boards only support 12-byte commands, while wide boards
182 * extend to 16-byte commands.
184 #define ASC_MAX_CDB_LEN 12
185 #define ADV_MAX_CDB_LEN 16
187 #define MS_SDTR_LEN 0x03
188 #define MS_WDTR_LEN 0x02
190 #define ASC_SG_LIST_PER_Q 7
191 #define QS_FREE 0x00
192 #define QS_READY 0x01
193 #define QS_DISC1 0x02
194 #define QS_DISC2 0x04
195 #define QS_BUSY 0x08
196 #define QS_ABORTED 0x40
197 #define QS_DONE 0x80
198 #define QC_NO_CALLBACK 0x01
199 #define QC_SG_SWAP_QUEUE 0x02
200 #define QC_SG_HEAD 0x04
201 #define QC_DATA_IN 0x08
202 #define QC_DATA_OUT 0x10
203 #define QC_URGENT 0x20
204 #define QC_MSG_OUT 0x40
205 #define QC_REQ_SENSE 0x80
206 #define QCSG_SG_XFER_LIST 0x02
207 #define QCSG_SG_XFER_MORE 0x04
208 #define QCSG_SG_XFER_END 0x08
209 #define QD_IN_PROGRESS 0x00
210 #define QD_NO_ERROR 0x01
211 #define QD_ABORTED_BY_HOST 0x02
212 #define QD_WITH_ERROR 0x04
213 #define QD_INVALID_REQUEST 0x80
214 #define QD_INVALID_HOST_NUM 0x81
215 #define QD_INVALID_DEVICE 0x82
216 #define QD_ERR_INTERNAL 0xFF
217 #define QHSTA_NO_ERROR 0x00
218 #define QHSTA_M_SEL_TIMEOUT 0x11
219 #define QHSTA_M_DATA_OVER_RUN 0x12
220 #define QHSTA_M_DATA_UNDER_RUN 0x12
221 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
222 #define QHSTA_M_BAD_BUS_PHASE_SEQ 0x14
223 #define QHSTA_D_QDONE_SG_LIST_CORRUPTED 0x21
224 #define QHSTA_D_ASC_DVC_ERROR_CODE_SET 0x22
225 #define QHSTA_D_HOST_ABORT_FAILED 0x23
226 #define QHSTA_D_EXE_SCSI_Q_FAILED 0x24
227 #define QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT 0x25
228 #define QHSTA_D_ASPI_NO_BUF_POOL 0x26
229 #define QHSTA_M_WTM_TIMEOUT 0x41
230 #define QHSTA_M_BAD_CMPL_STATUS_IN 0x42
231 #define QHSTA_M_NO_AUTO_REQ_SENSE 0x43
232 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
233 #define QHSTA_M_TARGET_STATUS_BUSY 0x45
234 #define QHSTA_M_BAD_TAG_CODE 0x46
235 #define QHSTA_M_BAD_QUEUE_FULL_OR_BUSY 0x47
236 #define QHSTA_M_HUNG_REQ_SCSI_BUS_RESET 0x48
237 #define QHSTA_D_LRAM_CMP_ERROR 0x81
238 #define QHSTA_M_MICRO_CODE_ERROR_HALT 0xA1
239 #define ASC_FLAG_SCSIQ_REQ 0x01
240 #define ASC_FLAG_BIOS_SCSIQ_REQ 0x02
241 #define ASC_FLAG_BIOS_ASYNC_IO 0x04
242 #define ASC_FLAG_SRB_LINEAR_ADDR 0x08
243 #define ASC_FLAG_WIN16 0x10
244 #define ASC_FLAG_WIN32 0x20
245 #define ASC_FLAG_ISA_OVER_16MB 0x40
246 #define ASC_FLAG_DOS_VM_CALLBACK 0x80
247 #define ASC_TAG_FLAG_EXTRA_BYTES 0x10
248 #define ASC_TAG_FLAG_DISABLE_DISCONNECT 0x04
249 #define ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX 0x08
250 #define ASC_TAG_FLAG_DISABLE_CHK_COND_INT_HOST 0x40
251 #define ASC_SCSIQ_CPY_BEG 4
252 #define ASC_SCSIQ_SGHD_CPY_BEG 2
253 #define ASC_SCSIQ_B_FWD 0
254 #define ASC_SCSIQ_B_BWD 1
255 #define ASC_SCSIQ_B_STATUS 2
256 #define ASC_SCSIQ_B_QNO 3
257 #define ASC_SCSIQ_B_CNTL 4
258 #define ASC_SCSIQ_B_SG_QUEUE_CNT 5
259 #define ASC_SCSIQ_D_DATA_ADDR 8
260 #define ASC_SCSIQ_D_DATA_CNT 12
261 #define ASC_SCSIQ_B_SENSE_LEN 20
262 #define ASC_SCSIQ_DONE_INFO_BEG 22
263 #define ASC_SCSIQ_D_SRBPTR 22
264 #define ASC_SCSIQ_B_TARGET_IX 26
265 #define ASC_SCSIQ_B_CDB_LEN 28
266 #define ASC_SCSIQ_B_TAG_CODE 29
267 #define ASC_SCSIQ_W_VM_ID 30
268 #define ASC_SCSIQ_DONE_STATUS 32
269 #define ASC_SCSIQ_HOST_STATUS 33
270 #define ASC_SCSIQ_SCSI_STATUS 34
271 #define ASC_SCSIQ_CDB_BEG 36
272 #define ASC_SCSIQ_DW_REMAIN_XFER_ADDR 56
273 #define ASC_SCSIQ_DW_REMAIN_XFER_CNT 60
274 #define ASC_SCSIQ_B_FIRST_SG_WK_QP 48
275 #define ASC_SCSIQ_B_SG_WK_QP 49
276 #define ASC_SCSIQ_B_SG_WK_IX 50
277 #define ASC_SCSIQ_W_ALT_DC1 52
278 #define ASC_SCSIQ_B_LIST_CNT 6
279 #define ASC_SCSIQ_B_CUR_LIST_CNT 7
280 #define ASC_SGQ_B_SG_CNTL 4
281 #define ASC_SGQ_B_SG_HEAD_QP 5
282 #define ASC_SGQ_B_SG_LIST_CNT 6
283 #define ASC_SGQ_B_SG_CUR_LIST_CNT 7
284 #define ASC_SGQ_LIST_BEG 8
285 #define ASC_DEF_SCSI1_QNG 4
286 #define ASC_MAX_SCSI1_QNG 4
287 #define ASC_DEF_SCSI2_QNG 16
288 #define ASC_MAX_SCSI2_QNG 32
289 #define ASC_TAG_CODE_MASK 0x23
290 #define ASC_STOP_REQ_RISC_STOP 0x01
291 #define ASC_STOP_ACK_RISC_STOP 0x03
292 #define ASC_STOP_CLEAN_UP_BUSY_Q 0x10
293 #define ASC_STOP_CLEAN_UP_DISC_Q 0x20
294 #define ASC_STOP_HOST_REQ_RISC_HALT 0x40
295 #define ASC_TIDLUN_TO_IX(tid, lun) (ASC_SCSI_TIX_TYPE)((tid) + ((lun)<<ASC_SCSI_ID_BITS))
296 #define ASC_TID_TO_TARGET_ID(tid) (ASC_SCSI_BIT_ID_TYPE)(0x01 << (tid))
297 #define ASC_TIX_TO_TARGET_ID(tix) (0x01 << ((tix) & ASC_MAX_TID))
298 #define ASC_TIX_TO_TID(tix) ((tix) & ASC_MAX_TID)
299 #define ASC_TID_TO_TIX(tid) ((tid) & ASC_MAX_TID)
300 #define ASC_TIX_TO_LUN(tix) (((tix) >> ASC_SCSI_ID_BITS) & ASC_MAX_LUN)
301 #define ASC_QNO_TO_QADDR(q_no) ((ASC_QADR_BEG)+((int)(q_no) << 6))
303 typedef struct asc_scsiq_1 {
304 uchar status;
305 uchar q_no;
306 uchar cntl;
307 uchar sg_queue_cnt;
308 uchar target_id;
309 uchar target_lun;
310 ASC_PADDR data_addr;
311 ASC_DCNT data_cnt;
312 ASC_PADDR sense_addr;
313 uchar sense_len;
314 uchar extra_bytes;
315 } ASC_SCSIQ_1;
317 typedef struct asc_scsiq_2 {
318 ASC_VADDR srb_ptr;
319 uchar target_ix;
320 uchar flag;
321 uchar cdb_len;
322 uchar tag_code;
323 ushort vm_id;
324 } ASC_SCSIQ_2;
326 typedef struct asc_scsiq_3 {
327 uchar done_stat;
328 uchar host_stat;
329 uchar scsi_stat;
330 uchar scsi_msg;
331 } ASC_SCSIQ_3;
333 typedef struct asc_scsiq_4 {
334 uchar cdb[ASC_MAX_CDB_LEN];
335 uchar y_first_sg_list_qp;
336 uchar y_working_sg_qp;
337 uchar y_working_sg_ix;
338 uchar y_res;
339 ushort x_req_count;
340 ushort x_reconnect_rtn;
341 ASC_PADDR x_saved_data_addr;
342 ASC_DCNT x_saved_data_cnt;
343 } ASC_SCSIQ_4;
345 typedef struct asc_q_done_info {
346 ASC_SCSIQ_2 d2;
347 ASC_SCSIQ_3 d3;
348 uchar q_status;
349 uchar q_no;
350 uchar cntl;
351 uchar sense_len;
352 uchar extra_bytes;
353 uchar res;
354 ASC_DCNT remain_bytes;
355 } ASC_QDONE_INFO;
357 typedef struct asc_sg_list {
358 ASC_PADDR addr;
359 ASC_DCNT bytes;
360 } ASC_SG_LIST;
362 typedef struct asc_sg_head {
363 ushort entry_cnt;
364 ushort queue_cnt;
365 ushort entry_to_copy;
366 ushort res;
367 ASC_SG_LIST sg_list[0];
368 } ASC_SG_HEAD;
370 typedef struct asc_scsi_q {
371 ASC_SCSIQ_1 q1;
372 ASC_SCSIQ_2 q2;
373 uchar *cdbptr;
374 ASC_SG_HEAD *sg_head;
375 ushort remain_sg_entry_cnt;
376 ushort next_sg_index;
377 } ASC_SCSI_Q;
379 typedef struct asc_scsi_req_q {
380 ASC_SCSIQ_1 r1;
381 ASC_SCSIQ_2 r2;
382 uchar *cdbptr;
383 ASC_SG_HEAD *sg_head;
384 uchar *sense_ptr;
385 ASC_SCSIQ_3 r3;
386 uchar cdb[ASC_MAX_CDB_LEN];
387 uchar sense[ASC_MIN_SENSE_LEN];
388 } ASC_SCSI_REQ_Q;
390 typedef struct asc_scsi_bios_req_q {
391 ASC_SCSIQ_1 r1;
392 ASC_SCSIQ_2 r2;
393 uchar *cdbptr;
394 ASC_SG_HEAD *sg_head;
395 uchar *sense_ptr;
396 ASC_SCSIQ_3 r3;
397 uchar cdb[ASC_MAX_CDB_LEN];
398 uchar sense[ASC_MIN_SENSE_LEN];
399 } ASC_SCSI_BIOS_REQ_Q;
401 typedef struct asc_risc_q {
402 uchar fwd;
403 uchar bwd;
404 ASC_SCSIQ_1 i1;
405 ASC_SCSIQ_2 i2;
406 ASC_SCSIQ_3 i3;
407 ASC_SCSIQ_4 i4;
408 } ASC_RISC_Q;
410 typedef struct asc_sg_list_q {
411 uchar seq_no;
412 uchar q_no;
413 uchar cntl;
414 uchar sg_head_qp;
415 uchar sg_list_cnt;
416 uchar sg_cur_list_cnt;
417 } ASC_SG_LIST_Q;
419 typedef struct asc_risc_sg_list_q {
420 uchar fwd;
421 uchar bwd;
422 ASC_SG_LIST_Q sg;
423 ASC_SG_LIST sg_list[7];
424 } ASC_RISC_SG_LIST_Q;
426 #define ASCQ_ERR_Q_STATUS 0x0D
427 #define ASCQ_ERR_CUR_QNG 0x17
428 #define ASCQ_ERR_SG_Q_LINKS 0x18
429 #define ASCQ_ERR_ISR_RE_ENTRY 0x1A
430 #define ASCQ_ERR_CRITICAL_RE_ENTRY 0x1B
431 #define ASCQ_ERR_ISR_ON_CRITICAL 0x1C
434 * Warning code values are set in ASC_DVC_VAR 'warn_code'.
436 #define ASC_WARN_NO_ERROR 0x0000
437 #define ASC_WARN_IO_PORT_ROTATE 0x0001
438 #define ASC_WARN_EEPROM_CHKSUM 0x0002
439 #define ASC_WARN_IRQ_MODIFIED 0x0004
440 #define ASC_WARN_AUTO_CONFIG 0x0008
441 #define ASC_WARN_CMD_QNG_CONFLICT 0x0010
442 #define ASC_WARN_EEPROM_RECOVER 0x0020
443 #define ASC_WARN_CFG_MSW_RECOVER 0x0040
446 * Error code values are set in {ASC/ADV}_DVC_VAR 'err_code'.
448 #define ASC_IERR_NO_CARRIER 0x0001 /* No more carrier memory */
449 #define ASC_IERR_MCODE_CHKSUM 0x0002 /* micro code check sum error */
450 #define ASC_IERR_SET_PC_ADDR 0x0004
451 #define ASC_IERR_START_STOP_CHIP 0x0008 /* start/stop chip failed */
452 #define ASC_IERR_ILLEGAL_CONNECTION 0x0010 /* Illegal cable connection */
453 #define ASC_IERR_SINGLE_END_DEVICE 0x0020 /* SE device on DIFF bus */
454 #define ASC_IERR_REVERSED_CABLE 0x0040 /* Narrow flat cable reversed */
455 #define ASC_IERR_SET_SCSI_ID 0x0080 /* set SCSI ID failed */
456 #define ASC_IERR_HVD_DEVICE 0x0100 /* HVD device on LVD port */
457 #define ASC_IERR_BAD_SIGNATURE 0x0200 /* signature not found */
458 #define ASC_IERR_NO_BUS_TYPE 0x0400
459 #define ASC_IERR_BIST_PRE_TEST 0x0800 /* BIST pre-test error */
460 #define ASC_IERR_BIST_RAM_TEST 0x1000 /* BIST RAM test error */
461 #define ASC_IERR_BAD_CHIPTYPE 0x2000 /* Invalid chip_type setting */
463 #define ASC_DEF_MAX_TOTAL_QNG (0xF0)
464 #define ASC_MIN_TAG_Q_PER_DVC (0x04)
465 #define ASC_MIN_FREE_Q (0x02)
466 #define ASC_MIN_TOTAL_QNG ((ASC_MAX_SG_QUEUE)+(ASC_MIN_FREE_Q))
467 #define ASC_MAX_TOTAL_QNG 240
468 #define ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG 16
469 #define ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG 8
470 #define ASC_MAX_PCI_INRAM_TOTAL_QNG 20
471 #define ASC_MAX_INRAM_TAG_QNG 16
472 #define ASC_IOADR_GAP 0x10
473 #define ASC_SYN_MAX_OFFSET 0x0F
474 #define ASC_DEF_SDTR_OFFSET 0x0F
475 #define ASC_SDTR_ULTRA_PCI_10MB_INDEX 0x02
476 #define ASYN_SDTR_DATA_FIX_PCI_REV_AB 0x41
478 /* The narrow chip only supports a limited selection of transfer rates.
479 * These are encoded in the range 0..7 or 0..15 depending whether the chip
480 * is Ultra-capable or not. These tables let us convert from one to the other.
482 static const unsigned char asc_syn_xfer_period[8] = {
483 25, 30, 35, 40, 50, 60, 70, 85
486 static const unsigned char asc_syn_ultra_xfer_period[16] = {
487 12, 19, 25, 32, 38, 44, 50, 57, 63, 69, 75, 82, 88, 94, 100, 107
490 typedef struct ext_msg {
491 uchar msg_type;
492 uchar msg_len;
493 uchar msg_req;
494 union {
495 struct {
496 uchar sdtr_xfer_period;
497 uchar sdtr_req_ack_offset;
498 } sdtr;
499 struct {
500 uchar wdtr_width;
501 } wdtr;
502 struct {
503 uchar mdp_b3;
504 uchar mdp_b2;
505 uchar mdp_b1;
506 uchar mdp_b0;
507 } mdp;
508 } u_ext_msg;
509 uchar res;
510 } EXT_MSG;
512 #define xfer_period u_ext_msg.sdtr.sdtr_xfer_period
513 #define req_ack_offset u_ext_msg.sdtr.sdtr_req_ack_offset
514 #define wdtr_width u_ext_msg.wdtr.wdtr_width
515 #define mdp_b3 u_ext_msg.mdp_b3
516 #define mdp_b2 u_ext_msg.mdp_b2
517 #define mdp_b1 u_ext_msg.mdp_b1
518 #define mdp_b0 u_ext_msg.mdp_b0
520 typedef struct asc_dvc_cfg {
521 ASC_SCSI_BIT_ID_TYPE can_tagged_qng;
522 ASC_SCSI_BIT_ID_TYPE cmd_qng_enabled;
523 ASC_SCSI_BIT_ID_TYPE disc_enable;
524 ASC_SCSI_BIT_ID_TYPE sdtr_enable;
525 uchar chip_scsi_id;
526 uchar isa_dma_speed;
527 uchar isa_dma_channel;
528 uchar chip_version;
529 ushort mcode_date;
530 ushort mcode_version;
531 uchar max_tag_qng[ASC_MAX_TID + 1];
532 uchar sdtr_period_offset[ASC_MAX_TID + 1];
533 uchar adapter_info[6];
534 } ASC_DVC_CFG;
536 #define ASC_DEF_DVC_CNTL 0xFFFF
537 #define ASC_DEF_CHIP_SCSI_ID 7
538 #define ASC_DEF_ISA_DMA_SPEED 4
539 #define ASC_INIT_STATE_BEG_GET_CFG 0x0001
540 #define ASC_INIT_STATE_END_GET_CFG 0x0002
541 #define ASC_INIT_STATE_BEG_SET_CFG 0x0004
542 #define ASC_INIT_STATE_END_SET_CFG 0x0008
543 #define ASC_INIT_STATE_BEG_LOAD_MC 0x0010
544 #define ASC_INIT_STATE_END_LOAD_MC 0x0020
545 #define ASC_INIT_STATE_BEG_INQUIRY 0x0040
546 #define ASC_INIT_STATE_END_INQUIRY 0x0080
547 #define ASC_INIT_RESET_SCSI_DONE 0x0100
548 #define ASC_INIT_STATE_WITHOUT_EEP 0x8000
549 #define ASC_BUG_FIX_IF_NOT_DWB 0x0001
550 #define ASC_BUG_FIX_ASYN_USE_SYN 0x0002
551 #define ASC_MIN_TAGGED_CMD 7
552 #define ASC_MAX_SCSI_RESET_WAIT 30
553 #define ASC_OVERRUN_BSIZE 64
555 struct asc_dvc_var; /* Forward Declaration. */
557 typedef struct asc_dvc_var {
558 PortAddr iop_base;
559 ushort err_code;
560 ushort dvc_cntl;
561 ushort bug_fix_cntl;
562 ushort bus_type;
563 ASC_SCSI_BIT_ID_TYPE init_sdtr;
564 ASC_SCSI_BIT_ID_TYPE sdtr_done;
565 ASC_SCSI_BIT_ID_TYPE use_tagged_qng;
566 ASC_SCSI_BIT_ID_TYPE unit_not_ready;
567 ASC_SCSI_BIT_ID_TYPE queue_full_or_busy;
568 ASC_SCSI_BIT_ID_TYPE start_motor;
569 uchar *overrun_buf;
570 dma_addr_t overrun_dma;
571 uchar scsi_reset_wait;
572 uchar chip_no;
573 char is_in_int;
574 uchar max_total_qng;
575 uchar cur_total_qng;
576 uchar in_critical_cnt;
577 uchar last_q_shortage;
578 ushort init_state;
579 uchar cur_dvc_qng[ASC_MAX_TID + 1];
580 uchar max_dvc_qng[ASC_MAX_TID + 1];
581 ASC_SCSI_Q *scsiq_busy_head[ASC_MAX_TID + 1];
582 ASC_SCSI_Q *scsiq_busy_tail[ASC_MAX_TID + 1];
583 const uchar *sdtr_period_tbl;
584 ASC_DVC_CFG *cfg;
585 ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer_always;
586 char redo_scam;
587 ushort res2;
588 uchar dos_int13_table[ASC_MAX_TID + 1];
589 ASC_DCNT max_dma_count;
590 ASC_SCSI_BIT_ID_TYPE no_scam;
591 ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer;
592 uchar min_sdtr_index;
593 uchar max_sdtr_index;
594 struct asc_board *drv_ptr;
595 int ptr_map_count;
596 void **ptr_map;
597 ASC_DCNT uc_break;
598 } ASC_DVC_VAR;
600 typedef struct asc_dvc_inq_info {
601 uchar type[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
602 } ASC_DVC_INQ_INFO;
604 typedef struct asc_cap_info {
605 ASC_DCNT lba;
606 ASC_DCNT blk_size;
607 } ASC_CAP_INFO;
609 typedef struct asc_cap_info_array {
610 ASC_CAP_INFO cap_info[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
611 } ASC_CAP_INFO_ARRAY;
613 #define ASC_MCNTL_NO_SEL_TIMEOUT (ushort)0x0001
614 #define ASC_MCNTL_NULL_TARGET (ushort)0x0002
615 #define ASC_CNTL_INITIATOR (ushort)0x0001
616 #define ASC_CNTL_BIOS_GT_1GB (ushort)0x0002
617 #define ASC_CNTL_BIOS_GT_2_DISK (ushort)0x0004
618 #define ASC_CNTL_BIOS_REMOVABLE (ushort)0x0008
619 #define ASC_CNTL_NO_SCAM (ushort)0x0010
620 #define ASC_CNTL_INT_MULTI_Q (ushort)0x0080
621 #define ASC_CNTL_NO_LUN_SUPPORT (ushort)0x0040
622 #define ASC_CNTL_NO_VERIFY_COPY (ushort)0x0100
623 #define ASC_CNTL_RESET_SCSI (ushort)0x0200
624 #define ASC_CNTL_INIT_INQUIRY (ushort)0x0400
625 #define ASC_CNTL_INIT_VERBOSE (ushort)0x0800
626 #define ASC_CNTL_SCSI_PARITY (ushort)0x1000
627 #define ASC_CNTL_BURST_MODE (ushort)0x2000
628 #define ASC_CNTL_SDTR_ENABLE_ULTRA (ushort)0x4000
629 #define ASC_EEP_DVC_CFG_BEG_VL 2
630 #define ASC_EEP_MAX_DVC_ADDR_VL 15
631 #define ASC_EEP_DVC_CFG_BEG 32
632 #define ASC_EEP_MAX_DVC_ADDR 45
633 #define ASC_EEP_MAX_RETRY 20
636 * These macros keep the chip SCSI id and ISA DMA speed
637 * bitfields in board order. C bitfields aren't portable
638 * between big and little-endian platforms so they are
639 * not used.
642 #define ASC_EEP_GET_CHIP_ID(cfg) ((cfg)->id_speed & 0x0f)
643 #define ASC_EEP_GET_DMA_SPD(cfg) (((cfg)->id_speed & 0xf0) >> 4)
644 #define ASC_EEP_SET_CHIP_ID(cfg, sid) \
645 ((cfg)->id_speed = ((cfg)->id_speed & 0xf0) | ((sid) & ASC_MAX_TID))
646 #define ASC_EEP_SET_DMA_SPD(cfg, spd) \
647 ((cfg)->id_speed = ((cfg)->id_speed & 0x0f) | ((spd) & 0x0f) << 4)
649 typedef struct asceep_config {
650 ushort cfg_lsw;
651 ushort cfg_msw;
652 uchar init_sdtr;
653 uchar disc_enable;
654 uchar use_cmd_qng;
655 uchar start_motor;
656 uchar max_total_qng;
657 uchar max_tag_qng;
658 uchar bios_scan;
659 uchar power_up_wait;
660 uchar no_scam;
661 uchar id_speed; /* low order 4 bits is chip scsi id */
662 /* high order 4 bits is isa dma speed */
663 uchar dos_int13_table[ASC_MAX_TID + 1];
664 uchar adapter_info[6];
665 ushort cntl;
666 ushort chksum;
667 } ASCEEP_CONFIG;
669 #define ASC_EEP_CMD_READ 0x80
670 #define ASC_EEP_CMD_WRITE 0x40
671 #define ASC_EEP_CMD_WRITE_ABLE 0x30
672 #define ASC_EEP_CMD_WRITE_DISABLE 0x00
673 #define ASCV_MSGOUT_BEG 0x0000
674 #define ASCV_MSGOUT_SDTR_PERIOD (ASCV_MSGOUT_BEG+3)
675 #define ASCV_MSGOUT_SDTR_OFFSET (ASCV_MSGOUT_BEG+4)
676 #define ASCV_BREAK_SAVED_CODE (ushort)0x0006
677 #define ASCV_MSGIN_BEG (ASCV_MSGOUT_BEG+8)
678 #define ASCV_MSGIN_SDTR_PERIOD (ASCV_MSGIN_BEG+3)
679 #define ASCV_MSGIN_SDTR_OFFSET (ASCV_MSGIN_BEG+4)
680 #define ASCV_SDTR_DATA_BEG (ASCV_MSGIN_BEG+8)
681 #define ASCV_SDTR_DONE_BEG (ASCV_SDTR_DATA_BEG+8)
682 #define ASCV_MAX_DVC_QNG_BEG (ushort)0x0020
683 #define ASCV_BREAK_ADDR (ushort)0x0028
684 #define ASCV_BREAK_NOTIFY_COUNT (ushort)0x002A
685 #define ASCV_BREAK_CONTROL (ushort)0x002C
686 #define ASCV_BREAK_HIT_COUNT (ushort)0x002E
688 #define ASCV_ASCDVC_ERR_CODE_W (ushort)0x0030
689 #define ASCV_MCODE_CHKSUM_W (ushort)0x0032
690 #define ASCV_MCODE_SIZE_W (ushort)0x0034
691 #define ASCV_STOP_CODE_B (ushort)0x0036
692 #define ASCV_DVC_ERR_CODE_B (ushort)0x0037
693 #define ASCV_OVERRUN_PADDR_D (ushort)0x0038
694 #define ASCV_OVERRUN_BSIZE_D (ushort)0x003C
695 #define ASCV_HALTCODE_W (ushort)0x0040
696 #define ASCV_CHKSUM_W (ushort)0x0042
697 #define ASCV_MC_DATE_W (ushort)0x0044
698 #define ASCV_MC_VER_W (ushort)0x0046
699 #define ASCV_NEXTRDY_B (ushort)0x0048
700 #define ASCV_DONENEXT_B (ushort)0x0049
701 #define ASCV_USE_TAGGED_QNG_B (ushort)0x004A
702 #define ASCV_SCSIBUSY_B (ushort)0x004B
703 #define ASCV_Q_DONE_IN_PROGRESS_B (ushort)0x004C
704 #define ASCV_CURCDB_B (ushort)0x004D
705 #define ASCV_RCLUN_B (ushort)0x004E
706 #define ASCV_BUSY_QHEAD_B (ushort)0x004F
707 #define ASCV_DISC1_QHEAD_B (ushort)0x0050
708 #define ASCV_DISC_ENABLE_B (ushort)0x0052
709 #define ASCV_CAN_TAGGED_QNG_B (ushort)0x0053
710 #define ASCV_HOSTSCSI_ID_B (ushort)0x0055
711 #define ASCV_MCODE_CNTL_B (ushort)0x0056
712 #define ASCV_NULL_TARGET_B (ushort)0x0057
713 #define ASCV_FREE_Q_HEAD_W (ushort)0x0058
714 #define ASCV_DONE_Q_TAIL_W (ushort)0x005A
715 #define ASCV_FREE_Q_HEAD_B (ushort)(ASCV_FREE_Q_HEAD_W+1)
716 #define ASCV_DONE_Q_TAIL_B (ushort)(ASCV_DONE_Q_TAIL_W+1)
717 #define ASCV_HOST_FLAG_B (ushort)0x005D
718 #define ASCV_TOTAL_READY_Q_B (ushort)0x0064
719 #define ASCV_VER_SERIAL_B (ushort)0x0065
720 #define ASCV_HALTCODE_SAVED_W (ushort)0x0066
721 #define ASCV_WTM_FLAG_B (ushort)0x0068
722 #define ASCV_RISC_FLAG_B (ushort)0x006A
723 #define ASCV_REQ_SG_LIST_QP (ushort)0x006B
724 #define ASC_HOST_FLAG_IN_ISR 0x01
725 #define ASC_HOST_FLAG_ACK_INT 0x02
726 #define ASC_RISC_FLAG_GEN_INT 0x01
727 #define ASC_RISC_FLAG_REQ_SG_LIST 0x02
728 #define IOP_CTRL (0x0F)
729 #define IOP_STATUS (0x0E)
730 #define IOP_INT_ACK IOP_STATUS
731 #define IOP_REG_IFC (0x0D)
732 #define IOP_SYN_OFFSET (0x0B)
733 #define IOP_EXTRA_CONTROL (0x0D)
734 #define IOP_REG_PC (0x0C)
735 #define IOP_RAM_ADDR (0x0A)
736 #define IOP_RAM_DATA (0x08)
737 #define IOP_EEP_DATA (0x06)
738 #define IOP_EEP_CMD (0x07)
739 #define IOP_VERSION (0x03)
740 #define IOP_CONFIG_HIGH (0x04)
741 #define IOP_CONFIG_LOW (0x02)
742 #define IOP_SIG_BYTE (0x01)
743 #define IOP_SIG_WORD (0x00)
744 #define IOP_REG_DC1 (0x0E)
745 #define IOP_REG_DC0 (0x0C)
746 #define IOP_REG_SB (0x0B)
747 #define IOP_REG_DA1 (0x0A)
748 #define IOP_REG_DA0 (0x08)
749 #define IOP_REG_SC (0x09)
750 #define IOP_DMA_SPEED (0x07)
751 #define IOP_REG_FLAG (0x07)
752 #define IOP_FIFO_H (0x06)
753 #define IOP_FIFO_L (0x04)
754 #define IOP_REG_ID (0x05)
755 #define IOP_REG_QP (0x03)
756 #define IOP_REG_IH (0x02)
757 #define IOP_REG_IX (0x01)
758 #define IOP_REG_AX (0x00)
759 #define IFC_REG_LOCK (0x00)
760 #define IFC_REG_UNLOCK (0x09)
761 #define IFC_WR_EN_FILTER (0x10)
762 #define IFC_RD_NO_EEPROM (0x10)
763 #define IFC_SLEW_RATE (0x20)
764 #define IFC_ACT_NEG (0x40)
765 #define IFC_INP_FILTER (0x80)
766 #define IFC_INIT_DEFAULT (IFC_ACT_NEG | IFC_REG_UNLOCK)
767 #define SC_SEL (uchar)(0x80)
768 #define SC_BSY (uchar)(0x40)
769 #define SC_ACK (uchar)(0x20)
770 #define SC_REQ (uchar)(0x10)
771 #define SC_ATN (uchar)(0x08)
772 #define SC_IO (uchar)(0x04)
773 #define SC_CD (uchar)(0x02)
774 #define SC_MSG (uchar)(0x01)
775 #define SEC_SCSI_CTL (uchar)(0x80)
776 #define SEC_ACTIVE_NEGATE (uchar)(0x40)
777 #define SEC_SLEW_RATE (uchar)(0x20)
778 #define SEC_ENABLE_FILTER (uchar)(0x10)
779 #define ASC_HALT_EXTMSG_IN (ushort)0x8000
780 #define ASC_HALT_CHK_CONDITION (ushort)0x8100
781 #define ASC_HALT_SS_QUEUE_FULL (ushort)0x8200
782 #define ASC_HALT_DISABLE_ASYN_USE_SYN_FIX (ushort)0x8300
783 #define ASC_HALT_ENABLE_ASYN_USE_SYN_FIX (ushort)0x8400
784 #define ASC_HALT_SDTR_REJECTED (ushort)0x4000
785 #define ASC_HALT_HOST_COPY_SG_LIST_TO_RISC ( ushort )0x2000
786 #define ASC_MAX_QNO 0xF8
787 #define ASC_DATA_SEC_BEG (ushort)0x0080
788 #define ASC_DATA_SEC_END (ushort)0x0080
789 #define ASC_CODE_SEC_BEG (ushort)0x0080
790 #define ASC_CODE_SEC_END (ushort)0x0080
791 #define ASC_QADR_BEG (0x4000)
792 #define ASC_QADR_USED (ushort)(ASC_MAX_QNO * 64)
793 #define ASC_QADR_END (ushort)0x7FFF
794 #define ASC_QLAST_ADR (ushort)0x7FC0
795 #define ASC_QBLK_SIZE 0x40
796 #define ASC_BIOS_DATA_QBEG 0xF8
797 #define ASC_MIN_ACTIVE_QNO 0x01
798 #define ASC_QLINK_END 0xFF
799 #define ASC_EEPROM_WORDS 0x10
800 #define ASC_MAX_MGS_LEN 0x10
801 #define ASC_BIOS_ADDR_DEF 0xDC00
802 #define ASC_BIOS_SIZE 0x3800
803 #define ASC_BIOS_RAM_OFF 0x3800
804 #define ASC_BIOS_RAM_SIZE 0x800
805 #define ASC_BIOS_MIN_ADDR 0xC000
806 #define ASC_BIOS_MAX_ADDR 0xEC00
807 #define ASC_BIOS_BANK_SIZE 0x0400
808 #define ASC_MCODE_START_ADDR 0x0080
809 #define ASC_CFG0_HOST_INT_ON 0x0020
810 #define ASC_CFG0_BIOS_ON 0x0040
811 #define ASC_CFG0_VERA_BURST_ON 0x0080
812 #define ASC_CFG0_SCSI_PARITY_ON 0x0800
813 #define ASC_CFG1_SCSI_TARGET_ON 0x0080
814 #define ASC_CFG1_LRAM_8BITS_ON 0x0800
815 #define ASC_CFG_MSW_CLR_MASK 0x3080
816 #define CSW_TEST1 (ASC_CS_TYPE)0x8000
817 #define CSW_AUTO_CONFIG (ASC_CS_TYPE)0x4000
818 #define CSW_RESERVED1 (ASC_CS_TYPE)0x2000
819 #define CSW_IRQ_WRITTEN (ASC_CS_TYPE)0x1000
820 #define CSW_33MHZ_SELECTED (ASC_CS_TYPE)0x0800
821 #define CSW_TEST2 (ASC_CS_TYPE)0x0400
822 #define CSW_TEST3 (ASC_CS_TYPE)0x0200
823 #define CSW_RESERVED2 (ASC_CS_TYPE)0x0100
824 #define CSW_DMA_DONE (ASC_CS_TYPE)0x0080
825 #define CSW_FIFO_RDY (ASC_CS_TYPE)0x0040
826 #define CSW_EEP_READ_DONE (ASC_CS_TYPE)0x0020
827 #define CSW_HALTED (ASC_CS_TYPE)0x0010
828 #define CSW_SCSI_RESET_ACTIVE (ASC_CS_TYPE)0x0008
829 #define CSW_PARITY_ERR (ASC_CS_TYPE)0x0004
830 #define CSW_SCSI_RESET_LATCH (ASC_CS_TYPE)0x0002
831 #define CSW_INT_PENDING (ASC_CS_TYPE)0x0001
832 #define CIW_CLR_SCSI_RESET_INT (ASC_CS_TYPE)0x1000
833 #define CIW_INT_ACK (ASC_CS_TYPE)0x0100
834 #define CIW_TEST1 (ASC_CS_TYPE)0x0200
835 #define CIW_TEST2 (ASC_CS_TYPE)0x0400
836 #define CIW_SEL_33MHZ (ASC_CS_TYPE)0x0800
837 #define CIW_IRQ_ACT (ASC_CS_TYPE)0x1000
838 #define CC_CHIP_RESET (uchar)0x80
839 #define CC_SCSI_RESET (uchar)0x40
840 #define CC_HALT (uchar)0x20
841 #define CC_SINGLE_STEP (uchar)0x10
842 #define CC_DMA_ABLE (uchar)0x08
843 #define CC_TEST (uchar)0x04
844 #define CC_BANK_ONE (uchar)0x02
845 #define CC_DIAG (uchar)0x01
846 #define ASC_1000_ID0W 0x04C1
847 #define ASC_1000_ID0W_FIX 0x00C1
848 #define ASC_1000_ID1B 0x25
849 #define ASC_EISA_REV_IOP_MASK (0x0C83)
850 #define ASC_EISA_CFG_IOP_MASK (0x0C86)
851 #define ASC_GET_EISA_SLOT(iop) (PortAddr)((iop) & 0xF000)
852 #define INS_HALTINT (ushort)0x6281
853 #define INS_HALT (ushort)0x6280
854 #define INS_SINT (ushort)0x6200
855 #define INS_RFLAG_WTM (ushort)0x7380
856 #define ASC_MC_SAVE_CODE_WSIZE 0x500
857 #define ASC_MC_SAVE_DATA_WSIZE 0x40
859 typedef struct asc_mc_saved {
860 ushort data[ASC_MC_SAVE_DATA_WSIZE];
861 ushort code[ASC_MC_SAVE_CODE_WSIZE];
862 } ASC_MC_SAVED;
864 #define AscGetQDoneInProgress(port) AscReadLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B)
865 #define AscPutQDoneInProgress(port, val) AscWriteLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B, val)
866 #define AscGetVarFreeQHead(port) AscReadLramWord((port), ASCV_FREE_Q_HEAD_W)
867 #define AscGetVarDoneQTail(port) AscReadLramWord((port), ASCV_DONE_Q_TAIL_W)
868 #define AscPutVarFreeQHead(port, val) AscWriteLramWord((port), ASCV_FREE_Q_HEAD_W, val)
869 #define AscPutVarDoneQTail(port, val) AscWriteLramWord((port), ASCV_DONE_Q_TAIL_W, val)
870 #define AscGetRiscVarFreeQHead(port) AscReadLramByte((port), ASCV_NEXTRDY_B)
871 #define AscGetRiscVarDoneQTail(port) AscReadLramByte((port), ASCV_DONENEXT_B)
872 #define AscPutRiscVarFreeQHead(port, val) AscWriteLramByte((port), ASCV_NEXTRDY_B, val)
873 #define AscPutRiscVarDoneQTail(port, val) AscWriteLramByte((port), ASCV_DONENEXT_B, val)
874 #define AscPutMCodeSDTRDoneAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id), (data))
875 #define AscGetMCodeSDTRDoneAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id))
876 #define AscPutMCodeInitSDTRAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id), data)
877 #define AscGetMCodeInitSDTRAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id))
878 #define AscGetChipSignatureByte(port) (uchar)inp((port)+IOP_SIG_BYTE)
879 #define AscGetChipSignatureWord(port) (ushort)inpw((port)+IOP_SIG_WORD)
880 #define AscGetChipVerNo(port) (uchar)inp((port)+IOP_VERSION)
881 #define AscGetChipCfgLsw(port) (ushort)inpw((port)+IOP_CONFIG_LOW)
882 #define AscGetChipCfgMsw(port) (ushort)inpw((port)+IOP_CONFIG_HIGH)
883 #define AscSetChipCfgLsw(port, data) outpw((port)+IOP_CONFIG_LOW, data)
884 #define AscSetChipCfgMsw(port, data) outpw((port)+IOP_CONFIG_HIGH, data)
885 #define AscGetChipEEPCmd(port) (uchar)inp((port)+IOP_EEP_CMD)
886 #define AscSetChipEEPCmd(port, data) outp((port)+IOP_EEP_CMD, data)
887 #define AscGetChipEEPData(port) (ushort)inpw((port)+IOP_EEP_DATA)
888 #define AscSetChipEEPData(port, data) outpw((port)+IOP_EEP_DATA, data)
889 #define AscGetChipLramAddr(port) (ushort)inpw((PortAddr)((port)+IOP_RAM_ADDR))
890 #define AscSetChipLramAddr(port, addr) outpw((PortAddr)((port)+IOP_RAM_ADDR), addr)
891 #define AscGetChipLramData(port) (ushort)inpw((port)+IOP_RAM_DATA)
892 #define AscSetChipLramData(port, data) outpw((port)+IOP_RAM_DATA, data)
893 #define AscGetChipIFC(port) (uchar)inp((port)+IOP_REG_IFC)
894 #define AscSetChipIFC(port, data) outp((port)+IOP_REG_IFC, data)
895 #define AscGetChipStatus(port) (ASC_CS_TYPE)inpw((port)+IOP_STATUS)
896 #define AscSetChipStatus(port, cs_val) outpw((port)+IOP_STATUS, cs_val)
897 #define AscGetChipControl(port) (uchar)inp((port)+IOP_CTRL)
898 #define AscSetChipControl(port, cc_val) outp((port)+IOP_CTRL, cc_val)
899 #define AscGetChipSyn(port) (uchar)inp((port)+IOP_SYN_OFFSET)
900 #define AscSetChipSyn(port, data) outp((port)+IOP_SYN_OFFSET, data)
901 #define AscSetPCAddr(port, data) outpw((port)+IOP_REG_PC, data)
902 #define AscGetPCAddr(port) (ushort)inpw((port)+IOP_REG_PC)
903 #define AscIsIntPending(port) (AscGetChipStatus(port) & (CSW_INT_PENDING | CSW_SCSI_RESET_LATCH))
904 #define AscGetChipScsiID(port) ((AscGetChipCfgLsw(port) >> 8) & ASC_MAX_TID)
905 #define AscGetExtraControl(port) (uchar)inp((port)+IOP_EXTRA_CONTROL)
906 #define AscSetExtraControl(port, data) outp((port)+IOP_EXTRA_CONTROL, data)
907 #define AscReadChipAX(port) (ushort)inpw((port)+IOP_REG_AX)
908 #define AscWriteChipAX(port, data) outpw((port)+IOP_REG_AX, data)
909 #define AscReadChipIX(port) (uchar)inp((port)+IOP_REG_IX)
910 #define AscWriteChipIX(port, data) outp((port)+IOP_REG_IX, data)
911 #define AscReadChipIH(port) (ushort)inpw((port)+IOP_REG_IH)
912 #define AscWriteChipIH(port, data) outpw((port)+IOP_REG_IH, data)
913 #define AscReadChipQP(port) (uchar)inp((port)+IOP_REG_QP)
914 #define AscWriteChipQP(port, data) outp((port)+IOP_REG_QP, data)
915 #define AscReadChipFIFO_L(port) (ushort)inpw((port)+IOP_REG_FIFO_L)
916 #define AscWriteChipFIFO_L(port, data) outpw((port)+IOP_REG_FIFO_L, data)
917 #define AscReadChipFIFO_H(port) (ushort)inpw((port)+IOP_REG_FIFO_H)
918 #define AscWriteChipFIFO_H(port, data) outpw((port)+IOP_REG_FIFO_H, data)
919 #define AscReadChipDmaSpeed(port) (uchar)inp((port)+IOP_DMA_SPEED)
920 #define AscWriteChipDmaSpeed(port, data) outp((port)+IOP_DMA_SPEED, data)
921 #define AscReadChipDA0(port) (ushort)inpw((port)+IOP_REG_DA0)
922 #define AscWriteChipDA0(port) outpw((port)+IOP_REG_DA0, data)
923 #define AscReadChipDA1(port) (ushort)inpw((port)+IOP_REG_DA1)
924 #define AscWriteChipDA1(port) outpw((port)+IOP_REG_DA1, data)
925 #define AscReadChipDC0(port) (ushort)inpw((port)+IOP_REG_DC0)
926 #define AscWriteChipDC0(port) outpw((port)+IOP_REG_DC0, data)
927 #define AscReadChipDC1(port) (ushort)inpw((port)+IOP_REG_DC1)
928 #define AscWriteChipDC1(port) outpw((port)+IOP_REG_DC1, data)
929 #define AscReadChipDvcID(port) (uchar)inp((port)+IOP_REG_ID)
930 #define AscWriteChipDvcID(port, data) outp((port)+IOP_REG_ID, data)
933 * Portable Data Types
935 * Any instance where a 32-bit long or pointer type is assumed
936 * for precision or HW defined structures, the following define
937 * types must be used. In Linux the char, short, and int types
938 * are all consistent at 8, 16, and 32 bits respectively. Pointers
939 * and long types are 64 bits on Alpha and UltraSPARC.
941 #define ADV_PADDR __u32 /* Physical address data type. */
942 #define ADV_VADDR __u32 /* Virtual address data type. */
943 #define ADV_DCNT __u32 /* Unsigned Data count type. */
944 #define ADV_SDCNT __s32 /* Signed Data count type. */
947 * These macros are used to convert a virtual address to a
948 * 32-bit value. This currently can be used on Linux Alpha
949 * which uses 64-bit virtual address but a 32-bit bus address.
950 * This is likely to break in the future, but doing this now
951 * will give us time to change the HW and FW to handle 64-bit
952 * addresses.
954 #define ADV_VADDR_TO_U32 virt_to_bus
955 #define ADV_U32_TO_VADDR bus_to_virt
957 #define AdvPortAddr void __iomem * /* Virtual memory address size */
960 * Define Adv Library required memory access macros.
962 #define ADV_MEM_READB(addr) readb(addr)
963 #define ADV_MEM_READW(addr) readw(addr)
964 #define ADV_MEM_WRITEB(addr, byte) writeb(byte, addr)
965 #define ADV_MEM_WRITEW(addr, word) writew(word, addr)
966 #define ADV_MEM_WRITEDW(addr, dword) writel(dword, addr)
968 #define ADV_CARRIER_COUNT (ASC_DEF_MAX_HOST_QNG + 15)
971 * Define total number of simultaneous maximum element scatter-gather
972 * request blocks per wide adapter. ASC_DEF_MAX_HOST_QNG (253) is the
973 * maximum number of outstanding commands per wide host adapter. Each
974 * command uses one or more ADV_SG_BLOCK each with 15 scatter-gather
975 * elements. Allow each command to have at least one ADV_SG_BLOCK structure.
976 * This allows about 15 commands to have the maximum 17 ADV_SG_BLOCK
977 * structures or 255 scatter-gather elements.
979 #define ADV_TOT_SG_BLOCK ASC_DEF_MAX_HOST_QNG
982 * Define maximum number of scatter-gather elements per request.
984 #define ADV_MAX_SG_LIST 255
985 #define NO_OF_SG_PER_BLOCK 15
987 #define ADV_EEP_DVC_CFG_BEGIN (0x00)
988 #define ADV_EEP_DVC_CFG_END (0x15)
989 #define ADV_EEP_DVC_CTL_BEGIN (0x16) /* location of OEM name */
990 #define ADV_EEP_MAX_WORD_ADDR (0x1E)
992 #define ADV_EEP_DELAY_MS 100
994 #define ADV_EEPROM_BIG_ENDIAN 0x8000 /* EEPROM Bit 15 */
995 #define ADV_EEPROM_BIOS_ENABLE 0x4000 /* EEPROM Bit 14 */
997 * For the ASC3550 Bit 13 is Termination Polarity control bit.
998 * For later ICs Bit 13 controls whether the CIS (Card Information
999 * Service Section) is loaded from EEPROM.
1001 #define ADV_EEPROM_TERM_POL 0x2000 /* EEPROM Bit 13 */
1002 #define ADV_EEPROM_CIS_LD 0x2000 /* EEPROM Bit 13 */
1004 * ASC38C1600 Bit 11
1006 * If EEPROM Bit 11 is 0 for Function 0, then Function 0 will specify
1007 * INT A in the PCI Configuration Space Int Pin field. If it is 1, then
1008 * Function 0 will specify INT B.
1010 * If EEPROM Bit 11 is 0 for Function 1, then Function 1 will specify
1011 * INT B in the PCI Configuration Space Int Pin field. If it is 1, then
1012 * Function 1 will specify INT A.
1014 #define ADV_EEPROM_INTAB 0x0800 /* EEPROM Bit 11 */
1016 typedef struct adveep_3550_config {
1017 /* Word Offset, Description */
1019 ushort cfg_lsw; /* 00 power up initialization */
1020 /* bit 13 set - Term Polarity Control */
1021 /* bit 14 set - BIOS Enable */
1022 /* bit 15 set - Big Endian Mode */
1023 ushort cfg_msw; /* 01 unused */
1024 ushort disc_enable; /* 02 disconnect enable */
1025 ushort wdtr_able; /* 03 Wide DTR able */
1026 ushort sdtr_able; /* 04 Synchronous DTR able */
1027 ushort start_motor; /* 05 send start up motor */
1028 ushort tagqng_able; /* 06 tag queuing able */
1029 ushort bios_scan; /* 07 BIOS device control */
1030 ushort scam_tolerant; /* 08 no scam */
1032 uchar adapter_scsi_id; /* 09 Host Adapter ID */
1033 uchar bios_boot_delay; /* power up wait */
1035 uchar scsi_reset_delay; /* 10 reset delay */
1036 uchar bios_id_lun; /* first boot device scsi id & lun */
1037 /* high nibble is lun */
1038 /* low nibble is scsi id */
1040 uchar termination; /* 11 0 - automatic */
1041 /* 1 - low off / high off */
1042 /* 2 - low off / high on */
1043 /* 3 - low on / high on */
1044 /* There is no low on / high off */
1046 uchar reserved1; /* reserved byte (not used) */
1048 ushort bios_ctrl; /* 12 BIOS control bits */
1049 /* bit 0 BIOS don't act as initiator. */
1050 /* bit 1 BIOS > 1 GB support */
1051 /* bit 2 BIOS > 2 Disk Support */
1052 /* bit 3 BIOS don't support removables */
1053 /* bit 4 BIOS support bootable CD */
1054 /* bit 5 BIOS scan enabled */
1055 /* bit 6 BIOS support multiple LUNs */
1056 /* bit 7 BIOS display of message */
1057 /* bit 8 SCAM disabled */
1058 /* bit 9 Reset SCSI bus during init. */
1059 /* bit 10 */
1060 /* bit 11 No verbose initialization. */
1061 /* bit 12 SCSI parity enabled */
1062 /* bit 13 */
1063 /* bit 14 */
1064 /* bit 15 */
1065 ushort ultra_able; /* 13 ULTRA speed able */
1066 ushort reserved2; /* 14 reserved */
1067 uchar max_host_qng; /* 15 maximum host queuing */
1068 uchar max_dvc_qng; /* maximum per device queuing */
1069 ushort dvc_cntl; /* 16 control bit for driver */
1070 ushort bug_fix; /* 17 control bit for bug fix */
1071 ushort serial_number_word1; /* 18 Board serial number word 1 */
1072 ushort serial_number_word2; /* 19 Board serial number word 2 */
1073 ushort serial_number_word3; /* 20 Board serial number word 3 */
1074 ushort check_sum; /* 21 EEP check sum */
1075 uchar oem_name[16]; /* 22 OEM name */
1076 ushort dvc_err_code; /* 30 last device driver error code */
1077 ushort adv_err_code; /* 31 last uc and Adv Lib error code */
1078 ushort adv_err_addr; /* 32 last uc error address */
1079 ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */
1080 ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */
1081 ushort saved_adv_err_addr; /* 35 saved last uc error address */
1082 ushort num_of_err; /* 36 number of error */
1083 } ADVEEP_3550_CONFIG;
1085 typedef struct adveep_38C0800_config {
1086 /* Word Offset, Description */
1088 ushort cfg_lsw; /* 00 power up initialization */
1089 /* bit 13 set - Load CIS */
1090 /* bit 14 set - BIOS Enable */
1091 /* bit 15 set - Big Endian Mode */
1092 ushort cfg_msw; /* 01 unused */
1093 ushort disc_enable; /* 02 disconnect enable */
1094 ushort wdtr_able; /* 03 Wide DTR able */
1095 ushort sdtr_speed1; /* 04 SDTR Speed TID 0-3 */
1096 ushort start_motor; /* 05 send start up motor */
1097 ushort tagqng_able; /* 06 tag queuing able */
1098 ushort bios_scan; /* 07 BIOS device control */
1099 ushort scam_tolerant; /* 08 no scam */
1101 uchar adapter_scsi_id; /* 09 Host Adapter ID */
1102 uchar bios_boot_delay; /* power up wait */
1104 uchar scsi_reset_delay; /* 10 reset delay */
1105 uchar bios_id_lun; /* first boot device scsi id & lun */
1106 /* high nibble is lun */
1107 /* low nibble is scsi id */
1109 uchar termination_se; /* 11 0 - automatic */
1110 /* 1 - low off / high off */
1111 /* 2 - low off / high on */
1112 /* 3 - low on / high on */
1113 /* There is no low on / high off */
1115 uchar termination_lvd; /* 11 0 - automatic */
1116 /* 1 - low off / high off */
1117 /* 2 - low off / high on */
1118 /* 3 - low on / high on */
1119 /* There is no low on / high off */
1121 ushort bios_ctrl; /* 12 BIOS control bits */
1122 /* bit 0 BIOS don't act as initiator. */
1123 /* bit 1 BIOS > 1 GB support */
1124 /* bit 2 BIOS > 2 Disk Support */
1125 /* bit 3 BIOS don't support removables */
1126 /* bit 4 BIOS support bootable CD */
1127 /* bit 5 BIOS scan enabled */
1128 /* bit 6 BIOS support multiple LUNs */
1129 /* bit 7 BIOS display of message */
1130 /* bit 8 SCAM disabled */
1131 /* bit 9 Reset SCSI bus during init. */
1132 /* bit 10 */
1133 /* bit 11 No verbose initialization. */
1134 /* bit 12 SCSI parity enabled */
1135 /* bit 13 */
1136 /* bit 14 */
1137 /* bit 15 */
1138 ushort sdtr_speed2; /* 13 SDTR speed TID 4-7 */
1139 ushort sdtr_speed3; /* 14 SDTR speed TID 8-11 */
1140 uchar max_host_qng; /* 15 maximum host queueing */
1141 uchar max_dvc_qng; /* maximum per device queuing */
1142 ushort dvc_cntl; /* 16 control bit for driver */
1143 ushort sdtr_speed4; /* 17 SDTR speed 4 TID 12-15 */
1144 ushort serial_number_word1; /* 18 Board serial number word 1 */
1145 ushort serial_number_word2; /* 19 Board serial number word 2 */
1146 ushort serial_number_word3; /* 20 Board serial number word 3 */
1147 ushort check_sum; /* 21 EEP check sum */
1148 uchar oem_name[16]; /* 22 OEM name */
1149 ushort dvc_err_code; /* 30 last device driver error code */
1150 ushort adv_err_code; /* 31 last uc and Adv Lib error code */
1151 ushort adv_err_addr; /* 32 last uc error address */
1152 ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */
1153 ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */
1154 ushort saved_adv_err_addr; /* 35 saved last uc error address */
1155 ushort reserved36; /* 36 reserved */
1156 ushort reserved37; /* 37 reserved */
1157 ushort reserved38; /* 38 reserved */
1158 ushort reserved39; /* 39 reserved */
1159 ushort reserved40; /* 40 reserved */
1160 ushort reserved41; /* 41 reserved */
1161 ushort reserved42; /* 42 reserved */
1162 ushort reserved43; /* 43 reserved */
1163 ushort reserved44; /* 44 reserved */
1164 ushort reserved45; /* 45 reserved */
1165 ushort reserved46; /* 46 reserved */
1166 ushort reserved47; /* 47 reserved */
1167 ushort reserved48; /* 48 reserved */
1168 ushort reserved49; /* 49 reserved */
1169 ushort reserved50; /* 50 reserved */
1170 ushort reserved51; /* 51 reserved */
1171 ushort reserved52; /* 52 reserved */
1172 ushort reserved53; /* 53 reserved */
1173 ushort reserved54; /* 54 reserved */
1174 ushort reserved55; /* 55 reserved */
1175 ushort cisptr_lsw; /* 56 CIS PTR LSW */
1176 ushort cisprt_msw; /* 57 CIS PTR MSW */
1177 ushort subsysvid; /* 58 SubSystem Vendor ID */
1178 ushort subsysid; /* 59 SubSystem ID */
1179 ushort reserved60; /* 60 reserved */
1180 ushort reserved61; /* 61 reserved */
1181 ushort reserved62; /* 62 reserved */
1182 ushort reserved63; /* 63 reserved */
1183 } ADVEEP_38C0800_CONFIG;
1185 typedef struct adveep_38C1600_config {
1186 /* Word Offset, Description */
1188 ushort cfg_lsw; /* 00 power up initialization */
1189 /* bit 11 set - Func. 0 INTB, Func. 1 INTA */
1190 /* clear - Func. 0 INTA, Func. 1 INTB */
1191 /* bit 13 set - Load CIS */
1192 /* bit 14 set - BIOS Enable */
1193 /* bit 15 set - Big Endian Mode */
1194 ushort cfg_msw; /* 01 unused */
1195 ushort disc_enable; /* 02 disconnect enable */
1196 ushort wdtr_able; /* 03 Wide DTR able */
1197 ushort sdtr_speed1; /* 04 SDTR Speed TID 0-3 */
1198 ushort start_motor; /* 05 send start up motor */
1199 ushort tagqng_able; /* 06 tag queuing able */
1200 ushort bios_scan; /* 07 BIOS device control */
1201 ushort scam_tolerant; /* 08 no scam */
1203 uchar adapter_scsi_id; /* 09 Host Adapter ID */
1204 uchar bios_boot_delay; /* power up wait */
1206 uchar scsi_reset_delay; /* 10 reset delay */
1207 uchar bios_id_lun; /* first boot device scsi id & lun */
1208 /* high nibble is lun */
1209 /* low nibble is scsi id */
1211 uchar termination_se; /* 11 0 - automatic */
1212 /* 1 - low off / high off */
1213 /* 2 - low off / high on */
1214 /* 3 - low on / high on */
1215 /* There is no low on / high off */
1217 uchar termination_lvd; /* 11 0 - automatic */
1218 /* 1 - low off / high off */
1219 /* 2 - low off / high on */
1220 /* 3 - low on / high on */
1221 /* There is no low on / high off */
1223 ushort bios_ctrl; /* 12 BIOS control bits */
1224 /* bit 0 BIOS don't act as initiator. */
1225 /* bit 1 BIOS > 1 GB support */
1226 /* bit 2 BIOS > 2 Disk Support */
1227 /* bit 3 BIOS don't support removables */
1228 /* bit 4 BIOS support bootable CD */
1229 /* bit 5 BIOS scan enabled */
1230 /* bit 6 BIOS support multiple LUNs */
1231 /* bit 7 BIOS display of message */
1232 /* bit 8 SCAM disabled */
1233 /* bit 9 Reset SCSI bus during init. */
1234 /* bit 10 Basic Integrity Checking disabled */
1235 /* bit 11 No verbose initialization. */
1236 /* bit 12 SCSI parity enabled */
1237 /* bit 13 AIPP (Asyn. Info. Ph. Prot.) dis. */
1238 /* bit 14 */
1239 /* bit 15 */
1240 ushort sdtr_speed2; /* 13 SDTR speed TID 4-7 */
1241 ushort sdtr_speed3; /* 14 SDTR speed TID 8-11 */
1242 uchar max_host_qng; /* 15 maximum host queueing */
1243 uchar max_dvc_qng; /* maximum per device queuing */
1244 ushort dvc_cntl; /* 16 control bit for driver */
1245 ushort sdtr_speed4; /* 17 SDTR speed 4 TID 12-15 */
1246 ushort serial_number_word1; /* 18 Board serial number word 1 */
1247 ushort serial_number_word2; /* 19 Board serial number word 2 */
1248 ushort serial_number_word3; /* 20 Board serial number word 3 */
1249 ushort check_sum; /* 21 EEP check sum */
1250 uchar oem_name[16]; /* 22 OEM name */
1251 ushort dvc_err_code; /* 30 last device driver error code */
1252 ushort adv_err_code; /* 31 last uc and Adv Lib error code */
1253 ushort adv_err_addr; /* 32 last uc error address */
1254 ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */
1255 ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */
1256 ushort saved_adv_err_addr; /* 35 saved last uc error address */
1257 ushort reserved36; /* 36 reserved */
1258 ushort reserved37; /* 37 reserved */
1259 ushort reserved38; /* 38 reserved */
1260 ushort reserved39; /* 39 reserved */
1261 ushort reserved40; /* 40 reserved */
1262 ushort reserved41; /* 41 reserved */
1263 ushort reserved42; /* 42 reserved */
1264 ushort reserved43; /* 43 reserved */
1265 ushort reserved44; /* 44 reserved */
1266 ushort reserved45; /* 45 reserved */
1267 ushort reserved46; /* 46 reserved */
1268 ushort reserved47; /* 47 reserved */
1269 ushort reserved48; /* 48 reserved */
1270 ushort reserved49; /* 49 reserved */
1271 ushort reserved50; /* 50 reserved */
1272 ushort reserved51; /* 51 reserved */
1273 ushort reserved52; /* 52 reserved */
1274 ushort reserved53; /* 53 reserved */
1275 ushort reserved54; /* 54 reserved */
1276 ushort reserved55; /* 55 reserved */
1277 ushort cisptr_lsw; /* 56 CIS PTR LSW */
1278 ushort cisprt_msw; /* 57 CIS PTR MSW */
1279 ushort subsysvid; /* 58 SubSystem Vendor ID */
1280 ushort subsysid; /* 59 SubSystem ID */
1281 ushort reserved60; /* 60 reserved */
1282 ushort reserved61; /* 61 reserved */
1283 ushort reserved62; /* 62 reserved */
1284 ushort reserved63; /* 63 reserved */
1285 } ADVEEP_38C1600_CONFIG;
1288 * EEPROM Commands
1290 #define ASC_EEP_CMD_DONE 0x0200
1292 /* bios_ctrl */
1293 #define BIOS_CTRL_BIOS 0x0001
1294 #define BIOS_CTRL_EXTENDED_XLAT 0x0002
1295 #define BIOS_CTRL_GT_2_DISK 0x0004
1296 #define BIOS_CTRL_BIOS_REMOVABLE 0x0008
1297 #define BIOS_CTRL_BOOTABLE_CD 0x0010
1298 #define BIOS_CTRL_MULTIPLE_LUN 0x0040
1299 #define BIOS_CTRL_DISPLAY_MSG 0x0080
1300 #define BIOS_CTRL_NO_SCAM 0x0100
1301 #define BIOS_CTRL_RESET_SCSI_BUS 0x0200
1302 #define BIOS_CTRL_INIT_VERBOSE 0x0800
1303 #define BIOS_CTRL_SCSI_PARITY 0x1000
1304 #define BIOS_CTRL_AIPP_DIS 0x2000
1306 #define ADV_3550_MEMSIZE 0x2000 /* 8 KB Internal Memory */
1308 #define ADV_38C0800_MEMSIZE 0x4000 /* 16 KB Internal Memory */
1311 * XXX - Since ASC38C1600 Rev.3 has a local RAM failure issue, there is
1312 * a special 16K Adv Library and Microcode version. After the issue is
1313 * resolved, should restore 32K support.
1315 * #define ADV_38C1600_MEMSIZE 0x8000L * 32 KB Internal Memory *
1317 #define ADV_38C1600_MEMSIZE 0x4000 /* 16 KB Internal Memory */
1320 * Byte I/O register address from base of 'iop_base'.
1322 #define IOPB_INTR_STATUS_REG 0x00
1323 #define IOPB_CHIP_ID_1 0x01
1324 #define IOPB_INTR_ENABLES 0x02
1325 #define IOPB_CHIP_TYPE_REV 0x03
1326 #define IOPB_RES_ADDR_4 0x04
1327 #define IOPB_RES_ADDR_5 0x05
1328 #define IOPB_RAM_DATA 0x06
1329 #define IOPB_RES_ADDR_7 0x07
1330 #define IOPB_FLAG_REG 0x08
1331 #define IOPB_RES_ADDR_9 0x09
1332 #define IOPB_RISC_CSR 0x0A
1333 #define IOPB_RES_ADDR_B 0x0B
1334 #define IOPB_RES_ADDR_C 0x0C
1335 #define IOPB_RES_ADDR_D 0x0D
1336 #define IOPB_SOFT_OVER_WR 0x0E
1337 #define IOPB_RES_ADDR_F 0x0F
1338 #define IOPB_MEM_CFG 0x10
1339 #define IOPB_RES_ADDR_11 0x11
1340 #define IOPB_GPIO_DATA 0x12
1341 #define IOPB_RES_ADDR_13 0x13
1342 #define IOPB_FLASH_PAGE 0x14
1343 #define IOPB_RES_ADDR_15 0x15
1344 #define IOPB_GPIO_CNTL 0x16
1345 #define IOPB_RES_ADDR_17 0x17
1346 #define IOPB_FLASH_DATA 0x18
1347 #define IOPB_RES_ADDR_19 0x19
1348 #define IOPB_RES_ADDR_1A 0x1A
1349 #define IOPB_RES_ADDR_1B 0x1B
1350 #define IOPB_RES_ADDR_1C 0x1C
1351 #define IOPB_RES_ADDR_1D 0x1D
1352 #define IOPB_RES_ADDR_1E 0x1E
1353 #define IOPB_RES_ADDR_1F 0x1F
1354 #define IOPB_DMA_CFG0 0x20
1355 #define IOPB_DMA_CFG1 0x21
1356 #define IOPB_TICKLE 0x22
1357 #define IOPB_DMA_REG_WR 0x23
1358 #define IOPB_SDMA_STATUS 0x24
1359 #define IOPB_SCSI_BYTE_CNT 0x25
1360 #define IOPB_HOST_BYTE_CNT 0x26
1361 #define IOPB_BYTE_LEFT_TO_XFER 0x27
1362 #define IOPB_BYTE_TO_XFER_0 0x28
1363 #define IOPB_BYTE_TO_XFER_1 0x29
1364 #define IOPB_BYTE_TO_XFER_2 0x2A
1365 #define IOPB_BYTE_TO_XFER_3 0x2B
1366 #define IOPB_ACC_GRP 0x2C
1367 #define IOPB_RES_ADDR_2D 0x2D
1368 #define IOPB_DEV_ID 0x2E
1369 #define IOPB_RES_ADDR_2F 0x2F
1370 #define IOPB_SCSI_DATA 0x30
1371 #define IOPB_RES_ADDR_31 0x31
1372 #define IOPB_RES_ADDR_32 0x32
1373 #define IOPB_SCSI_DATA_HSHK 0x33
1374 #define IOPB_SCSI_CTRL 0x34
1375 #define IOPB_RES_ADDR_35 0x35
1376 #define IOPB_RES_ADDR_36 0x36
1377 #define IOPB_RES_ADDR_37 0x37
1378 #define IOPB_RAM_BIST 0x38
1379 #define IOPB_PLL_TEST 0x39
1380 #define IOPB_PCI_INT_CFG 0x3A
1381 #define IOPB_RES_ADDR_3B 0x3B
1382 #define IOPB_RFIFO_CNT 0x3C
1383 #define IOPB_RES_ADDR_3D 0x3D
1384 #define IOPB_RES_ADDR_3E 0x3E
1385 #define IOPB_RES_ADDR_3F 0x3F
1388 * Word I/O register address from base of 'iop_base'.
1390 #define IOPW_CHIP_ID_0 0x00 /* CID0 */
1391 #define IOPW_CTRL_REG 0x02 /* CC */
1392 #define IOPW_RAM_ADDR 0x04 /* LA */
1393 #define IOPW_RAM_DATA 0x06 /* LD */
1394 #define IOPW_RES_ADDR_08 0x08
1395 #define IOPW_RISC_CSR 0x0A /* CSR */
1396 #define IOPW_SCSI_CFG0 0x0C /* CFG0 */
1397 #define IOPW_SCSI_CFG1 0x0E /* CFG1 */
1398 #define IOPW_RES_ADDR_10 0x10
1399 #define IOPW_SEL_MASK 0x12 /* SM */
1400 #define IOPW_RES_ADDR_14 0x14
1401 #define IOPW_FLASH_ADDR 0x16 /* FA */
1402 #define IOPW_RES_ADDR_18 0x18
1403 #define IOPW_EE_CMD 0x1A /* EC */
1404 #define IOPW_EE_DATA 0x1C /* ED */
1405 #define IOPW_SFIFO_CNT 0x1E /* SFC */
1406 #define IOPW_RES_ADDR_20 0x20
1407 #define IOPW_Q_BASE 0x22 /* QB */
1408 #define IOPW_QP 0x24 /* QP */
1409 #define IOPW_IX 0x26 /* IX */
1410 #define IOPW_SP 0x28 /* SP */
1411 #define IOPW_PC 0x2A /* PC */
1412 #define IOPW_RES_ADDR_2C 0x2C
1413 #define IOPW_RES_ADDR_2E 0x2E
1414 #define IOPW_SCSI_DATA 0x30 /* SD */
1415 #define IOPW_SCSI_DATA_HSHK 0x32 /* SDH */
1416 #define IOPW_SCSI_CTRL 0x34 /* SC */
1417 #define IOPW_HSHK_CFG 0x36 /* HCFG */
1418 #define IOPW_SXFR_STATUS 0x36 /* SXS */
1419 #define IOPW_SXFR_CNTL 0x38 /* SXL */
1420 #define IOPW_SXFR_CNTH 0x3A /* SXH */
1421 #define IOPW_RES_ADDR_3C 0x3C
1422 #define IOPW_RFIFO_DATA 0x3E /* RFD */
1425 * Doubleword I/O register address from base of 'iop_base'.
1427 #define IOPDW_RES_ADDR_0 0x00
1428 #define IOPDW_RAM_DATA 0x04
1429 #define IOPDW_RES_ADDR_8 0x08
1430 #define IOPDW_RES_ADDR_C 0x0C
1431 #define IOPDW_RES_ADDR_10 0x10
1432 #define IOPDW_COMMA 0x14
1433 #define IOPDW_COMMB 0x18
1434 #define IOPDW_RES_ADDR_1C 0x1C
1435 #define IOPDW_SDMA_ADDR0 0x20
1436 #define IOPDW_SDMA_ADDR1 0x24
1437 #define IOPDW_SDMA_COUNT 0x28
1438 #define IOPDW_SDMA_ERROR 0x2C
1439 #define IOPDW_RDMA_ADDR0 0x30
1440 #define IOPDW_RDMA_ADDR1 0x34
1441 #define IOPDW_RDMA_COUNT 0x38
1442 #define IOPDW_RDMA_ERROR 0x3C
1444 #define ADV_CHIP_ID_BYTE 0x25
1445 #define ADV_CHIP_ID_WORD 0x04C1
1447 #define ADV_INTR_ENABLE_HOST_INTR 0x01
1448 #define ADV_INTR_ENABLE_SEL_INTR 0x02
1449 #define ADV_INTR_ENABLE_DPR_INTR 0x04
1450 #define ADV_INTR_ENABLE_RTA_INTR 0x08
1451 #define ADV_INTR_ENABLE_RMA_INTR 0x10
1452 #define ADV_INTR_ENABLE_RST_INTR 0x20
1453 #define ADV_INTR_ENABLE_DPE_INTR 0x40
1454 #define ADV_INTR_ENABLE_GLOBAL_INTR 0x80
1456 #define ADV_INTR_STATUS_INTRA 0x01
1457 #define ADV_INTR_STATUS_INTRB 0x02
1458 #define ADV_INTR_STATUS_INTRC 0x04
1460 #define ADV_RISC_CSR_STOP (0x0000)
1461 #define ADV_RISC_TEST_COND (0x2000)
1462 #define ADV_RISC_CSR_RUN (0x4000)
1463 #define ADV_RISC_CSR_SINGLE_STEP (0x8000)
1465 #define ADV_CTRL_REG_HOST_INTR 0x0100
1466 #define ADV_CTRL_REG_SEL_INTR 0x0200
1467 #define ADV_CTRL_REG_DPR_INTR 0x0400
1468 #define ADV_CTRL_REG_RTA_INTR 0x0800
1469 #define ADV_CTRL_REG_RMA_INTR 0x1000
1470 #define ADV_CTRL_REG_RES_BIT14 0x2000
1471 #define ADV_CTRL_REG_DPE_INTR 0x4000
1472 #define ADV_CTRL_REG_POWER_DONE 0x8000
1473 #define ADV_CTRL_REG_ANY_INTR 0xFF00
1475 #define ADV_CTRL_REG_CMD_RESET 0x00C6
1476 #define ADV_CTRL_REG_CMD_WR_IO_REG 0x00C5
1477 #define ADV_CTRL_REG_CMD_RD_IO_REG 0x00C4
1478 #define ADV_CTRL_REG_CMD_WR_PCI_CFG_SPACE 0x00C3
1479 #define ADV_CTRL_REG_CMD_RD_PCI_CFG_SPACE 0x00C2
1481 #define ADV_TICKLE_NOP 0x00
1482 #define ADV_TICKLE_A 0x01
1483 #define ADV_TICKLE_B 0x02
1484 #define ADV_TICKLE_C 0x03
1486 #define AdvIsIntPending(port) \
1487 (AdvReadWordRegister(port, IOPW_CTRL_REG) & ADV_CTRL_REG_HOST_INTR)
1490 * SCSI_CFG0 Register bit definitions
1492 #define TIMER_MODEAB 0xC000 /* Watchdog, Second, and Select. Timer Ctrl. */
1493 #define PARITY_EN 0x2000 /* Enable SCSI Parity Error detection */
1494 #define EVEN_PARITY 0x1000 /* Select Even Parity */
1495 #define WD_LONG 0x0800 /* Watchdog Interval, 1: 57 min, 0: 13 sec */
1496 #define QUEUE_128 0x0400 /* Queue Size, 1: 128 byte, 0: 64 byte */
1497 #define PRIM_MODE 0x0100 /* Primitive SCSI mode */
1498 #define SCAM_EN 0x0080 /* Enable SCAM selection */
1499 #define SEL_TMO_LONG 0x0040 /* Sel/Resel Timeout, 1: 400 ms, 0: 1.6 ms */
1500 #define CFRM_ID 0x0020 /* SCAM id sel. confirm., 1: fast, 0: 6.4 ms */
1501 #define OUR_ID_EN 0x0010 /* Enable OUR_ID bits */
1502 #define OUR_ID 0x000F /* SCSI ID */
1505 * SCSI_CFG1 Register bit definitions
1507 #define BIG_ENDIAN 0x8000 /* Enable Big Endian Mode MIO:15, EEP:15 */
1508 #define TERM_POL 0x2000 /* Terminator Polarity Ctrl. MIO:13, EEP:13 */
1509 #define SLEW_RATE 0x1000 /* SCSI output buffer slew rate */
1510 #define FILTER_SEL 0x0C00 /* Filter Period Selection */
1511 #define FLTR_DISABLE 0x0000 /* Input Filtering Disabled */
1512 #define FLTR_11_TO_20NS 0x0800 /* Input Filtering 11ns to 20ns */
1513 #define FLTR_21_TO_39NS 0x0C00 /* Input Filtering 21ns to 39ns */
1514 #define ACTIVE_DBL 0x0200 /* Disable Active Negation */
1515 #define DIFF_MODE 0x0100 /* SCSI differential Mode (Read-Only) */
1516 #define DIFF_SENSE 0x0080 /* 1: No SE cables, 0: SE cable (Read-Only) */
1517 #define TERM_CTL_SEL 0x0040 /* Enable TERM_CTL_H and TERM_CTL_L */
1518 #define TERM_CTL 0x0030 /* External SCSI Termination Bits */
1519 #define TERM_CTL_H 0x0020 /* Enable External SCSI Upper Termination */
1520 #define TERM_CTL_L 0x0010 /* Enable External SCSI Lower Termination */
1521 #define CABLE_DETECT 0x000F /* External SCSI Cable Connection Status */
1524 * Addendum for ASC-38C0800 Chip
1526 * The ASC-38C1600 Chip uses the same definitions except that the
1527 * bus mode override bits [12:10] have been moved to byte register
1528 * offset 0xE (IOPB_SOFT_OVER_WR) bits [12:10]. The [12:10] bits in
1529 * SCSI_CFG1 are read-only and always available. Bit 14 (DIS_TERM_DRV)
1530 * is not needed. The [12:10] bits in IOPB_SOFT_OVER_WR are write-only.
1531 * Also each ASC-38C1600 function or channel uses only cable bits [5:4]
1532 * and [1:0]. Bits [14], [7:6], [3:2] are unused.
1534 #define DIS_TERM_DRV 0x4000 /* 1: Read c_det[3:0], 0: cannot read */
1535 #define HVD_LVD_SE 0x1C00 /* Device Detect Bits */
1536 #define HVD 0x1000 /* HVD Device Detect */
1537 #define LVD 0x0800 /* LVD Device Detect */
1538 #define SE 0x0400 /* SE Device Detect */
1539 #define TERM_LVD 0x00C0 /* LVD Termination Bits */
1540 #define TERM_LVD_HI 0x0080 /* Enable LVD Upper Termination */
1541 #define TERM_LVD_LO 0x0040 /* Enable LVD Lower Termination */
1542 #define TERM_SE 0x0030 /* SE Termination Bits */
1543 #define TERM_SE_HI 0x0020 /* Enable SE Upper Termination */
1544 #define TERM_SE_LO 0x0010 /* Enable SE Lower Termination */
1545 #define C_DET_LVD 0x000C /* LVD Cable Detect Bits */
1546 #define C_DET3 0x0008 /* Cable Detect for LVD External Wide */
1547 #define C_DET2 0x0004 /* Cable Detect for LVD Internal Wide */
1548 #define C_DET_SE 0x0003 /* SE Cable Detect Bits */
1549 #define C_DET1 0x0002 /* Cable Detect for SE Internal Wide */
1550 #define C_DET0 0x0001 /* Cable Detect for SE Internal Narrow */
1552 #define CABLE_ILLEGAL_A 0x7
1553 /* x 0 0 0 | on on | Illegal (all 3 connectors are used) */
1555 #define CABLE_ILLEGAL_B 0xB
1556 /* 0 x 0 0 | on on | Illegal (all 3 connectors are used) */
1559 * MEM_CFG Register bit definitions
1561 #define BIOS_EN 0x40 /* BIOS Enable MIO:14,EEP:14 */
1562 #define FAST_EE_CLK 0x20 /* Diagnostic Bit */
1563 #define RAM_SZ 0x1C /* Specify size of RAM to RISC */
1564 #define RAM_SZ_2KB 0x00 /* 2 KB */
1565 #define RAM_SZ_4KB 0x04 /* 4 KB */
1566 #define RAM_SZ_8KB 0x08 /* 8 KB */
1567 #define RAM_SZ_16KB 0x0C /* 16 KB */
1568 #define RAM_SZ_32KB 0x10 /* 32 KB */
1569 #define RAM_SZ_64KB 0x14 /* 64 KB */
1572 * DMA_CFG0 Register bit definitions
1574 * This register is only accessible to the host.
1576 #define BC_THRESH_ENB 0x80 /* PCI DMA Start Conditions */
1577 #define FIFO_THRESH 0x70 /* PCI DMA FIFO Threshold */
1578 #define FIFO_THRESH_16B 0x00 /* 16 bytes */
1579 #define FIFO_THRESH_32B 0x20 /* 32 bytes */
1580 #define FIFO_THRESH_48B 0x30 /* 48 bytes */
1581 #define FIFO_THRESH_64B 0x40 /* 64 bytes */
1582 #define FIFO_THRESH_80B 0x50 /* 80 bytes (default) */
1583 #define FIFO_THRESH_96B 0x60 /* 96 bytes */
1584 #define FIFO_THRESH_112B 0x70 /* 112 bytes */
1585 #define START_CTL 0x0C /* DMA start conditions */
1586 #define START_CTL_TH 0x00 /* Wait threshold level (default) */
1587 #define START_CTL_ID 0x04 /* Wait SDMA/SBUS idle */
1588 #define START_CTL_THID 0x08 /* Wait threshold and SDMA/SBUS idle */
1589 #define START_CTL_EMFU 0x0C /* Wait SDMA FIFO empty/full */
1590 #define READ_CMD 0x03 /* Memory Read Method */
1591 #define READ_CMD_MR 0x00 /* Memory Read */
1592 #define READ_CMD_MRL 0x02 /* Memory Read Long */
1593 #define READ_CMD_MRM 0x03 /* Memory Read Multiple (default) */
1596 * ASC-38C0800 RAM BIST Register bit definitions
1598 #define RAM_TEST_MODE 0x80
1599 #define PRE_TEST_MODE 0x40
1600 #define NORMAL_MODE 0x00
1601 #define RAM_TEST_DONE 0x10
1602 #define RAM_TEST_STATUS 0x0F
1603 #define RAM_TEST_HOST_ERROR 0x08
1604 #define RAM_TEST_INTRAM_ERROR 0x04
1605 #define RAM_TEST_RISC_ERROR 0x02
1606 #define RAM_TEST_SCSI_ERROR 0x01
1607 #define RAM_TEST_SUCCESS 0x00
1608 #define PRE_TEST_VALUE 0x05
1609 #define NORMAL_VALUE 0x00
1612 * ASC38C1600 Definitions
1614 * IOPB_PCI_INT_CFG Bit Field Definitions
1617 #define INTAB_LD 0x80 /* Value loaded from EEPROM Bit 11. */
1620 * Bit 1 can be set to change the interrupt for the Function to operate in
1621 * Totem Pole mode. By default Bit 1 is 0 and the interrupt operates in
1622 * Open Drain mode. Both functions of the ASC38C1600 must be set to the same
1623 * mode, otherwise the operating mode is undefined.
1625 #define TOTEMPOLE 0x02
1628 * Bit 0 can be used to change the Int Pin for the Function. The value is
1629 * 0 by default for both Functions with Function 0 using INT A and Function
1630 * B using INT B. For Function 0 if set, INT B is used. For Function 1 if set,
1631 * INT A is used.
1633 * EEPROM Word 0 Bit 11 for each Function may change the initial Int Pin
1634 * value specified in the PCI Configuration Space.
1636 #define INTAB 0x01
1639 * Adv Library Status Definitions
1641 #define ADV_TRUE 1
1642 #define ADV_FALSE 0
1643 #define ADV_SUCCESS 1
1644 #define ADV_BUSY 0
1645 #define ADV_ERROR (-1)
1648 * ADV_DVC_VAR 'warn_code' values
1650 #define ASC_WARN_BUSRESET_ERROR 0x0001 /* SCSI Bus Reset error */
1651 #define ASC_WARN_EEPROM_CHKSUM 0x0002 /* EEP check sum error */
1652 #define ASC_WARN_EEPROM_TERMINATION 0x0004 /* EEP termination bad field */
1653 #define ASC_WARN_ERROR 0xFFFF /* ADV_ERROR return */
1655 #define ADV_MAX_TID 15 /* max. target identifier */
1656 #define ADV_MAX_LUN 7 /* max. logical unit number */
1659 * Fixed locations of microcode operating variables.
1661 #define ASC_MC_CODE_BEGIN_ADDR 0x0028 /* microcode start address */
1662 #define ASC_MC_CODE_END_ADDR 0x002A /* microcode end address */
1663 #define ASC_MC_CODE_CHK_SUM 0x002C /* microcode code checksum */
1664 #define ASC_MC_VERSION_DATE 0x0038 /* microcode version */
1665 #define ASC_MC_VERSION_NUM 0x003A /* microcode number */
1666 #define ASC_MC_BIOSMEM 0x0040 /* BIOS RISC Memory Start */
1667 #define ASC_MC_BIOSLEN 0x0050 /* BIOS RISC Memory Length */
1668 #define ASC_MC_BIOS_SIGNATURE 0x0058 /* BIOS Signature 0x55AA */
1669 #define ASC_MC_BIOS_VERSION 0x005A /* BIOS Version (2 bytes) */
1670 #define ASC_MC_SDTR_SPEED1 0x0090 /* SDTR Speed for TID 0-3 */
1671 #define ASC_MC_SDTR_SPEED2 0x0092 /* SDTR Speed for TID 4-7 */
1672 #define ASC_MC_SDTR_SPEED3 0x0094 /* SDTR Speed for TID 8-11 */
1673 #define ASC_MC_SDTR_SPEED4 0x0096 /* SDTR Speed for TID 12-15 */
1674 #define ASC_MC_CHIP_TYPE 0x009A
1675 #define ASC_MC_INTRB_CODE 0x009B
1676 #define ASC_MC_WDTR_ABLE 0x009C
1677 #define ASC_MC_SDTR_ABLE 0x009E
1678 #define ASC_MC_TAGQNG_ABLE 0x00A0
1679 #define ASC_MC_DISC_ENABLE 0x00A2
1680 #define ASC_MC_IDLE_CMD_STATUS 0x00A4
1681 #define ASC_MC_IDLE_CMD 0x00A6
1682 #define ASC_MC_IDLE_CMD_PARAMETER 0x00A8
1683 #define ASC_MC_DEFAULT_SCSI_CFG0 0x00AC
1684 #define ASC_MC_DEFAULT_SCSI_CFG1 0x00AE
1685 #define ASC_MC_DEFAULT_MEM_CFG 0x00B0
1686 #define ASC_MC_DEFAULT_SEL_MASK 0x00B2
1687 #define ASC_MC_SDTR_DONE 0x00B6
1688 #define ASC_MC_NUMBER_OF_QUEUED_CMD 0x00C0
1689 #define ASC_MC_NUMBER_OF_MAX_CMD 0x00D0
1690 #define ASC_MC_DEVICE_HSHK_CFG_TABLE 0x0100
1691 #define ASC_MC_CONTROL_FLAG 0x0122 /* Microcode control flag. */
1692 #define ASC_MC_WDTR_DONE 0x0124
1693 #define ASC_MC_CAM_MODE_MASK 0x015E /* CAM mode TID bitmask. */
1694 #define ASC_MC_ICQ 0x0160
1695 #define ASC_MC_IRQ 0x0164
1696 #define ASC_MC_PPR_ABLE 0x017A
1699 * BIOS LRAM variable absolute offsets.
1701 #define BIOS_CODESEG 0x54
1702 #define BIOS_CODELEN 0x56
1703 #define BIOS_SIGNATURE 0x58
1704 #define BIOS_VERSION 0x5A
1707 * Microcode Control Flags
1709 * Flags set by the Adv Library in RISC variable 'control_flag' (0x122)
1710 * and handled by the microcode.
1712 #define CONTROL_FLAG_IGNORE_PERR 0x0001 /* Ignore DMA Parity Errors */
1713 #define CONTROL_FLAG_ENABLE_AIPP 0x0002 /* Enabled AIPP checking. */
1716 * ASC_MC_DEVICE_HSHK_CFG_TABLE microcode table or HSHK_CFG register format
1718 #define HSHK_CFG_WIDE_XFR 0x8000
1719 #define HSHK_CFG_RATE 0x0F00
1720 #define HSHK_CFG_OFFSET 0x001F
1722 #define ASC_DEF_MAX_HOST_QNG 0xFD /* Max. number of host commands (253) */
1723 #define ASC_DEF_MIN_HOST_QNG 0x10 /* Min. number of host commands (16) */
1724 #define ASC_DEF_MAX_DVC_QNG 0x3F /* Max. number commands per device (63) */
1725 #define ASC_DEF_MIN_DVC_QNG 0x04 /* Min. number commands per device (4) */
1727 #define ASC_QC_DATA_CHECK 0x01 /* Require ASC_QC_DATA_OUT set or clear. */
1728 #define ASC_QC_DATA_OUT 0x02 /* Data out DMA transfer. */
1729 #define ASC_QC_START_MOTOR 0x04 /* Send auto-start motor before request. */
1730 #define ASC_QC_NO_OVERRUN 0x08 /* Don't report overrun. */
1731 #define ASC_QC_FREEZE_TIDQ 0x10 /* Freeze TID queue after request. XXX TBD */
1733 #define ASC_QSC_NO_DISC 0x01 /* Don't allow disconnect for request. */
1734 #define ASC_QSC_NO_TAGMSG 0x02 /* Don't allow tag queuing for request. */
1735 #define ASC_QSC_NO_SYNC 0x04 /* Don't use Synch. transfer on request. */
1736 #define ASC_QSC_NO_WIDE 0x08 /* Don't use Wide transfer on request. */
1737 #define ASC_QSC_REDO_DTR 0x10 /* Renegotiate WDTR/SDTR before request. */
1739 * Note: If a Tag Message is to be sent and neither ASC_QSC_HEAD_TAG or
1740 * ASC_QSC_ORDERED_TAG is set, then a Simple Tag Message (0x20) is used.
1742 #define ASC_QSC_HEAD_TAG 0x40 /* Use Head Tag Message (0x21). */
1743 #define ASC_QSC_ORDERED_TAG 0x80 /* Use Ordered Tag Message (0x22). */
1746 * All fields here are accessed by the board microcode and need to be
1747 * little-endian.
1749 typedef struct adv_carr_t {
1750 ADV_VADDR carr_va; /* Carrier Virtual Address */
1751 ADV_PADDR carr_pa; /* Carrier Physical Address */
1752 ADV_VADDR areq_vpa; /* ASC_SCSI_REQ_Q Virtual or Physical Address */
1754 * next_vpa [31:4] Carrier Virtual or Physical Next Pointer
1756 * next_vpa [3:1] Reserved Bits
1757 * next_vpa [0] Done Flag set in Response Queue.
1759 ADV_VADDR next_vpa;
1760 } ADV_CARR_T;
1763 * Mask used to eliminate low 4 bits of carrier 'next_vpa' field.
1765 #define ASC_NEXT_VPA_MASK 0xFFFFFFF0
1767 #define ASC_RQ_DONE 0x00000001
1768 #define ASC_RQ_GOOD 0x00000002
1769 #define ASC_CQ_STOPPER 0x00000000
1771 #define ASC_GET_CARRP(carrp) ((carrp) & ASC_NEXT_VPA_MASK)
1773 #define ADV_CARRIER_NUM_PAGE_CROSSING \
1774 (((ADV_CARRIER_COUNT * sizeof(ADV_CARR_T)) + (PAGE_SIZE - 1))/PAGE_SIZE)
1776 #define ADV_CARRIER_BUFSIZE \
1777 ((ADV_CARRIER_COUNT + ADV_CARRIER_NUM_PAGE_CROSSING) * sizeof(ADV_CARR_T))
1780 * ASC_SCSI_REQ_Q 'a_flag' definitions
1782 * The Adv Library should limit use to the lower nibble (4 bits) of
1783 * a_flag. Drivers are free to use the upper nibble (4 bits) of a_flag.
1785 #define ADV_POLL_REQUEST 0x01 /* poll for request completion */
1786 #define ADV_SCSIQ_DONE 0x02 /* request done */
1787 #define ADV_DONT_RETRY 0x08 /* don't do retry */
1789 #define ADV_CHIP_ASC3550 0x01 /* Ultra-Wide IC */
1790 #define ADV_CHIP_ASC38C0800 0x02 /* Ultra2-Wide/LVD IC */
1791 #define ADV_CHIP_ASC38C1600 0x03 /* Ultra3-Wide/LVD2 IC */
1794 * Adapter temporary configuration structure
1796 * This structure can be discarded after initialization. Don't add
1797 * fields here needed after initialization.
1799 * Field naming convention:
1801 * *_enable indicates the field enables or disables a feature. The
1802 * value of the field is never reset.
1804 typedef struct adv_dvc_cfg {
1805 ushort disc_enable; /* enable disconnection */
1806 uchar chip_version; /* chip version */
1807 uchar termination; /* Term. Ctrl. bits 6-5 of SCSI_CFG1 register */
1808 ushort control_flag; /* Microcode Control Flag */
1809 ushort mcode_date; /* Microcode date */
1810 ushort mcode_version; /* Microcode version */
1811 ushort serial1; /* EEPROM serial number word 1 */
1812 ushort serial2; /* EEPROM serial number word 2 */
1813 ushort serial3; /* EEPROM serial number word 3 */
1814 } ADV_DVC_CFG;
1816 struct adv_dvc_var;
1817 struct adv_scsi_req_q;
1819 typedef struct asc_sg_block {
1820 uchar reserved1;
1821 uchar reserved2;
1822 uchar reserved3;
1823 uchar sg_cnt; /* Valid entries in block. */
1824 ADV_PADDR sg_ptr; /* Pointer to next sg block. */
1825 struct {
1826 ADV_PADDR sg_addr; /* SG element address. */
1827 ADV_DCNT sg_count; /* SG element count. */
1828 } sg_list[NO_OF_SG_PER_BLOCK];
1829 } ADV_SG_BLOCK;
1832 * ADV_SCSI_REQ_Q - microcode request structure
1834 * All fields in this structure up to byte 60 are used by the microcode.
1835 * The microcode makes assumptions about the size and ordering of fields
1836 * in this structure. Do not change the structure definition here without
1837 * coordinating the change with the microcode.
1839 * All fields accessed by microcode must be maintained in little_endian
1840 * order.
1842 typedef struct adv_scsi_req_q {
1843 uchar cntl; /* Ucode flags and state (ASC_MC_QC_*). */
1844 uchar target_cmd;
1845 uchar target_id; /* Device target identifier. */
1846 uchar target_lun; /* Device target logical unit number. */
1847 ADV_PADDR data_addr; /* Data buffer physical address. */
1848 ADV_DCNT data_cnt; /* Data count. Ucode sets to residual. */
1849 ADV_PADDR sense_addr;
1850 ADV_PADDR carr_pa;
1851 uchar mflag;
1852 uchar sense_len;
1853 uchar cdb_len; /* SCSI CDB length. Must <= 16 bytes. */
1854 uchar scsi_cntl;
1855 uchar done_status; /* Completion status. */
1856 uchar scsi_status; /* SCSI status byte. */
1857 uchar host_status; /* Ucode host status. */
1858 uchar sg_working_ix;
1859 uchar cdb[12]; /* SCSI CDB bytes 0-11. */
1860 ADV_PADDR sg_real_addr; /* SG list physical address. */
1861 ADV_PADDR scsiq_rptr;
1862 uchar cdb16[4]; /* SCSI CDB bytes 12-15. */
1863 ADV_VADDR scsiq_ptr;
1864 ADV_VADDR carr_va;
1866 * End of microcode structure - 60 bytes. The rest of the structure
1867 * is used by the Adv Library and ignored by the microcode.
1869 ADV_VADDR srb_ptr;
1870 ADV_SG_BLOCK *sg_list_ptr; /* SG list virtual address. */
1871 char *vdata_addr; /* Data buffer virtual address. */
1872 uchar a_flag;
1873 uchar pad[2]; /* Pad out to a word boundary. */
1874 } ADV_SCSI_REQ_Q;
1877 * The following two structures are used to process Wide Board requests.
1879 * The ADV_SCSI_REQ_Q structure in adv_req_t is passed to the Adv Library
1880 * and microcode with the ADV_SCSI_REQ_Q field 'srb_ptr' pointing to the
1881 * adv_req_t. The adv_req_t structure 'cmndp' field in turn points to the
1882 * Mid-Level SCSI request structure.
1884 * Zero or more ADV_SG_BLOCK are used with each ADV_SCSI_REQ_Q. Each
1885 * ADV_SG_BLOCK structure holds 15 scatter-gather elements. Under Linux
1886 * up to 255 scatter-gather elements may be used per request or
1887 * ADV_SCSI_REQ_Q.
1889 * Both structures must be 32 byte aligned.
1891 typedef struct adv_sgblk {
1892 ADV_SG_BLOCK sg_block; /* Sgblock structure. */
1893 uchar align[32]; /* Sgblock structure padding. */
1894 struct adv_sgblk *next_sgblkp; /* Next scatter-gather structure. */
1895 } adv_sgblk_t;
1897 typedef struct adv_req {
1898 ADV_SCSI_REQ_Q scsi_req_q; /* Adv Library request structure. */
1899 uchar align[32]; /* Request structure padding. */
1900 struct scsi_cmnd *cmndp; /* Mid-Level SCSI command pointer. */
1901 adv_sgblk_t *sgblkp; /* Adv Library scatter-gather pointer. */
1902 struct adv_req *next_reqp; /* Next Request Structure. */
1903 } adv_req_t;
1906 * Adapter operation variable structure.
1908 * One structure is required per host adapter.
1910 * Field naming convention:
1912 * *_able indicates both whether a feature should be enabled or disabled
1913 * and whether a device isi capable of the feature. At initialization
1914 * this field may be set, but later if a device is found to be incapable
1915 * of the feature, the field is cleared.
1917 typedef struct adv_dvc_var {
1918 AdvPortAddr iop_base; /* I/O port address */
1919 ushort err_code; /* fatal error code */
1920 ushort bios_ctrl; /* BIOS control word, EEPROM word 12 */
1921 ushort wdtr_able; /* try WDTR for a device */
1922 ushort sdtr_able; /* try SDTR for a device */
1923 ushort ultra_able; /* try SDTR Ultra speed for a device */
1924 ushort sdtr_speed1; /* EEPROM SDTR Speed for TID 0-3 */
1925 ushort sdtr_speed2; /* EEPROM SDTR Speed for TID 4-7 */
1926 ushort sdtr_speed3; /* EEPROM SDTR Speed for TID 8-11 */
1927 ushort sdtr_speed4; /* EEPROM SDTR Speed for TID 12-15 */
1928 ushort tagqng_able; /* try tagged queuing with a device */
1929 ushort ppr_able; /* PPR message capable per TID bitmask. */
1930 uchar max_dvc_qng; /* maximum number of tagged commands per device */
1931 ushort start_motor; /* start motor command allowed */
1932 uchar scsi_reset_wait; /* delay in seconds after scsi bus reset */
1933 uchar chip_no; /* should be assigned by caller */
1934 uchar max_host_qng; /* maximum number of Q'ed command allowed */
1935 ushort no_scam; /* scam_tolerant of EEPROM */
1936 struct asc_board *drv_ptr; /* driver pointer to private structure */
1937 uchar chip_scsi_id; /* chip SCSI target ID */
1938 uchar chip_type;
1939 uchar bist_err_code;
1940 ADV_CARR_T *carrier_buf;
1941 ADV_CARR_T *carr_freelist; /* Carrier free list. */
1942 ADV_CARR_T *icq_sp; /* Initiator command queue stopper pointer. */
1943 ADV_CARR_T *irq_sp; /* Initiator response queue stopper pointer. */
1944 ushort carr_pending_cnt; /* Count of pending carriers. */
1945 struct adv_req *orig_reqp; /* adv_req_t memory block. */
1947 * Note: The following fields will not be used after initialization. The
1948 * driver may discard the buffer after initialization is done.
1950 ADV_DVC_CFG *cfg; /* temporary configuration structure */
1951 } ADV_DVC_VAR;
1954 * Microcode idle loop commands
1956 #define IDLE_CMD_COMPLETED 0
1957 #define IDLE_CMD_STOP_CHIP 0x0001
1958 #define IDLE_CMD_STOP_CHIP_SEND_INT 0x0002
1959 #define IDLE_CMD_SEND_INT 0x0004
1960 #define IDLE_CMD_ABORT 0x0008
1961 #define IDLE_CMD_DEVICE_RESET 0x0010
1962 #define IDLE_CMD_SCSI_RESET_START 0x0020 /* Assert SCSI Bus Reset */
1963 #define IDLE_CMD_SCSI_RESET_END 0x0040 /* Deassert SCSI Bus Reset */
1964 #define IDLE_CMD_SCSIREQ 0x0080
1966 #define IDLE_CMD_STATUS_SUCCESS 0x0001
1967 #define IDLE_CMD_STATUS_FAILURE 0x0002
1970 * AdvSendIdleCmd() flag definitions.
1972 #define ADV_NOWAIT 0x01
1975 * Wait loop time out values.
1977 #define SCSI_WAIT_100_MSEC 100UL /* 100 milliseconds */
1978 #define SCSI_US_PER_MSEC 1000 /* microseconds per millisecond */
1979 #define SCSI_MAX_RETRY 10 /* retry count */
1981 #define ADV_ASYNC_RDMA_FAILURE 0x01 /* Fatal RDMA failure. */
1982 #define ADV_ASYNC_SCSI_BUS_RESET_DET 0x02 /* Detected SCSI Bus Reset. */
1983 #define ADV_ASYNC_CARRIER_READY_FAILURE 0x03 /* Carrier Ready failure. */
1984 #define ADV_RDMA_IN_CARR_AND_Q_INVALID 0x04 /* RDMAed-in data invalid. */
1986 #define ADV_HOST_SCSI_BUS_RESET 0x80 /* Host Initiated SCSI Bus Reset. */
1988 /* Read byte from a register. */
1989 #define AdvReadByteRegister(iop_base, reg_off) \
1990 (ADV_MEM_READB((iop_base) + (reg_off)))
1992 /* Write byte to a register. */
1993 #define AdvWriteByteRegister(iop_base, reg_off, byte) \
1994 (ADV_MEM_WRITEB((iop_base) + (reg_off), (byte)))
1996 /* Read word (2 bytes) from a register. */
1997 #define AdvReadWordRegister(iop_base, reg_off) \
1998 (ADV_MEM_READW((iop_base) + (reg_off)))
2000 /* Write word (2 bytes) to a register. */
2001 #define AdvWriteWordRegister(iop_base, reg_off, word) \
2002 (ADV_MEM_WRITEW((iop_base) + (reg_off), (word)))
2004 /* Write dword (4 bytes) to a register. */
2005 #define AdvWriteDWordRegister(iop_base, reg_off, dword) \
2006 (ADV_MEM_WRITEDW((iop_base) + (reg_off), (dword)))
2008 /* Read byte from LRAM. */
2009 #define AdvReadByteLram(iop_base, addr, byte) \
2010 do { \
2011 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
2012 (byte) = ADV_MEM_READB((iop_base) + IOPB_RAM_DATA); \
2013 } while (0)
2015 /* Write byte to LRAM. */
2016 #define AdvWriteByteLram(iop_base, addr, byte) \
2017 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2018 ADV_MEM_WRITEB((iop_base) + IOPB_RAM_DATA, (byte)))
2020 /* Read word (2 bytes) from LRAM. */
2021 #define AdvReadWordLram(iop_base, addr, word) \
2022 do { \
2023 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
2024 (word) = (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)); \
2025 } while (0)
2027 /* Write word (2 bytes) to LRAM. */
2028 #define AdvWriteWordLram(iop_base, addr, word) \
2029 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2030 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
2032 /* Write little-endian double word (4 bytes) to LRAM */
2033 /* Because of unspecified C language ordering don't use auto-increment. */
2034 #define AdvWriteDWordLramNoSwap(iop_base, addr, dword) \
2035 ((ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2036 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
2037 cpu_to_le16((ushort) ((dword) & 0xFFFF)))), \
2038 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr) + 2), \
2039 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
2040 cpu_to_le16((ushort) ((dword >> 16) & 0xFFFF)))))
2042 /* Read word (2 bytes) from LRAM assuming that the address is already set. */
2043 #define AdvReadWordAutoIncLram(iop_base) \
2044 (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA))
2046 /* Write word (2 bytes) to LRAM assuming that the address is already set. */
2047 #define AdvWriteWordAutoIncLram(iop_base, word) \
2048 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
2051 * Define macro to check for Condor signature.
2053 * Evaluate to ADV_TRUE if a Condor chip is found the specified port
2054 * address 'iop_base'. Otherwise evalue to ADV_FALSE.
2056 #define AdvFindSignature(iop_base) \
2057 (((AdvReadByteRegister((iop_base), IOPB_CHIP_ID_1) == \
2058 ADV_CHIP_ID_BYTE) && \
2059 (AdvReadWordRegister((iop_base), IOPW_CHIP_ID_0) == \
2060 ADV_CHIP_ID_WORD)) ? ADV_TRUE : ADV_FALSE)
2063 * Define macro to Return the version number of the chip at 'iop_base'.
2065 * The second parameter 'bus_type' is currently unused.
2067 #define AdvGetChipVersion(iop_base, bus_type) \
2068 AdvReadByteRegister((iop_base), IOPB_CHIP_TYPE_REV)
2071 * Abort an SRB in the chip's RISC Memory. The 'srb_ptr' argument must
2072 * match the ASC_SCSI_REQ_Q 'srb_ptr' field.
2074 * If the request has not yet been sent to the device it will simply be
2075 * aborted from RISC memory. If the request is disconnected it will be
2076 * aborted on reselection by sending an Abort Message to the target ID.
2078 * Return value:
2079 * ADV_TRUE(1) - Queue was successfully aborted.
2080 * ADV_FALSE(0) - Queue was not found on the active queue list.
2082 #define AdvAbortQueue(asc_dvc, scsiq) \
2083 AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_ABORT, \
2084 (ADV_DCNT) (scsiq))
2087 * Send a Bus Device Reset Message to the specified target ID.
2089 * All outstanding commands will be purged if sending the
2090 * Bus Device Reset Message is successful.
2092 * Return Value:
2093 * ADV_TRUE(1) - All requests on the target are purged.
2094 * ADV_FALSE(0) - Couldn't issue Bus Device Reset Message; Requests
2095 * are not purged.
2097 #define AdvResetDevice(asc_dvc, target_id) \
2098 AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_DEVICE_RESET, \
2099 (ADV_DCNT) (target_id))
2102 * SCSI Wide Type definition.
2104 #define ADV_SCSI_BIT_ID_TYPE ushort
2107 * AdvInitScsiTarget() 'cntl_flag' options.
2109 #define ADV_SCAN_LUN 0x01
2110 #define ADV_CAPINFO_NOLUN 0x02
2113 * Convert target id to target id bit mask.
2115 #define ADV_TID_TO_TIDMASK(tid) (0x01 << ((tid) & ADV_MAX_TID))
2118 * ASC_SCSI_REQ_Q 'done_status' and 'host_status' return values.
2121 #define QD_NO_STATUS 0x00 /* Request not completed yet. */
2122 #define QD_NO_ERROR 0x01
2123 #define QD_ABORTED_BY_HOST 0x02
2124 #define QD_WITH_ERROR 0x04
2126 #define QHSTA_NO_ERROR 0x00
2127 #define QHSTA_M_SEL_TIMEOUT 0x11
2128 #define QHSTA_M_DATA_OVER_RUN 0x12
2129 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
2130 #define QHSTA_M_QUEUE_ABORTED 0x15
2131 #define QHSTA_M_SXFR_SDMA_ERR 0x16 /* SXFR_STATUS SCSI DMA Error */
2132 #define QHSTA_M_SXFR_SXFR_PERR 0x17 /* SXFR_STATUS SCSI Bus Parity Error */
2133 #define QHSTA_M_RDMA_PERR 0x18 /* RISC PCI DMA parity error */
2134 #define QHSTA_M_SXFR_OFF_UFLW 0x19 /* SXFR_STATUS Offset Underflow */
2135 #define QHSTA_M_SXFR_OFF_OFLW 0x20 /* SXFR_STATUS Offset Overflow */
2136 #define QHSTA_M_SXFR_WD_TMO 0x21 /* SXFR_STATUS Watchdog Timeout */
2137 #define QHSTA_M_SXFR_DESELECTED 0x22 /* SXFR_STATUS Deselected */
2138 /* Note: QHSTA_M_SXFR_XFR_OFLW is identical to QHSTA_M_DATA_OVER_RUN. */
2139 #define QHSTA_M_SXFR_XFR_OFLW 0x12 /* SXFR_STATUS Transfer Overflow */
2140 #define QHSTA_M_SXFR_XFR_PH_ERR 0x24 /* SXFR_STATUS Transfer Phase Error */
2141 #define QHSTA_M_SXFR_UNKNOWN_ERROR 0x25 /* SXFR_STATUS Unknown Error */
2142 #define QHSTA_M_SCSI_BUS_RESET 0x30 /* Request aborted from SBR */
2143 #define QHSTA_M_SCSI_BUS_RESET_UNSOL 0x31 /* Request aborted from unsol. SBR */
2144 #define QHSTA_M_BUS_DEVICE_RESET 0x32 /* Request aborted from BDR */
2145 #define QHSTA_M_DIRECTION_ERR 0x35 /* Data Phase mismatch */
2146 #define QHSTA_M_DIRECTION_ERR_HUNG 0x36 /* Data Phase mismatch and bus hang */
2147 #define QHSTA_M_WTM_TIMEOUT 0x41
2148 #define QHSTA_M_BAD_CMPL_STATUS_IN 0x42
2149 #define QHSTA_M_NO_AUTO_REQ_SENSE 0x43
2150 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
2151 #define QHSTA_M_INVALID_DEVICE 0x45 /* Bad target ID */
2152 #define QHSTA_M_FROZEN_TIDQ 0x46 /* TID Queue frozen. */
2153 #define QHSTA_M_SGBACKUP_ERROR 0x47 /* Scatter-Gather backup error */
2155 /* Return the address that is aligned at the next doubleword >= to 'addr'. */
2156 #define ADV_8BALIGN(addr) (((ulong) (addr) + 0x7) & ~0x7)
2157 #define ADV_16BALIGN(addr) (((ulong) (addr) + 0xF) & ~0xF)
2158 #define ADV_32BALIGN(addr) (((ulong) (addr) + 0x1F) & ~0x1F)
2161 * Total contiguous memory needed for driver SG blocks.
2163 * ADV_MAX_SG_LIST must be defined by a driver. It is the maximum
2164 * number of scatter-gather elements the driver supports in a
2165 * single request.
2168 #define ADV_SG_LIST_MAX_BYTE_SIZE \
2169 (sizeof(ADV_SG_BLOCK) * \
2170 ((ADV_MAX_SG_LIST + (NO_OF_SG_PER_BLOCK - 1))/NO_OF_SG_PER_BLOCK))
2172 /* struct asc_board flags */
2173 #define ASC_IS_WIDE_BOARD 0x04 /* AdvanSys Wide Board */
2175 #define ASC_NARROW_BOARD(boardp) (((boardp)->flags & ASC_IS_WIDE_BOARD) == 0)
2177 #define NO_ISA_DMA 0xff /* No ISA DMA Channel Used */
2179 #define ASC_INFO_SIZE 128 /* advansys_info() line size */
2181 /* Asc Library return codes */
2182 #define ASC_TRUE 1
2183 #define ASC_FALSE 0
2184 #define ASC_NOERROR 1
2185 #define ASC_BUSY 0
2186 #define ASC_ERROR (-1)
2188 /* struct scsi_cmnd function return codes */
2189 #define STATUS_BYTE(byte) (byte)
2190 #define MSG_BYTE(byte) ((byte) << 8)
2191 #define HOST_BYTE(byte) ((byte) << 16)
2192 #define DRIVER_BYTE(byte) ((byte) << 24)
2194 #define ASC_STATS(shost, counter) ASC_STATS_ADD(shost, counter, 1)
2195 #ifndef ADVANSYS_STATS
2196 #define ASC_STATS_ADD(shost, counter, count)
2197 #else /* ADVANSYS_STATS */
2198 #define ASC_STATS_ADD(shost, counter, count) \
2199 (((struct asc_board *) shost_priv(shost))->asc_stats.counter += (count))
2200 #endif /* ADVANSYS_STATS */
2202 /* If the result wraps when calculating tenths, return 0. */
2203 #define ASC_TENTHS(num, den) \
2204 (((10 * ((num)/(den))) > (((num) * 10)/(den))) ? \
2205 0 : ((((num) * 10)/(den)) - (10 * ((num)/(den)))))
2208 * Display a message to the console.
2210 #define ASC_PRINT(s) \
2212 printk("advansys: "); \
2213 printk(s); \
2216 #define ASC_PRINT1(s, a1) \
2218 printk("advansys: "); \
2219 printk((s), (a1)); \
2222 #define ASC_PRINT2(s, a1, a2) \
2224 printk("advansys: "); \
2225 printk((s), (a1), (a2)); \
2228 #define ASC_PRINT3(s, a1, a2, a3) \
2230 printk("advansys: "); \
2231 printk((s), (a1), (a2), (a3)); \
2234 #define ASC_PRINT4(s, a1, a2, a3, a4) \
2236 printk("advansys: "); \
2237 printk((s), (a1), (a2), (a3), (a4)); \
2240 #ifndef ADVANSYS_DEBUG
2242 #define ASC_DBG(lvl, s...)
2243 #define ASC_DBG_PRT_SCSI_HOST(lvl, s)
2244 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp)
2245 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2246 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone)
2247 #define ADV_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2248 #define ASC_DBG_PRT_HEX(lvl, name, start, length)
2249 #define ASC_DBG_PRT_CDB(lvl, cdb, len)
2250 #define ASC_DBG_PRT_SENSE(lvl, sense, len)
2251 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len)
2253 #else /* ADVANSYS_DEBUG */
2256 * Debugging Message Levels:
2257 * 0: Errors Only
2258 * 1: High-Level Tracing
2259 * 2-N: Verbose Tracing
2262 #define ASC_DBG(lvl, format, arg...) { \
2263 if (asc_dbglvl >= (lvl)) \
2264 printk(KERN_DEBUG "%s: %s: " format, DRV_NAME, \
2265 __func__ , ## arg); \
2268 #define ASC_DBG_PRT_SCSI_HOST(lvl, s) \
2270 if (asc_dbglvl >= (lvl)) { \
2271 asc_prt_scsi_host(s); \
2275 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) \
2277 if (asc_dbglvl >= (lvl)) { \
2278 asc_prt_asc_scsi_q(scsiqp); \
2282 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) \
2284 if (asc_dbglvl >= (lvl)) { \
2285 asc_prt_asc_qdone_info(qdone); \
2289 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) \
2291 if (asc_dbglvl >= (lvl)) { \
2292 asc_prt_adv_scsi_req_q(scsiqp); \
2296 #define ASC_DBG_PRT_HEX(lvl, name, start, length) \
2298 if (asc_dbglvl >= (lvl)) { \
2299 asc_prt_hex((name), (start), (length)); \
2303 #define ASC_DBG_PRT_CDB(lvl, cdb, len) \
2304 ASC_DBG_PRT_HEX((lvl), "CDB", (uchar *) (cdb), (len));
2306 #define ASC_DBG_PRT_SENSE(lvl, sense, len) \
2307 ASC_DBG_PRT_HEX((lvl), "SENSE", (uchar *) (sense), (len));
2309 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len) \
2310 ASC_DBG_PRT_HEX((lvl), "INQUIRY", (uchar *) (inq), (len));
2311 #endif /* ADVANSYS_DEBUG */
2313 #ifdef ADVANSYS_STATS
2315 /* Per board statistics structure */
2316 struct asc_stats {
2317 /* Driver Entrypoint Statistics */
2318 ADV_DCNT queuecommand; /* # calls to advansys_queuecommand() */
2319 ADV_DCNT reset; /* # calls to advansys_eh_bus_reset() */
2320 ADV_DCNT biosparam; /* # calls to advansys_biosparam() */
2321 ADV_DCNT interrupt; /* # advansys_interrupt() calls */
2322 ADV_DCNT callback; /* # calls to asc/adv_isr_callback() */
2323 ADV_DCNT done; /* # calls to request's scsi_done function */
2324 ADV_DCNT build_error; /* # asc/adv_build_req() ASC_ERROR returns. */
2325 ADV_DCNT adv_build_noreq; /* # adv_build_req() adv_req_t alloc. fail. */
2326 ADV_DCNT adv_build_nosg; /* # adv_build_req() adv_sgblk_t alloc. fail. */
2327 /* AscExeScsiQueue()/AdvExeScsiQueue() Statistics */
2328 ADV_DCNT exe_noerror; /* # ASC_NOERROR returns. */
2329 ADV_DCNT exe_busy; /* # ASC_BUSY returns. */
2330 ADV_DCNT exe_error; /* # ASC_ERROR returns. */
2331 ADV_DCNT exe_unknown; /* # unknown returns. */
2332 /* Data Transfer Statistics */
2333 ADV_DCNT xfer_cnt; /* # I/O requests received */
2334 ADV_DCNT xfer_elem; /* # scatter-gather elements */
2335 ADV_DCNT xfer_sect; /* # 512-byte blocks */
2337 #endif /* ADVANSYS_STATS */
2340 * Structure allocated for each board.
2342 * This structure is allocated by scsi_host_alloc() at the end
2343 * of the 'Scsi_Host' structure starting at the 'hostdata'
2344 * field. It is guaranteed to be allocated from DMA-able memory.
2346 struct asc_board {
2347 struct device *dev;
2348 uint flags; /* Board flags */
2349 unsigned int irq;
2350 union {
2351 ASC_DVC_VAR asc_dvc_var; /* Narrow board */
2352 ADV_DVC_VAR adv_dvc_var; /* Wide board */
2353 } dvc_var;
2354 union {
2355 ASC_DVC_CFG asc_dvc_cfg; /* Narrow board */
2356 ADV_DVC_CFG adv_dvc_cfg; /* Wide board */
2357 } dvc_cfg;
2358 ushort asc_n_io_port; /* Number I/O ports. */
2359 ADV_SCSI_BIT_ID_TYPE init_tidmask; /* Target init./valid mask */
2360 ushort reqcnt[ADV_MAX_TID + 1]; /* Starvation request count */
2361 ADV_SCSI_BIT_ID_TYPE queue_full; /* Queue full mask */
2362 ushort queue_full_cnt[ADV_MAX_TID + 1]; /* Queue full count */
2363 union {
2364 ASCEEP_CONFIG asc_eep; /* Narrow EEPROM config. */
2365 ADVEEP_3550_CONFIG adv_3550_eep; /* 3550 EEPROM config. */
2366 ADVEEP_38C0800_CONFIG adv_38C0800_eep; /* 38C0800 EEPROM config. */
2367 ADVEEP_38C1600_CONFIG adv_38C1600_eep; /* 38C1600 EEPROM config. */
2368 } eep_config;
2369 ulong last_reset; /* Saved last reset time */
2370 /* /proc/scsi/advansys/[0...] */
2371 #ifdef ADVANSYS_STATS
2372 struct asc_stats asc_stats; /* Board statistics */
2373 #endif /* ADVANSYS_STATS */
2375 * The following fields are used only for Narrow Boards.
2377 uchar sdtr_data[ASC_MAX_TID + 1]; /* SDTR information */
2379 * The following fields are used only for Wide Boards.
2381 void __iomem *ioremap_addr; /* I/O Memory remap address. */
2382 ushort ioport; /* I/O Port address. */
2383 adv_req_t *adv_reqp; /* Request structures. */
2384 adv_sgblk_t *adv_sgblkp; /* Scatter-gather structures. */
2385 ushort bios_signature; /* BIOS Signature. */
2386 ushort bios_version; /* BIOS Version. */
2387 ushort bios_codeseg; /* BIOS Code Segment. */
2388 ushort bios_codelen; /* BIOS Code Segment Length. */
2391 #define asc_dvc_to_board(asc_dvc) container_of(asc_dvc, struct asc_board, \
2392 dvc_var.asc_dvc_var)
2393 #define adv_dvc_to_board(adv_dvc) container_of(adv_dvc, struct asc_board, \
2394 dvc_var.adv_dvc_var)
2395 #define adv_dvc_to_pdev(adv_dvc) to_pci_dev(adv_dvc_to_board(adv_dvc)->dev)
2397 #ifdef ADVANSYS_DEBUG
2398 static int asc_dbglvl = 3;
2401 * asc_prt_asc_dvc_var()
2403 static void asc_prt_asc_dvc_var(ASC_DVC_VAR *h)
2405 printk("ASC_DVC_VAR at addr 0x%lx\n", (ulong)h);
2407 printk(" iop_base 0x%x, err_code 0x%x, dvc_cntl 0x%x, bug_fix_cntl "
2408 "%d,\n", h->iop_base, h->err_code, h->dvc_cntl, h->bug_fix_cntl);
2410 printk(" bus_type %d, init_sdtr 0x%x,\n", h->bus_type,
2411 (unsigned)h->init_sdtr);
2413 printk(" sdtr_done 0x%x, use_tagged_qng 0x%x, unit_not_ready 0x%x, "
2414 "chip_no 0x%x,\n", (unsigned)h->sdtr_done,
2415 (unsigned)h->use_tagged_qng, (unsigned)h->unit_not_ready,
2416 (unsigned)h->chip_no);
2418 printk(" queue_full_or_busy 0x%x, start_motor 0x%x, scsi_reset_wait "
2419 "%u,\n", (unsigned)h->queue_full_or_busy,
2420 (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2422 printk(" is_in_int %u, max_total_qng %u, cur_total_qng %u, "
2423 "in_critical_cnt %u,\n", (unsigned)h->is_in_int,
2424 (unsigned)h->max_total_qng, (unsigned)h->cur_total_qng,
2425 (unsigned)h->in_critical_cnt);
2427 printk(" last_q_shortage %u, init_state 0x%x, no_scam 0x%x, "
2428 "pci_fix_asyn_xfer 0x%x,\n", (unsigned)h->last_q_shortage,
2429 (unsigned)h->init_state, (unsigned)h->no_scam,
2430 (unsigned)h->pci_fix_asyn_xfer);
2432 printk(" cfg 0x%lx\n", (ulong)h->cfg);
2436 * asc_prt_asc_dvc_cfg()
2438 static void asc_prt_asc_dvc_cfg(ASC_DVC_CFG *h)
2440 printk("ASC_DVC_CFG at addr 0x%lx\n", (ulong)h);
2442 printk(" can_tagged_qng 0x%x, cmd_qng_enabled 0x%x,\n",
2443 h->can_tagged_qng, h->cmd_qng_enabled);
2444 printk(" disc_enable 0x%x, sdtr_enable 0x%x,\n",
2445 h->disc_enable, h->sdtr_enable);
2447 printk(" chip_scsi_id %d, isa_dma_speed %d, isa_dma_channel %d, "
2448 "chip_version %d,\n", h->chip_scsi_id, h->isa_dma_speed,
2449 h->isa_dma_channel, h->chip_version);
2451 printk(" mcode_date 0x%x, mcode_version %d\n",
2452 h->mcode_date, h->mcode_version);
2456 * asc_prt_adv_dvc_var()
2458 * Display an ADV_DVC_VAR structure.
2460 static void asc_prt_adv_dvc_var(ADV_DVC_VAR *h)
2462 printk(" ADV_DVC_VAR at addr 0x%lx\n", (ulong)h);
2464 printk(" iop_base 0x%lx, err_code 0x%x, ultra_able 0x%x\n",
2465 (ulong)h->iop_base, h->err_code, (unsigned)h->ultra_able);
2467 printk(" sdtr_able 0x%x, wdtr_able 0x%x\n",
2468 (unsigned)h->sdtr_able, (unsigned)h->wdtr_able);
2470 printk(" start_motor 0x%x, scsi_reset_wait 0x%x\n",
2471 (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2473 printk(" max_host_qng %u, max_dvc_qng %u, carr_freelist 0x%lxn\n",
2474 (unsigned)h->max_host_qng, (unsigned)h->max_dvc_qng,
2475 (ulong)h->carr_freelist);
2477 printk(" icq_sp 0x%lx, irq_sp 0x%lx\n",
2478 (ulong)h->icq_sp, (ulong)h->irq_sp);
2480 printk(" no_scam 0x%x, tagqng_able 0x%x\n",
2481 (unsigned)h->no_scam, (unsigned)h->tagqng_able);
2483 printk(" chip_scsi_id 0x%x, cfg 0x%lx\n",
2484 (unsigned)h->chip_scsi_id, (ulong)h->cfg);
2488 * asc_prt_adv_dvc_cfg()
2490 * Display an ADV_DVC_CFG structure.
2492 static void asc_prt_adv_dvc_cfg(ADV_DVC_CFG *h)
2494 printk(" ADV_DVC_CFG at addr 0x%lx\n", (ulong)h);
2496 printk(" disc_enable 0x%x, termination 0x%x\n",
2497 h->disc_enable, h->termination);
2499 printk(" chip_version 0x%x, mcode_date 0x%x\n",
2500 h->chip_version, h->mcode_date);
2502 printk(" mcode_version 0x%x, control_flag 0x%x\n",
2503 h->mcode_version, h->control_flag);
2507 * asc_prt_scsi_host()
2509 static void asc_prt_scsi_host(struct Scsi_Host *s)
2511 struct asc_board *boardp = shost_priv(s);
2513 printk("Scsi_Host at addr 0x%p, device %s\n", s, dev_name(boardp->dev));
2514 printk(" host_busy %u, host_no %d,\n",
2515 atomic_read(&s->host_busy), s->host_no);
2517 printk(" base 0x%lx, io_port 0x%lx, irq %d,\n",
2518 (ulong)s->base, (ulong)s->io_port, boardp->irq);
2520 printk(" dma_channel %d, this_id %d, can_queue %d,\n",
2521 s->dma_channel, s->this_id, s->can_queue);
2523 printk(" cmd_per_lun %d, sg_tablesize %d, unchecked_isa_dma %d\n",
2524 s->cmd_per_lun, s->sg_tablesize, s->unchecked_isa_dma);
2526 if (ASC_NARROW_BOARD(boardp)) {
2527 asc_prt_asc_dvc_var(&boardp->dvc_var.asc_dvc_var);
2528 asc_prt_asc_dvc_cfg(&boardp->dvc_cfg.asc_dvc_cfg);
2529 } else {
2530 asc_prt_adv_dvc_var(&boardp->dvc_var.adv_dvc_var);
2531 asc_prt_adv_dvc_cfg(&boardp->dvc_cfg.adv_dvc_cfg);
2536 * asc_prt_hex()
2538 * Print hexadecimal output in 4 byte groupings 32 bytes
2539 * or 8 double-words per line.
2541 static void asc_prt_hex(char *f, uchar *s, int l)
2543 int i;
2544 int j;
2545 int k;
2546 int m;
2548 printk("%s: (%d bytes)\n", f, l);
2550 for (i = 0; i < l; i += 32) {
2552 /* Display a maximum of 8 double-words per line. */
2553 if ((k = (l - i) / 4) >= 8) {
2554 k = 8;
2555 m = 0;
2556 } else {
2557 m = (l - i) % 4;
2560 for (j = 0; j < k; j++) {
2561 printk(" %2.2X%2.2X%2.2X%2.2X",
2562 (unsigned)s[i + (j * 4)],
2563 (unsigned)s[i + (j * 4) + 1],
2564 (unsigned)s[i + (j * 4) + 2],
2565 (unsigned)s[i + (j * 4) + 3]);
2568 switch (m) {
2569 case 0:
2570 default:
2571 break;
2572 case 1:
2573 printk(" %2.2X", (unsigned)s[i + (j * 4)]);
2574 break;
2575 case 2:
2576 printk(" %2.2X%2.2X",
2577 (unsigned)s[i + (j * 4)],
2578 (unsigned)s[i + (j * 4) + 1]);
2579 break;
2580 case 3:
2581 printk(" %2.2X%2.2X%2.2X",
2582 (unsigned)s[i + (j * 4) + 1],
2583 (unsigned)s[i + (j * 4) + 2],
2584 (unsigned)s[i + (j * 4) + 3]);
2585 break;
2588 printk("\n");
2593 * asc_prt_asc_scsi_q()
2595 static void asc_prt_asc_scsi_q(ASC_SCSI_Q *q)
2597 ASC_SG_HEAD *sgp;
2598 int i;
2600 printk("ASC_SCSI_Q at addr 0x%lx\n", (ulong)q);
2602 printk
2603 (" target_ix 0x%x, target_lun %u, srb_ptr 0x%lx, tag_code 0x%x,\n",
2604 q->q2.target_ix, q->q1.target_lun, (ulong)q->q2.srb_ptr,
2605 q->q2.tag_code);
2607 printk
2608 (" data_addr 0x%lx, data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2609 (ulong)le32_to_cpu(q->q1.data_addr),
2610 (ulong)le32_to_cpu(q->q1.data_cnt),
2611 (ulong)le32_to_cpu(q->q1.sense_addr), q->q1.sense_len);
2613 printk(" cdbptr 0x%lx, cdb_len %u, sg_head 0x%lx, sg_queue_cnt %u\n",
2614 (ulong)q->cdbptr, q->q2.cdb_len,
2615 (ulong)q->sg_head, q->q1.sg_queue_cnt);
2617 if (q->sg_head) {
2618 sgp = q->sg_head;
2619 printk("ASC_SG_HEAD at addr 0x%lx\n", (ulong)sgp);
2620 printk(" entry_cnt %u, queue_cnt %u\n", sgp->entry_cnt,
2621 sgp->queue_cnt);
2622 for (i = 0; i < sgp->entry_cnt; i++) {
2623 printk(" [%u]: addr 0x%lx, bytes %lu\n",
2624 i, (ulong)le32_to_cpu(sgp->sg_list[i].addr),
2625 (ulong)le32_to_cpu(sgp->sg_list[i].bytes));
2632 * asc_prt_asc_qdone_info()
2634 static void asc_prt_asc_qdone_info(ASC_QDONE_INFO *q)
2636 printk("ASC_QDONE_INFO at addr 0x%lx\n", (ulong)q);
2637 printk(" srb_ptr 0x%lx, target_ix %u, cdb_len %u, tag_code %u,\n",
2638 (ulong)q->d2.srb_ptr, q->d2.target_ix, q->d2.cdb_len,
2639 q->d2.tag_code);
2640 printk
2641 (" done_stat 0x%x, host_stat 0x%x, scsi_stat 0x%x, scsi_msg 0x%x\n",
2642 q->d3.done_stat, q->d3.host_stat, q->d3.scsi_stat, q->d3.scsi_msg);
2646 * asc_prt_adv_sgblock()
2648 * Display an ADV_SG_BLOCK structure.
2650 static void asc_prt_adv_sgblock(int sgblockno, ADV_SG_BLOCK *b)
2652 int i;
2654 printk(" ASC_SG_BLOCK at addr 0x%lx (sgblockno %d)\n",
2655 (ulong)b, sgblockno);
2656 printk(" sg_cnt %u, sg_ptr 0x%lx\n",
2657 b->sg_cnt, (ulong)le32_to_cpu(b->sg_ptr));
2658 BUG_ON(b->sg_cnt > NO_OF_SG_PER_BLOCK);
2659 if (b->sg_ptr != 0)
2660 BUG_ON(b->sg_cnt != NO_OF_SG_PER_BLOCK);
2661 for (i = 0; i < b->sg_cnt; i++) {
2662 printk(" [%u]: sg_addr 0x%lx, sg_count 0x%lx\n",
2663 i, (ulong)b->sg_list[i].sg_addr,
2664 (ulong)b->sg_list[i].sg_count);
2669 * asc_prt_adv_scsi_req_q()
2671 * Display an ADV_SCSI_REQ_Q structure.
2673 static void asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q *q)
2675 int sg_blk_cnt;
2676 struct asc_sg_block *sg_ptr;
2678 printk("ADV_SCSI_REQ_Q at addr 0x%lx\n", (ulong)q);
2680 printk(" target_id %u, target_lun %u, srb_ptr 0x%lx, a_flag 0x%x\n",
2681 q->target_id, q->target_lun, (ulong)q->srb_ptr, q->a_flag);
2683 printk(" cntl 0x%x, data_addr 0x%lx, vdata_addr 0x%lx\n",
2684 q->cntl, (ulong)le32_to_cpu(q->data_addr), (ulong)q->vdata_addr);
2686 printk(" data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2687 (ulong)le32_to_cpu(q->data_cnt),
2688 (ulong)le32_to_cpu(q->sense_addr), q->sense_len);
2690 printk
2691 (" cdb_len %u, done_status 0x%x, host_status 0x%x, scsi_status 0x%x\n",
2692 q->cdb_len, q->done_status, q->host_status, q->scsi_status);
2694 printk(" sg_working_ix 0x%x, target_cmd %u\n",
2695 q->sg_working_ix, q->target_cmd);
2697 printk(" scsiq_rptr 0x%lx, sg_real_addr 0x%lx, sg_list_ptr 0x%lx\n",
2698 (ulong)le32_to_cpu(q->scsiq_rptr),
2699 (ulong)le32_to_cpu(q->sg_real_addr), (ulong)q->sg_list_ptr);
2701 /* Display the request's ADV_SG_BLOCK structures. */
2702 if (q->sg_list_ptr != NULL) {
2703 sg_blk_cnt = 0;
2704 while (1) {
2706 * 'sg_ptr' is a physical address. Convert it to a virtual
2707 * address by indexing 'sg_blk_cnt' into the virtual address
2708 * array 'sg_list_ptr'.
2710 * XXX - Assumes all SG physical blocks are virtually contiguous.
2712 sg_ptr =
2713 &(((ADV_SG_BLOCK *)(q->sg_list_ptr))[sg_blk_cnt]);
2714 asc_prt_adv_sgblock(sg_blk_cnt, sg_ptr);
2715 if (sg_ptr->sg_ptr == 0) {
2716 break;
2718 sg_blk_cnt++;
2722 #endif /* ADVANSYS_DEBUG */
2725 * The advansys chip/microcode contains a 32-bit identifier for each command
2726 * known as the 'srb'. I don't know what it stands for. The driver used
2727 * to encode the scsi_cmnd pointer by calling virt_to_bus and retrieve it
2728 * with bus_to_virt. Now the driver keeps a per-host map of integers to
2729 * pointers. It auto-expands when full, unless it can't allocate memory.
2730 * Note that an srb of 0 is treated specially by the chip/firmware, hence
2731 * the return of i+1 in this routine, and the corresponding subtraction in
2732 * the inverse routine.
2734 #define BAD_SRB 0
2735 static u32 advansys_ptr_to_srb(struct asc_dvc_var *asc_dvc, void *ptr)
2737 int i;
2738 void **new_ptr;
2740 for (i = 0; i < asc_dvc->ptr_map_count; i++) {
2741 if (!asc_dvc->ptr_map[i])
2742 goto out;
2745 if (asc_dvc->ptr_map_count == 0)
2746 asc_dvc->ptr_map_count = 1;
2747 else
2748 asc_dvc->ptr_map_count *= 2;
2750 new_ptr = krealloc(asc_dvc->ptr_map,
2751 asc_dvc->ptr_map_count * sizeof(void *), GFP_ATOMIC);
2752 if (!new_ptr)
2753 return BAD_SRB;
2754 asc_dvc->ptr_map = new_ptr;
2755 out:
2756 ASC_DBG(3, "Putting ptr %p into array offset %d\n", ptr, i);
2757 asc_dvc->ptr_map[i] = ptr;
2758 return i + 1;
2761 static void * advansys_srb_to_ptr(struct asc_dvc_var *asc_dvc, u32 srb)
2763 void *ptr;
2765 srb--;
2766 if (srb >= asc_dvc->ptr_map_count) {
2767 printk("advansys: bad SRB %u, max %u\n", srb,
2768 asc_dvc->ptr_map_count);
2769 return NULL;
2771 ptr = asc_dvc->ptr_map[srb];
2772 asc_dvc->ptr_map[srb] = NULL;
2773 ASC_DBG(3, "Returning ptr %p from array offset %d\n", ptr, srb);
2774 return ptr;
2778 * advansys_info()
2780 * Return suitable for printing on the console with the argument
2781 * adapter's configuration information.
2783 * Note: The information line should not exceed ASC_INFO_SIZE bytes,
2784 * otherwise the static 'info' array will be overrun.
2786 static const char *advansys_info(struct Scsi_Host *shost)
2788 static char info[ASC_INFO_SIZE];
2789 struct asc_board *boardp = shost_priv(shost);
2790 ASC_DVC_VAR *asc_dvc_varp;
2791 ADV_DVC_VAR *adv_dvc_varp;
2792 char *busname;
2793 char *widename = NULL;
2795 if (ASC_NARROW_BOARD(boardp)) {
2796 asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
2797 ASC_DBG(1, "begin\n");
2798 if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
2799 if ((asc_dvc_varp->bus_type & ASC_IS_ISAPNP) ==
2800 ASC_IS_ISAPNP) {
2801 busname = "ISA PnP";
2802 } else {
2803 busname = "ISA";
2805 sprintf(info,
2806 "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X, DMA 0x%X",
2807 ASC_VERSION, busname,
2808 (ulong)shost->io_port,
2809 (ulong)shost->io_port + ASC_IOADR_GAP - 1,
2810 boardp->irq, shost->dma_channel);
2811 } else {
2812 if (asc_dvc_varp->bus_type & ASC_IS_VL) {
2813 busname = "VL";
2814 } else if (asc_dvc_varp->bus_type & ASC_IS_EISA) {
2815 busname = "EISA";
2816 } else if (asc_dvc_varp->bus_type & ASC_IS_PCI) {
2817 if ((asc_dvc_varp->bus_type & ASC_IS_PCI_ULTRA)
2818 == ASC_IS_PCI_ULTRA) {
2819 busname = "PCI Ultra";
2820 } else {
2821 busname = "PCI";
2823 } else {
2824 busname = "?";
2825 shost_printk(KERN_ERR, shost, "unknown bus "
2826 "type %d\n", asc_dvc_varp->bus_type);
2828 sprintf(info,
2829 "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X",
2830 ASC_VERSION, busname, (ulong)shost->io_port,
2831 (ulong)shost->io_port + ASC_IOADR_GAP - 1,
2832 boardp->irq);
2834 } else {
2836 * Wide Adapter Information
2838 * Memory-mapped I/O is used instead of I/O space to access
2839 * the adapter, but display the I/O Port range. The Memory
2840 * I/O address is displayed through the driver /proc file.
2842 adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
2843 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2844 widename = "Ultra-Wide";
2845 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2846 widename = "Ultra2-Wide";
2847 } else {
2848 widename = "Ultra3-Wide";
2850 sprintf(info,
2851 "AdvanSys SCSI %s: PCI %s: PCIMEM 0x%lX-0x%lX, IRQ 0x%X",
2852 ASC_VERSION, widename, (ulong)adv_dvc_varp->iop_base,
2853 (ulong)adv_dvc_varp->iop_base + boardp->asc_n_io_port - 1, boardp->irq);
2855 BUG_ON(strlen(info) >= ASC_INFO_SIZE);
2856 ASC_DBG(1, "end\n");
2857 return info;
2860 #ifdef CONFIG_PROC_FS
2863 * asc_prt_board_devices()
2865 * Print driver information for devices attached to the board.
2867 static void asc_prt_board_devices(struct seq_file *m, struct Scsi_Host *shost)
2869 struct asc_board *boardp = shost_priv(shost);
2870 int chip_scsi_id;
2871 int i;
2873 seq_printf(m,
2874 "\nDevice Information for AdvanSys SCSI Host %d:\n",
2875 shost->host_no);
2877 if (ASC_NARROW_BOARD(boardp)) {
2878 chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id;
2879 } else {
2880 chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id;
2883 seq_puts(m, "Target IDs Detected:");
2884 for (i = 0; i <= ADV_MAX_TID; i++) {
2885 if (boardp->init_tidmask & ADV_TID_TO_TIDMASK(i))
2886 seq_printf(m, " %X,", i);
2888 seq_printf(m, " (%X=Host Adapter)\n", chip_scsi_id);
2892 * Display Wide Board BIOS Information.
2894 static void asc_prt_adv_bios(struct seq_file *m, struct Scsi_Host *shost)
2896 struct asc_board *boardp = shost_priv(shost);
2897 ushort major, minor, letter;
2899 seq_puts(m, "\nROM BIOS Version: ");
2902 * If the BIOS saved a valid signature, then fill in
2903 * the BIOS code segment base address.
2905 if (boardp->bios_signature != 0x55AA) {
2906 seq_puts(m, "Disabled or Pre-3.1\n"
2907 "BIOS either disabled or Pre-3.1. If it is pre-3.1, then a newer version\n"
2908 "can be found at the ConnectCom FTP site: ftp://ftp.connectcom.net/pub\n");
2909 } else {
2910 major = (boardp->bios_version >> 12) & 0xF;
2911 minor = (boardp->bios_version >> 8) & 0xF;
2912 letter = (boardp->bios_version & 0xFF);
2914 seq_printf(m, "%d.%d%c\n",
2915 major, minor,
2916 letter >= 26 ? '?' : letter + 'A');
2918 * Current available ROM BIOS release is 3.1I for UW
2919 * and 3.2I for U2W. This code doesn't differentiate
2920 * UW and U2W boards.
2922 if (major < 3 || (major <= 3 && minor < 1) ||
2923 (major <= 3 && minor <= 1 && letter < ('I' - 'A'))) {
2924 seq_puts(m, "Newer version of ROM BIOS is available at the ConnectCom FTP site:\n"
2925 "ftp://ftp.connectcom.net/pub\n");
2931 * Add serial number to information bar if signature AAh
2932 * is found in at bit 15-9 (7 bits) of word 1.
2934 * Serial Number consists fo 12 alpha-numeric digits.
2936 * 1 - Product type (A,B,C,D..) Word0: 15-13 (3 bits)
2937 * 2 - MFG Location (A,B,C,D..) Word0: 12-10 (3 bits)
2938 * 3-4 - Product ID (0-99) Word0: 9-0 (10 bits)
2939 * 5 - Product revision (A-J) Word0: " "
2941 * Signature Word1: 15-9 (7 bits)
2942 * 6 - Year (0-9) Word1: 8-6 (3 bits) & Word2: 15 (1 bit)
2943 * 7-8 - Week of the year (1-52) Word1: 5-0 (6 bits)
2945 * 9-12 - Serial Number (A001-Z999) Word2: 14-0 (15 bits)
2947 * Note 1: Only production cards will have a serial number.
2949 * Note 2: Signature is most significant 7 bits (0xFE).
2951 * Returns ASC_TRUE if serial number found, otherwise returns ASC_FALSE.
2953 static int asc_get_eeprom_string(ushort *serialnum, uchar *cp)
2955 ushort w, num;
2957 if ((serialnum[1] & 0xFE00) != ((ushort)0xAA << 8)) {
2958 return ASC_FALSE;
2959 } else {
2961 * First word - 6 digits.
2963 w = serialnum[0];
2965 /* Product type - 1st digit. */
2966 if ((*cp = 'A' + ((w & 0xE000) >> 13)) == 'H') {
2967 /* Product type is P=Prototype */
2968 *cp += 0x8;
2970 cp++;
2972 /* Manufacturing location - 2nd digit. */
2973 *cp++ = 'A' + ((w & 0x1C00) >> 10);
2975 /* Product ID - 3rd, 4th digits. */
2976 num = w & 0x3FF;
2977 *cp++ = '0' + (num / 100);
2978 num %= 100;
2979 *cp++ = '0' + (num / 10);
2981 /* Product revision - 5th digit. */
2982 *cp++ = 'A' + (num % 10);
2985 * Second word
2987 w = serialnum[1];
2990 * Year - 6th digit.
2992 * If bit 15 of third word is set, then the
2993 * last digit of the year is greater than 7.
2995 if (serialnum[2] & 0x8000) {
2996 *cp++ = '8' + ((w & 0x1C0) >> 6);
2997 } else {
2998 *cp++ = '0' + ((w & 0x1C0) >> 6);
3001 /* Week of year - 7th, 8th digits. */
3002 num = w & 0x003F;
3003 *cp++ = '0' + num / 10;
3004 num %= 10;
3005 *cp++ = '0' + num;
3008 * Third word
3010 w = serialnum[2] & 0x7FFF;
3012 /* Serial number - 9th digit. */
3013 *cp++ = 'A' + (w / 1000);
3015 /* 10th, 11th, 12th digits. */
3016 num = w % 1000;
3017 *cp++ = '0' + num / 100;
3018 num %= 100;
3019 *cp++ = '0' + num / 10;
3020 num %= 10;
3021 *cp++ = '0' + num;
3023 *cp = '\0'; /* Null Terminate the string. */
3024 return ASC_TRUE;
3029 * asc_prt_asc_board_eeprom()
3031 * Print board EEPROM configuration.
3033 static void asc_prt_asc_board_eeprom(struct seq_file *m, struct Scsi_Host *shost)
3035 struct asc_board *boardp = shost_priv(shost);
3036 ASC_DVC_VAR *asc_dvc_varp;
3037 ASCEEP_CONFIG *ep;
3038 int i;
3039 #ifdef CONFIG_ISA
3040 int isa_dma_speed[] = { 10, 8, 7, 6, 5, 4, 3, 2 };
3041 #endif /* CONFIG_ISA */
3042 uchar serialstr[13];
3044 asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
3045 ep = &boardp->eep_config.asc_eep;
3047 seq_printf(m,
3048 "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
3049 shost->host_no);
3051 if (asc_get_eeprom_string((ushort *)&ep->adapter_info[0], serialstr)
3052 == ASC_TRUE)
3053 seq_printf(m, " Serial Number: %s\n", serialstr);
3054 else if (ep->adapter_info[5] == 0xBB)
3055 seq_puts(m,
3056 " Default Settings Used for EEPROM-less Adapter.\n");
3057 else
3058 seq_puts(m, " Serial Number Signature Not Present.\n");
3060 seq_printf(m,
3061 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3062 ASC_EEP_GET_CHIP_ID(ep), ep->max_total_qng,
3063 ep->max_tag_qng);
3065 seq_printf(m,
3066 " cntl 0x%x, no_scam 0x%x\n", ep->cntl, ep->no_scam);
3068 seq_puts(m, " Target ID: ");
3069 for (i = 0; i <= ASC_MAX_TID; i++)
3070 seq_printf(m, " %d", i);
3072 seq_puts(m, "\n Disconnects: ");
3073 for (i = 0; i <= ASC_MAX_TID; i++)
3074 seq_printf(m, " %c",
3075 (ep->disc_enable & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3077 seq_puts(m, "\n Command Queuing: ");
3078 for (i = 0; i <= ASC_MAX_TID; i++)
3079 seq_printf(m, " %c",
3080 (ep->use_cmd_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3082 seq_puts(m, "\n Start Motor: ");
3083 for (i = 0; i <= ASC_MAX_TID; i++)
3084 seq_printf(m, " %c",
3085 (ep->start_motor & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3087 seq_puts(m, "\n Synchronous Transfer:");
3088 for (i = 0; i <= ASC_MAX_TID; i++)
3089 seq_printf(m, " %c",
3090 (ep->init_sdtr & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3091 seq_putc(m, '\n');
3093 #ifdef CONFIG_ISA
3094 if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
3095 seq_printf(m,
3096 " Host ISA DMA speed: %d MB/S\n",
3097 isa_dma_speed[ASC_EEP_GET_DMA_SPD(ep)]);
3099 #endif /* CONFIG_ISA */
3103 * asc_prt_adv_board_eeprom()
3105 * Print board EEPROM configuration.
3107 static void asc_prt_adv_board_eeprom(struct seq_file *m, struct Scsi_Host *shost)
3109 struct asc_board *boardp = shost_priv(shost);
3110 ADV_DVC_VAR *adv_dvc_varp;
3111 int i;
3112 char *termstr;
3113 uchar serialstr[13];
3114 ADVEEP_3550_CONFIG *ep_3550 = NULL;
3115 ADVEEP_38C0800_CONFIG *ep_38C0800 = NULL;
3116 ADVEEP_38C1600_CONFIG *ep_38C1600 = NULL;
3117 ushort word;
3118 ushort *wordp;
3119 ushort sdtr_speed = 0;
3121 adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
3122 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3123 ep_3550 = &boardp->eep_config.adv_3550_eep;
3124 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3125 ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
3126 } else {
3127 ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
3130 seq_printf(m,
3131 "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
3132 shost->host_no);
3134 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3135 wordp = &ep_3550->serial_number_word1;
3136 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3137 wordp = &ep_38C0800->serial_number_word1;
3138 } else {
3139 wordp = &ep_38C1600->serial_number_word1;
3142 if (asc_get_eeprom_string(wordp, serialstr) == ASC_TRUE)
3143 seq_printf(m, " Serial Number: %s\n", serialstr);
3144 else
3145 seq_puts(m, " Serial Number Signature Not Present.\n");
3147 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550)
3148 seq_printf(m,
3149 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3150 ep_3550->adapter_scsi_id,
3151 ep_3550->max_host_qng, ep_3550->max_dvc_qng);
3152 else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800)
3153 seq_printf(m,
3154 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3155 ep_38C0800->adapter_scsi_id,
3156 ep_38C0800->max_host_qng,
3157 ep_38C0800->max_dvc_qng);
3158 else
3159 seq_printf(m,
3160 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3161 ep_38C1600->adapter_scsi_id,
3162 ep_38C1600->max_host_qng,
3163 ep_38C1600->max_dvc_qng);
3164 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3165 word = ep_3550->termination;
3166 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3167 word = ep_38C0800->termination_lvd;
3168 } else {
3169 word = ep_38C1600->termination_lvd;
3171 switch (word) {
3172 case 1:
3173 termstr = "Low Off/High Off";
3174 break;
3175 case 2:
3176 termstr = "Low Off/High On";
3177 break;
3178 case 3:
3179 termstr = "Low On/High On";
3180 break;
3181 default:
3182 case 0:
3183 termstr = "Automatic";
3184 break;
3187 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550)
3188 seq_printf(m,
3189 " termination: %u (%s), bios_ctrl: 0x%x\n",
3190 ep_3550->termination, termstr,
3191 ep_3550->bios_ctrl);
3192 else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800)
3193 seq_printf(m,
3194 " termination: %u (%s), bios_ctrl: 0x%x\n",
3195 ep_38C0800->termination_lvd, termstr,
3196 ep_38C0800->bios_ctrl);
3197 else
3198 seq_printf(m,
3199 " termination: %u (%s), bios_ctrl: 0x%x\n",
3200 ep_38C1600->termination_lvd, termstr,
3201 ep_38C1600->bios_ctrl);
3203 seq_puts(m, " Target ID: ");
3204 for (i = 0; i <= ADV_MAX_TID; i++)
3205 seq_printf(m, " %X", i);
3206 seq_putc(m, '\n');
3208 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3209 word = ep_3550->disc_enable;
3210 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3211 word = ep_38C0800->disc_enable;
3212 } else {
3213 word = ep_38C1600->disc_enable;
3215 seq_puts(m, " Disconnects: ");
3216 for (i = 0; i <= ADV_MAX_TID; i++)
3217 seq_printf(m, " %c",
3218 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3219 seq_putc(m, '\n');
3221 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3222 word = ep_3550->tagqng_able;
3223 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3224 word = ep_38C0800->tagqng_able;
3225 } else {
3226 word = ep_38C1600->tagqng_able;
3228 seq_puts(m, " Command Queuing: ");
3229 for (i = 0; i <= ADV_MAX_TID; i++)
3230 seq_printf(m, " %c",
3231 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3232 seq_putc(m, '\n');
3234 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3235 word = ep_3550->start_motor;
3236 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3237 word = ep_38C0800->start_motor;
3238 } else {
3239 word = ep_38C1600->start_motor;
3241 seq_puts(m, " Start Motor: ");
3242 for (i = 0; i <= ADV_MAX_TID; i++)
3243 seq_printf(m, " %c",
3244 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3245 seq_putc(m, '\n');
3247 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3248 seq_puts(m, " Synchronous Transfer:");
3249 for (i = 0; i <= ADV_MAX_TID; i++)
3250 seq_printf(m, " %c",
3251 (ep_3550->sdtr_able & ADV_TID_TO_TIDMASK(i)) ?
3252 'Y' : 'N');
3253 seq_putc(m, '\n');
3256 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3257 seq_puts(m, " Ultra Transfer: ");
3258 for (i = 0; i <= ADV_MAX_TID; i++)
3259 seq_printf(m, " %c",
3260 (ep_3550->ultra_able & ADV_TID_TO_TIDMASK(i))
3261 ? 'Y' : 'N');
3262 seq_putc(m, '\n');
3265 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3266 word = ep_3550->wdtr_able;
3267 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3268 word = ep_38C0800->wdtr_able;
3269 } else {
3270 word = ep_38C1600->wdtr_able;
3272 seq_puts(m, " Wide Transfer: ");
3273 for (i = 0; i <= ADV_MAX_TID; i++)
3274 seq_printf(m, " %c",
3275 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3276 seq_putc(m, '\n');
3278 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800 ||
3279 adv_dvc_varp->chip_type == ADV_CHIP_ASC38C1600) {
3280 seq_puts(m, " Synchronous Transfer Speed (Mhz):\n ");
3281 for (i = 0; i <= ADV_MAX_TID; i++) {
3282 char *speed_str;
3284 if (i == 0) {
3285 sdtr_speed = adv_dvc_varp->sdtr_speed1;
3286 } else if (i == 4) {
3287 sdtr_speed = adv_dvc_varp->sdtr_speed2;
3288 } else if (i == 8) {
3289 sdtr_speed = adv_dvc_varp->sdtr_speed3;
3290 } else if (i == 12) {
3291 sdtr_speed = adv_dvc_varp->sdtr_speed4;
3293 switch (sdtr_speed & ADV_MAX_TID) {
3294 case 0:
3295 speed_str = "Off";
3296 break;
3297 case 1:
3298 speed_str = " 5";
3299 break;
3300 case 2:
3301 speed_str = " 10";
3302 break;
3303 case 3:
3304 speed_str = " 20";
3305 break;
3306 case 4:
3307 speed_str = " 40";
3308 break;
3309 case 5:
3310 speed_str = " 80";
3311 break;
3312 default:
3313 speed_str = "Unk";
3314 break;
3316 seq_printf(m, "%X:%s ", i, speed_str);
3317 if (i == 7)
3318 seq_puts(m, "\n ");
3319 sdtr_speed >>= 4;
3321 seq_putc(m, '\n');
3326 * asc_prt_driver_conf()
3328 static void asc_prt_driver_conf(struct seq_file *m, struct Scsi_Host *shost)
3330 struct asc_board *boardp = shost_priv(shost);
3331 int chip_scsi_id;
3333 seq_printf(m,
3334 "\nLinux Driver Configuration and Information for AdvanSys SCSI Host %d:\n",
3335 shost->host_no);
3337 seq_printf(m,
3338 " host_busy %u, max_id %u, max_lun %llu, max_channel %u\n",
3339 atomic_read(&shost->host_busy), shost->max_id,
3340 shost->max_lun, shost->max_channel);
3342 seq_printf(m,
3343 " unique_id %d, can_queue %d, this_id %d, sg_tablesize %u, cmd_per_lun %u\n",
3344 shost->unique_id, shost->can_queue, shost->this_id,
3345 shost->sg_tablesize, shost->cmd_per_lun);
3347 seq_printf(m,
3348 " unchecked_isa_dma %d, use_clustering %d\n",
3349 shost->unchecked_isa_dma, shost->use_clustering);
3351 seq_printf(m,
3352 " flags 0x%x, last_reset 0x%lx, jiffies 0x%lx, asc_n_io_port 0x%x\n",
3353 boardp->flags, boardp->last_reset, jiffies,
3354 boardp->asc_n_io_port);
3356 seq_printf(m, " io_port 0x%lx\n", shost->io_port);
3358 if (ASC_NARROW_BOARD(boardp)) {
3359 chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id;
3360 } else {
3361 chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id;
3366 * asc_prt_asc_board_info()
3368 * Print dynamic board configuration information.
3370 static void asc_prt_asc_board_info(struct seq_file *m, struct Scsi_Host *shost)
3372 struct asc_board *boardp = shost_priv(shost);
3373 int chip_scsi_id;
3374 ASC_DVC_VAR *v;
3375 ASC_DVC_CFG *c;
3376 int i;
3377 int renegotiate = 0;
3379 v = &boardp->dvc_var.asc_dvc_var;
3380 c = &boardp->dvc_cfg.asc_dvc_cfg;
3381 chip_scsi_id = c->chip_scsi_id;
3383 seq_printf(m,
3384 "\nAsc Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3385 shost->host_no);
3387 seq_printf(m, " chip_version %u, mcode_date 0x%x, "
3388 "mcode_version 0x%x, err_code %u\n",
3389 c->chip_version, c->mcode_date, c->mcode_version,
3390 v->err_code);
3392 /* Current number of commands waiting for the host. */
3393 seq_printf(m,
3394 " Total Command Pending: %d\n", v->cur_total_qng);
3396 seq_puts(m, " Command Queuing:");
3397 for (i = 0; i <= ASC_MAX_TID; i++) {
3398 if ((chip_scsi_id == i) ||
3399 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3400 continue;
3402 seq_printf(m, " %X:%c",
3404 (v->use_tagged_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3407 /* Current number of commands waiting for a device. */
3408 seq_puts(m, "\n Command Queue Pending:");
3409 for (i = 0; i <= ASC_MAX_TID; i++) {
3410 if ((chip_scsi_id == i) ||
3411 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3412 continue;
3414 seq_printf(m, " %X:%u", i, v->cur_dvc_qng[i]);
3417 /* Current limit on number of commands that can be sent to a device. */
3418 seq_puts(m, "\n Command Queue Limit:");
3419 for (i = 0; i <= ASC_MAX_TID; i++) {
3420 if ((chip_scsi_id == i) ||
3421 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3422 continue;
3424 seq_printf(m, " %X:%u", i, v->max_dvc_qng[i]);
3427 /* Indicate whether the device has returned queue full status. */
3428 seq_puts(m, "\n Command Queue Full:");
3429 for (i = 0; i <= ASC_MAX_TID; i++) {
3430 if ((chip_scsi_id == i) ||
3431 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3432 continue;
3434 if (boardp->queue_full & ADV_TID_TO_TIDMASK(i))
3435 seq_printf(m, " %X:Y-%d",
3436 i, boardp->queue_full_cnt[i]);
3437 else
3438 seq_printf(m, " %X:N", i);
3441 seq_puts(m, "\n Synchronous Transfer:");
3442 for (i = 0; i <= ASC_MAX_TID; i++) {
3443 if ((chip_scsi_id == i) ||
3444 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3445 continue;
3447 seq_printf(m, " %X:%c",
3449 (v->sdtr_done & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3451 seq_putc(m, '\n');
3453 for (i = 0; i <= ASC_MAX_TID; i++) {
3454 uchar syn_period_ix;
3456 if ((chip_scsi_id == i) ||
3457 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3458 ((v->init_sdtr & ADV_TID_TO_TIDMASK(i)) == 0)) {
3459 continue;
3462 seq_printf(m, " %X:", i);
3464 if ((boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET) == 0) {
3465 seq_puts(m, " Asynchronous");
3466 } else {
3467 syn_period_ix =
3468 (boardp->sdtr_data[i] >> 4) & (v->max_sdtr_index -
3471 seq_printf(m,
3472 " Transfer Period Factor: %d (%d.%d Mhz),",
3473 v->sdtr_period_tbl[syn_period_ix],
3474 250 / v->sdtr_period_tbl[syn_period_ix],
3475 ASC_TENTHS(250,
3476 v->sdtr_period_tbl[syn_period_ix]));
3478 seq_printf(m, " REQ/ACK Offset: %d",
3479 boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET);
3482 if ((v->sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3483 seq_puts(m, "*\n");
3484 renegotiate = 1;
3485 } else {
3486 seq_putc(m, '\n');
3490 if (renegotiate) {
3491 seq_puts(m, " * = Re-negotiation pending before next command.\n");
3496 * asc_prt_adv_board_info()
3498 * Print dynamic board configuration information.
3500 static void asc_prt_adv_board_info(struct seq_file *m, struct Scsi_Host *shost)
3502 struct asc_board *boardp = shost_priv(shost);
3503 int i;
3504 ADV_DVC_VAR *v;
3505 ADV_DVC_CFG *c;
3506 AdvPortAddr iop_base;
3507 ushort chip_scsi_id;
3508 ushort lramword;
3509 uchar lrambyte;
3510 ushort tagqng_able;
3511 ushort sdtr_able, wdtr_able;
3512 ushort wdtr_done, sdtr_done;
3513 ushort period = 0;
3514 int renegotiate = 0;
3516 v = &boardp->dvc_var.adv_dvc_var;
3517 c = &boardp->dvc_cfg.adv_dvc_cfg;
3518 iop_base = v->iop_base;
3519 chip_scsi_id = v->chip_scsi_id;
3521 seq_printf(m,
3522 "\nAdv Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3523 shost->host_no);
3525 seq_printf(m,
3526 " iop_base 0x%lx, cable_detect: %X, err_code %u\n",
3527 (unsigned long)v->iop_base,
3528 AdvReadWordRegister(iop_base,IOPW_SCSI_CFG1) & CABLE_DETECT,
3529 v->err_code);
3531 seq_printf(m, " chip_version %u, mcode_date 0x%x, "
3532 "mcode_version 0x%x\n", c->chip_version,
3533 c->mcode_date, c->mcode_version);
3535 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
3536 seq_puts(m, " Queuing Enabled:");
3537 for (i = 0; i <= ADV_MAX_TID; i++) {
3538 if ((chip_scsi_id == i) ||
3539 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3540 continue;
3543 seq_printf(m, " %X:%c",
3545 (tagqng_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3548 seq_puts(m, "\n Queue Limit:");
3549 for (i = 0; i <= ADV_MAX_TID; i++) {
3550 if ((chip_scsi_id == i) ||
3551 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3552 continue;
3555 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + i,
3556 lrambyte);
3558 seq_printf(m, " %X:%d", i, lrambyte);
3561 seq_puts(m, "\n Command Pending:");
3562 for (i = 0; i <= ADV_MAX_TID; i++) {
3563 if ((chip_scsi_id == i) ||
3564 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3565 continue;
3568 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_QUEUED_CMD + i,
3569 lrambyte);
3571 seq_printf(m, " %X:%d", i, lrambyte);
3573 seq_putc(m, '\n');
3575 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
3576 seq_puts(m, " Wide Enabled:");
3577 for (i = 0; i <= ADV_MAX_TID; i++) {
3578 if ((chip_scsi_id == i) ||
3579 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3580 continue;
3583 seq_printf(m, " %X:%c",
3585 (wdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3587 seq_putc(m, '\n');
3589 AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, wdtr_done);
3590 seq_puts(m, " Transfer Bit Width:");
3591 for (i = 0; i <= ADV_MAX_TID; i++) {
3592 if ((chip_scsi_id == i) ||
3593 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3594 continue;
3597 AdvReadWordLram(iop_base,
3598 ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3599 lramword);
3601 seq_printf(m, " %X:%d",
3602 i, (lramword & 0x8000) ? 16 : 8);
3604 if ((wdtr_able & ADV_TID_TO_TIDMASK(i)) &&
3605 (wdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3606 seq_putc(m, '*');
3607 renegotiate = 1;
3610 seq_putc(m, '\n');
3612 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
3613 seq_puts(m, " Synchronous Enabled:");
3614 for (i = 0; i <= ADV_MAX_TID; i++) {
3615 if ((chip_scsi_id == i) ||
3616 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3617 continue;
3620 seq_printf(m, " %X:%c",
3622 (sdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3624 seq_putc(m, '\n');
3626 AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, sdtr_done);
3627 for (i = 0; i <= ADV_MAX_TID; i++) {
3629 AdvReadWordLram(iop_base,
3630 ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3631 lramword);
3632 lramword &= ~0x8000;
3634 if ((chip_scsi_id == i) ||
3635 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3636 ((sdtr_able & ADV_TID_TO_TIDMASK(i)) == 0)) {
3637 continue;
3640 seq_printf(m, " %X:", i);
3642 if ((lramword & 0x1F) == 0) { /* Check for REQ/ACK Offset 0. */
3643 seq_puts(m, " Asynchronous");
3644 } else {
3645 seq_puts(m, " Transfer Period Factor: ");
3647 if ((lramword & 0x1F00) == 0x1100) { /* 80 Mhz */
3648 seq_puts(m, "9 (80.0 Mhz),");
3649 } else if ((lramword & 0x1F00) == 0x1000) { /* 40 Mhz */
3650 seq_puts(m, "10 (40.0 Mhz),");
3651 } else { /* 20 Mhz or below. */
3653 period = (((lramword >> 8) * 25) + 50) / 4;
3655 if (period == 0) { /* Should never happen. */
3656 seq_printf(m, "%d (? Mhz), ", period);
3657 } else {
3658 seq_printf(m,
3659 "%d (%d.%d Mhz),",
3660 period, 250 / period,
3661 ASC_TENTHS(250, period));
3665 seq_printf(m, " REQ/ACK Offset: %d",
3666 lramword & 0x1F);
3669 if ((sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3670 seq_puts(m, "*\n");
3671 renegotiate = 1;
3672 } else {
3673 seq_putc(m, '\n');
3677 if (renegotiate) {
3678 seq_puts(m, " * = Re-negotiation pending before next command.\n");
3682 #ifdef ADVANSYS_STATS
3684 * asc_prt_board_stats()
3686 static void asc_prt_board_stats(struct seq_file *m, struct Scsi_Host *shost)
3688 struct asc_board *boardp = shost_priv(shost);
3689 struct asc_stats *s = &boardp->asc_stats;
3691 seq_printf(m,
3692 "\nLinux Driver Statistics for AdvanSys SCSI Host %d:\n",
3693 shost->host_no);
3695 seq_printf(m,
3696 " queuecommand %u, reset %u, biosparam %u, interrupt %u\n",
3697 s->queuecommand, s->reset, s->biosparam,
3698 s->interrupt);
3700 seq_printf(m,
3701 " callback %u, done %u, build_error %u, build_noreq %u, build_nosg %u\n",
3702 s->callback, s->done, s->build_error,
3703 s->adv_build_noreq, s->adv_build_nosg);
3705 seq_printf(m,
3706 " exe_noerror %u, exe_busy %u, exe_error %u, exe_unknown %u\n",
3707 s->exe_noerror, s->exe_busy, s->exe_error,
3708 s->exe_unknown);
3711 * Display data transfer statistics.
3713 if (s->xfer_cnt > 0) {
3714 seq_printf(m, " xfer_cnt %u, xfer_elem %u, ",
3715 s->xfer_cnt, s->xfer_elem);
3717 seq_printf(m, "xfer_bytes %u.%01u kb\n",
3718 s->xfer_sect / 2, ASC_TENTHS(s->xfer_sect, 2));
3720 /* Scatter gather transfer statistics */
3721 seq_printf(m, " avg_num_elem %u.%01u, ",
3722 s->xfer_elem / s->xfer_cnt,
3723 ASC_TENTHS(s->xfer_elem, s->xfer_cnt));
3725 seq_printf(m, "avg_elem_size %u.%01u kb, ",
3726 (s->xfer_sect / 2) / s->xfer_elem,
3727 ASC_TENTHS((s->xfer_sect / 2), s->xfer_elem));
3729 seq_printf(m, "avg_xfer_size %u.%01u kb\n",
3730 (s->xfer_sect / 2) / s->xfer_cnt,
3731 ASC_TENTHS((s->xfer_sect / 2), s->xfer_cnt));
3734 #endif /* ADVANSYS_STATS */
3737 * advansys_show_info() - /proc/scsi/advansys/{0,1,2,3,...}
3739 * m: seq_file to print into
3740 * shost: Scsi_Host
3742 * Return the number of bytes read from or written to a
3743 * /proc/scsi/advansys/[0...] file.
3745 static int
3746 advansys_show_info(struct seq_file *m, struct Scsi_Host *shost)
3748 struct asc_board *boardp = shost_priv(shost);
3750 ASC_DBG(1, "begin\n");
3753 * User read of /proc/scsi/advansys/[0...] file.
3757 * Get board configuration information.
3759 * advansys_info() returns the board string from its own static buffer.
3761 /* Copy board information. */
3762 seq_printf(m, "%s\n", (char *)advansys_info(shost));
3764 * Display Wide Board BIOS Information.
3766 if (!ASC_NARROW_BOARD(boardp))
3767 asc_prt_adv_bios(m, shost);
3770 * Display driver information for each device attached to the board.
3772 asc_prt_board_devices(m, shost);
3775 * Display EEPROM configuration for the board.
3777 if (ASC_NARROW_BOARD(boardp))
3778 asc_prt_asc_board_eeprom(m, shost);
3779 else
3780 asc_prt_adv_board_eeprom(m, shost);
3783 * Display driver configuration and information for the board.
3785 asc_prt_driver_conf(m, shost);
3787 #ifdef ADVANSYS_STATS
3789 * Display driver statistics for the board.
3791 asc_prt_board_stats(m, shost);
3792 #endif /* ADVANSYS_STATS */
3795 * Display Asc Library dynamic configuration information
3796 * for the board.
3798 if (ASC_NARROW_BOARD(boardp))
3799 asc_prt_asc_board_info(m, shost);
3800 else
3801 asc_prt_adv_board_info(m, shost);
3802 return 0;
3804 #endif /* CONFIG_PROC_FS */
3806 static void asc_scsi_done(struct scsi_cmnd *scp)
3808 scsi_dma_unmap(scp);
3809 ASC_STATS(scp->device->host, done);
3810 scp->scsi_done(scp);
3813 static void AscSetBank(PortAddr iop_base, uchar bank)
3815 uchar val;
3817 val = AscGetChipControl(iop_base) &
3819 (CC_SINGLE_STEP | CC_TEST | CC_DIAG | CC_SCSI_RESET |
3820 CC_CHIP_RESET));
3821 if (bank == 1) {
3822 val |= CC_BANK_ONE;
3823 } else if (bank == 2) {
3824 val |= CC_DIAG | CC_BANK_ONE;
3825 } else {
3826 val &= ~CC_BANK_ONE;
3828 AscSetChipControl(iop_base, val);
3831 static void AscSetChipIH(PortAddr iop_base, ushort ins_code)
3833 AscSetBank(iop_base, 1);
3834 AscWriteChipIH(iop_base, ins_code);
3835 AscSetBank(iop_base, 0);
3838 static int AscStartChip(PortAddr iop_base)
3840 AscSetChipControl(iop_base, 0);
3841 if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
3842 return (0);
3844 return (1);
3847 static int AscStopChip(PortAddr iop_base)
3849 uchar cc_val;
3851 cc_val =
3852 AscGetChipControl(iop_base) &
3853 (~(CC_SINGLE_STEP | CC_TEST | CC_DIAG));
3854 AscSetChipControl(iop_base, (uchar)(cc_val | CC_HALT));
3855 AscSetChipIH(iop_base, INS_HALT);
3856 AscSetChipIH(iop_base, INS_RFLAG_WTM);
3857 if ((AscGetChipStatus(iop_base) & CSW_HALTED) == 0) {
3858 return (0);
3860 return (1);
3863 static int AscIsChipHalted(PortAddr iop_base)
3865 if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
3866 if ((AscGetChipControl(iop_base) & CC_HALT) != 0) {
3867 return (1);
3870 return (0);
3873 static int AscResetChipAndScsiBus(ASC_DVC_VAR *asc_dvc)
3875 PortAddr iop_base;
3876 int i = 10;
3878 iop_base = asc_dvc->iop_base;
3879 while ((AscGetChipStatus(iop_base) & CSW_SCSI_RESET_ACTIVE)
3880 && (i-- > 0)) {
3881 mdelay(100);
3883 AscStopChip(iop_base);
3884 AscSetChipControl(iop_base, CC_CHIP_RESET | CC_SCSI_RESET | CC_HALT);
3885 udelay(60);
3886 AscSetChipIH(iop_base, INS_RFLAG_WTM);
3887 AscSetChipIH(iop_base, INS_HALT);
3888 AscSetChipControl(iop_base, CC_CHIP_RESET | CC_HALT);
3889 AscSetChipControl(iop_base, CC_HALT);
3890 mdelay(200);
3891 AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
3892 AscSetChipStatus(iop_base, 0);
3893 return (AscIsChipHalted(iop_base));
3896 static int AscFindSignature(PortAddr iop_base)
3898 ushort sig_word;
3900 ASC_DBG(1, "AscGetChipSignatureByte(0x%x) 0x%x\n",
3901 iop_base, AscGetChipSignatureByte(iop_base));
3902 if (AscGetChipSignatureByte(iop_base) == (uchar)ASC_1000_ID1B) {
3903 ASC_DBG(1, "AscGetChipSignatureWord(0x%x) 0x%x\n",
3904 iop_base, AscGetChipSignatureWord(iop_base));
3905 sig_word = AscGetChipSignatureWord(iop_base);
3906 if ((sig_word == (ushort)ASC_1000_ID0W) ||
3907 (sig_word == (ushort)ASC_1000_ID0W_FIX)) {
3908 return (1);
3911 return (0);
3914 static void AscEnableInterrupt(PortAddr iop_base)
3916 ushort cfg;
3918 cfg = AscGetChipCfgLsw(iop_base);
3919 AscSetChipCfgLsw(iop_base, cfg | ASC_CFG0_HOST_INT_ON);
3922 static void AscDisableInterrupt(PortAddr iop_base)
3924 ushort cfg;
3926 cfg = AscGetChipCfgLsw(iop_base);
3927 AscSetChipCfgLsw(iop_base, cfg & (~ASC_CFG0_HOST_INT_ON));
3930 static uchar AscReadLramByte(PortAddr iop_base, ushort addr)
3932 unsigned char byte_data;
3933 unsigned short word_data;
3935 if (isodd_word(addr)) {
3936 AscSetChipLramAddr(iop_base, addr - 1);
3937 word_data = AscGetChipLramData(iop_base);
3938 byte_data = (word_data >> 8) & 0xFF;
3939 } else {
3940 AscSetChipLramAddr(iop_base, addr);
3941 word_data = AscGetChipLramData(iop_base);
3942 byte_data = word_data & 0xFF;
3944 return byte_data;
3947 static ushort AscReadLramWord(PortAddr iop_base, ushort addr)
3949 ushort word_data;
3951 AscSetChipLramAddr(iop_base, addr);
3952 word_data = AscGetChipLramData(iop_base);
3953 return (word_data);
3956 #if CC_VERY_LONG_SG_LIST
3957 static ASC_DCNT AscReadLramDWord(PortAddr iop_base, ushort addr)
3959 ushort val_low, val_high;
3960 ASC_DCNT dword_data;
3962 AscSetChipLramAddr(iop_base, addr);
3963 val_low = AscGetChipLramData(iop_base);
3964 val_high = AscGetChipLramData(iop_base);
3965 dword_data = ((ASC_DCNT) val_high << 16) | (ASC_DCNT) val_low;
3966 return (dword_data);
3968 #endif /* CC_VERY_LONG_SG_LIST */
3970 static void
3971 AscMemWordSetLram(PortAddr iop_base, ushort s_addr, ushort set_wval, int words)
3973 int i;
3975 AscSetChipLramAddr(iop_base, s_addr);
3976 for (i = 0; i < words; i++) {
3977 AscSetChipLramData(iop_base, set_wval);
3981 static void AscWriteLramWord(PortAddr iop_base, ushort addr, ushort word_val)
3983 AscSetChipLramAddr(iop_base, addr);
3984 AscSetChipLramData(iop_base, word_val);
3987 static void AscWriteLramByte(PortAddr iop_base, ushort addr, uchar byte_val)
3989 ushort word_data;
3991 if (isodd_word(addr)) {
3992 addr--;
3993 word_data = AscReadLramWord(iop_base, addr);
3994 word_data &= 0x00FF;
3995 word_data |= (((ushort)byte_val << 8) & 0xFF00);
3996 } else {
3997 word_data = AscReadLramWord(iop_base, addr);
3998 word_data &= 0xFF00;
3999 word_data |= ((ushort)byte_val & 0x00FF);
4001 AscWriteLramWord(iop_base, addr, word_data);
4005 * Copy 2 bytes to LRAM.
4007 * The source data is assumed to be in little-endian order in memory
4008 * and is maintained in little-endian order when written to LRAM.
4010 static void
4011 AscMemWordCopyPtrToLram(PortAddr iop_base, ushort s_addr,
4012 const uchar *s_buffer, int words)
4014 int i;
4016 AscSetChipLramAddr(iop_base, s_addr);
4017 for (i = 0; i < 2 * words; i += 2) {
4019 * On a little-endian system the second argument below
4020 * produces a little-endian ushort which is written to
4021 * LRAM in little-endian order. On a big-endian system
4022 * the second argument produces a big-endian ushort which
4023 * is "transparently" byte-swapped by outpw() and written
4024 * in little-endian order to LRAM.
4026 outpw(iop_base + IOP_RAM_DATA,
4027 ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]);
4032 * Copy 4 bytes to LRAM.
4034 * The source data is assumed to be in little-endian order in memory
4035 * and is maintained in little-endian order when written to LRAM.
4037 static void
4038 AscMemDWordCopyPtrToLram(PortAddr iop_base,
4039 ushort s_addr, uchar *s_buffer, int dwords)
4041 int i;
4043 AscSetChipLramAddr(iop_base, s_addr);
4044 for (i = 0; i < 4 * dwords; i += 4) {
4045 outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]); /* LSW */
4046 outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 3] << 8) | s_buffer[i + 2]); /* MSW */
4051 * Copy 2 bytes from LRAM.
4053 * The source data is assumed to be in little-endian order in LRAM
4054 * and is maintained in little-endian order when written to memory.
4056 static void
4057 AscMemWordCopyPtrFromLram(PortAddr iop_base,
4058 ushort s_addr, uchar *d_buffer, int words)
4060 int i;
4061 ushort word;
4063 AscSetChipLramAddr(iop_base, s_addr);
4064 for (i = 0; i < 2 * words; i += 2) {
4065 word = inpw(iop_base + IOP_RAM_DATA);
4066 d_buffer[i] = word & 0xff;
4067 d_buffer[i + 1] = (word >> 8) & 0xff;
4071 static ASC_DCNT AscMemSumLramWord(PortAddr iop_base, ushort s_addr, int words)
4073 ASC_DCNT sum;
4074 int i;
4076 sum = 0L;
4077 for (i = 0; i < words; i++, s_addr += 2) {
4078 sum += AscReadLramWord(iop_base, s_addr);
4080 return (sum);
4083 static ushort AscInitLram(ASC_DVC_VAR *asc_dvc)
4085 uchar i;
4086 ushort s_addr;
4087 PortAddr iop_base;
4088 ushort warn_code;
4090 iop_base = asc_dvc->iop_base;
4091 warn_code = 0;
4092 AscMemWordSetLram(iop_base, ASC_QADR_BEG, 0,
4093 (ushort)(((int)(asc_dvc->max_total_qng + 2 + 1) *
4094 64) >> 1));
4095 i = ASC_MIN_ACTIVE_QNO;
4096 s_addr = ASC_QADR_BEG + ASC_QBLK_SIZE;
4097 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
4098 (uchar)(i + 1));
4099 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
4100 (uchar)(asc_dvc->max_total_qng));
4101 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
4102 (uchar)i);
4103 i++;
4104 s_addr += ASC_QBLK_SIZE;
4105 for (; i < asc_dvc->max_total_qng; i++, s_addr += ASC_QBLK_SIZE) {
4106 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
4107 (uchar)(i + 1));
4108 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
4109 (uchar)(i - 1));
4110 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
4111 (uchar)i);
4113 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
4114 (uchar)ASC_QLINK_END);
4115 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
4116 (uchar)(asc_dvc->max_total_qng - 1));
4117 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
4118 (uchar)asc_dvc->max_total_qng);
4119 i++;
4120 s_addr += ASC_QBLK_SIZE;
4121 for (; i <= (uchar)(asc_dvc->max_total_qng + 3);
4122 i++, s_addr += ASC_QBLK_SIZE) {
4123 AscWriteLramByte(iop_base,
4124 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_FWD), i);
4125 AscWriteLramByte(iop_base,
4126 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_BWD), i);
4127 AscWriteLramByte(iop_base,
4128 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_QNO), i);
4130 return warn_code;
4133 static ASC_DCNT
4134 AscLoadMicroCode(PortAddr iop_base, ushort s_addr,
4135 const uchar *mcode_buf, ushort mcode_size)
4137 ASC_DCNT chksum;
4138 ushort mcode_word_size;
4139 ushort mcode_chksum;
4141 /* Write the microcode buffer starting at LRAM address 0. */
4142 mcode_word_size = (ushort)(mcode_size >> 1);
4143 AscMemWordSetLram(iop_base, s_addr, 0, mcode_word_size);
4144 AscMemWordCopyPtrToLram(iop_base, s_addr, mcode_buf, mcode_word_size);
4146 chksum = AscMemSumLramWord(iop_base, s_addr, mcode_word_size);
4147 ASC_DBG(1, "chksum 0x%lx\n", (ulong)chksum);
4148 mcode_chksum = (ushort)AscMemSumLramWord(iop_base,
4149 (ushort)ASC_CODE_SEC_BEG,
4150 (ushort)((mcode_size -
4151 s_addr - (ushort)
4152 ASC_CODE_SEC_BEG) /
4153 2));
4154 ASC_DBG(1, "mcode_chksum 0x%lx\n", (ulong)mcode_chksum);
4155 AscWriteLramWord(iop_base, ASCV_MCODE_CHKSUM_W, mcode_chksum);
4156 AscWriteLramWord(iop_base, ASCV_MCODE_SIZE_W, mcode_size);
4157 return chksum;
4160 static void AscInitQLinkVar(ASC_DVC_VAR *asc_dvc)
4162 PortAddr iop_base;
4163 int i;
4164 ushort lram_addr;
4166 iop_base = asc_dvc->iop_base;
4167 AscPutRiscVarFreeQHead(iop_base, 1);
4168 AscPutRiscVarDoneQTail(iop_base, asc_dvc->max_total_qng);
4169 AscPutVarFreeQHead(iop_base, 1);
4170 AscPutVarDoneQTail(iop_base, asc_dvc->max_total_qng);
4171 AscWriteLramByte(iop_base, ASCV_BUSY_QHEAD_B,
4172 (uchar)((int)asc_dvc->max_total_qng + 1));
4173 AscWriteLramByte(iop_base, ASCV_DISC1_QHEAD_B,
4174 (uchar)((int)asc_dvc->max_total_qng + 2));
4175 AscWriteLramByte(iop_base, (ushort)ASCV_TOTAL_READY_Q_B,
4176 asc_dvc->max_total_qng);
4177 AscWriteLramWord(iop_base, ASCV_ASCDVC_ERR_CODE_W, 0);
4178 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
4179 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 0);
4180 AscWriteLramByte(iop_base, ASCV_SCSIBUSY_B, 0);
4181 AscWriteLramByte(iop_base, ASCV_WTM_FLAG_B, 0);
4182 AscPutQDoneInProgress(iop_base, 0);
4183 lram_addr = ASC_QADR_BEG;
4184 for (i = 0; i < 32; i++, lram_addr += 2) {
4185 AscWriteLramWord(iop_base, lram_addr, 0);
4189 static ushort AscInitMicroCodeVar(ASC_DVC_VAR *asc_dvc)
4191 int i;
4192 ushort warn_code;
4193 PortAddr iop_base;
4194 ASC_PADDR phy_addr;
4195 ASC_DCNT phy_size;
4196 struct asc_board *board = asc_dvc_to_board(asc_dvc);
4198 iop_base = asc_dvc->iop_base;
4199 warn_code = 0;
4200 for (i = 0; i <= ASC_MAX_TID; i++) {
4201 AscPutMCodeInitSDTRAtID(iop_base, i,
4202 asc_dvc->cfg->sdtr_period_offset[i]);
4205 AscInitQLinkVar(asc_dvc);
4206 AscWriteLramByte(iop_base, ASCV_DISC_ENABLE_B,
4207 asc_dvc->cfg->disc_enable);
4208 AscWriteLramByte(iop_base, ASCV_HOSTSCSI_ID_B,
4209 ASC_TID_TO_TARGET_ID(asc_dvc->cfg->chip_scsi_id));
4211 /* Ensure overrun buffer is aligned on an 8 byte boundary. */
4212 BUG_ON((unsigned long)asc_dvc->overrun_buf & 7);
4213 asc_dvc->overrun_dma = dma_map_single(board->dev, asc_dvc->overrun_buf,
4214 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
4215 if (dma_mapping_error(board->dev, asc_dvc->overrun_dma)) {
4216 warn_code = -ENOMEM;
4217 goto err_dma_map;
4219 phy_addr = cpu_to_le32(asc_dvc->overrun_dma);
4220 AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_PADDR_D,
4221 (uchar *)&phy_addr, 1);
4222 phy_size = cpu_to_le32(ASC_OVERRUN_BSIZE);
4223 AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_BSIZE_D,
4224 (uchar *)&phy_size, 1);
4226 asc_dvc->cfg->mcode_date =
4227 AscReadLramWord(iop_base, (ushort)ASCV_MC_DATE_W);
4228 asc_dvc->cfg->mcode_version =
4229 AscReadLramWord(iop_base, (ushort)ASCV_MC_VER_W);
4231 AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
4232 if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
4233 asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
4234 warn_code = UW_ERR;
4235 goto err_mcode_start;
4237 if (AscStartChip(iop_base) != 1) {
4238 asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
4239 warn_code = UW_ERR;
4240 goto err_mcode_start;
4243 return warn_code;
4245 err_mcode_start:
4246 dma_unmap_single(board->dev, asc_dvc->overrun_dma,
4247 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
4248 err_dma_map:
4249 asc_dvc->overrun_dma = 0;
4250 return warn_code;
4253 static ushort AscInitAsc1000Driver(ASC_DVC_VAR *asc_dvc)
4255 const struct firmware *fw;
4256 const char fwname[] = "advansys/mcode.bin";
4257 int err;
4258 unsigned long chksum;
4259 ushort warn_code;
4260 PortAddr iop_base;
4262 iop_base = asc_dvc->iop_base;
4263 warn_code = 0;
4264 if ((asc_dvc->dvc_cntl & ASC_CNTL_RESET_SCSI) &&
4265 !(asc_dvc->init_state & ASC_INIT_RESET_SCSI_DONE)) {
4266 AscResetChipAndScsiBus(asc_dvc);
4267 mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
4269 asc_dvc->init_state |= ASC_INIT_STATE_BEG_LOAD_MC;
4270 if (asc_dvc->err_code != 0)
4271 return UW_ERR;
4272 if (!AscFindSignature(asc_dvc->iop_base)) {
4273 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
4274 return warn_code;
4276 AscDisableInterrupt(iop_base);
4277 warn_code |= AscInitLram(asc_dvc);
4278 if (asc_dvc->err_code != 0)
4279 return UW_ERR;
4281 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4282 if (err) {
4283 printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4284 fwname, err);
4285 asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4286 return err;
4288 if (fw->size < 4) {
4289 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4290 fw->size, fwname);
4291 release_firmware(fw);
4292 asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4293 return -EINVAL;
4295 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4296 (fw->data[1] << 8) | fw->data[0];
4297 ASC_DBG(1, "_asc_mcode_chksum 0x%lx\n", (ulong)chksum);
4298 if (AscLoadMicroCode(iop_base, 0, &fw->data[4],
4299 fw->size - 4) != chksum) {
4300 asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4301 release_firmware(fw);
4302 return warn_code;
4304 release_firmware(fw);
4305 warn_code |= AscInitMicroCodeVar(asc_dvc);
4306 if (!asc_dvc->overrun_dma)
4307 return warn_code;
4308 asc_dvc->init_state |= ASC_INIT_STATE_END_LOAD_MC;
4309 AscEnableInterrupt(iop_base);
4310 return warn_code;
4314 * Load the Microcode
4316 * Write the microcode image to RISC memory starting at address 0.
4318 * The microcode is stored compressed in the following format:
4320 * 254 word (508 byte) table indexed by byte code followed
4321 * by the following byte codes:
4323 * 1-Byte Code:
4324 * 00: Emit word 0 in table.
4325 * 01: Emit word 1 in table.
4327 * FD: Emit word 253 in table.
4329 * Multi-Byte Code:
4330 * FE WW WW: (3 byte code) Word to emit is the next word WW WW.
4331 * FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
4333 * Returns 0 or an error if the checksum doesn't match
4335 static int AdvLoadMicrocode(AdvPortAddr iop_base, const unsigned char *buf,
4336 int size, int memsize, int chksum)
4338 int i, j, end, len = 0;
4339 ADV_DCNT sum;
4341 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4343 for (i = 253 * 2; i < size; i++) {
4344 if (buf[i] == 0xff) {
4345 unsigned short word = (buf[i + 3] << 8) | buf[i + 2];
4346 for (j = 0; j < buf[i + 1]; j++) {
4347 AdvWriteWordAutoIncLram(iop_base, word);
4348 len += 2;
4350 i += 3;
4351 } else if (buf[i] == 0xfe) {
4352 unsigned short word = (buf[i + 2] << 8) | buf[i + 1];
4353 AdvWriteWordAutoIncLram(iop_base, word);
4354 i += 2;
4355 len += 2;
4356 } else {
4357 unsigned int off = buf[i] * 2;
4358 unsigned short word = (buf[off + 1] << 8) | buf[off];
4359 AdvWriteWordAutoIncLram(iop_base, word);
4360 len += 2;
4364 end = len;
4366 while (len < memsize) {
4367 AdvWriteWordAutoIncLram(iop_base, 0);
4368 len += 2;
4371 /* Verify the microcode checksum. */
4372 sum = 0;
4373 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4375 for (len = 0; len < end; len += 2) {
4376 sum += AdvReadWordAutoIncLram(iop_base);
4379 if (sum != chksum)
4380 return ASC_IERR_MCODE_CHKSUM;
4382 return 0;
4385 static void AdvBuildCarrierFreelist(struct adv_dvc_var *asc_dvc)
4387 ADV_CARR_T *carrp;
4388 ADV_SDCNT buf_size;
4389 ADV_PADDR carr_paddr;
4391 carrp = (ADV_CARR_T *) ADV_16BALIGN(asc_dvc->carrier_buf);
4392 asc_dvc->carr_freelist = NULL;
4393 if (carrp == asc_dvc->carrier_buf) {
4394 buf_size = ADV_CARRIER_BUFSIZE;
4395 } else {
4396 buf_size = ADV_CARRIER_BUFSIZE - sizeof(ADV_CARR_T);
4399 do {
4400 /* Get physical address of the carrier 'carrp'. */
4401 carr_paddr = cpu_to_le32(virt_to_bus(carrp));
4403 buf_size -= sizeof(ADV_CARR_T);
4405 carrp->carr_pa = carr_paddr;
4406 carrp->carr_va = cpu_to_le32(ADV_VADDR_TO_U32(carrp));
4409 * Insert the carrier at the beginning of the freelist.
4411 carrp->next_vpa =
4412 cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->carr_freelist));
4413 asc_dvc->carr_freelist = carrp;
4415 carrp++;
4416 } while (buf_size > 0);
4420 * Send an idle command to the chip and wait for completion.
4422 * Command completion is polled for once per microsecond.
4424 * The function can be called from anywhere including an interrupt handler.
4425 * But the function is not re-entrant, so it uses the DvcEnter/LeaveCritical()
4426 * functions to prevent reentrancy.
4428 * Return Values:
4429 * ADV_TRUE - command completed successfully
4430 * ADV_FALSE - command failed
4431 * ADV_ERROR - command timed out
4433 static int
4434 AdvSendIdleCmd(ADV_DVC_VAR *asc_dvc,
4435 ushort idle_cmd, ADV_DCNT idle_cmd_parameter)
4437 int result;
4438 ADV_DCNT i, j;
4439 AdvPortAddr iop_base;
4441 iop_base = asc_dvc->iop_base;
4444 * Clear the idle command status which is set by the microcode
4445 * to a non-zero value to indicate when the command is completed.
4446 * The non-zero result is one of the IDLE_CMD_STATUS_* values
4448 AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS, (ushort)0);
4451 * Write the idle command value after the idle command parameter
4452 * has been written to avoid a race condition. If the order is not
4453 * followed, the microcode may process the idle command before the
4454 * parameters have been written to LRAM.
4456 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IDLE_CMD_PARAMETER,
4457 cpu_to_le32(idle_cmd_parameter));
4458 AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD, idle_cmd);
4461 * Tickle the RISC to tell it to process the idle command.
4463 AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_B);
4464 if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
4466 * Clear the tickle value. In the ASC-3550 the RISC flag
4467 * command 'clr_tickle_b' does not work unless the host
4468 * value is cleared.
4470 AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_NOP);
4473 /* Wait for up to 100 millisecond for the idle command to timeout. */
4474 for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
4475 /* Poll once each microsecond for command completion. */
4476 for (j = 0; j < SCSI_US_PER_MSEC; j++) {
4477 AdvReadWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS,
4478 result);
4479 if (result != 0)
4480 return result;
4481 udelay(1);
4485 BUG(); /* The idle command should never timeout. */
4486 return ADV_ERROR;
4490 * Reset SCSI Bus and purge all outstanding requests.
4492 * Return Value:
4493 * ADV_TRUE(1) - All requests are purged and SCSI Bus is reset.
4494 * ADV_FALSE(0) - Microcode command failed.
4495 * ADV_ERROR(-1) - Microcode command timed-out. Microcode or IC
4496 * may be hung which requires driver recovery.
4498 static int AdvResetSB(ADV_DVC_VAR *asc_dvc)
4500 int status;
4503 * Send the SCSI Bus Reset idle start idle command which asserts
4504 * the SCSI Bus Reset signal.
4506 status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_START, 0L);
4507 if (status != ADV_TRUE) {
4508 return status;
4512 * Delay for the specified SCSI Bus Reset hold time.
4514 * The hold time delay is done on the host because the RISC has no
4515 * microsecond accurate timer.
4517 udelay(ASC_SCSI_RESET_HOLD_TIME_US);
4520 * Send the SCSI Bus Reset end idle command which de-asserts
4521 * the SCSI Bus Reset signal and purges any pending requests.
4523 status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_END, 0L);
4524 if (status != ADV_TRUE) {
4525 return status;
4528 mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
4530 return status;
4534 * Initialize the ASC-3550.
4536 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
4538 * For a non-fatal error return a warning code. If there are no warnings
4539 * then 0 is returned.
4541 * Needed after initialization for error recovery.
4543 static int AdvInitAsc3550Driver(ADV_DVC_VAR *asc_dvc)
4545 const struct firmware *fw;
4546 const char fwname[] = "advansys/3550.bin";
4547 AdvPortAddr iop_base;
4548 ushort warn_code;
4549 int begin_addr;
4550 int end_addr;
4551 ushort code_sum;
4552 int word;
4553 int i;
4554 int err;
4555 unsigned long chksum;
4556 ushort scsi_cfg1;
4557 uchar tid;
4558 ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */
4559 ushort wdtr_able = 0, sdtr_able, tagqng_able;
4560 uchar max_cmd[ADV_MAX_TID + 1];
4562 /* If there is already an error, don't continue. */
4563 if (asc_dvc->err_code != 0)
4564 return ADV_ERROR;
4567 * The caller must set 'chip_type' to ADV_CHIP_ASC3550.
4569 if (asc_dvc->chip_type != ADV_CHIP_ASC3550) {
4570 asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
4571 return ADV_ERROR;
4574 warn_code = 0;
4575 iop_base = asc_dvc->iop_base;
4578 * Save the RISC memory BIOS region before writing the microcode.
4579 * The BIOS may already be loaded and using its RISC LRAM region
4580 * so its region must be saved and restored.
4582 * Note: This code makes the assumption, which is currently true,
4583 * that a chip reset does not clear RISC LRAM.
4585 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4586 AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4587 bios_mem[i]);
4591 * Save current per TID negotiated values.
4593 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 0x55AA) {
4594 ushort bios_version, major, minor;
4596 bios_version =
4597 bios_mem[(ASC_MC_BIOS_VERSION - ASC_MC_BIOSMEM) / 2];
4598 major = (bios_version >> 12) & 0xF;
4599 minor = (bios_version >> 8) & 0xF;
4600 if (major < 3 || (major == 3 && minor == 1)) {
4601 /* BIOS 3.1 and earlier location of 'wdtr_able' variable. */
4602 AdvReadWordLram(iop_base, 0x120, wdtr_able);
4603 } else {
4604 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4607 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4608 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
4609 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4610 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
4611 max_cmd[tid]);
4614 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4615 if (err) {
4616 printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4617 fwname, err);
4618 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4619 return err;
4621 if (fw->size < 4) {
4622 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4623 fw->size, fwname);
4624 release_firmware(fw);
4625 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4626 return -EINVAL;
4628 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4629 (fw->data[1] << 8) | fw->data[0];
4630 asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
4631 fw->size - 4, ADV_3550_MEMSIZE,
4632 chksum);
4633 release_firmware(fw);
4634 if (asc_dvc->err_code)
4635 return ADV_ERROR;
4638 * Restore the RISC memory BIOS region.
4640 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4641 AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4642 bios_mem[i]);
4646 * Calculate and write the microcode code checksum to the microcode
4647 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
4649 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
4650 AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
4651 code_sum = 0;
4652 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
4653 for (word = begin_addr; word < end_addr; word += 2) {
4654 code_sum += AdvReadWordAutoIncLram(iop_base);
4656 AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
4659 * Read and save microcode version and date.
4661 AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
4662 asc_dvc->cfg->mcode_date);
4663 AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
4664 asc_dvc->cfg->mcode_version);
4667 * Set the chip type to indicate the ASC3550.
4669 AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC3550);
4672 * If the PCI Configuration Command Register "Parity Error Response
4673 * Control" Bit was clear (0), then set the microcode variable
4674 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
4675 * to ignore DMA parity errors.
4677 if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
4678 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
4679 word |= CONTROL_FLAG_IGNORE_PERR;
4680 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
4684 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO
4685 * threshold of 128 bytes. This register is only accessible to the host.
4687 AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
4688 START_CTL_EMFU | READ_CMD_MRM);
4691 * Microcode operating variables for WDTR, SDTR, and command tag
4692 * queuing will be set in slave_configure() based on what a
4693 * device reports it is capable of in Inquiry byte 7.
4695 * If SCSI Bus Resets have been disabled, then directly set
4696 * SDTR and WDTR from the EEPROM configuration. This will allow
4697 * the BIOS and warm boot to work without a SCSI bus hang on
4698 * the Inquiry caused by host and target mismatched DTR values.
4699 * Without the SCSI Bus Reset, before an Inquiry a device can't
4700 * be assumed to be in Asynchronous, Narrow mode.
4702 if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
4703 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
4704 asc_dvc->wdtr_able);
4705 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
4706 asc_dvc->sdtr_able);
4710 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
4711 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
4712 * bitmask. These values determine the maximum SDTR speed negotiated
4713 * with a device.
4715 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
4716 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
4717 * without determining here whether the device supports SDTR.
4719 * 4-bit speed SDTR speed name
4720 * =========== ===============
4721 * 0000b (0x0) SDTR disabled
4722 * 0001b (0x1) 5 Mhz
4723 * 0010b (0x2) 10 Mhz
4724 * 0011b (0x3) 20 Mhz (Ultra)
4725 * 0100b (0x4) 40 Mhz (LVD/Ultra2)
4726 * 0101b (0x5) 80 Mhz (LVD2/Ultra3)
4727 * 0110b (0x6) Undefined
4729 * 1111b (0xF) Undefined
4731 word = 0;
4732 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4733 if (ADV_TID_TO_TIDMASK(tid) & asc_dvc->ultra_able) {
4734 /* Set Ultra speed for TID 'tid'. */
4735 word |= (0x3 << (4 * (tid % 4)));
4736 } else {
4737 /* Set Fast speed for TID 'tid'. */
4738 word |= (0x2 << (4 * (tid % 4)));
4740 if (tid == 3) { /* Check if done with sdtr_speed1. */
4741 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, word);
4742 word = 0;
4743 } else if (tid == 7) { /* Check if done with sdtr_speed2. */
4744 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, word);
4745 word = 0;
4746 } else if (tid == 11) { /* Check if done with sdtr_speed3. */
4747 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, word);
4748 word = 0;
4749 } else if (tid == 15) { /* Check if done with sdtr_speed4. */
4750 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, word);
4751 /* End of loop. */
4756 * Set microcode operating variable for the disconnect per TID bitmask.
4758 AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
4759 asc_dvc->cfg->disc_enable);
4762 * Set SCSI_CFG0 Microcode Default Value.
4764 * The microcode will set the SCSI_CFG0 register using this value
4765 * after it is started below.
4767 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
4768 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
4769 asc_dvc->chip_scsi_id);
4772 * Determine SCSI_CFG1 Microcode Default Value.
4774 * The microcode will set the SCSI_CFG1 register using this value
4775 * after it is started below.
4778 /* Read current SCSI_CFG1 Register value. */
4779 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
4782 * If all three connectors are in use, return an error.
4784 if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
4785 (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
4786 asc_dvc->err_code |= ASC_IERR_ILLEGAL_CONNECTION;
4787 return ADV_ERROR;
4791 * If the internal narrow cable is reversed all of the SCSI_CTRL
4792 * register signals will be set. Check for and return an error if
4793 * this condition is found.
4795 if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
4796 asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
4797 return ADV_ERROR;
4801 * If this is a differential board and a single-ended device
4802 * is attached to one of the connectors, return an error.
4804 if ((scsi_cfg1 & DIFF_MODE) && (scsi_cfg1 & DIFF_SENSE) == 0) {
4805 asc_dvc->err_code |= ASC_IERR_SINGLE_END_DEVICE;
4806 return ADV_ERROR;
4810 * If automatic termination control is enabled, then set the
4811 * termination value based on a table listed in a_condor.h.
4813 * If manual termination was specified with an EEPROM setting
4814 * then 'termination' was set-up in AdvInitFrom3550EEPROM() and
4815 * is ready to be 'ored' into SCSI_CFG1.
4817 if (asc_dvc->cfg->termination == 0) {
4819 * The software always controls termination by setting TERM_CTL_SEL.
4820 * If TERM_CTL_SEL were set to 0, the hardware would set termination.
4822 asc_dvc->cfg->termination |= TERM_CTL_SEL;
4824 switch (scsi_cfg1 & CABLE_DETECT) {
4825 /* TERM_CTL_H: on, TERM_CTL_L: on */
4826 case 0x3:
4827 case 0x7:
4828 case 0xB:
4829 case 0xD:
4830 case 0xE:
4831 case 0xF:
4832 asc_dvc->cfg->termination |= (TERM_CTL_H | TERM_CTL_L);
4833 break;
4835 /* TERM_CTL_H: on, TERM_CTL_L: off */
4836 case 0x1:
4837 case 0x5:
4838 case 0x9:
4839 case 0xA:
4840 case 0xC:
4841 asc_dvc->cfg->termination |= TERM_CTL_H;
4842 break;
4844 /* TERM_CTL_H: off, TERM_CTL_L: off */
4845 case 0x2:
4846 case 0x6:
4847 break;
4852 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
4854 scsi_cfg1 &= ~TERM_CTL;
4857 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
4858 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
4859 * referenced, because the hardware internally inverts
4860 * the Termination High and Low bits if TERM_POL is set.
4862 scsi_cfg1 |= (TERM_CTL_SEL | (~asc_dvc->cfg->termination & TERM_CTL));
4865 * Set SCSI_CFG1 Microcode Default Value
4867 * Set filter value and possibly modified termination control
4868 * bits in the Microcode SCSI_CFG1 Register Value.
4870 * The microcode will set the SCSI_CFG1 register using this value
4871 * after it is started below.
4873 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1,
4874 FLTR_DISABLE | scsi_cfg1);
4877 * Set MEM_CFG Microcode Default Value
4879 * The microcode will set the MEM_CFG register using this value
4880 * after it is started below.
4882 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
4883 * are defined.
4885 * ASC-3550 has 8KB internal memory.
4887 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
4888 BIOS_EN | RAM_SZ_8KB);
4891 * Set SEL_MASK Microcode Default Value
4893 * The microcode will set the SEL_MASK register using this value
4894 * after it is started below.
4896 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
4897 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
4899 AdvBuildCarrierFreelist(asc_dvc);
4902 * Set-up the Host->RISC Initiator Command Queue (ICQ).
4905 if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) {
4906 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
4907 return ADV_ERROR;
4909 asc_dvc->carr_freelist = (ADV_CARR_T *)
4910 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa));
4913 * The first command issued will be placed in the stopper carrier.
4915 asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
4918 * Set RISC ICQ physical address start value.
4920 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
4923 * Set-up the RISC->Host Initiator Response Queue (IRQ).
4925 if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) {
4926 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
4927 return ADV_ERROR;
4929 asc_dvc->carr_freelist = (ADV_CARR_T *)
4930 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa));
4933 * The first command completed by the RISC will be placed in
4934 * the stopper.
4936 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
4937 * completed the RISC will set the ASC_RQ_STOPPER bit.
4939 asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
4942 * Set RISC IRQ physical address start value.
4944 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
4945 asc_dvc->carr_pending_cnt = 0;
4947 AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
4948 (ADV_INTR_ENABLE_HOST_INTR |
4949 ADV_INTR_ENABLE_GLOBAL_INTR));
4951 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
4952 AdvWriteWordRegister(iop_base, IOPW_PC, word);
4954 /* finally, finally, gentlemen, start your engine */
4955 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
4958 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
4959 * Resets should be performed. The RISC has to be running
4960 * to issue a SCSI Bus Reset.
4962 if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
4964 * If the BIOS Signature is present in memory, restore the
4965 * BIOS Handshake Configuration Table and do not perform
4966 * a SCSI Bus Reset.
4968 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
4969 0x55AA) {
4971 * Restore per TID negotiated values.
4973 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4974 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4975 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
4976 tagqng_able);
4977 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4978 AdvWriteByteLram(iop_base,
4979 ASC_MC_NUMBER_OF_MAX_CMD + tid,
4980 max_cmd[tid]);
4982 } else {
4983 if (AdvResetSB(asc_dvc) != ADV_TRUE) {
4984 warn_code = ASC_WARN_BUSRESET_ERROR;
4989 return warn_code;
4993 * Initialize the ASC-38C0800.
4995 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
4997 * For a non-fatal error return a warning code. If there are no warnings
4998 * then 0 is returned.
5000 * Needed after initialization for error recovery.
5002 static int AdvInitAsc38C0800Driver(ADV_DVC_VAR *asc_dvc)
5004 const struct firmware *fw;
5005 const char fwname[] = "advansys/38C0800.bin";
5006 AdvPortAddr iop_base;
5007 ushort warn_code;
5008 int begin_addr;
5009 int end_addr;
5010 ushort code_sum;
5011 int word;
5012 int i;
5013 int err;
5014 unsigned long chksum;
5015 ushort scsi_cfg1;
5016 uchar byte;
5017 uchar tid;
5018 ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */
5019 ushort wdtr_able, sdtr_able, tagqng_able;
5020 uchar max_cmd[ADV_MAX_TID + 1];
5022 /* If there is already an error, don't continue. */
5023 if (asc_dvc->err_code != 0)
5024 return ADV_ERROR;
5027 * The caller must set 'chip_type' to ADV_CHIP_ASC38C0800.
5029 if (asc_dvc->chip_type != ADV_CHIP_ASC38C0800) {
5030 asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
5031 return ADV_ERROR;
5034 warn_code = 0;
5035 iop_base = asc_dvc->iop_base;
5038 * Save the RISC memory BIOS region before writing the microcode.
5039 * The BIOS may already be loaded and using its RISC LRAM region
5040 * so its region must be saved and restored.
5042 * Note: This code makes the assumption, which is currently true,
5043 * that a chip reset does not clear RISC LRAM.
5045 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5046 AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5047 bios_mem[i]);
5051 * Save current per TID negotiated values.
5053 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5054 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5055 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5056 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5057 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5058 max_cmd[tid]);
5062 * RAM BIST (RAM Built-In Self Test)
5064 * Address : I/O base + offset 0x38h register (byte).
5065 * Function: Bit 7-6(RW) : RAM mode
5066 * Normal Mode : 0x00
5067 * Pre-test Mode : 0x40
5068 * RAM Test Mode : 0x80
5069 * Bit 5 : unused
5070 * Bit 4(RO) : Done bit
5071 * Bit 3-0(RO) : Status
5072 * Host Error : 0x08
5073 * Int_RAM Error : 0x04
5074 * RISC Error : 0x02
5075 * SCSI Error : 0x01
5076 * No Error : 0x00
5078 * Note: RAM BIST code should be put right here, before loading the
5079 * microcode and after saving the RISC memory BIOS region.
5083 * LRAM Pre-test
5085 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
5086 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
5087 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
5088 * to NORMAL_MODE, return an error too.
5090 for (i = 0; i < 2; i++) {
5091 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
5092 mdelay(10); /* Wait for 10ms before reading back. */
5093 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5094 if ((byte & RAM_TEST_DONE) == 0
5095 || (byte & 0x0F) != PRE_TEST_VALUE) {
5096 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5097 return ADV_ERROR;
5100 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5101 mdelay(10); /* Wait for 10ms before reading back. */
5102 if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
5103 != NORMAL_VALUE) {
5104 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5105 return ADV_ERROR;
5110 * LRAM Test - It takes about 1.5 ms to run through the test.
5112 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
5113 * If Done bit not set or Status not 0, save register byte, set the
5114 * err_code, and return an error.
5116 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
5117 mdelay(10); /* Wait for 10ms before checking status. */
5119 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5120 if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
5121 /* Get here if Done bit not set or Status not 0. */
5122 asc_dvc->bist_err_code = byte; /* for BIOS display message */
5123 asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
5124 return ADV_ERROR;
5127 /* We need to reset back to normal mode after LRAM test passes. */
5128 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5130 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
5131 if (err) {
5132 printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
5133 fwname, err);
5134 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5135 return err;
5137 if (fw->size < 4) {
5138 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
5139 fw->size, fwname);
5140 release_firmware(fw);
5141 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5142 return -EINVAL;
5144 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
5145 (fw->data[1] << 8) | fw->data[0];
5146 asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
5147 fw->size - 4, ADV_38C0800_MEMSIZE,
5148 chksum);
5149 release_firmware(fw);
5150 if (asc_dvc->err_code)
5151 return ADV_ERROR;
5154 * Restore the RISC memory BIOS region.
5156 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5157 AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5158 bios_mem[i]);
5162 * Calculate and write the microcode code checksum to the microcode
5163 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5165 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
5166 AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
5167 code_sum = 0;
5168 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
5169 for (word = begin_addr; word < end_addr; word += 2) {
5170 code_sum += AdvReadWordAutoIncLram(iop_base);
5172 AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
5175 * Read microcode version and date.
5177 AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
5178 asc_dvc->cfg->mcode_date);
5179 AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
5180 asc_dvc->cfg->mcode_version);
5183 * Set the chip type to indicate the ASC38C0800.
5185 AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C0800);
5188 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
5189 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
5190 * cable detection and then we are able to read C_DET[3:0].
5192 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
5193 * Microcode Default Value' section below.
5195 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5196 AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
5197 scsi_cfg1 | DIS_TERM_DRV);
5200 * If the PCI Configuration Command Register "Parity Error Response
5201 * Control" Bit was clear (0), then set the microcode variable
5202 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5203 * to ignore DMA parity errors.
5205 if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
5206 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5207 word |= CONTROL_FLAG_IGNORE_PERR;
5208 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5212 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and START_CTL_TH [3:2]
5213 * bits for the default FIFO threshold.
5215 * Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes.
5217 * For DMA Errata #4 set the BC_THRESH_ENB bit.
5219 AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5220 BC_THRESH_ENB | FIFO_THRESH_80B | START_CTL_TH |
5221 READ_CMD_MRM);
5224 * Microcode operating variables for WDTR, SDTR, and command tag
5225 * queuing will be set in slave_configure() based on what a
5226 * device reports it is capable of in Inquiry byte 7.
5228 * If SCSI Bus Resets have been disabled, then directly set
5229 * SDTR and WDTR from the EEPROM configuration. This will allow
5230 * the BIOS and warm boot to work without a SCSI bus hang on
5231 * the Inquiry caused by host and target mismatched DTR values.
5232 * Without the SCSI Bus Reset, before an Inquiry a device can't
5233 * be assumed to be in Asynchronous, Narrow mode.
5235 if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5236 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5237 asc_dvc->wdtr_able);
5238 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5239 asc_dvc->sdtr_able);
5243 * Set microcode operating variables for DISC and SDTR_SPEED1,
5244 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5245 * configuration values.
5247 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5248 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5249 * without determining here whether the device supports SDTR.
5251 AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5252 asc_dvc->cfg->disc_enable);
5253 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
5254 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
5255 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
5256 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
5259 * Set SCSI_CFG0 Microcode Default Value.
5261 * The microcode will set the SCSI_CFG0 register using this value
5262 * after it is started below.
5264 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5265 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5266 asc_dvc->chip_scsi_id);
5269 * Determine SCSI_CFG1 Microcode Default Value.
5271 * The microcode will set the SCSI_CFG1 register using this value
5272 * after it is started below.
5275 /* Read current SCSI_CFG1 Register value. */
5276 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5279 * If the internal narrow cable is reversed all of the SCSI_CTRL
5280 * register signals will be set. Check for and return an error if
5281 * this condition is found.
5283 if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5284 asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5285 return ADV_ERROR;
5289 * All kind of combinations of devices attached to one of four
5290 * connectors are acceptable except HVD device attached. For example,
5291 * LVD device can be attached to SE connector while SE device attached
5292 * to LVD connector. If LVD device attached to SE connector, it only
5293 * runs up to Ultra speed.
5295 * If an HVD device is attached to one of LVD connectors, return an
5296 * error. However, there is no way to detect HVD device attached to
5297 * SE connectors.
5299 if (scsi_cfg1 & HVD) {
5300 asc_dvc->err_code = ASC_IERR_HVD_DEVICE;
5301 return ADV_ERROR;
5305 * If either SE or LVD automatic termination control is enabled, then
5306 * set the termination value based on a table listed in a_condor.h.
5308 * If manual termination was specified with an EEPROM setting then
5309 * 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready
5310 * to be 'ored' into SCSI_CFG1.
5312 if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
5313 /* SE automatic termination control is enabled. */
5314 switch (scsi_cfg1 & C_DET_SE) {
5315 /* TERM_SE_HI: on, TERM_SE_LO: on */
5316 case 0x1:
5317 case 0x2:
5318 case 0x3:
5319 asc_dvc->cfg->termination |= TERM_SE;
5320 break;
5322 /* TERM_SE_HI: on, TERM_SE_LO: off */
5323 case 0x0:
5324 asc_dvc->cfg->termination |= TERM_SE_HI;
5325 break;
5329 if ((asc_dvc->cfg->termination & TERM_LVD) == 0) {
5330 /* LVD automatic termination control is enabled. */
5331 switch (scsi_cfg1 & C_DET_LVD) {
5332 /* TERM_LVD_HI: on, TERM_LVD_LO: on */
5333 case 0x4:
5334 case 0x8:
5335 case 0xC:
5336 asc_dvc->cfg->termination |= TERM_LVD;
5337 break;
5339 /* TERM_LVD_HI: off, TERM_LVD_LO: off */
5340 case 0x0:
5341 break;
5346 * Clear any set TERM_SE and TERM_LVD bits.
5348 scsi_cfg1 &= (~TERM_SE & ~TERM_LVD);
5351 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
5353 scsi_cfg1 |= (~asc_dvc->cfg->termination & 0xF0);
5356 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE
5357 * bits and set possibly modified termination control bits in the
5358 * Microcode SCSI_CFG1 Register Value.
5360 scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL & ~HVD_LVD_SE);
5363 * Set SCSI_CFG1 Microcode Default Value
5365 * Set possibly modified termination control and reset DIS_TERM_DRV
5366 * bits in the Microcode SCSI_CFG1 Register Value.
5368 * The microcode will set the SCSI_CFG1 register using this value
5369 * after it is started below.
5371 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
5374 * Set MEM_CFG Microcode Default Value
5376 * The microcode will set the MEM_CFG register using this value
5377 * after it is started below.
5379 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5380 * are defined.
5382 * ASC-38C0800 has 16KB internal memory.
5384 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5385 BIOS_EN | RAM_SZ_16KB);
5388 * Set SEL_MASK Microcode Default Value
5390 * The microcode will set the SEL_MASK register using this value
5391 * after it is started below.
5393 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5394 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5396 AdvBuildCarrierFreelist(asc_dvc);
5399 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5402 if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) {
5403 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5404 return ADV_ERROR;
5406 asc_dvc->carr_freelist = (ADV_CARR_T *)
5407 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa));
5410 * The first command issued will be placed in the stopper carrier.
5412 asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
5415 * Set RISC ICQ physical address start value.
5416 * carr_pa is LE, must be native before write
5418 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5421 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5423 if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) {
5424 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5425 return ADV_ERROR;
5427 asc_dvc->carr_freelist = (ADV_CARR_T *)
5428 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa));
5431 * The first command completed by the RISC will be placed in
5432 * the stopper.
5434 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
5435 * completed the RISC will set the ASC_RQ_STOPPER bit.
5437 asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
5440 * Set RISC IRQ physical address start value.
5442 * carr_pa is LE, must be native before write *
5444 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5445 asc_dvc->carr_pending_cnt = 0;
5447 AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5448 (ADV_INTR_ENABLE_HOST_INTR |
5449 ADV_INTR_ENABLE_GLOBAL_INTR));
5451 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5452 AdvWriteWordRegister(iop_base, IOPW_PC, word);
5454 /* finally, finally, gentlemen, start your engine */
5455 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5458 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5459 * Resets should be performed. The RISC has to be running
5460 * to issue a SCSI Bus Reset.
5462 if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5464 * If the BIOS Signature is present in memory, restore the
5465 * BIOS Handshake Configuration Table and do not perform
5466 * a SCSI Bus Reset.
5468 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5469 0x55AA) {
5471 * Restore per TID negotiated values.
5473 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5474 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5475 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
5476 tagqng_able);
5477 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5478 AdvWriteByteLram(iop_base,
5479 ASC_MC_NUMBER_OF_MAX_CMD + tid,
5480 max_cmd[tid]);
5482 } else {
5483 if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5484 warn_code = ASC_WARN_BUSRESET_ERROR;
5489 return warn_code;
5493 * Initialize the ASC-38C1600.
5495 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
5497 * For a non-fatal error return a warning code. If there are no warnings
5498 * then 0 is returned.
5500 * Needed after initialization for error recovery.
5502 static int AdvInitAsc38C1600Driver(ADV_DVC_VAR *asc_dvc)
5504 const struct firmware *fw;
5505 const char fwname[] = "advansys/38C1600.bin";
5506 AdvPortAddr iop_base;
5507 ushort warn_code;
5508 int begin_addr;
5509 int end_addr;
5510 ushort code_sum;
5511 long word;
5512 int i;
5513 int err;
5514 unsigned long chksum;
5515 ushort scsi_cfg1;
5516 uchar byte;
5517 uchar tid;
5518 ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */
5519 ushort wdtr_able, sdtr_able, ppr_able, tagqng_able;
5520 uchar max_cmd[ASC_MAX_TID + 1];
5522 /* If there is already an error, don't continue. */
5523 if (asc_dvc->err_code != 0) {
5524 return ADV_ERROR;
5528 * The caller must set 'chip_type' to ADV_CHIP_ASC38C1600.
5530 if (asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
5531 asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
5532 return ADV_ERROR;
5535 warn_code = 0;
5536 iop_base = asc_dvc->iop_base;
5539 * Save the RISC memory BIOS region before writing the microcode.
5540 * The BIOS may already be loaded and using its RISC LRAM region
5541 * so its region must be saved and restored.
5543 * Note: This code makes the assumption, which is currently true,
5544 * that a chip reset does not clear RISC LRAM.
5546 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5547 AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5548 bios_mem[i]);
5552 * Save current per TID negotiated values.
5554 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5555 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5556 AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5557 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5558 for (tid = 0; tid <= ASC_MAX_TID; tid++) {
5559 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5560 max_cmd[tid]);
5564 * RAM BIST (Built-In Self Test)
5566 * Address : I/O base + offset 0x38h register (byte).
5567 * Function: Bit 7-6(RW) : RAM mode
5568 * Normal Mode : 0x00
5569 * Pre-test Mode : 0x40
5570 * RAM Test Mode : 0x80
5571 * Bit 5 : unused
5572 * Bit 4(RO) : Done bit
5573 * Bit 3-0(RO) : Status
5574 * Host Error : 0x08
5575 * Int_RAM Error : 0x04
5576 * RISC Error : 0x02
5577 * SCSI Error : 0x01
5578 * No Error : 0x00
5580 * Note: RAM BIST code should be put right here, before loading the
5581 * microcode and after saving the RISC memory BIOS region.
5585 * LRAM Pre-test
5587 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
5588 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
5589 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
5590 * to NORMAL_MODE, return an error too.
5592 for (i = 0; i < 2; i++) {
5593 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
5594 mdelay(10); /* Wait for 10ms before reading back. */
5595 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5596 if ((byte & RAM_TEST_DONE) == 0
5597 || (byte & 0x0F) != PRE_TEST_VALUE) {
5598 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5599 return ADV_ERROR;
5602 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5603 mdelay(10); /* Wait for 10ms before reading back. */
5604 if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
5605 != NORMAL_VALUE) {
5606 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5607 return ADV_ERROR;
5612 * LRAM Test - It takes about 1.5 ms to run through the test.
5614 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
5615 * If Done bit not set or Status not 0, save register byte, set the
5616 * err_code, and return an error.
5618 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
5619 mdelay(10); /* Wait for 10ms before checking status. */
5621 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5622 if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
5623 /* Get here if Done bit not set or Status not 0. */
5624 asc_dvc->bist_err_code = byte; /* for BIOS display message */
5625 asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
5626 return ADV_ERROR;
5629 /* We need to reset back to normal mode after LRAM test passes. */
5630 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5632 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
5633 if (err) {
5634 printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
5635 fwname, err);
5636 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5637 return err;
5639 if (fw->size < 4) {
5640 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
5641 fw->size, fwname);
5642 release_firmware(fw);
5643 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5644 return -EINVAL;
5646 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
5647 (fw->data[1] << 8) | fw->data[0];
5648 asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
5649 fw->size - 4, ADV_38C1600_MEMSIZE,
5650 chksum);
5651 release_firmware(fw);
5652 if (asc_dvc->err_code)
5653 return ADV_ERROR;
5656 * Restore the RISC memory BIOS region.
5658 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5659 AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5660 bios_mem[i]);
5664 * Calculate and write the microcode code checksum to the microcode
5665 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5667 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
5668 AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
5669 code_sum = 0;
5670 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
5671 for (word = begin_addr; word < end_addr; word += 2) {
5672 code_sum += AdvReadWordAutoIncLram(iop_base);
5674 AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
5677 * Read microcode version and date.
5679 AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
5680 asc_dvc->cfg->mcode_date);
5681 AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
5682 asc_dvc->cfg->mcode_version);
5685 * Set the chip type to indicate the ASC38C1600.
5687 AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C1600);
5690 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
5691 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
5692 * cable detection and then we are able to read C_DET[3:0].
5694 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
5695 * Microcode Default Value' section below.
5697 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5698 AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
5699 scsi_cfg1 | DIS_TERM_DRV);
5702 * If the PCI Configuration Command Register "Parity Error Response
5703 * Control" Bit was clear (0), then set the microcode variable
5704 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5705 * to ignore DMA parity errors.
5707 if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
5708 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5709 word |= CONTROL_FLAG_IGNORE_PERR;
5710 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5714 * If the BIOS control flag AIPP (Asynchronous Information
5715 * Phase Protection) disable bit is not set, then set the firmware
5716 * 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to enable
5717 * AIPP checking and encoding.
5719 if ((asc_dvc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
5720 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5721 word |= CONTROL_FLAG_ENABLE_AIPP;
5722 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5726 * For ASC-38C1600 use DMA_CFG0 default values: FIFO_THRESH_80B [6:4],
5727 * and START_CTL_TH [3:2].
5729 AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5730 FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
5733 * Microcode operating variables for WDTR, SDTR, and command tag
5734 * queuing will be set in slave_configure() based on what a
5735 * device reports it is capable of in Inquiry byte 7.
5737 * If SCSI Bus Resets have been disabled, then directly set
5738 * SDTR and WDTR from the EEPROM configuration. This will allow
5739 * the BIOS and warm boot to work without a SCSI bus hang on
5740 * the Inquiry caused by host and target mismatched DTR values.
5741 * Without the SCSI Bus Reset, before an Inquiry a device can't
5742 * be assumed to be in Asynchronous, Narrow mode.
5744 if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5745 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5746 asc_dvc->wdtr_able);
5747 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5748 asc_dvc->sdtr_able);
5752 * Set microcode operating variables for DISC and SDTR_SPEED1,
5753 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5754 * configuration values.
5756 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5757 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5758 * without determining here whether the device supports SDTR.
5760 AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5761 asc_dvc->cfg->disc_enable);
5762 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
5763 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
5764 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
5765 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
5768 * Set SCSI_CFG0 Microcode Default Value.
5770 * The microcode will set the SCSI_CFG0 register using this value
5771 * after it is started below.
5773 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5774 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5775 asc_dvc->chip_scsi_id);
5778 * Calculate SCSI_CFG1 Microcode Default Value.
5780 * The microcode will set the SCSI_CFG1 register using this value
5781 * after it is started below.
5783 * Each ASC-38C1600 function has only two cable detect bits.
5784 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
5786 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5789 * If the cable is reversed all of the SCSI_CTRL register signals
5790 * will be set. Check for and return an error if this condition is
5791 * found.
5793 if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5794 asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5795 return ADV_ERROR;
5799 * Each ASC-38C1600 function has two connectors. Only an HVD device
5800 * can not be connected to either connector. An LVD device or SE device
5801 * may be connected to either connecor. If an SE device is connected,
5802 * then at most Ultra speed (20 Mhz) can be used on both connectors.
5804 * If an HVD device is attached, return an error.
5806 if (scsi_cfg1 & HVD) {
5807 asc_dvc->err_code |= ASC_IERR_HVD_DEVICE;
5808 return ADV_ERROR;
5812 * Each function in the ASC-38C1600 uses only the SE cable detect and
5813 * termination because there are two connectors for each function. Each
5814 * function may use either LVD or SE mode. Corresponding the SE automatic
5815 * termination control EEPROM bits are used for each function. Each
5816 * function has its own EEPROM. If SE automatic control is enabled for
5817 * the function, then set the termination value based on a table listed
5818 * in a_condor.h.
5820 * If manual termination is specified in the EEPROM for the function,
5821 * then 'termination' was set-up in AscInitFrom38C1600EEPROM() and is
5822 * ready to be 'ored' into SCSI_CFG1.
5824 if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
5825 struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
5826 /* SE automatic termination control is enabled. */
5827 switch (scsi_cfg1 & C_DET_SE) {
5828 /* TERM_SE_HI: on, TERM_SE_LO: on */
5829 case 0x1:
5830 case 0x2:
5831 case 0x3:
5832 asc_dvc->cfg->termination |= TERM_SE;
5833 break;
5835 case 0x0:
5836 if (PCI_FUNC(pdev->devfn) == 0) {
5837 /* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
5838 } else {
5839 /* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
5840 asc_dvc->cfg->termination |= TERM_SE_HI;
5842 break;
5847 * Clear any set TERM_SE bits.
5849 scsi_cfg1 &= ~TERM_SE;
5852 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
5854 scsi_cfg1 |= (~asc_dvc->cfg->termination & TERM_SE);
5857 * Clear Big Endian and Terminator Polarity bits and set possibly
5858 * modified termination control bits in the Microcode SCSI_CFG1
5859 * Register Value.
5861 * Big Endian bit is not used even on big endian machines.
5863 scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL);
5866 * Set SCSI_CFG1 Microcode Default Value
5868 * Set possibly modified termination control bits in the Microcode
5869 * SCSI_CFG1 Register Value.
5871 * The microcode will set the SCSI_CFG1 register using this value
5872 * after it is started below.
5874 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
5877 * Set MEM_CFG Microcode Default Value
5879 * The microcode will set the MEM_CFG register using this value
5880 * after it is started below.
5882 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5883 * are defined.
5885 * ASC-38C1600 has 32KB internal memory.
5887 * XXX - Since ASC38C1600 Rev.3 has a Local RAM failure issue, we come
5888 * out a special 16K Adv Library and Microcode version. After the issue
5889 * resolved, we should turn back to the 32K support. Both a_condor.h and
5890 * mcode.sas files also need to be updated.
5892 * AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5893 * BIOS_EN | RAM_SZ_32KB);
5895 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5896 BIOS_EN | RAM_SZ_16KB);
5899 * Set SEL_MASK Microcode Default Value
5901 * The microcode will set the SEL_MASK register using this value
5902 * after it is started below.
5904 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5905 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5907 AdvBuildCarrierFreelist(asc_dvc);
5910 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5912 if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) {
5913 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5914 return ADV_ERROR;
5916 asc_dvc->carr_freelist = (ADV_CARR_T *)
5917 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa));
5920 * The first command issued will be placed in the stopper carrier.
5922 asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
5925 * Set RISC ICQ physical address start value. Initialize the
5926 * COMMA register to the same value otherwise the RISC will
5927 * prematurely detect a command is available.
5929 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5930 AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
5931 le32_to_cpu(asc_dvc->icq_sp->carr_pa));
5934 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5936 if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) {
5937 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5938 return ADV_ERROR;
5940 asc_dvc->carr_freelist = (ADV_CARR_T *)
5941 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa));
5944 * The first command completed by the RISC will be placed in
5945 * the stopper.
5947 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
5948 * completed the RISC will set the ASC_RQ_STOPPER bit.
5950 asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
5953 * Set RISC IRQ physical address start value.
5955 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5956 asc_dvc->carr_pending_cnt = 0;
5958 AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5959 (ADV_INTR_ENABLE_HOST_INTR |
5960 ADV_INTR_ENABLE_GLOBAL_INTR));
5961 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5962 AdvWriteWordRegister(iop_base, IOPW_PC, word);
5964 /* finally, finally, gentlemen, start your engine */
5965 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5968 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5969 * Resets should be performed. The RISC has to be running
5970 * to issue a SCSI Bus Reset.
5972 if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5974 * If the BIOS Signature is present in memory, restore the
5975 * per TID microcode operating variables.
5977 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5978 0x55AA) {
5980 * Restore per TID negotiated values.
5982 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5983 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5984 AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5985 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
5986 tagqng_able);
5987 for (tid = 0; tid <= ASC_MAX_TID; tid++) {
5988 AdvWriteByteLram(iop_base,
5989 ASC_MC_NUMBER_OF_MAX_CMD + tid,
5990 max_cmd[tid]);
5992 } else {
5993 if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5994 warn_code = ASC_WARN_BUSRESET_ERROR;
5999 return warn_code;
6003 * Reset chip and SCSI Bus.
6005 * Return Value:
6006 * ADV_TRUE(1) - Chip re-initialization and SCSI Bus Reset successful.
6007 * ADV_FALSE(0) - Chip re-initialization and SCSI Bus Reset failure.
6009 static int AdvResetChipAndSB(ADV_DVC_VAR *asc_dvc)
6011 int status;
6012 ushort wdtr_able, sdtr_able, tagqng_able;
6013 ushort ppr_able = 0;
6014 uchar tid, max_cmd[ADV_MAX_TID + 1];
6015 AdvPortAddr iop_base;
6016 ushort bios_sig;
6018 iop_base = asc_dvc->iop_base;
6021 * Save current per TID negotiated values.
6023 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
6024 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
6025 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
6026 AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
6028 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
6029 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
6030 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
6031 max_cmd[tid]);
6035 * Force the AdvInitAsc3550/38C0800Driver() function to
6036 * perform a SCSI Bus Reset by clearing the BIOS signature word.
6037 * The initialization functions assumes a SCSI Bus Reset is not
6038 * needed if the BIOS signature word is present.
6040 AdvReadWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
6041 AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, 0);
6044 * Stop chip and reset it.
6046 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_STOP);
6047 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, ADV_CTRL_REG_CMD_RESET);
6048 mdelay(100);
6049 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
6050 ADV_CTRL_REG_CMD_WR_IO_REG);
6053 * Reset Adv Library error code, if any, and try
6054 * re-initializing the chip.
6056 asc_dvc->err_code = 0;
6057 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
6058 status = AdvInitAsc38C1600Driver(asc_dvc);
6059 } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
6060 status = AdvInitAsc38C0800Driver(asc_dvc);
6061 } else {
6062 status = AdvInitAsc3550Driver(asc_dvc);
6065 /* Translate initialization return value to status value. */
6066 if (status == 0) {
6067 status = ADV_TRUE;
6068 } else {
6069 status = ADV_FALSE;
6073 * Restore the BIOS signature word.
6075 AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
6078 * Restore per TID negotiated values.
6080 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
6081 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
6082 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
6083 AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
6085 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
6086 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
6087 AdvWriteByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
6088 max_cmd[tid]);
6091 return status;
6095 * adv_async_callback() - Adv Library asynchronous event callback function.
6097 static void adv_async_callback(ADV_DVC_VAR *adv_dvc_varp, uchar code)
6099 switch (code) {
6100 case ADV_ASYNC_SCSI_BUS_RESET_DET:
6102 * The firmware detected a SCSI Bus reset.
6104 ASC_DBG(0, "ADV_ASYNC_SCSI_BUS_RESET_DET\n");
6105 break;
6107 case ADV_ASYNC_RDMA_FAILURE:
6109 * Handle RDMA failure by resetting the SCSI Bus and
6110 * possibly the chip if it is unresponsive. Log the error
6111 * with a unique code.
6113 ASC_DBG(0, "ADV_ASYNC_RDMA_FAILURE\n");
6114 AdvResetChipAndSB(adv_dvc_varp);
6115 break;
6117 case ADV_HOST_SCSI_BUS_RESET:
6119 * Host generated SCSI bus reset occurred.
6121 ASC_DBG(0, "ADV_HOST_SCSI_BUS_RESET\n");
6122 break;
6124 default:
6125 ASC_DBG(0, "unknown code 0x%x\n", code);
6126 break;
6131 * adv_isr_callback() - Second Level Interrupt Handler called by AdvISR().
6133 * Callback function for the Wide SCSI Adv Library.
6135 static void adv_isr_callback(ADV_DVC_VAR *adv_dvc_varp, ADV_SCSI_REQ_Q *scsiqp)
6137 struct asc_board *boardp;
6138 adv_req_t *reqp;
6139 adv_sgblk_t *sgblkp;
6140 struct scsi_cmnd *scp;
6141 struct Scsi_Host *shost;
6142 ADV_DCNT resid_cnt;
6144 ASC_DBG(1, "adv_dvc_varp 0x%lx, scsiqp 0x%lx\n",
6145 (ulong)adv_dvc_varp, (ulong)scsiqp);
6146 ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
6149 * Get the adv_req_t structure for the command that has been
6150 * completed. The adv_req_t structure actually contains the
6151 * completed ADV_SCSI_REQ_Q structure.
6153 reqp = (adv_req_t *)ADV_U32_TO_VADDR(scsiqp->srb_ptr);
6154 ASC_DBG(1, "reqp 0x%lx\n", (ulong)reqp);
6155 if (reqp == NULL) {
6156 ASC_PRINT("adv_isr_callback: reqp is NULL\n");
6157 return;
6161 * Get the struct scsi_cmnd structure and Scsi_Host structure for the
6162 * command that has been completed.
6164 * Note: The adv_req_t request structure and adv_sgblk_t structure,
6165 * if any, are dropped, because a board structure pointer can not be
6166 * determined.
6168 scp = reqp->cmndp;
6169 ASC_DBG(1, "scp 0x%p\n", scp);
6170 if (scp == NULL) {
6171 ASC_PRINT
6172 ("adv_isr_callback: scp is NULL; adv_req_t dropped.\n");
6173 return;
6175 ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
6177 shost = scp->device->host;
6178 ASC_STATS(shost, callback);
6179 ASC_DBG(1, "shost 0x%p\n", shost);
6181 boardp = shost_priv(shost);
6182 BUG_ON(adv_dvc_varp != &boardp->dvc_var.adv_dvc_var);
6185 * 'done_status' contains the command's ending status.
6187 switch (scsiqp->done_status) {
6188 case QD_NO_ERROR:
6189 ASC_DBG(2, "QD_NO_ERROR\n");
6190 scp->result = 0;
6193 * Check for an underrun condition.
6195 * If there was no error and an underrun condition, then
6196 * then return the number of underrun bytes.
6198 resid_cnt = le32_to_cpu(scsiqp->data_cnt);
6199 if (scsi_bufflen(scp) != 0 && resid_cnt != 0 &&
6200 resid_cnt <= scsi_bufflen(scp)) {
6201 ASC_DBG(1, "underrun condition %lu bytes\n",
6202 (ulong)resid_cnt);
6203 scsi_set_resid(scp, resid_cnt);
6205 break;
6207 case QD_WITH_ERROR:
6208 ASC_DBG(2, "QD_WITH_ERROR\n");
6209 switch (scsiqp->host_status) {
6210 case QHSTA_NO_ERROR:
6211 if (scsiqp->scsi_status == SAM_STAT_CHECK_CONDITION) {
6212 ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
6213 ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
6214 SCSI_SENSE_BUFFERSIZE);
6216 * Note: The 'status_byte()' macro used by
6217 * target drivers defined in scsi.h shifts the
6218 * status byte returned by host drivers right
6219 * by 1 bit. This is why target drivers also
6220 * use right shifted status byte definitions.
6221 * For instance target drivers use
6222 * CHECK_CONDITION, defined to 0x1, instead of
6223 * the SCSI defined check condition value of
6224 * 0x2. Host drivers are supposed to return
6225 * the status byte as it is defined by SCSI.
6227 scp->result = DRIVER_BYTE(DRIVER_SENSE) |
6228 STATUS_BYTE(scsiqp->scsi_status);
6229 } else {
6230 scp->result = STATUS_BYTE(scsiqp->scsi_status);
6232 break;
6234 default:
6235 /* Some other QHSTA error occurred. */
6236 ASC_DBG(1, "host_status 0x%x\n", scsiqp->host_status);
6237 scp->result = HOST_BYTE(DID_BAD_TARGET);
6238 break;
6240 break;
6242 case QD_ABORTED_BY_HOST:
6243 ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
6244 scp->result =
6245 HOST_BYTE(DID_ABORT) | STATUS_BYTE(scsiqp->scsi_status);
6246 break;
6248 default:
6249 ASC_DBG(1, "done_status 0x%x\n", scsiqp->done_status);
6250 scp->result =
6251 HOST_BYTE(DID_ERROR) | STATUS_BYTE(scsiqp->scsi_status);
6252 break;
6256 * If the 'init_tidmask' bit isn't already set for the target and the
6257 * current request finished normally, then set the bit for the target
6258 * to indicate that a device is present.
6260 if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
6261 scsiqp->done_status == QD_NO_ERROR &&
6262 scsiqp->host_status == QHSTA_NO_ERROR) {
6263 boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
6266 asc_scsi_done(scp);
6269 * Free all 'adv_sgblk_t' structures allocated for the request.
6271 while ((sgblkp = reqp->sgblkp) != NULL) {
6272 /* Remove 'sgblkp' from the request list. */
6273 reqp->sgblkp = sgblkp->next_sgblkp;
6275 /* Add 'sgblkp' to the board free list. */
6276 sgblkp->next_sgblkp = boardp->adv_sgblkp;
6277 boardp->adv_sgblkp = sgblkp;
6281 * Free the adv_req_t structure used with the command by adding
6282 * it back to the board free list.
6284 reqp->next_reqp = boardp->adv_reqp;
6285 boardp->adv_reqp = reqp;
6287 ASC_DBG(1, "done\n");
6291 * Adv Library Interrupt Service Routine
6293 * This function is called by a driver's interrupt service routine.
6294 * The function disables and re-enables interrupts.
6296 * When a microcode idle command is completed, the ADV_DVC_VAR
6297 * 'idle_cmd_done' field is set to ADV_TRUE.
6299 * Note: AdvISR() can be called when interrupts are disabled or even
6300 * when there is no hardware interrupt condition present. It will
6301 * always check for completed idle commands and microcode requests.
6302 * This is an important feature that shouldn't be changed because it
6303 * allows commands to be completed from polling mode loops.
6305 * Return:
6306 * ADV_TRUE(1) - interrupt was pending
6307 * ADV_FALSE(0) - no interrupt was pending
6309 static int AdvISR(ADV_DVC_VAR *asc_dvc)
6311 AdvPortAddr iop_base;
6312 uchar int_stat;
6313 ushort target_bit;
6314 ADV_CARR_T *free_carrp;
6315 ADV_VADDR irq_next_vpa;
6316 ADV_SCSI_REQ_Q *scsiq;
6318 iop_base = asc_dvc->iop_base;
6320 /* Reading the register clears the interrupt. */
6321 int_stat = AdvReadByteRegister(iop_base, IOPB_INTR_STATUS_REG);
6323 if ((int_stat & (ADV_INTR_STATUS_INTRA | ADV_INTR_STATUS_INTRB |
6324 ADV_INTR_STATUS_INTRC)) == 0) {
6325 return ADV_FALSE;
6329 * Notify the driver of an asynchronous microcode condition by
6330 * calling the adv_async_callback function. The function
6331 * is passed the microcode ASC_MC_INTRB_CODE byte value.
6333 if (int_stat & ADV_INTR_STATUS_INTRB) {
6334 uchar intrb_code;
6336 AdvReadByteLram(iop_base, ASC_MC_INTRB_CODE, intrb_code);
6338 if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
6339 asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
6340 if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
6341 asc_dvc->carr_pending_cnt != 0) {
6342 AdvWriteByteRegister(iop_base, IOPB_TICKLE,
6343 ADV_TICKLE_A);
6344 if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
6345 AdvWriteByteRegister(iop_base,
6346 IOPB_TICKLE,
6347 ADV_TICKLE_NOP);
6352 adv_async_callback(asc_dvc, intrb_code);
6356 * Check if the IRQ stopper carrier contains a completed request.
6358 while (((irq_next_vpa =
6359 le32_to_cpu(asc_dvc->irq_sp->next_vpa)) & ASC_RQ_DONE) != 0) {
6361 * Get a pointer to the newly completed ADV_SCSI_REQ_Q structure.
6362 * The RISC will have set 'areq_vpa' to a virtual address.
6364 * The firmware will have copied the ASC_SCSI_REQ_Q.scsiq_ptr
6365 * field to the carrier ADV_CARR_T.areq_vpa field. The conversion
6366 * below complements the conversion of ASC_SCSI_REQ_Q.scsiq_ptr'
6367 * in AdvExeScsiQueue().
6369 scsiq = (ADV_SCSI_REQ_Q *)
6370 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->areq_vpa));
6373 * Request finished with good status and the queue was not
6374 * DMAed to host memory by the firmware. Set all status fields
6375 * to indicate good status.
6377 if ((irq_next_vpa & ASC_RQ_GOOD) != 0) {
6378 scsiq->done_status = QD_NO_ERROR;
6379 scsiq->host_status = scsiq->scsi_status = 0;
6380 scsiq->data_cnt = 0L;
6384 * Advance the stopper pointer to the next carrier
6385 * ignoring the lower four bits. Free the previous
6386 * stopper carrier.
6388 free_carrp = asc_dvc->irq_sp;
6389 asc_dvc->irq_sp = (ADV_CARR_T *)
6390 ADV_U32_TO_VADDR(ASC_GET_CARRP(irq_next_vpa));
6392 free_carrp->next_vpa =
6393 cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->carr_freelist));
6394 asc_dvc->carr_freelist = free_carrp;
6395 asc_dvc->carr_pending_cnt--;
6397 target_bit = ADV_TID_TO_TIDMASK(scsiq->target_id);
6400 * Clear request microcode control flag.
6402 scsiq->cntl = 0;
6405 * Notify the driver of the completed request by passing
6406 * the ADV_SCSI_REQ_Q pointer to its callback function.
6408 scsiq->a_flag |= ADV_SCSIQ_DONE;
6409 adv_isr_callback(asc_dvc, scsiq);
6411 * Note: After the driver callback function is called, 'scsiq'
6412 * can no longer be referenced.
6414 * Fall through and continue processing other completed
6415 * requests...
6418 return ADV_TRUE;
6421 static int AscSetLibErrorCode(ASC_DVC_VAR *asc_dvc, ushort err_code)
6423 if (asc_dvc->err_code == 0) {
6424 asc_dvc->err_code = err_code;
6425 AscWriteLramWord(asc_dvc->iop_base, ASCV_ASCDVC_ERR_CODE_W,
6426 err_code);
6428 return err_code;
6431 static void AscAckInterrupt(PortAddr iop_base)
6433 uchar host_flag;
6434 uchar risc_flag;
6435 ushort loop;
6437 loop = 0;
6438 do {
6439 risc_flag = AscReadLramByte(iop_base, ASCV_RISC_FLAG_B);
6440 if (loop++ > 0x7FFF) {
6441 break;
6443 } while ((risc_flag & ASC_RISC_FLAG_GEN_INT) != 0);
6444 host_flag =
6445 AscReadLramByte(iop_base,
6446 ASCV_HOST_FLAG_B) & (~ASC_HOST_FLAG_ACK_INT);
6447 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
6448 (uchar)(host_flag | ASC_HOST_FLAG_ACK_INT));
6449 AscSetChipStatus(iop_base, CIW_INT_ACK);
6450 loop = 0;
6451 while (AscGetChipStatus(iop_base) & CSW_INT_PENDING) {
6452 AscSetChipStatus(iop_base, CIW_INT_ACK);
6453 if (loop++ > 3) {
6454 break;
6457 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
6460 static uchar AscGetSynPeriodIndex(ASC_DVC_VAR *asc_dvc, uchar syn_time)
6462 const uchar *period_table;
6463 int max_index;
6464 int min_index;
6465 int i;
6467 period_table = asc_dvc->sdtr_period_tbl;
6468 max_index = (int)asc_dvc->max_sdtr_index;
6469 min_index = (int)asc_dvc->min_sdtr_index;
6470 if ((syn_time <= period_table[max_index])) {
6471 for (i = min_index; i < (max_index - 1); i++) {
6472 if (syn_time <= period_table[i]) {
6473 return (uchar)i;
6476 return (uchar)max_index;
6477 } else {
6478 return (uchar)(max_index + 1);
6482 static uchar
6483 AscMsgOutSDTR(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar sdtr_offset)
6485 EXT_MSG sdtr_buf;
6486 uchar sdtr_period_index;
6487 PortAddr iop_base;
6489 iop_base = asc_dvc->iop_base;
6490 sdtr_buf.msg_type = EXTENDED_MESSAGE;
6491 sdtr_buf.msg_len = MS_SDTR_LEN;
6492 sdtr_buf.msg_req = EXTENDED_SDTR;
6493 sdtr_buf.xfer_period = sdtr_period;
6494 sdtr_offset &= ASC_SYN_MAX_OFFSET;
6495 sdtr_buf.req_ack_offset = sdtr_offset;
6496 sdtr_period_index = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
6497 if (sdtr_period_index <= asc_dvc->max_sdtr_index) {
6498 AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
6499 (uchar *)&sdtr_buf,
6500 sizeof(EXT_MSG) >> 1);
6501 return ((sdtr_period_index << 4) | sdtr_offset);
6502 } else {
6503 sdtr_buf.req_ack_offset = 0;
6504 AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
6505 (uchar *)&sdtr_buf,
6506 sizeof(EXT_MSG) >> 1);
6507 return 0;
6511 static uchar
6512 AscCalSDTRData(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar syn_offset)
6514 uchar byte;
6515 uchar sdtr_period_ix;
6517 sdtr_period_ix = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
6518 if (sdtr_period_ix > asc_dvc->max_sdtr_index)
6519 return 0xFF;
6520 byte = (sdtr_period_ix << 4) | (syn_offset & ASC_SYN_MAX_OFFSET);
6521 return byte;
6524 static int AscSetChipSynRegAtID(PortAddr iop_base, uchar id, uchar sdtr_data)
6526 ASC_SCSI_BIT_ID_TYPE org_id;
6527 int i;
6528 int sta = TRUE;
6530 AscSetBank(iop_base, 1);
6531 org_id = AscReadChipDvcID(iop_base);
6532 for (i = 0; i <= ASC_MAX_TID; i++) {
6533 if (org_id == (0x01 << i))
6534 break;
6536 org_id = (ASC_SCSI_BIT_ID_TYPE) i;
6537 AscWriteChipDvcID(iop_base, id);
6538 if (AscReadChipDvcID(iop_base) == (0x01 << id)) {
6539 AscSetBank(iop_base, 0);
6540 AscSetChipSyn(iop_base, sdtr_data);
6541 if (AscGetChipSyn(iop_base) != sdtr_data) {
6542 sta = FALSE;
6544 } else {
6545 sta = FALSE;
6547 AscSetBank(iop_base, 1);
6548 AscWriteChipDvcID(iop_base, org_id);
6549 AscSetBank(iop_base, 0);
6550 return (sta);
6553 static void AscSetChipSDTR(PortAddr iop_base, uchar sdtr_data, uchar tid_no)
6555 AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
6556 AscPutMCodeSDTRDoneAtID(iop_base, tid_no, sdtr_data);
6559 static int AscIsrChipHalted(ASC_DVC_VAR *asc_dvc)
6561 EXT_MSG ext_msg;
6562 EXT_MSG out_msg;
6563 ushort halt_q_addr;
6564 int sdtr_accept;
6565 ushort int_halt_code;
6566 ASC_SCSI_BIT_ID_TYPE scsi_busy;
6567 ASC_SCSI_BIT_ID_TYPE target_id;
6568 PortAddr iop_base;
6569 uchar tag_code;
6570 uchar q_status;
6571 uchar halt_qp;
6572 uchar sdtr_data;
6573 uchar target_ix;
6574 uchar q_cntl, tid_no;
6575 uchar cur_dvc_qng;
6576 uchar asyn_sdtr;
6577 uchar scsi_status;
6578 struct asc_board *boardp;
6580 BUG_ON(!asc_dvc->drv_ptr);
6581 boardp = asc_dvc->drv_ptr;
6583 iop_base = asc_dvc->iop_base;
6584 int_halt_code = AscReadLramWord(iop_base, ASCV_HALTCODE_W);
6586 halt_qp = AscReadLramByte(iop_base, ASCV_CURCDB_B);
6587 halt_q_addr = ASC_QNO_TO_QADDR(halt_qp);
6588 target_ix = AscReadLramByte(iop_base,
6589 (ushort)(halt_q_addr +
6590 (ushort)ASC_SCSIQ_B_TARGET_IX));
6591 q_cntl = AscReadLramByte(iop_base,
6592 (ushort)(halt_q_addr + (ushort)ASC_SCSIQ_B_CNTL));
6593 tid_no = ASC_TIX_TO_TID(target_ix);
6594 target_id = (uchar)ASC_TID_TO_TARGET_ID(tid_no);
6595 if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6596 asyn_sdtr = ASYN_SDTR_DATA_FIX_PCI_REV_AB;
6597 } else {
6598 asyn_sdtr = 0;
6600 if (int_halt_code == ASC_HALT_DISABLE_ASYN_USE_SYN_FIX) {
6601 if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6602 AscSetChipSDTR(iop_base, 0, tid_no);
6603 boardp->sdtr_data[tid_no] = 0;
6605 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6606 return (0);
6607 } else if (int_halt_code == ASC_HALT_ENABLE_ASYN_USE_SYN_FIX) {
6608 if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6609 AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6610 boardp->sdtr_data[tid_no] = asyn_sdtr;
6612 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6613 return (0);
6614 } else if (int_halt_code == ASC_HALT_EXTMSG_IN) {
6615 AscMemWordCopyPtrFromLram(iop_base,
6616 ASCV_MSGIN_BEG,
6617 (uchar *)&ext_msg,
6618 sizeof(EXT_MSG) >> 1);
6620 if (ext_msg.msg_type == EXTENDED_MESSAGE &&
6621 ext_msg.msg_req == EXTENDED_SDTR &&
6622 ext_msg.msg_len == MS_SDTR_LEN) {
6623 sdtr_accept = TRUE;
6624 if ((ext_msg.req_ack_offset > ASC_SYN_MAX_OFFSET)) {
6626 sdtr_accept = FALSE;
6627 ext_msg.req_ack_offset = ASC_SYN_MAX_OFFSET;
6629 if ((ext_msg.xfer_period <
6630 asc_dvc->sdtr_period_tbl[asc_dvc->min_sdtr_index])
6631 || (ext_msg.xfer_period >
6632 asc_dvc->sdtr_period_tbl[asc_dvc->
6633 max_sdtr_index])) {
6634 sdtr_accept = FALSE;
6635 ext_msg.xfer_period =
6636 asc_dvc->sdtr_period_tbl[asc_dvc->
6637 min_sdtr_index];
6639 if (sdtr_accept) {
6640 sdtr_data =
6641 AscCalSDTRData(asc_dvc, ext_msg.xfer_period,
6642 ext_msg.req_ack_offset);
6643 if ((sdtr_data == 0xFF)) {
6645 q_cntl |= QC_MSG_OUT;
6646 asc_dvc->init_sdtr &= ~target_id;
6647 asc_dvc->sdtr_done &= ~target_id;
6648 AscSetChipSDTR(iop_base, asyn_sdtr,
6649 tid_no);
6650 boardp->sdtr_data[tid_no] = asyn_sdtr;
6653 if (ext_msg.req_ack_offset == 0) {
6655 q_cntl &= ~QC_MSG_OUT;
6656 asc_dvc->init_sdtr &= ~target_id;
6657 asc_dvc->sdtr_done &= ~target_id;
6658 AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6659 } else {
6660 if (sdtr_accept && (q_cntl & QC_MSG_OUT)) {
6661 q_cntl &= ~QC_MSG_OUT;
6662 asc_dvc->sdtr_done |= target_id;
6663 asc_dvc->init_sdtr |= target_id;
6664 asc_dvc->pci_fix_asyn_xfer &=
6665 ~target_id;
6666 sdtr_data =
6667 AscCalSDTRData(asc_dvc,
6668 ext_msg.xfer_period,
6669 ext_msg.
6670 req_ack_offset);
6671 AscSetChipSDTR(iop_base, sdtr_data,
6672 tid_no);
6673 boardp->sdtr_data[tid_no] = sdtr_data;
6674 } else {
6675 q_cntl |= QC_MSG_OUT;
6676 AscMsgOutSDTR(asc_dvc,
6677 ext_msg.xfer_period,
6678 ext_msg.req_ack_offset);
6679 asc_dvc->pci_fix_asyn_xfer &=
6680 ~target_id;
6681 sdtr_data =
6682 AscCalSDTRData(asc_dvc,
6683 ext_msg.xfer_period,
6684 ext_msg.
6685 req_ack_offset);
6686 AscSetChipSDTR(iop_base, sdtr_data,
6687 tid_no);
6688 boardp->sdtr_data[tid_no] = sdtr_data;
6689 asc_dvc->sdtr_done |= target_id;
6690 asc_dvc->init_sdtr |= target_id;
6694 AscWriteLramByte(iop_base,
6695 (ushort)(halt_q_addr +
6696 (ushort)ASC_SCSIQ_B_CNTL),
6697 q_cntl);
6698 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6699 return (0);
6700 } else if (ext_msg.msg_type == EXTENDED_MESSAGE &&
6701 ext_msg.msg_req == EXTENDED_WDTR &&
6702 ext_msg.msg_len == MS_WDTR_LEN) {
6704 ext_msg.wdtr_width = 0;
6705 AscMemWordCopyPtrToLram(iop_base,
6706 ASCV_MSGOUT_BEG,
6707 (uchar *)&ext_msg,
6708 sizeof(EXT_MSG) >> 1);
6709 q_cntl |= QC_MSG_OUT;
6710 AscWriteLramByte(iop_base,
6711 (ushort)(halt_q_addr +
6712 (ushort)ASC_SCSIQ_B_CNTL),
6713 q_cntl);
6714 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6715 return (0);
6716 } else {
6718 ext_msg.msg_type = MESSAGE_REJECT;
6719 AscMemWordCopyPtrToLram(iop_base,
6720 ASCV_MSGOUT_BEG,
6721 (uchar *)&ext_msg,
6722 sizeof(EXT_MSG) >> 1);
6723 q_cntl |= QC_MSG_OUT;
6724 AscWriteLramByte(iop_base,
6725 (ushort)(halt_q_addr +
6726 (ushort)ASC_SCSIQ_B_CNTL),
6727 q_cntl);
6728 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6729 return (0);
6731 } else if (int_halt_code == ASC_HALT_CHK_CONDITION) {
6733 q_cntl |= QC_REQ_SENSE;
6735 if ((asc_dvc->init_sdtr & target_id) != 0) {
6737 asc_dvc->sdtr_done &= ~target_id;
6739 sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
6740 q_cntl |= QC_MSG_OUT;
6741 AscMsgOutSDTR(asc_dvc,
6742 asc_dvc->
6743 sdtr_period_tbl[(sdtr_data >> 4) &
6744 (uchar)(asc_dvc->
6745 max_sdtr_index -
6746 1)],
6747 (uchar)(sdtr_data & (uchar)
6748 ASC_SYN_MAX_OFFSET));
6751 AscWriteLramByte(iop_base,
6752 (ushort)(halt_q_addr +
6753 (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
6755 tag_code = AscReadLramByte(iop_base,
6756 (ushort)(halt_q_addr + (ushort)
6757 ASC_SCSIQ_B_TAG_CODE));
6758 tag_code &= 0xDC;
6759 if ((asc_dvc->pci_fix_asyn_xfer & target_id)
6760 && !(asc_dvc->pci_fix_asyn_xfer_always & target_id)
6763 tag_code |= (ASC_TAG_FLAG_DISABLE_DISCONNECT
6764 | ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX);
6767 AscWriteLramByte(iop_base,
6768 (ushort)(halt_q_addr +
6769 (ushort)ASC_SCSIQ_B_TAG_CODE),
6770 tag_code);
6772 q_status = AscReadLramByte(iop_base,
6773 (ushort)(halt_q_addr + (ushort)
6774 ASC_SCSIQ_B_STATUS));
6775 q_status |= (QS_READY | QS_BUSY);
6776 AscWriteLramByte(iop_base,
6777 (ushort)(halt_q_addr +
6778 (ushort)ASC_SCSIQ_B_STATUS),
6779 q_status);
6781 scsi_busy = AscReadLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B);
6782 scsi_busy &= ~target_id;
6783 AscWriteLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B, scsi_busy);
6785 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6786 return (0);
6787 } else if (int_halt_code == ASC_HALT_SDTR_REJECTED) {
6789 AscMemWordCopyPtrFromLram(iop_base,
6790 ASCV_MSGOUT_BEG,
6791 (uchar *)&out_msg,
6792 sizeof(EXT_MSG) >> 1);
6794 if ((out_msg.msg_type == EXTENDED_MESSAGE) &&
6795 (out_msg.msg_len == MS_SDTR_LEN) &&
6796 (out_msg.msg_req == EXTENDED_SDTR)) {
6798 asc_dvc->init_sdtr &= ~target_id;
6799 asc_dvc->sdtr_done &= ~target_id;
6800 AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6801 boardp->sdtr_data[tid_no] = asyn_sdtr;
6803 q_cntl &= ~QC_MSG_OUT;
6804 AscWriteLramByte(iop_base,
6805 (ushort)(halt_q_addr +
6806 (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
6807 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6808 return (0);
6809 } else if (int_halt_code == ASC_HALT_SS_QUEUE_FULL) {
6811 scsi_status = AscReadLramByte(iop_base,
6812 (ushort)((ushort)halt_q_addr +
6813 (ushort)
6814 ASC_SCSIQ_SCSI_STATUS));
6815 cur_dvc_qng =
6816 AscReadLramByte(iop_base,
6817 (ushort)((ushort)ASC_QADR_BEG +
6818 (ushort)target_ix));
6819 if ((cur_dvc_qng > 0) && (asc_dvc->cur_dvc_qng[tid_no] > 0)) {
6821 scsi_busy = AscReadLramByte(iop_base,
6822 (ushort)ASCV_SCSIBUSY_B);
6823 scsi_busy |= target_id;
6824 AscWriteLramByte(iop_base,
6825 (ushort)ASCV_SCSIBUSY_B, scsi_busy);
6826 asc_dvc->queue_full_or_busy |= target_id;
6828 if (scsi_status == SAM_STAT_TASK_SET_FULL) {
6829 if (cur_dvc_qng > ASC_MIN_TAGGED_CMD) {
6830 cur_dvc_qng -= 1;
6831 asc_dvc->max_dvc_qng[tid_no] =
6832 cur_dvc_qng;
6834 AscWriteLramByte(iop_base,
6835 (ushort)((ushort)
6836 ASCV_MAX_DVC_QNG_BEG
6837 + (ushort)
6838 tid_no),
6839 cur_dvc_qng);
6842 * Set the device queue depth to the
6843 * number of active requests when the
6844 * QUEUE FULL condition was encountered.
6846 boardp->queue_full |= target_id;
6847 boardp->queue_full_cnt[tid_no] =
6848 cur_dvc_qng;
6852 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6853 return (0);
6855 #if CC_VERY_LONG_SG_LIST
6856 else if (int_halt_code == ASC_HALT_HOST_COPY_SG_LIST_TO_RISC) {
6857 uchar q_no;
6858 ushort q_addr;
6859 uchar sg_wk_q_no;
6860 uchar first_sg_wk_q_no;
6861 ASC_SCSI_Q *scsiq; /* Ptr to driver request. */
6862 ASC_SG_HEAD *sg_head; /* Ptr to driver SG request. */
6863 ASC_SG_LIST_Q scsi_sg_q; /* Structure written to queue. */
6864 ushort sg_list_dwords;
6865 ushort sg_entry_cnt;
6866 uchar next_qp;
6867 int i;
6869 q_no = AscReadLramByte(iop_base, (ushort)ASCV_REQ_SG_LIST_QP);
6870 if (q_no == ASC_QLINK_END)
6871 return 0;
6873 q_addr = ASC_QNO_TO_QADDR(q_no);
6876 * Convert the request's SRB pointer to a host ASC_SCSI_REQ
6877 * structure pointer using a macro provided by the driver.
6878 * The ASC_SCSI_REQ pointer provides a pointer to the
6879 * host ASC_SG_HEAD structure.
6881 /* Read request's SRB pointer. */
6882 scsiq = (ASC_SCSI_Q *)
6883 ASC_SRB2SCSIQ(ASC_U32_TO_VADDR(AscReadLramDWord(iop_base,
6884 (ushort)
6885 (q_addr +
6886 ASC_SCSIQ_D_SRBPTR))));
6889 * Get request's first and working SG queue.
6891 sg_wk_q_no = AscReadLramByte(iop_base,
6892 (ushort)(q_addr +
6893 ASC_SCSIQ_B_SG_WK_QP));
6895 first_sg_wk_q_no = AscReadLramByte(iop_base,
6896 (ushort)(q_addr +
6897 ASC_SCSIQ_B_FIRST_SG_WK_QP));
6900 * Reset request's working SG queue back to the
6901 * first SG queue.
6903 AscWriteLramByte(iop_base,
6904 (ushort)(q_addr +
6905 (ushort)ASC_SCSIQ_B_SG_WK_QP),
6906 first_sg_wk_q_no);
6908 sg_head = scsiq->sg_head;
6911 * Set sg_entry_cnt to the number of SG elements
6912 * that will be completed on this interrupt.
6914 * Note: The allocated SG queues contain ASC_MAX_SG_LIST - 1
6915 * SG elements. The data_cnt and data_addr fields which
6916 * add 1 to the SG element capacity are not used when
6917 * restarting SG handling after a halt.
6919 if (scsiq->remain_sg_entry_cnt > (ASC_MAX_SG_LIST - 1)) {
6920 sg_entry_cnt = ASC_MAX_SG_LIST - 1;
6923 * Keep track of remaining number of SG elements that
6924 * will need to be handled on the next interrupt.
6926 scsiq->remain_sg_entry_cnt -= (ASC_MAX_SG_LIST - 1);
6927 } else {
6928 sg_entry_cnt = scsiq->remain_sg_entry_cnt;
6929 scsiq->remain_sg_entry_cnt = 0;
6933 * Copy SG elements into the list of allocated SG queues.
6935 * Last index completed is saved in scsiq->next_sg_index.
6937 next_qp = first_sg_wk_q_no;
6938 q_addr = ASC_QNO_TO_QADDR(next_qp);
6939 scsi_sg_q.sg_head_qp = q_no;
6940 scsi_sg_q.cntl = QCSG_SG_XFER_LIST;
6941 for (i = 0; i < sg_head->queue_cnt; i++) {
6942 scsi_sg_q.seq_no = i + 1;
6943 if (sg_entry_cnt > ASC_SG_LIST_PER_Q) {
6944 sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2);
6945 sg_entry_cnt -= ASC_SG_LIST_PER_Q;
6947 * After very first SG queue RISC FW uses next
6948 * SG queue first element then checks sg_list_cnt
6949 * against zero and then decrements, so set
6950 * sg_list_cnt 1 less than number of SG elements
6951 * in each SG queue.
6953 scsi_sg_q.sg_list_cnt = ASC_SG_LIST_PER_Q - 1;
6954 scsi_sg_q.sg_cur_list_cnt =
6955 ASC_SG_LIST_PER_Q - 1;
6956 } else {
6958 * This is the last SG queue in the list of
6959 * allocated SG queues. If there are more
6960 * SG elements than will fit in the allocated
6961 * queues, then set the QCSG_SG_XFER_MORE flag.
6963 if (scsiq->remain_sg_entry_cnt != 0) {
6964 scsi_sg_q.cntl |= QCSG_SG_XFER_MORE;
6965 } else {
6966 scsi_sg_q.cntl |= QCSG_SG_XFER_END;
6968 /* equals sg_entry_cnt * 2 */
6969 sg_list_dwords = sg_entry_cnt << 1;
6970 scsi_sg_q.sg_list_cnt = sg_entry_cnt - 1;
6971 scsi_sg_q.sg_cur_list_cnt = sg_entry_cnt - 1;
6972 sg_entry_cnt = 0;
6975 scsi_sg_q.q_no = next_qp;
6976 AscMemWordCopyPtrToLram(iop_base,
6977 q_addr + ASC_SCSIQ_SGHD_CPY_BEG,
6978 (uchar *)&scsi_sg_q,
6979 sizeof(ASC_SG_LIST_Q) >> 1);
6981 AscMemDWordCopyPtrToLram(iop_base,
6982 q_addr + ASC_SGQ_LIST_BEG,
6983 (uchar *)&sg_head->
6984 sg_list[scsiq->next_sg_index],
6985 sg_list_dwords);
6987 scsiq->next_sg_index += ASC_SG_LIST_PER_Q;
6990 * If the just completed SG queue contained the
6991 * last SG element, then no more SG queues need
6992 * to be written.
6994 if (scsi_sg_q.cntl & QCSG_SG_XFER_END) {
6995 break;
6998 next_qp = AscReadLramByte(iop_base,
6999 (ushort)(q_addr +
7000 ASC_SCSIQ_B_FWD));
7001 q_addr = ASC_QNO_TO_QADDR(next_qp);
7005 * Clear the halt condition so the RISC will be restarted
7006 * after the return.
7008 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7009 return (0);
7011 #endif /* CC_VERY_LONG_SG_LIST */
7012 return (0);
7016 * void
7017 * DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
7019 * Calling/Exit State:
7020 * none
7022 * Description:
7023 * Input an ASC_QDONE_INFO structure from the chip
7025 static void
7026 DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
7028 int i;
7029 ushort word;
7031 AscSetChipLramAddr(iop_base, s_addr);
7032 for (i = 0; i < 2 * words; i += 2) {
7033 if (i == 10) {
7034 continue;
7036 word = inpw(iop_base + IOP_RAM_DATA);
7037 inbuf[i] = word & 0xff;
7038 inbuf[i + 1] = (word >> 8) & 0xff;
7040 ASC_DBG_PRT_HEX(2, "DvcGetQinfo", inbuf, 2 * words);
7043 static uchar
7044 _AscCopyLramScsiDoneQ(PortAddr iop_base,
7045 ushort q_addr,
7046 ASC_QDONE_INFO *scsiq, ASC_DCNT max_dma_count)
7048 ushort _val;
7049 uchar sg_queue_cnt;
7051 DvcGetQinfo(iop_base,
7052 q_addr + ASC_SCSIQ_DONE_INFO_BEG,
7053 (uchar *)scsiq,
7054 (sizeof(ASC_SCSIQ_2) + sizeof(ASC_SCSIQ_3)) / 2);
7056 _val = AscReadLramWord(iop_base,
7057 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS));
7058 scsiq->q_status = (uchar)_val;
7059 scsiq->q_no = (uchar)(_val >> 8);
7060 _val = AscReadLramWord(iop_base,
7061 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_CNTL));
7062 scsiq->cntl = (uchar)_val;
7063 sg_queue_cnt = (uchar)(_val >> 8);
7064 _val = AscReadLramWord(iop_base,
7065 (ushort)(q_addr +
7066 (ushort)ASC_SCSIQ_B_SENSE_LEN));
7067 scsiq->sense_len = (uchar)_val;
7068 scsiq->extra_bytes = (uchar)(_val >> 8);
7071 * Read high word of remain bytes from alternate location.
7073 scsiq->remain_bytes = (((ADV_DCNT)AscReadLramWord(iop_base,
7074 (ushort)(q_addr +
7075 (ushort)
7076 ASC_SCSIQ_W_ALT_DC1)))
7077 << 16);
7079 * Read low word of remain bytes from original location.
7081 scsiq->remain_bytes += AscReadLramWord(iop_base,
7082 (ushort)(q_addr + (ushort)
7083 ASC_SCSIQ_DW_REMAIN_XFER_CNT));
7085 scsiq->remain_bytes &= max_dma_count;
7086 return sg_queue_cnt;
7090 * asc_isr_callback() - Second Level Interrupt Handler called by AscISR().
7092 * Interrupt callback function for the Narrow SCSI Asc Library.
7094 static void asc_isr_callback(ASC_DVC_VAR *asc_dvc_varp, ASC_QDONE_INFO *qdonep)
7096 struct asc_board *boardp;
7097 struct scsi_cmnd *scp;
7098 struct Scsi_Host *shost;
7100 ASC_DBG(1, "asc_dvc_varp 0x%p, qdonep 0x%p\n", asc_dvc_varp, qdonep);
7101 ASC_DBG_PRT_ASC_QDONE_INFO(2, qdonep);
7103 scp = advansys_srb_to_ptr(asc_dvc_varp, qdonep->d2.srb_ptr);
7104 if (!scp)
7105 return;
7107 ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
7109 shost = scp->device->host;
7110 ASC_STATS(shost, callback);
7111 ASC_DBG(1, "shost 0x%p\n", shost);
7113 boardp = shost_priv(shost);
7114 BUG_ON(asc_dvc_varp != &boardp->dvc_var.asc_dvc_var);
7116 dma_unmap_single(boardp->dev, scp->SCp.dma_handle,
7117 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
7119 * 'qdonep' contains the command's ending status.
7121 switch (qdonep->d3.done_stat) {
7122 case QD_NO_ERROR:
7123 ASC_DBG(2, "QD_NO_ERROR\n");
7124 scp->result = 0;
7127 * Check for an underrun condition.
7129 * If there was no error and an underrun condition, then
7130 * return the number of underrun bytes.
7132 if (scsi_bufflen(scp) != 0 && qdonep->remain_bytes != 0 &&
7133 qdonep->remain_bytes <= scsi_bufflen(scp)) {
7134 ASC_DBG(1, "underrun condition %u bytes\n",
7135 (unsigned)qdonep->remain_bytes);
7136 scsi_set_resid(scp, qdonep->remain_bytes);
7138 break;
7140 case QD_WITH_ERROR:
7141 ASC_DBG(2, "QD_WITH_ERROR\n");
7142 switch (qdonep->d3.host_stat) {
7143 case QHSTA_NO_ERROR:
7144 if (qdonep->d3.scsi_stat == SAM_STAT_CHECK_CONDITION) {
7145 ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
7146 ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
7147 SCSI_SENSE_BUFFERSIZE);
7149 * Note: The 'status_byte()' macro used by
7150 * target drivers defined in scsi.h shifts the
7151 * status byte returned by host drivers right
7152 * by 1 bit. This is why target drivers also
7153 * use right shifted status byte definitions.
7154 * For instance target drivers use
7155 * CHECK_CONDITION, defined to 0x1, instead of
7156 * the SCSI defined check condition value of
7157 * 0x2. Host drivers are supposed to return
7158 * the status byte as it is defined by SCSI.
7160 scp->result = DRIVER_BYTE(DRIVER_SENSE) |
7161 STATUS_BYTE(qdonep->d3.scsi_stat);
7162 } else {
7163 scp->result = STATUS_BYTE(qdonep->d3.scsi_stat);
7165 break;
7167 default:
7168 /* QHSTA error occurred */
7169 ASC_DBG(1, "host_stat 0x%x\n", qdonep->d3.host_stat);
7170 scp->result = HOST_BYTE(DID_BAD_TARGET);
7171 break;
7173 break;
7175 case QD_ABORTED_BY_HOST:
7176 ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
7177 scp->result =
7178 HOST_BYTE(DID_ABORT) | MSG_BYTE(qdonep->d3.
7179 scsi_msg) |
7180 STATUS_BYTE(qdonep->d3.scsi_stat);
7181 break;
7183 default:
7184 ASC_DBG(1, "done_stat 0x%x\n", qdonep->d3.done_stat);
7185 scp->result =
7186 HOST_BYTE(DID_ERROR) | MSG_BYTE(qdonep->d3.
7187 scsi_msg) |
7188 STATUS_BYTE(qdonep->d3.scsi_stat);
7189 break;
7193 * If the 'init_tidmask' bit isn't already set for the target and the
7194 * current request finished normally, then set the bit for the target
7195 * to indicate that a device is present.
7197 if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
7198 qdonep->d3.done_stat == QD_NO_ERROR &&
7199 qdonep->d3.host_stat == QHSTA_NO_ERROR) {
7200 boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
7203 asc_scsi_done(scp);
7206 static int AscIsrQDone(ASC_DVC_VAR *asc_dvc)
7208 uchar next_qp;
7209 uchar n_q_used;
7210 uchar sg_list_qp;
7211 uchar sg_queue_cnt;
7212 uchar q_cnt;
7213 uchar done_q_tail;
7214 uchar tid_no;
7215 ASC_SCSI_BIT_ID_TYPE scsi_busy;
7216 ASC_SCSI_BIT_ID_TYPE target_id;
7217 PortAddr iop_base;
7218 ushort q_addr;
7219 ushort sg_q_addr;
7220 uchar cur_target_qng;
7221 ASC_QDONE_INFO scsiq_buf;
7222 ASC_QDONE_INFO *scsiq;
7223 int false_overrun;
7225 iop_base = asc_dvc->iop_base;
7226 n_q_used = 1;
7227 scsiq = (ASC_QDONE_INFO *)&scsiq_buf;
7228 done_q_tail = (uchar)AscGetVarDoneQTail(iop_base);
7229 q_addr = ASC_QNO_TO_QADDR(done_q_tail);
7230 next_qp = AscReadLramByte(iop_base,
7231 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_FWD));
7232 if (next_qp != ASC_QLINK_END) {
7233 AscPutVarDoneQTail(iop_base, next_qp);
7234 q_addr = ASC_QNO_TO_QADDR(next_qp);
7235 sg_queue_cnt = _AscCopyLramScsiDoneQ(iop_base, q_addr, scsiq,
7236 asc_dvc->max_dma_count);
7237 AscWriteLramByte(iop_base,
7238 (ushort)(q_addr +
7239 (ushort)ASC_SCSIQ_B_STATUS),
7240 (uchar)(scsiq->
7241 q_status & (uchar)~(QS_READY |
7242 QS_ABORTED)));
7243 tid_no = ASC_TIX_TO_TID(scsiq->d2.target_ix);
7244 target_id = ASC_TIX_TO_TARGET_ID(scsiq->d2.target_ix);
7245 if ((scsiq->cntl & QC_SG_HEAD) != 0) {
7246 sg_q_addr = q_addr;
7247 sg_list_qp = next_qp;
7248 for (q_cnt = 0; q_cnt < sg_queue_cnt; q_cnt++) {
7249 sg_list_qp = AscReadLramByte(iop_base,
7250 (ushort)(sg_q_addr
7251 + (ushort)
7252 ASC_SCSIQ_B_FWD));
7253 sg_q_addr = ASC_QNO_TO_QADDR(sg_list_qp);
7254 if (sg_list_qp == ASC_QLINK_END) {
7255 AscSetLibErrorCode(asc_dvc,
7256 ASCQ_ERR_SG_Q_LINKS);
7257 scsiq->d3.done_stat = QD_WITH_ERROR;
7258 scsiq->d3.host_stat =
7259 QHSTA_D_QDONE_SG_LIST_CORRUPTED;
7260 goto FATAL_ERR_QDONE;
7262 AscWriteLramByte(iop_base,
7263 (ushort)(sg_q_addr + (ushort)
7264 ASC_SCSIQ_B_STATUS),
7265 QS_FREE);
7267 n_q_used = sg_queue_cnt + 1;
7268 AscPutVarDoneQTail(iop_base, sg_list_qp);
7270 if (asc_dvc->queue_full_or_busy & target_id) {
7271 cur_target_qng = AscReadLramByte(iop_base,
7272 (ushort)((ushort)
7273 ASC_QADR_BEG
7274 + (ushort)
7275 scsiq->d2.
7276 target_ix));
7277 if (cur_target_qng < asc_dvc->max_dvc_qng[tid_no]) {
7278 scsi_busy = AscReadLramByte(iop_base, (ushort)
7279 ASCV_SCSIBUSY_B);
7280 scsi_busy &= ~target_id;
7281 AscWriteLramByte(iop_base,
7282 (ushort)ASCV_SCSIBUSY_B,
7283 scsi_busy);
7284 asc_dvc->queue_full_or_busy &= ~target_id;
7287 if (asc_dvc->cur_total_qng >= n_q_used) {
7288 asc_dvc->cur_total_qng -= n_q_used;
7289 if (asc_dvc->cur_dvc_qng[tid_no] != 0) {
7290 asc_dvc->cur_dvc_qng[tid_no]--;
7292 } else {
7293 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CUR_QNG);
7294 scsiq->d3.done_stat = QD_WITH_ERROR;
7295 goto FATAL_ERR_QDONE;
7297 if ((scsiq->d2.srb_ptr == 0UL) ||
7298 ((scsiq->q_status & QS_ABORTED) != 0)) {
7299 return (0x11);
7300 } else if (scsiq->q_status == QS_DONE) {
7301 false_overrun = FALSE;
7302 if (scsiq->extra_bytes != 0) {
7303 scsiq->remain_bytes +=
7304 (ADV_DCNT)scsiq->extra_bytes;
7306 if (scsiq->d3.done_stat == QD_WITH_ERROR) {
7307 if (scsiq->d3.host_stat ==
7308 QHSTA_M_DATA_OVER_RUN) {
7309 if ((scsiq->
7310 cntl & (QC_DATA_IN | QC_DATA_OUT))
7311 == 0) {
7312 scsiq->d3.done_stat =
7313 QD_NO_ERROR;
7314 scsiq->d3.host_stat =
7315 QHSTA_NO_ERROR;
7316 } else if (false_overrun) {
7317 scsiq->d3.done_stat =
7318 QD_NO_ERROR;
7319 scsiq->d3.host_stat =
7320 QHSTA_NO_ERROR;
7322 } else if (scsiq->d3.host_stat ==
7323 QHSTA_M_HUNG_REQ_SCSI_BUS_RESET) {
7324 AscStopChip(iop_base);
7325 AscSetChipControl(iop_base,
7326 (uchar)(CC_SCSI_RESET
7327 | CC_HALT));
7328 udelay(60);
7329 AscSetChipControl(iop_base, CC_HALT);
7330 AscSetChipStatus(iop_base,
7331 CIW_CLR_SCSI_RESET_INT);
7332 AscSetChipStatus(iop_base, 0);
7333 AscSetChipControl(iop_base, 0);
7336 if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
7337 asc_isr_callback(asc_dvc, scsiq);
7338 } else {
7339 if ((AscReadLramByte(iop_base,
7340 (ushort)(q_addr + (ushort)
7341 ASC_SCSIQ_CDB_BEG))
7342 == START_STOP)) {
7343 asc_dvc->unit_not_ready &= ~target_id;
7344 if (scsiq->d3.done_stat != QD_NO_ERROR) {
7345 asc_dvc->start_motor &=
7346 ~target_id;
7350 return (1);
7351 } else {
7352 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_Q_STATUS);
7353 FATAL_ERR_QDONE:
7354 if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
7355 asc_isr_callback(asc_dvc, scsiq);
7357 return (0x80);
7360 return (0);
7363 static int AscISR(ASC_DVC_VAR *asc_dvc)
7365 ASC_CS_TYPE chipstat;
7366 PortAddr iop_base;
7367 ushort saved_ram_addr;
7368 uchar ctrl_reg;
7369 uchar saved_ctrl_reg;
7370 int int_pending;
7371 int status;
7372 uchar host_flag;
7374 iop_base = asc_dvc->iop_base;
7375 int_pending = FALSE;
7377 if (AscIsIntPending(iop_base) == 0)
7378 return int_pending;
7380 if ((asc_dvc->init_state & ASC_INIT_STATE_END_LOAD_MC) == 0) {
7381 return ERR;
7383 if (asc_dvc->in_critical_cnt != 0) {
7384 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_ON_CRITICAL);
7385 return ERR;
7387 if (asc_dvc->is_in_int) {
7388 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_RE_ENTRY);
7389 return ERR;
7391 asc_dvc->is_in_int = TRUE;
7392 ctrl_reg = AscGetChipControl(iop_base);
7393 saved_ctrl_reg = ctrl_reg & (~(CC_SCSI_RESET | CC_CHIP_RESET |
7394 CC_SINGLE_STEP | CC_DIAG | CC_TEST));
7395 chipstat = AscGetChipStatus(iop_base);
7396 if (chipstat & CSW_SCSI_RESET_LATCH) {
7397 if (!(asc_dvc->bus_type & (ASC_IS_VL | ASC_IS_EISA))) {
7398 int i = 10;
7399 int_pending = TRUE;
7400 asc_dvc->sdtr_done = 0;
7401 saved_ctrl_reg &= (uchar)(~CC_HALT);
7402 while ((AscGetChipStatus(iop_base) &
7403 CSW_SCSI_RESET_ACTIVE) && (i-- > 0)) {
7404 mdelay(100);
7406 AscSetChipControl(iop_base, (CC_CHIP_RESET | CC_HALT));
7407 AscSetChipControl(iop_base, CC_HALT);
7408 AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
7409 AscSetChipStatus(iop_base, 0);
7410 chipstat = AscGetChipStatus(iop_base);
7413 saved_ram_addr = AscGetChipLramAddr(iop_base);
7414 host_flag = AscReadLramByte(iop_base,
7415 ASCV_HOST_FLAG_B) &
7416 (uchar)(~ASC_HOST_FLAG_IN_ISR);
7417 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
7418 (uchar)(host_flag | (uchar)ASC_HOST_FLAG_IN_ISR));
7419 if ((chipstat & CSW_INT_PENDING) || (int_pending)) {
7420 AscAckInterrupt(iop_base);
7421 int_pending = TRUE;
7422 if ((chipstat & CSW_HALTED) && (ctrl_reg & CC_SINGLE_STEP)) {
7423 if (AscIsrChipHalted(asc_dvc) == ERR) {
7424 goto ISR_REPORT_QDONE_FATAL_ERROR;
7425 } else {
7426 saved_ctrl_reg &= (uchar)(~CC_HALT);
7428 } else {
7429 ISR_REPORT_QDONE_FATAL_ERROR:
7430 if ((asc_dvc->dvc_cntl & ASC_CNTL_INT_MULTI_Q) != 0) {
7431 while (((status =
7432 AscIsrQDone(asc_dvc)) & 0x01) != 0) {
7434 } else {
7435 do {
7436 if ((status =
7437 AscIsrQDone(asc_dvc)) == 1) {
7438 break;
7440 } while (status == 0x11);
7442 if ((status & 0x80) != 0)
7443 int_pending = ERR;
7446 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
7447 AscSetChipLramAddr(iop_base, saved_ram_addr);
7448 AscSetChipControl(iop_base, saved_ctrl_reg);
7449 asc_dvc->is_in_int = FALSE;
7450 return int_pending;
7454 * advansys_reset()
7456 * Reset the bus associated with the command 'scp'.
7458 * This function runs its own thread. Interrupts must be blocked but
7459 * sleeping is allowed and no locking other than for host structures is
7460 * required. Returns SUCCESS or FAILED.
7462 static int advansys_reset(struct scsi_cmnd *scp)
7464 struct Scsi_Host *shost = scp->device->host;
7465 struct asc_board *boardp = shost_priv(shost);
7466 unsigned long flags;
7467 int status;
7468 int ret = SUCCESS;
7470 ASC_DBG(1, "0x%p\n", scp);
7472 ASC_STATS(shost, reset);
7474 scmd_printk(KERN_INFO, scp, "SCSI bus reset started...\n");
7476 if (ASC_NARROW_BOARD(boardp)) {
7477 ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
7479 /* Reset the chip and SCSI bus. */
7480 ASC_DBG(1, "before AscInitAsc1000Driver()\n");
7481 status = AscInitAsc1000Driver(asc_dvc);
7483 /* Refer to ASC_IERR_* definitions for meaning of 'err_code'. */
7484 if (asc_dvc->err_code || !asc_dvc->overrun_dma) {
7485 scmd_printk(KERN_INFO, scp, "SCSI bus reset error: "
7486 "0x%x, status: 0x%x\n", asc_dvc->err_code,
7487 status);
7488 ret = FAILED;
7489 } else if (status) {
7490 scmd_printk(KERN_INFO, scp, "SCSI bus reset warning: "
7491 "0x%x\n", status);
7492 } else {
7493 scmd_printk(KERN_INFO, scp, "SCSI bus reset "
7494 "successful\n");
7497 ASC_DBG(1, "after AscInitAsc1000Driver()\n");
7498 spin_lock_irqsave(shost->host_lock, flags);
7499 } else {
7501 * If the suggest reset bus flags are set, then reset the bus.
7502 * Otherwise only reset the device.
7504 ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
7507 * Reset the target's SCSI bus.
7509 ASC_DBG(1, "before AdvResetChipAndSB()\n");
7510 switch (AdvResetChipAndSB(adv_dvc)) {
7511 case ASC_TRUE:
7512 scmd_printk(KERN_INFO, scp, "SCSI bus reset "
7513 "successful\n");
7514 break;
7515 case ASC_FALSE:
7516 default:
7517 scmd_printk(KERN_INFO, scp, "SCSI bus reset error\n");
7518 ret = FAILED;
7519 break;
7521 spin_lock_irqsave(shost->host_lock, flags);
7522 AdvISR(adv_dvc);
7525 /* Save the time of the most recently completed reset. */
7526 boardp->last_reset = jiffies;
7527 spin_unlock_irqrestore(shost->host_lock, flags);
7529 ASC_DBG(1, "ret %d\n", ret);
7531 return ret;
7535 * advansys_biosparam()
7537 * Translate disk drive geometry if the "BIOS greater than 1 GB"
7538 * support is enabled for a drive.
7540 * ip (information pointer) is an int array with the following definition:
7541 * ip[0]: heads
7542 * ip[1]: sectors
7543 * ip[2]: cylinders
7545 static int
7546 advansys_biosparam(struct scsi_device *sdev, struct block_device *bdev,
7547 sector_t capacity, int ip[])
7549 struct asc_board *boardp = shost_priv(sdev->host);
7551 ASC_DBG(1, "begin\n");
7552 ASC_STATS(sdev->host, biosparam);
7553 if (ASC_NARROW_BOARD(boardp)) {
7554 if ((boardp->dvc_var.asc_dvc_var.dvc_cntl &
7555 ASC_CNTL_BIOS_GT_1GB) && capacity > 0x200000) {
7556 ip[0] = 255;
7557 ip[1] = 63;
7558 } else {
7559 ip[0] = 64;
7560 ip[1] = 32;
7562 } else {
7563 if ((boardp->dvc_var.adv_dvc_var.bios_ctrl &
7564 BIOS_CTRL_EXTENDED_XLAT) && capacity > 0x200000) {
7565 ip[0] = 255;
7566 ip[1] = 63;
7567 } else {
7568 ip[0] = 64;
7569 ip[1] = 32;
7572 ip[2] = (unsigned long)capacity / (ip[0] * ip[1]);
7573 ASC_DBG(1, "end\n");
7574 return 0;
7578 * First-level interrupt handler.
7580 * 'dev_id' is a pointer to the interrupting adapter's Scsi_Host.
7582 static irqreturn_t advansys_interrupt(int irq, void *dev_id)
7584 struct Scsi_Host *shost = dev_id;
7585 struct asc_board *boardp = shost_priv(shost);
7586 irqreturn_t result = IRQ_NONE;
7588 ASC_DBG(2, "boardp 0x%p\n", boardp);
7589 spin_lock(shost->host_lock);
7590 if (ASC_NARROW_BOARD(boardp)) {
7591 if (AscIsIntPending(shost->io_port)) {
7592 result = IRQ_HANDLED;
7593 ASC_STATS(shost, interrupt);
7594 ASC_DBG(1, "before AscISR()\n");
7595 AscISR(&boardp->dvc_var.asc_dvc_var);
7597 } else {
7598 ASC_DBG(1, "before AdvISR()\n");
7599 if (AdvISR(&boardp->dvc_var.adv_dvc_var)) {
7600 result = IRQ_HANDLED;
7601 ASC_STATS(shost, interrupt);
7604 spin_unlock(shost->host_lock);
7606 ASC_DBG(1, "end\n");
7607 return result;
7610 static int AscHostReqRiscHalt(PortAddr iop_base)
7612 int count = 0;
7613 int sta = 0;
7614 uchar saved_stop_code;
7616 if (AscIsChipHalted(iop_base))
7617 return (1);
7618 saved_stop_code = AscReadLramByte(iop_base, ASCV_STOP_CODE_B);
7619 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
7620 ASC_STOP_HOST_REQ_RISC_HALT | ASC_STOP_REQ_RISC_STOP);
7621 do {
7622 if (AscIsChipHalted(iop_base)) {
7623 sta = 1;
7624 break;
7626 mdelay(100);
7627 } while (count++ < 20);
7628 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, saved_stop_code);
7629 return (sta);
7632 static int
7633 AscSetRunChipSynRegAtID(PortAddr iop_base, uchar tid_no, uchar sdtr_data)
7635 int sta = FALSE;
7637 if (AscHostReqRiscHalt(iop_base)) {
7638 sta = AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
7639 AscStartChip(iop_base);
7641 return sta;
7644 static void AscAsyncFix(ASC_DVC_VAR *asc_dvc, struct scsi_device *sdev)
7646 char type = sdev->type;
7647 ASC_SCSI_BIT_ID_TYPE tid_bits = 1 << sdev->id;
7649 if (!(asc_dvc->bug_fix_cntl & ASC_BUG_FIX_ASYN_USE_SYN))
7650 return;
7651 if (asc_dvc->init_sdtr & tid_bits)
7652 return;
7654 if ((type == TYPE_ROM) && (strncmp(sdev->vendor, "HP ", 3) == 0))
7655 asc_dvc->pci_fix_asyn_xfer_always |= tid_bits;
7657 asc_dvc->pci_fix_asyn_xfer |= tid_bits;
7658 if ((type == TYPE_PROCESSOR) || (type == TYPE_SCANNER) ||
7659 (type == TYPE_ROM) || (type == TYPE_TAPE))
7660 asc_dvc->pci_fix_asyn_xfer &= ~tid_bits;
7662 if (asc_dvc->pci_fix_asyn_xfer & tid_bits)
7663 AscSetRunChipSynRegAtID(asc_dvc->iop_base, sdev->id,
7664 ASYN_SDTR_DATA_FIX_PCI_REV_AB);
7667 static void
7668 advansys_narrow_slave_configure(struct scsi_device *sdev, ASC_DVC_VAR *asc_dvc)
7670 ASC_SCSI_BIT_ID_TYPE tid_bit = 1 << sdev->id;
7671 ASC_SCSI_BIT_ID_TYPE orig_use_tagged_qng = asc_dvc->use_tagged_qng;
7673 if (sdev->lun == 0) {
7674 ASC_SCSI_BIT_ID_TYPE orig_init_sdtr = asc_dvc->init_sdtr;
7675 if ((asc_dvc->cfg->sdtr_enable & tid_bit) && sdev->sdtr) {
7676 asc_dvc->init_sdtr |= tid_bit;
7677 } else {
7678 asc_dvc->init_sdtr &= ~tid_bit;
7681 if (orig_init_sdtr != asc_dvc->init_sdtr)
7682 AscAsyncFix(asc_dvc, sdev);
7685 if (sdev->tagged_supported) {
7686 if (asc_dvc->cfg->cmd_qng_enabled & tid_bit) {
7687 if (sdev->lun == 0) {
7688 asc_dvc->cfg->can_tagged_qng |= tid_bit;
7689 asc_dvc->use_tagged_qng |= tid_bit;
7691 scsi_change_queue_depth(sdev,
7692 asc_dvc->max_dvc_qng[sdev->id]);
7694 } else {
7695 if (sdev->lun == 0) {
7696 asc_dvc->cfg->can_tagged_qng &= ~tid_bit;
7697 asc_dvc->use_tagged_qng &= ~tid_bit;
7701 if ((sdev->lun == 0) &&
7702 (orig_use_tagged_qng != asc_dvc->use_tagged_qng)) {
7703 AscWriteLramByte(asc_dvc->iop_base, ASCV_DISC_ENABLE_B,
7704 asc_dvc->cfg->disc_enable);
7705 AscWriteLramByte(asc_dvc->iop_base, ASCV_USE_TAGGED_QNG_B,
7706 asc_dvc->use_tagged_qng);
7707 AscWriteLramByte(asc_dvc->iop_base, ASCV_CAN_TAGGED_QNG_B,
7708 asc_dvc->cfg->can_tagged_qng);
7710 asc_dvc->max_dvc_qng[sdev->id] =
7711 asc_dvc->cfg->max_tag_qng[sdev->id];
7712 AscWriteLramByte(asc_dvc->iop_base,
7713 (ushort)(ASCV_MAX_DVC_QNG_BEG + sdev->id),
7714 asc_dvc->max_dvc_qng[sdev->id]);
7719 * Wide Transfers
7721 * If the EEPROM enabled WDTR for the device and the device supports wide
7722 * bus (16 bit) transfers, then turn on the device's 'wdtr_able' bit and
7723 * write the new value to the microcode.
7725 static void
7726 advansys_wide_enable_wdtr(AdvPortAddr iop_base, unsigned short tidmask)
7728 unsigned short cfg_word;
7729 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
7730 if ((cfg_word & tidmask) != 0)
7731 return;
7733 cfg_word |= tidmask;
7734 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
7737 * Clear the microcode SDTR and WDTR negotiation done indicators for
7738 * the target to cause it to negotiate with the new setting set above.
7739 * WDTR when accepted causes the target to enter asynchronous mode, so
7740 * SDTR must be negotiated.
7742 AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7743 cfg_word &= ~tidmask;
7744 AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7745 AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
7746 cfg_word &= ~tidmask;
7747 AdvWriteWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
7751 * Synchronous Transfers
7753 * If the EEPROM enabled SDTR for the device and the device
7754 * supports synchronous transfers, then turn on the device's
7755 * 'sdtr_able' bit. Write the new value to the microcode.
7757 static void
7758 advansys_wide_enable_sdtr(AdvPortAddr iop_base, unsigned short tidmask)
7760 unsigned short cfg_word;
7761 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
7762 if ((cfg_word & tidmask) != 0)
7763 return;
7765 cfg_word |= tidmask;
7766 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
7769 * Clear the microcode "SDTR negotiation" done indicator for the
7770 * target to cause it to negotiate with the new setting set above.
7772 AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7773 cfg_word &= ~tidmask;
7774 AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7778 * PPR (Parallel Protocol Request) Capable
7780 * If the device supports DT mode, then it must be PPR capable.
7781 * The PPR message will be used in place of the SDTR and WDTR
7782 * messages to negotiate synchronous speed and offset, transfer
7783 * width, and protocol options.
7785 static void advansys_wide_enable_ppr(ADV_DVC_VAR *adv_dvc,
7786 AdvPortAddr iop_base, unsigned short tidmask)
7788 AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
7789 adv_dvc->ppr_able |= tidmask;
7790 AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
7793 static void
7794 advansys_wide_slave_configure(struct scsi_device *sdev, ADV_DVC_VAR *adv_dvc)
7796 AdvPortAddr iop_base = adv_dvc->iop_base;
7797 unsigned short tidmask = 1 << sdev->id;
7799 if (sdev->lun == 0) {
7801 * Handle WDTR, SDTR, and Tag Queuing. If the feature
7802 * is enabled in the EEPROM and the device supports the
7803 * feature, then enable it in the microcode.
7806 if ((adv_dvc->wdtr_able & tidmask) && sdev->wdtr)
7807 advansys_wide_enable_wdtr(iop_base, tidmask);
7808 if ((adv_dvc->sdtr_able & tidmask) && sdev->sdtr)
7809 advansys_wide_enable_sdtr(iop_base, tidmask);
7810 if (adv_dvc->chip_type == ADV_CHIP_ASC38C1600 && sdev->ppr)
7811 advansys_wide_enable_ppr(adv_dvc, iop_base, tidmask);
7814 * Tag Queuing is disabled for the BIOS which runs in polled
7815 * mode and would see no benefit from Tag Queuing. Also by
7816 * disabling Tag Queuing in the BIOS devices with Tag Queuing
7817 * bugs will at least work with the BIOS.
7819 if ((adv_dvc->tagqng_able & tidmask) &&
7820 sdev->tagged_supported) {
7821 unsigned short cfg_word;
7822 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, cfg_word);
7823 cfg_word |= tidmask;
7824 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
7825 cfg_word);
7826 AdvWriteByteLram(iop_base,
7827 ASC_MC_NUMBER_OF_MAX_CMD + sdev->id,
7828 adv_dvc->max_dvc_qng);
7832 if ((adv_dvc->tagqng_able & tidmask) && sdev->tagged_supported)
7833 scsi_change_queue_depth(sdev, adv_dvc->max_dvc_qng);
7837 * Set the number of commands to queue per device for the
7838 * specified host adapter.
7840 static int advansys_slave_configure(struct scsi_device *sdev)
7842 struct asc_board *boardp = shost_priv(sdev->host);
7844 if (ASC_NARROW_BOARD(boardp))
7845 advansys_narrow_slave_configure(sdev,
7846 &boardp->dvc_var.asc_dvc_var);
7847 else
7848 advansys_wide_slave_configure(sdev,
7849 &boardp->dvc_var.adv_dvc_var);
7851 return 0;
7854 static __le32 advansys_get_sense_buffer_dma(struct scsi_cmnd *scp)
7856 struct asc_board *board = shost_priv(scp->device->host);
7857 scp->SCp.dma_handle = dma_map_single(board->dev, scp->sense_buffer,
7858 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
7859 dma_cache_sync(board->dev, scp->sense_buffer,
7860 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
7861 return cpu_to_le32(scp->SCp.dma_handle);
7864 static int asc_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
7865 struct asc_scsi_q *asc_scsi_q)
7867 struct asc_dvc_var *asc_dvc = &boardp->dvc_var.asc_dvc_var;
7868 int use_sg;
7870 memset(asc_scsi_q, 0, sizeof(*asc_scsi_q));
7873 * Point the ASC_SCSI_Q to the 'struct scsi_cmnd'.
7875 asc_scsi_q->q2.srb_ptr = advansys_ptr_to_srb(asc_dvc, scp);
7876 if (asc_scsi_q->q2.srb_ptr == BAD_SRB) {
7877 scp->result = HOST_BYTE(DID_SOFT_ERROR);
7878 return ASC_ERROR;
7882 * Build the ASC_SCSI_Q request.
7884 asc_scsi_q->cdbptr = &scp->cmnd[0];
7885 asc_scsi_q->q2.cdb_len = scp->cmd_len;
7886 asc_scsi_q->q1.target_id = ASC_TID_TO_TARGET_ID(scp->device->id);
7887 asc_scsi_q->q1.target_lun = scp->device->lun;
7888 asc_scsi_q->q2.target_ix =
7889 ASC_TIDLUN_TO_IX(scp->device->id, scp->device->lun);
7890 asc_scsi_q->q1.sense_addr = advansys_get_sense_buffer_dma(scp);
7891 asc_scsi_q->q1.sense_len = SCSI_SENSE_BUFFERSIZE;
7894 * If there are any outstanding requests for the current target,
7895 * then every 255th request send an ORDERED request. This heuristic
7896 * tries to retain the benefit of request sorting while preventing
7897 * request starvation. 255 is the max number of tags or pending commands
7898 * a device may have outstanding.
7900 * The request count is incremented below for every successfully
7901 * started request.
7904 if ((asc_dvc->cur_dvc_qng[scp->device->id] > 0) &&
7905 (boardp->reqcnt[scp->device->id] % 255) == 0) {
7906 asc_scsi_q->q2.tag_code = ORDERED_QUEUE_TAG;
7907 } else {
7908 asc_scsi_q->q2.tag_code = SIMPLE_QUEUE_TAG;
7911 /* Build ASC_SCSI_Q */
7912 use_sg = scsi_dma_map(scp);
7913 if (use_sg != 0) {
7914 int sgcnt;
7915 struct scatterlist *slp;
7916 struct asc_sg_head *asc_sg_head;
7918 if (use_sg > scp->device->host->sg_tablesize) {
7919 scmd_printk(KERN_ERR, scp, "use_sg %d > "
7920 "sg_tablesize %d\n", use_sg,
7921 scp->device->host->sg_tablesize);
7922 scsi_dma_unmap(scp);
7923 scp->result = HOST_BYTE(DID_ERROR);
7924 return ASC_ERROR;
7927 asc_sg_head = kzalloc(sizeof(asc_scsi_q->sg_head) +
7928 use_sg * sizeof(struct asc_sg_list), GFP_ATOMIC);
7929 if (!asc_sg_head) {
7930 scsi_dma_unmap(scp);
7931 scp->result = HOST_BYTE(DID_SOFT_ERROR);
7932 return ASC_ERROR;
7935 asc_scsi_q->q1.cntl |= QC_SG_HEAD;
7936 asc_scsi_q->sg_head = asc_sg_head;
7937 asc_scsi_q->q1.data_cnt = 0;
7938 asc_scsi_q->q1.data_addr = 0;
7939 /* This is a byte value, otherwise it would need to be swapped. */
7940 asc_sg_head->entry_cnt = asc_scsi_q->q1.sg_queue_cnt = use_sg;
7941 ASC_STATS_ADD(scp->device->host, xfer_elem,
7942 asc_sg_head->entry_cnt);
7945 * Convert scatter-gather list into ASC_SG_HEAD list.
7947 scsi_for_each_sg(scp, slp, use_sg, sgcnt) {
7948 asc_sg_head->sg_list[sgcnt].addr =
7949 cpu_to_le32(sg_dma_address(slp));
7950 asc_sg_head->sg_list[sgcnt].bytes =
7951 cpu_to_le32(sg_dma_len(slp));
7952 ASC_STATS_ADD(scp->device->host, xfer_sect,
7953 DIV_ROUND_UP(sg_dma_len(slp), 512));
7957 ASC_STATS(scp->device->host, xfer_cnt);
7959 ASC_DBG_PRT_ASC_SCSI_Q(2, asc_scsi_q);
7960 ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
7962 return ASC_NOERROR;
7966 * Build scatter-gather list for Adv Library (Wide Board).
7968 * Additional ADV_SG_BLOCK structures will need to be allocated
7969 * if the total number of scatter-gather elements exceeds
7970 * NO_OF_SG_PER_BLOCK (15). The ADV_SG_BLOCK structures are
7971 * assumed to be physically contiguous.
7973 * Return:
7974 * ADV_SUCCESS(1) - SG List successfully created
7975 * ADV_ERROR(-1) - SG List creation failed
7977 static int
7978 adv_get_sglist(struct asc_board *boardp, adv_req_t *reqp, struct scsi_cmnd *scp,
7979 int use_sg)
7981 adv_sgblk_t *sgblkp;
7982 ADV_SCSI_REQ_Q *scsiqp;
7983 struct scatterlist *slp;
7984 int sg_elem_cnt;
7985 ADV_SG_BLOCK *sg_block, *prev_sg_block;
7986 ADV_PADDR sg_block_paddr;
7987 int i;
7989 scsiqp = (ADV_SCSI_REQ_Q *)ADV_32BALIGN(&reqp->scsi_req_q);
7990 slp = scsi_sglist(scp);
7991 sg_elem_cnt = use_sg;
7992 prev_sg_block = NULL;
7993 reqp->sgblkp = NULL;
7995 for (;;) {
7997 * Allocate a 'adv_sgblk_t' structure from the board free
7998 * list. One 'adv_sgblk_t' structure holds NO_OF_SG_PER_BLOCK
7999 * (15) scatter-gather elements.
8001 if ((sgblkp = boardp->adv_sgblkp) == NULL) {
8002 ASC_DBG(1, "no free adv_sgblk_t\n");
8003 ASC_STATS(scp->device->host, adv_build_nosg);
8006 * Allocation failed. Free 'adv_sgblk_t' structures
8007 * already allocated for the request.
8009 while ((sgblkp = reqp->sgblkp) != NULL) {
8010 /* Remove 'sgblkp' from the request list. */
8011 reqp->sgblkp = sgblkp->next_sgblkp;
8013 /* Add 'sgblkp' to the board free list. */
8014 sgblkp->next_sgblkp = boardp->adv_sgblkp;
8015 boardp->adv_sgblkp = sgblkp;
8017 return ASC_BUSY;
8020 /* Complete 'adv_sgblk_t' board allocation. */
8021 boardp->adv_sgblkp = sgblkp->next_sgblkp;
8022 sgblkp->next_sgblkp = NULL;
8025 * Get 8 byte aligned virtual and physical addresses
8026 * for the allocated ADV_SG_BLOCK structure.
8028 sg_block = (ADV_SG_BLOCK *)ADV_8BALIGN(&sgblkp->sg_block);
8029 sg_block_paddr = virt_to_bus(sg_block);
8032 * Check if this is the first 'adv_sgblk_t' for the
8033 * request.
8035 if (reqp->sgblkp == NULL) {
8036 /* Request's first scatter-gather block. */
8037 reqp->sgblkp = sgblkp;
8040 * Set ADV_SCSI_REQ_T ADV_SG_BLOCK virtual and physical
8041 * address pointers.
8043 scsiqp->sg_list_ptr = sg_block;
8044 scsiqp->sg_real_addr = cpu_to_le32(sg_block_paddr);
8045 } else {
8046 /* Request's second or later scatter-gather block. */
8047 sgblkp->next_sgblkp = reqp->sgblkp;
8048 reqp->sgblkp = sgblkp;
8051 * Point the previous ADV_SG_BLOCK structure to
8052 * the newly allocated ADV_SG_BLOCK structure.
8054 prev_sg_block->sg_ptr = cpu_to_le32(sg_block_paddr);
8057 for (i = 0; i < NO_OF_SG_PER_BLOCK; i++) {
8058 sg_block->sg_list[i].sg_addr =
8059 cpu_to_le32(sg_dma_address(slp));
8060 sg_block->sg_list[i].sg_count =
8061 cpu_to_le32(sg_dma_len(slp));
8062 ASC_STATS_ADD(scp->device->host, xfer_sect,
8063 DIV_ROUND_UP(sg_dma_len(slp), 512));
8065 if (--sg_elem_cnt == 0) { /* Last ADV_SG_BLOCK and scatter-gather entry. */
8066 sg_block->sg_cnt = i + 1;
8067 sg_block->sg_ptr = 0L; /* Last ADV_SG_BLOCK in list. */
8068 return ADV_SUCCESS;
8070 slp++;
8072 sg_block->sg_cnt = NO_OF_SG_PER_BLOCK;
8073 prev_sg_block = sg_block;
8078 * Build a request structure for the Adv Library (Wide Board).
8080 * If an adv_req_t can not be allocated to issue the request,
8081 * then return ASC_BUSY. If an error occurs, then return ASC_ERROR.
8083 * Multi-byte fields in the ASC_SCSI_REQ_Q that are used by the
8084 * microcode for DMA addresses or math operations are byte swapped
8085 * to little-endian order.
8087 static int
8088 adv_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
8089 ADV_SCSI_REQ_Q **adv_scsiqpp)
8091 adv_req_t *reqp;
8092 ADV_SCSI_REQ_Q *scsiqp;
8093 int i;
8094 int ret;
8095 int use_sg;
8098 * Allocate an adv_req_t structure from the board to execute
8099 * the command.
8101 if (boardp->adv_reqp == NULL) {
8102 ASC_DBG(1, "no free adv_req_t\n");
8103 ASC_STATS(scp->device->host, adv_build_noreq);
8104 return ASC_BUSY;
8105 } else {
8106 reqp = boardp->adv_reqp;
8107 boardp->adv_reqp = reqp->next_reqp;
8108 reqp->next_reqp = NULL;
8112 * Get 32-byte aligned ADV_SCSI_REQ_Q and ADV_SG_BLOCK pointers.
8114 scsiqp = (ADV_SCSI_REQ_Q *)ADV_32BALIGN(&reqp->scsi_req_q);
8117 * Initialize the structure.
8119 scsiqp->cntl = scsiqp->scsi_cntl = scsiqp->done_status = 0;
8122 * Set the ADV_SCSI_REQ_Q 'srb_ptr' to point to the adv_req_t structure.
8124 scsiqp->srb_ptr = ADV_VADDR_TO_U32(reqp);
8127 * Set the adv_req_t 'cmndp' to point to the struct scsi_cmnd structure.
8129 reqp->cmndp = scp;
8132 * Build the ADV_SCSI_REQ_Q request.
8135 /* Set CDB length and copy it to the request structure. */
8136 scsiqp->cdb_len = scp->cmd_len;
8137 /* Copy first 12 CDB bytes to cdb[]. */
8138 for (i = 0; i < scp->cmd_len && i < 12; i++) {
8139 scsiqp->cdb[i] = scp->cmnd[i];
8141 /* Copy last 4 CDB bytes, if present, to cdb16[]. */
8142 for (; i < scp->cmd_len; i++) {
8143 scsiqp->cdb16[i - 12] = scp->cmnd[i];
8146 scsiqp->target_id = scp->device->id;
8147 scsiqp->target_lun = scp->device->lun;
8149 scsiqp->sense_addr = cpu_to_le32(virt_to_bus(&scp->sense_buffer[0]));
8150 scsiqp->sense_len = SCSI_SENSE_BUFFERSIZE;
8152 /* Build ADV_SCSI_REQ_Q */
8154 use_sg = scsi_dma_map(scp);
8155 if (use_sg == 0) {
8156 /* Zero-length transfer */
8157 reqp->sgblkp = NULL;
8158 scsiqp->data_cnt = 0;
8159 scsiqp->vdata_addr = NULL;
8161 scsiqp->data_addr = 0;
8162 scsiqp->sg_list_ptr = NULL;
8163 scsiqp->sg_real_addr = 0;
8164 } else {
8165 if (use_sg > ADV_MAX_SG_LIST) {
8166 scmd_printk(KERN_ERR, scp, "use_sg %d > "
8167 "ADV_MAX_SG_LIST %d\n", use_sg,
8168 scp->device->host->sg_tablesize);
8169 scsi_dma_unmap(scp);
8170 scp->result = HOST_BYTE(DID_ERROR);
8173 * Free the 'adv_req_t' structure by adding it back
8174 * to the board free list.
8176 reqp->next_reqp = boardp->adv_reqp;
8177 boardp->adv_reqp = reqp;
8179 return ASC_ERROR;
8182 scsiqp->data_cnt = cpu_to_le32(scsi_bufflen(scp));
8184 ret = adv_get_sglist(boardp, reqp, scp, use_sg);
8185 if (ret != ADV_SUCCESS) {
8187 * Free the adv_req_t structure by adding it back to
8188 * the board free list.
8190 reqp->next_reqp = boardp->adv_reqp;
8191 boardp->adv_reqp = reqp;
8193 return ret;
8196 ASC_STATS_ADD(scp->device->host, xfer_elem, use_sg);
8199 ASC_STATS(scp->device->host, xfer_cnt);
8201 ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
8202 ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
8204 *adv_scsiqpp = scsiqp;
8206 return ASC_NOERROR;
8209 static int AscSgListToQueue(int sg_list)
8211 int n_sg_list_qs;
8213 n_sg_list_qs = ((sg_list - 1) / ASC_SG_LIST_PER_Q);
8214 if (((sg_list - 1) % ASC_SG_LIST_PER_Q) != 0)
8215 n_sg_list_qs++;
8216 return n_sg_list_qs + 1;
8219 static uint
8220 AscGetNumOfFreeQueue(ASC_DVC_VAR *asc_dvc, uchar target_ix, uchar n_qs)
8222 uint cur_used_qs;
8223 uint cur_free_qs;
8224 ASC_SCSI_BIT_ID_TYPE target_id;
8225 uchar tid_no;
8227 target_id = ASC_TIX_TO_TARGET_ID(target_ix);
8228 tid_no = ASC_TIX_TO_TID(target_ix);
8229 if ((asc_dvc->unit_not_ready & target_id) ||
8230 (asc_dvc->queue_full_or_busy & target_id)) {
8231 return 0;
8233 if (n_qs == 1) {
8234 cur_used_qs = (uint) asc_dvc->cur_total_qng +
8235 (uint) asc_dvc->last_q_shortage + (uint) ASC_MIN_FREE_Q;
8236 } else {
8237 cur_used_qs = (uint) asc_dvc->cur_total_qng +
8238 (uint) ASC_MIN_FREE_Q;
8240 if ((uint) (cur_used_qs + n_qs) <= (uint) asc_dvc->max_total_qng) {
8241 cur_free_qs = (uint) asc_dvc->max_total_qng - cur_used_qs;
8242 if (asc_dvc->cur_dvc_qng[tid_no] >=
8243 asc_dvc->max_dvc_qng[tid_no]) {
8244 return 0;
8246 return cur_free_qs;
8248 if (n_qs > 1) {
8249 if ((n_qs > asc_dvc->last_q_shortage)
8250 && (n_qs <= (asc_dvc->max_total_qng - ASC_MIN_FREE_Q))) {
8251 asc_dvc->last_q_shortage = n_qs;
8254 return 0;
8257 static uchar AscAllocFreeQueue(PortAddr iop_base, uchar free_q_head)
8259 ushort q_addr;
8260 uchar next_qp;
8261 uchar q_status;
8263 q_addr = ASC_QNO_TO_QADDR(free_q_head);
8264 q_status = (uchar)AscReadLramByte(iop_base,
8265 (ushort)(q_addr +
8266 ASC_SCSIQ_B_STATUS));
8267 next_qp = AscReadLramByte(iop_base, (ushort)(q_addr + ASC_SCSIQ_B_FWD));
8268 if (((q_status & QS_READY) == 0) && (next_qp != ASC_QLINK_END))
8269 return next_qp;
8270 return ASC_QLINK_END;
8273 static uchar
8274 AscAllocMultipleFreeQueue(PortAddr iop_base, uchar free_q_head, uchar n_free_q)
8276 uchar i;
8278 for (i = 0; i < n_free_q; i++) {
8279 free_q_head = AscAllocFreeQueue(iop_base, free_q_head);
8280 if (free_q_head == ASC_QLINK_END)
8281 break;
8283 return free_q_head;
8287 * void
8288 * DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
8290 * Calling/Exit State:
8291 * none
8293 * Description:
8294 * Output an ASC_SCSI_Q structure to the chip
8296 static void
8297 DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
8299 int i;
8301 ASC_DBG_PRT_HEX(2, "DvcPutScsiQ", outbuf, 2 * words);
8302 AscSetChipLramAddr(iop_base, s_addr);
8303 for (i = 0; i < 2 * words; i += 2) {
8304 if (i == 4 || i == 20) {
8305 continue;
8307 outpw(iop_base + IOP_RAM_DATA,
8308 ((ushort)outbuf[i + 1] << 8) | outbuf[i]);
8312 static int AscPutReadyQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
8314 ushort q_addr;
8315 uchar tid_no;
8316 uchar sdtr_data;
8317 uchar syn_period_ix;
8318 uchar syn_offset;
8319 PortAddr iop_base;
8321 iop_base = asc_dvc->iop_base;
8322 if (((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) &&
8323 ((asc_dvc->sdtr_done & scsiq->q1.target_id) == 0)) {
8324 tid_no = ASC_TIX_TO_TID(scsiq->q2.target_ix);
8325 sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
8326 syn_period_ix =
8327 (sdtr_data >> 4) & (asc_dvc->max_sdtr_index - 1);
8328 syn_offset = sdtr_data & ASC_SYN_MAX_OFFSET;
8329 AscMsgOutSDTR(asc_dvc,
8330 asc_dvc->sdtr_period_tbl[syn_period_ix],
8331 syn_offset);
8332 scsiq->q1.cntl |= QC_MSG_OUT;
8334 q_addr = ASC_QNO_TO_QADDR(q_no);
8335 if ((scsiq->q1.target_id & asc_dvc->use_tagged_qng) == 0) {
8336 scsiq->q2.tag_code &= ~SIMPLE_QUEUE_TAG;
8338 scsiq->q1.status = QS_FREE;
8339 AscMemWordCopyPtrToLram(iop_base,
8340 q_addr + ASC_SCSIQ_CDB_BEG,
8341 (uchar *)scsiq->cdbptr, scsiq->q2.cdb_len >> 1);
8343 DvcPutScsiQ(iop_base,
8344 q_addr + ASC_SCSIQ_CPY_BEG,
8345 (uchar *)&scsiq->q1.cntl,
8346 ((sizeof(ASC_SCSIQ_1) + sizeof(ASC_SCSIQ_2)) / 2) - 1);
8347 AscWriteLramWord(iop_base,
8348 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS),
8349 (ushort)(((ushort)scsiq->q1.
8350 q_no << 8) | (ushort)QS_READY));
8351 return 1;
8354 static int
8355 AscPutReadySgListQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
8357 int sta;
8358 int i;
8359 ASC_SG_HEAD *sg_head;
8360 ASC_SG_LIST_Q scsi_sg_q;
8361 ASC_DCNT saved_data_addr;
8362 ASC_DCNT saved_data_cnt;
8363 PortAddr iop_base;
8364 ushort sg_list_dwords;
8365 ushort sg_index;
8366 ushort sg_entry_cnt;
8367 ushort q_addr;
8368 uchar next_qp;
8370 iop_base = asc_dvc->iop_base;
8371 sg_head = scsiq->sg_head;
8372 saved_data_addr = scsiq->q1.data_addr;
8373 saved_data_cnt = scsiq->q1.data_cnt;
8374 scsiq->q1.data_addr = (ASC_PADDR) sg_head->sg_list[0].addr;
8375 scsiq->q1.data_cnt = (ASC_DCNT) sg_head->sg_list[0].bytes;
8376 #if CC_VERY_LONG_SG_LIST
8378 * If sg_head->entry_cnt is greater than ASC_MAX_SG_LIST
8379 * then not all SG elements will fit in the allocated queues.
8380 * The rest of the SG elements will be copied when the RISC
8381 * completes the SG elements that fit and halts.
8383 if (sg_head->entry_cnt > ASC_MAX_SG_LIST) {
8385 * Set sg_entry_cnt to be the number of SG elements that
8386 * will fit in the allocated SG queues. It is minus 1, because
8387 * the first SG element is handled above. ASC_MAX_SG_LIST is
8388 * already inflated by 1 to account for this. For example it
8389 * may be 50 which is 1 + 7 queues * 7 SG elements.
8391 sg_entry_cnt = ASC_MAX_SG_LIST - 1;
8394 * Keep track of remaining number of SG elements that will
8395 * need to be handled from a_isr.c.
8397 scsiq->remain_sg_entry_cnt =
8398 sg_head->entry_cnt - ASC_MAX_SG_LIST;
8399 } else {
8400 #endif /* CC_VERY_LONG_SG_LIST */
8402 * Set sg_entry_cnt to be the number of SG elements that
8403 * will fit in the allocated SG queues. It is minus 1, because
8404 * the first SG element is handled above.
8406 sg_entry_cnt = sg_head->entry_cnt - 1;
8407 #if CC_VERY_LONG_SG_LIST
8409 #endif /* CC_VERY_LONG_SG_LIST */
8410 if (sg_entry_cnt != 0) {
8411 scsiq->q1.cntl |= QC_SG_HEAD;
8412 q_addr = ASC_QNO_TO_QADDR(q_no);
8413 sg_index = 1;
8414 scsiq->q1.sg_queue_cnt = sg_head->queue_cnt;
8415 scsi_sg_q.sg_head_qp = q_no;
8416 scsi_sg_q.cntl = QCSG_SG_XFER_LIST;
8417 for (i = 0; i < sg_head->queue_cnt; i++) {
8418 scsi_sg_q.seq_no = i + 1;
8419 if (sg_entry_cnt > ASC_SG_LIST_PER_Q) {
8420 sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2);
8421 sg_entry_cnt -= ASC_SG_LIST_PER_Q;
8422 if (i == 0) {
8423 scsi_sg_q.sg_list_cnt =
8424 ASC_SG_LIST_PER_Q;
8425 scsi_sg_q.sg_cur_list_cnt =
8426 ASC_SG_LIST_PER_Q;
8427 } else {
8428 scsi_sg_q.sg_list_cnt =
8429 ASC_SG_LIST_PER_Q - 1;
8430 scsi_sg_q.sg_cur_list_cnt =
8431 ASC_SG_LIST_PER_Q - 1;
8433 } else {
8434 #if CC_VERY_LONG_SG_LIST
8436 * This is the last SG queue in the list of
8437 * allocated SG queues. If there are more
8438 * SG elements than will fit in the allocated
8439 * queues, then set the QCSG_SG_XFER_MORE flag.
8441 if (sg_head->entry_cnt > ASC_MAX_SG_LIST) {
8442 scsi_sg_q.cntl |= QCSG_SG_XFER_MORE;
8443 } else {
8444 #endif /* CC_VERY_LONG_SG_LIST */
8445 scsi_sg_q.cntl |= QCSG_SG_XFER_END;
8446 #if CC_VERY_LONG_SG_LIST
8448 #endif /* CC_VERY_LONG_SG_LIST */
8449 sg_list_dwords = sg_entry_cnt << 1;
8450 if (i == 0) {
8451 scsi_sg_q.sg_list_cnt = sg_entry_cnt;
8452 scsi_sg_q.sg_cur_list_cnt =
8453 sg_entry_cnt;
8454 } else {
8455 scsi_sg_q.sg_list_cnt =
8456 sg_entry_cnt - 1;
8457 scsi_sg_q.sg_cur_list_cnt =
8458 sg_entry_cnt - 1;
8460 sg_entry_cnt = 0;
8462 next_qp = AscReadLramByte(iop_base,
8463 (ushort)(q_addr +
8464 ASC_SCSIQ_B_FWD));
8465 scsi_sg_q.q_no = next_qp;
8466 q_addr = ASC_QNO_TO_QADDR(next_qp);
8467 AscMemWordCopyPtrToLram(iop_base,
8468 q_addr + ASC_SCSIQ_SGHD_CPY_BEG,
8469 (uchar *)&scsi_sg_q,
8470 sizeof(ASC_SG_LIST_Q) >> 1);
8471 AscMemDWordCopyPtrToLram(iop_base,
8472 q_addr + ASC_SGQ_LIST_BEG,
8473 (uchar *)&sg_head->
8474 sg_list[sg_index],
8475 sg_list_dwords);
8476 sg_index += ASC_SG_LIST_PER_Q;
8477 scsiq->next_sg_index = sg_index;
8479 } else {
8480 scsiq->q1.cntl &= ~QC_SG_HEAD;
8482 sta = AscPutReadyQueue(asc_dvc, scsiq, q_no);
8483 scsiq->q1.data_addr = saved_data_addr;
8484 scsiq->q1.data_cnt = saved_data_cnt;
8485 return (sta);
8488 static int
8489 AscSendScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar n_q_required)
8491 PortAddr iop_base;
8492 uchar free_q_head;
8493 uchar next_qp;
8494 uchar tid_no;
8495 uchar target_ix;
8496 int sta;
8498 iop_base = asc_dvc->iop_base;
8499 target_ix = scsiq->q2.target_ix;
8500 tid_no = ASC_TIX_TO_TID(target_ix);
8501 sta = 0;
8502 free_q_head = (uchar)AscGetVarFreeQHead(iop_base);
8503 if (n_q_required > 1) {
8504 next_qp = AscAllocMultipleFreeQueue(iop_base, free_q_head,
8505 (uchar)n_q_required);
8506 if (next_qp != ASC_QLINK_END) {
8507 asc_dvc->last_q_shortage = 0;
8508 scsiq->sg_head->queue_cnt = n_q_required - 1;
8509 scsiq->q1.q_no = free_q_head;
8510 sta = AscPutReadySgListQueue(asc_dvc, scsiq,
8511 free_q_head);
8513 } else if (n_q_required == 1) {
8514 next_qp = AscAllocFreeQueue(iop_base, free_q_head);
8515 if (next_qp != ASC_QLINK_END) {
8516 scsiq->q1.q_no = free_q_head;
8517 sta = AscPutReadyQueue(asc_dvc, scsiq, free_q_head);
8520 if (sta == 1) {
8521 AscPutVarFreeQHead(iop_base, next_qp);
8522 asc_dvc->cur_total_qng += n_q_required;
8523 asc_dvc->cur_dvc_qng[tid_no]++;
8525 return sta;
8528 #define ASC_SYN_OFFSET_ONE_DISABLE_LIST 16
8529 static uchar _syn_offset_one_disable_cmd[ASC_SYN_OFFSET_ONE_DISABLE_LIST] = {
8530 INQUIRY,
8531 REQUEST_SENSE,
8532 READ_CAPACITY,
8533 READ_TOC,
8534 MODE_SELECT,
8535 MODE_SENSE,
8536 MODE_SELECT_10,
8537 MODE_SENSE_10,
8538 0xFF,
8539 0xFF,
8540 0xFF,
8541 0xFF,
8542 0xFF,
8543 0xFF,
8544 0xFF,
8545 0xFF
8548 static int AscExeScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq)
8550 PortAddr iop_base;
8551 int sta;
8552 int n_q_required;
8553 int disable_syn_offset_one_fix;
8554 int i;
8555 ASC_PADDR addr;
8556 ushort sg_entry_cnt = 0;
8557 ushort sg_entry_cnt_minus_one = 0;
8558 uchar target_ix;
8559 uchar tid_no;
8560 uchar sdtr_data;
8561 uchar extra_bytes;
8562 uchar scsi_cmd;
8563 uchar disable_cmd;
8564 ASC_SG_HEAD *sg_head;
8565 ASC_DCNT data_cnt;
8567 iop_base = asc_dvc->iop_base;
8568 sg_head = scsiq->sg_head;
8569 if (asc_dvc->err_code != 0)
8570 return (ERR);
8571 scsiq->q1.q_no = 0;
8572 if ((scsiq->q2.tag_code & ASC_TAG_FLAG_EXTRA_BYTES) == 0) {
8573 scsiq->q1.extra_bytes = 0;
8575 sta = 0;
8576 target_ix = scsiq->q2.target_ix;
8577 tid_no = ASC_TIX_TO_TID(target_ix);
8578 n_q_required = 1;
8579 if (scsiq->cdbptr[0] == REQUEST_SENSE) {
8580 if ((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) {
8581 asc_dvc->sdtr_done &= ~scsiq->q1.target_id;
8582 sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
8583 AscMsgOutSDTR(asc_dvc,
8584 asc_dvc->
8585 sdtr_period_tbl[(sdtr_data >> 4) &
8586 (uchar)(asc_dvc->
8587 max_sdtr_index -
8588 1)],
8589 (uchar)(sdtr_data & (uchar)
8590 ASC_SYN_MAX_OFFSET));
8591 scsiq->q1.cntl |= (QC_MSG_OUT | QC_URGENT);
8594 if (asc_dvc->in_critical_cnt != 0) {
8595 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CRITICAL_RE_ENTRY);
8596 return (ERR);
8598 asc_dvc->in_critical_cnt++;
8599 if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
8600 if ((sg_entry_cnt = sg_head->entry_cnt) == 0) {
8601 asc_dvc->in_critical_cnt--;
8602 return (ERR);
8604 #if !CC_VERY_LONG_SG_LIST
8605 if (sg_entry_cnt > ASC_MAX_SG_LIST) {
8606 asc_dvc->in_critical_cnt--;
8607 return (ERR);
8609 #endif /* !CC_VERY_LONG_SG_LIST */
8610 if (sg_entry_cnt == 1) {
8611 scsiq->q1.data_addr =
8612 (ADV_PADDR)sg_head->sg_list[0].addr;
8613 scsiq->q1.data_cnt =
8614 (ADV_DCNT)sg_head->sg_list[0].bytes;
8615 scsiq->q1.cntl &= ~(QC_SG_HEAD | QC_SG_SWAP_QUEUE);
8617 sg_entry_cnt_minus_one = sg_entry_cnt - 1;
8619 scsi_cmd = scsiq->cdbptr[0];
8620 disable_syn_offset_one_fix = FALSE;
8621 if ((asc_dvc->pci_fix_asyn_xfer & scsiq->q1.target_id) &&
8622 !(asc_dvc->pci_fix_asyn_xfer_always & scsiq->q1.target_id)) {
8623 if (scsiq->q1.cntl & QC_SG_HEAD) {
8624 data_cnt = 0;
8625 for (i = 0; i < sg_entry_cnt; i++) {
8626 data_cnt +=
8627 (ADV_DCNT)le32_to_cpu(sg_head->sg_list[i].
8628 bytes);
8630 } else {
8631 data_cnt = le32_to_cpu(scsiq->q1.data_cnt);
8633 if (data_cnt != 0UL) {
8634 if (data_cnt < 512UL) {
8635 disable_syn_offset_one_fix = TRUE;
8636 } else {
8637 for (i = 0; i < ASC_SYN_OFFSET_ONE_DISABLE_LIST;
8638 i++) {
8639 disable_cmd =
8640 _syn_offset_one_disable_cmd[i];
8641 if (disable_cmd == 0xFF) {
8642 break;
8644 if (scsi_cmd == disable_cmd) {
8645 disable_syn_offset_one_fix =
8646 TRUE;
8647 break;
8653 if (disable_syn_offset_one_fix) {
8654 scsiq->q2.tag_code &= ~SIMPLE_QUEUE_TAG;
8655 scsiq->q2.tag_code |= (ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX |
8656 ASC_TAG_FLAG_DISABLE_DISCONNECT);
8657 } else {
8658 scsiq->q2.tag_code &= 0x27;
8660 if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
8661 if (asc_dvc->bug_fix_cntl) {
8662 if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
8663 if ((scsi_cmd == READ_6) ||
8664 (scsi_cmd == READ_10)) {
8665 addr =
8666 (ADV_PADDR)le32_to_cpu(sg_head->
8667 sg_list
8668 [sg_entry_cnt_minus_one].
8669 addr) +
8670 (ADV_DCNT)le32_to_cpu(sg_head->
8671 sg_list
8672 [sg_entry_cnt_minus_one].
8673 bytes);
8674 extra_bytes =
8675 (uchar)((ushort)addr & 0x0003);
8676 if ((extra_bytes != 0)
8678 ((scsiq->q2.
8679 tag_code &
8680 ASC_TAG_FLAG_EXTRA_BYTES)
8681 == 0)) {
8682 scsiq->q2.tag_code |=
8683 ASC_TAG_FLAG_EXTRA_BYTES;
8684 scsiq->q1.extra_bytes =
8685 extra_bytes;
8686 data_cnt =
8687 le32_to_cpu(sg_head->
8688 sg_list
8689 [sg_entry_cnt_minus_one].
8690 bytes);
8691 data_cnt -=
8692 (ASC_DCNT) extra_bytes;
8693 sg_head->
8694 sg_list
8695 [sg_entry_cnt_minus_one].
8696 bytes =
8697 cpu_to_le32(data_cnt);
8702 sg_head->entry_to_copy = sg_head->entry_cnt;
8703 #if CC_VERY_LONG_SG_LIST
8705 * Set the sg_entry_cnt to the maximum possible. The rest of
8706 * the SG elements will be copied when the RISC completes the
8707 * SG elements that fit and halts.
8709 if (sg_entry_cnt > ASC_MAX_SG_LIST) {
8710 sg_entry_cnt = ASC_MAX_SG_LIST;
8712 #endif /* CC_VERY_LONG_SG_LIST */
8713 n_q_required = AscSgListToQueue(sg_entry_cnt);
8714 if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, n_q_required) >=
8715 (uint) n_q_required)
8716 || ((scsiq->q1.cntl & QC_URGENT) != 0)) {
8717 if ((sta =
8718 AscSendScsiQueue(asc_dvc, scsiq,
8719 n_q_required)) == 1) {
8720 asc_dvc->in_critical_cnt--;
8721 return (sta);
8724 } else {
8725 if (asc_dvc->bug_fix_cntl) {
8726 if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
8727 if ((scsi_cmd == READ_6) ||
8728 (scsi_cmd == READ_10)) {
8729 addr =
8730 le32_to_cpu(scsiq->q1.data_addr) +
8731 le32_to_cpu(scsiq->q1.data_cnt);
8732 extra_bytes =
8733 (uchar)((ushort)addr & 0x0003);
8734 if ((extra_bytes != 0)
8736 ((scsiq->q2.
8737 tag_code &
8738 ASC_TAG_FLAG_EXTRA_BYTES)
8739 == 0)) {
8740 data_cnt =
8741 le32_to_cpu(scsiq->q1.
8742 data_cnt);
8743 if (((ushort)data_cnt & 0x01FF)
8744 == 0) {
8745 scsiq->q2.tag_code |=
8746 ASC_TAG_FLAG_EXTRA_BYTES;
8747 data_cnt -= (ASC_DCNT)
8748 extra_bytes;
8749 scsiq->q1.data_cnt =
8750 cpu_to_le32
8751 (data_cnt);
8752 scsiq->q1.extra_bytes =
8753 extra_bytes;
8759 n_q_required = 1;
8760 if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, 1) >= 1) ||
8761 ((scsiq->q1.cntl & QC_URGENT) != 0)) {
8762 if ((sta = AscSendScsiQueue(asc_dvc, scsiq,
8763 n_q_required)) == 1) {
8764 asc_dvc->in_critical_cnt--;
8765 return (sta);
8769 asc_dvc->in_critical_cnt--;
8770 return (sta);
8774 * AdvExeScsiQueue() - Send a request to the RISC microcode program.
8776 * Allocate a carrier structure, point the carrier to the ADV_SCSI_REQ_Q,
8777 * add the carrier to the ICQ (Initiator Command Queue), and tickle the
8778 * RISC to notify it a new command is ready to be executed.
8780 * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
8781 * set to SCSI_MAX_RETRY.
8783 * Multi-byte fields in the ASC_SCSI_REQ_Q that are used by the microcode
8784 * for DMA addresses or math operations are byte swapped to little-endian
8785 * order.
8787 * Return:
8788 * ADV_SUCCESS(1) - The request was successfully queued.
8789 * ADV_BUSY(0) - Resource unavailable; Retry again after pending
8790 * request completes.
8791 * ADV_ERROR(-1) - Invalid ADV_SCSI_REQ_Q request structure
8792 * host IC error.
8794 static int AdvExeScsiQueue(ADV_DVC_VAR *asc_dvc, ADV_SCSI_REQ_Q *scsiq)
8796 AdvPortAddr iop_base;
8797 ADV_PADDR req_paddr;
8798 ADV_CARR_T *new_carrp;
8801 * The ADV_SCSI_REQ_Q 'target_id' field should never exceed ADV_MAX_TID.
8803 if (scsiq->target_id > ADV_MAX_TID) {
8804 scsiq->host_status = QHSTA_M_INVALID_DEVICE;
8805 scsiq->done_status = QD_WITH_ERROR;
8806 return ADV_ERROR;
8809 iop_base = asc_dvc->iop_base;
8812 * Allocate a carrier ensuring at least one carrier always
8813 * remains on the freelist and initialize fields.
8815 if ((new_carrp = asc_dvc->carr_freelist) == NULL) {
8816 return ADV_BUSY;
8818 asc_dvc->carr_freelist = (ADV_CARR_T *)
8819 ADV_U32_TO_VADDR(le32_to_cpu(new_carrp->next_vpa));
8820 asc_dvc->carr_pending_cnt++;
8823 * Set the carrier to be a stopper by setting 'next_vpa'
8824 * to the stopper value. The current stopper will be changed
8825 * below to point to the new stopper.
8827 new_carrp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
8830 * Clear the ADV_SCSI_REQ_Q done flag.
8832 scsiq->a_flag &= ~ADV_SCSIQ_DONE;
8834 req_paddr = virt_to_bus(scsiq);
8835 BUG_ON(req_paddr & 31);
8836 /* Wait for assertion before making little-endian */
8837 req_paddr = cpu_to_le32(req_paddr);
8839 /* Save virtual and physical address of ADV_SCSI_REQ_Q and carrier. */
8840 scsiq->scsiq_ptr = cpu_to_le32(ADV_VADDR_TO_U32(scsiq));
8841 scsiq->scsiq_rptr = req_paddr;
8843 scsiq->carr_va = cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->icq_sp));
8845 * Every ADV_CARR_T.carr_pa is byte swapped to little-endian
8846 * order during initialization.
8848 scsiq->carr_pa = asc_dvc->icq_sp->carr_pa;
8851 * Use the current stopper to send the ADV_SCSI_REQ_Q command to
8852 * the microcode. The newly allocated stopper will become the new
8853 * stopper.
8855 asc_dvc->icq_sp->areq_vpa = req_paddr;
8858 * Set the 'next_vpa' pointer for the old stopper to be the
8859 * physical address of the new stopper. The RISC can only
8860 * follow physical addresses.
8862 asc_dvc->icq_sp->next_vpa = new_carrp->carr_pa;
8865 * Set the host adapter stopper pointer to point to the new carrier.
8867 asc_dvc->icq_sp = new_carrp;
8869 if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
8870 asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
8872 * Tickle the RISC to tell it to read its Command Queue Head pointer.
8874 AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_A);
8875 if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
8877 * Clear the tickle value. In the ASC-3550 the RISC flag
8878 * command 'clr_tickle_a' does not work unless the host
8879 * value is cleared.
8881 AdvWriteByteRegister(iop_base, IOPB_TICKLE,
8882 ADV_TICKLE_NOP);
8884 } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
8886 * Notify the RISC a carrier is ready by writing the physical
8887 * address of the new carrier stopper to the COMMA register.
8889 AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
8890 le32_to_cpu(new_carrp->carr_pa));
8893 return ADV_SUCCESS;
8897 * Execute a single 'Scsi_Cmnd'.
8899 static int asc_execute_scsi_cmnd(struct scsi_cmnd *scp)
8901 int ret, err_code;
8902 struct asc_board *boardp = shost_priv(scp->device->host);
8904 ASC_DBG(1, "scp 0x%p\n", scp);
8906 if (ASC_NARROW_BOARD(boardp)) {
8907 ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
8908 struct asc_scsi_q asc_scsi_q;
8910 /* asc_build_req() can not return ASC_BUSY. */
8911 ret = asc_build_req(boardp, scp, &asc_scsi_q);
8912 if (ret == ASC_ERROR) {
8913 ASC_STATS(scp->device->host, build_error);
8914 return ASC_ERROR;
8917 ret = AscExeScsiQueue(asc_dvc, &asc_scsi_q);
8918 kfree(asc_scsi_q.sg_head);
8919 err_code = asc_dvc->err_code;
8920 } else {
8921 ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
8922 ADV_SCSI_REQ_Q *adv_scsiqp;
8924 switch (adv_build_req(boardp, scp, &adv_scsiqp)) {
8925 case ASC_NOERROR:
8926 ASC_DBG(3, "adv_build_req ASC_NOERROR\n");
8927 break;
8928 case ASC_BUSY:
8929 ASC_DBG(1, "adv_build_req ASC_BUSY\n");
8931 * The asc_stats fields 'adv_build_noreq' and
8932 * 'adv_build_nosg' count wide board busy conditions.
8933 * They are updated in adv_build_req and
8934 * adv_get_sglist, respectively.
8936 return ASC_BUSY;
8937 case ASC_ERROR:
8938 default:
8939 ASC_DBG(1, "adv_build_req ASC_ERROR\n");
8940 ASC_STATS(scp->device->host, build_error);
8941 return ASC_ERROR;
8944 ret = AdvExeScsiQueue(adv_dvc, adv_scsiqp);
8945 err_code = adv_dvc->err_code;
8948 switch (ret) {
8949 case ASC_NOERROR:
8950 ASC_STATS(scp->device->host, exe_noerror);
8952 * Increment monotonically increasing per device
8953 * successful request counter. Wrapping doesn't matter.
8955 boardp->reqcnt[scp->device->id]++;
8956 ASC_DBG(1, "ExeScsiQueue() ASC_NOERROR\n");
8957 break;
8958 case ASC_BUSY:
8959 ASC_STATS(scp->device->host, exe_busy);
8960 break;
8961 case ASC_ERROR:
8962 scmd_printk(KERN_ERR, scp, "ExeScsiQueue() ASC_ERROR, "
8963 "err_code 0x%x\n", err_code);
8964 ASC_STATS(scp->device->host, exe_error);
8965 scp->result = HOST_BYTE(DID_ERROR);
8966 break;
8967 default:
8968 scmd_printk(KERN_ERR, scp, "ExeScsiQueue() unknown, "
8969 "err_code 0x%x\n", err_code);
8970 ASC_STATS(scp->device->host, exe_unknown);
8971 scp->result = HOST_BYTE(DID_ERROR);
8972 break;
8975 ASC_DBG(1, "end\n");
8976 return ret;
8980 * advansys_queuecommand() - interrupt-driven I/O entrypoint.
8982 * This function always returns 0. Command return status is saved
8983 * in the 'scp' result field.
8985 static int
8986 advansys_queuecommand_lck(struct scsi_cmnd *scp, void (*done)(struct scsi_cmnd *))
8988 struct Scsi_Host *shost = scp->device->host;
8989 int asc_res, result = 0;
8991 ASC_STATS(shost, queuecommand);
8992 scp->scsi_done = done;
8994 asc_res = asc_execute_scsi_cmnd(scp);
8996 switch (asc_res) {
8997 case ASC_NOERROR:
8998 break;
8999 case ASC_BUSY:
9000 result = SCSI_MLQUEUE_HOST_BUSY;
9001 break;
9002 case ASC_ERROR:
9003 default:
9004 asc_scsi_done(scp);
9005 break;
9008 return result;
9011 static DEF_SCSI_QCMD(advansys_queuecommand)
9013 static ushort AscGetEisaChipCfg(PortAddr iop_base)
9015 PortAddr eisa_cfg_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
9016 (PortAddr) (ASC_EISA_CFG_IOP_MASK);
9017 return inpw(eisa_cfg_iop);
9021 * Return the BIOS address of the adapter at the specified
9022 * I/O port and with the specified bus type.
9024 static unsigned short AscGetChipBiosAddress(PortAddr iop_base,
9025 unsigned short bus_type)
9027 unsigned short cfg_lsw;
9028 unsigned short bios_addr;
9031 * The PCI BIOS is re-located by the motherboard BIOS. Because
9032 * of this the driver can not determine where a PCI BIOS is
9033 * loaded and executes.
9035 if (bus_type & ASC_IS_PCI)
9036 return 0;
9038 if ((bus_type & ASC_IS_EISA) != 0) {
9039 cfg_lsw = AscGetEisaChipCfg(iop_base);
9040 cfg_lsw &= 0x000F;
9041 bios_addr = ASC_BIOS_MIN_ADDR + cfg_lsw * ASC_BIOS_BANK_SIZE;
9042 return bios_addr;
9045 cfg_lsw = AscGetChipCfgLsw(iop_base);
9048 * ISA PnP uses the top bit as the 32K BIOS flag
9050 if (bus_type == ASC_IS_ISAPNP)
9051 cfg_lsw &= 0x7FFF;
9052 bios_addr = ASC_BIOS_MIN_ADDR + (cfg_lsw >> 12) * ASC_BIOS_BANK_SIZE;
9053 return bios_addr;
9056 static uchar AscSetChipScsiID(PortAddr iop_base, uchar new_host_id)
9058 ushort cfg_lsw;
9060 if (AscGetChipScsiID(iop_base) == new_host_id) {
9061 return (new_host_id);
9063 cfg_lsw = AscGetChipCfgLsw(iop_base);
9064 cfg_lsw &= 0xF8FF;
9065 cfg_lsw |= (ushort)((new_host_id & ASC_MAX_TID) << 8);
9066 AscSetChipCfgLsw(iop_base, cfg_lsw);
9067 return (AscGetChipScsiID(iop_base));
9070 static unsigned char AscGetChipScsiCtrl(PortAddr iop_base)
9072 unsigned char sc;
9074 AscSetBank(iop_base, 1);
9075 sc = inp(iop_base + IOP_REG_SC);
9076 AscSetBank(iop_base, 0);
9077 return sc;
9080 static unsigned char AscGetChipVersion(PortAddr iop_base,
9081 unsigned short bus_type)
9083 if (bus_type & ASC_IS_EISA) {
9084 PortAddr eisa_iop;
9085 unsigned char revision;
9086 eisa_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
9087 (PortAddr) ASC_EISA_REV_IOP_MASK;
9088 revision = inp(eisa_iop);
9089 return ASC_CHIP_MIN_VER_EISA - 1 + revision;
9091 return AscGetChipVerNo(iop_base);
9094 #ifdef CONFIG_ISA
9095 static void AscEnableIsaDma(uchar dma_channel)
9097 if (dma_channel < 4) {
9098 outp(0x000B, (ushort)(0xC0 | dma_channel));
9099 outp(0x000A, dma_channel);
9100 } else if (dma_channel < 8) {
9101 outp(0x00D6, (ushort)(0xC0 | (dma_channel - 4)));
9102 outp(0x00D4, (ushort)(dma_channel - 4));
9105 #endif /* CONFIG_ISA */
9107 static int AscStopQueueExe(PortAddr iop_base)
9109 int count = 0;
9111 if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) == 0) {
9112 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
9113 ASC_STOP_REQ_RISC_STOP);
9114 do {
9115 if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) &
9116 ASC_STOP_ACK_RISC_STOP) {
9117 return (1);
9119 mdelay(100);
9120 } while (count++ < 20);
9122 return (0);
9125 static ASC_DCNT AscGetMaxDmaCount(ushort bus_type)
9127 if (bus_type & ASC_IS_ISA)
9128 return ASC_MAX_ISA_DMA_COUNT;
9129 else if (bus_type & (ASC_IS_EISA | ASC_IS_VL))
9130 return ASC_MAX_VL_DMA_COUNT;
9131 return ASC_MAX_PCI_DMA_COUNT;
9134 #ifdef CONFIG_ISA
9135 static ushort AscGetIsaDmaChannel(PortAddr iop_base)
9137 ushort channel;
9139 channel = AscGetChipCfgLsw(iop_base) & 0x0003;
9140 if (channel == 0x03)
9141 return (0);
9142 else if (channel == 0x00)
9143 return (7);
9144 return (channel + 4);
9147 static ushort AscSetIsaDmaChannel(PortAddr iop_base, ushort dma_channel)
9149 ushort cfg_lsw;
9150 uchar value;
9152 if ((dma_channel >= 5) && (dma_channel <= 7)) {
9153 if (dma_channel == 7)
9154 value = 0x00;
9155 else
9156 value = dma_channel - 4;
9157 cfg_lsw = AscGetChipCfgLsw(iop_base) & 0xFFFC;
9158 cfg_lsw |= value;
9159 AscSetChipCfgLsw(iop_base, cfg_lsw);
9160 return (AscGetIsaDmaChannel(iop_base));
9162 return 0;
9165 static uchar AscGetIsaDmaSpeed(PortAddr iop_base)
9167 uchar speed_value;
9169 AscSetBank(iop_base, 1);
9170 speed_value = AscReadChipDmaSpeed(iop_base);
9171 speed_value &= 0x07;
9172 AscSetBank(iop_base, 0);
9173 return speed_value;
9176 static uchar AscSetIsaDmaSpeed(PortAddr iop_base, uchar speed_value)
9178 speed_value &= 0x07;
9179 AscSetBank(iop_base, 1);
9180 AscWriteChipDmaSpeed(iop_base, speed_value);
9181 AscSetBank(iop_base, 0);
9182 return AscGetIsaDmaSpeed(iop_base);
9184 #endif /* CONFIG_ISA */
9186 static ushort AscInitAscDvcVar(ASC_DVC_VAR *asc_dvc)
9188 int i;
9189 PortAddr iop_base;
9190 ushort warn_code;
9191 uchar chip_version;
9193 iop_base = asc_dvc->iop_base;
9194 warn_code = 0;
9195 asc_dvc->err_code = 0;
9196 if ((asc_dvc->bus_type &
9197 (ASC_IS_ISA | ASC_IS_PCI | ASC_IS_EISA | ASC_IS_VL)) == 0) {
9198 asc_dvc->err_code |= ASC_IERR_NO_BUS_TYPE;
9200 AscSetChipControl(iop_base, CC_HALT);
9201 AscSetChipStatus(iop_base, 0);
9202 asc_dvc->bug_fix_cntl = 0;
9203 asc_dvc->pci_fix_asyn_xfer = 0;
9204 asc_dvc->pci_fix_asyn_xfer_always = 0;
9205 /* asc_dvc->init_state initialized in AscInitGetConfig(). */
9206 asc_dvc->sdtr_done = 0;
9207 asc_dvc->cur_total_qng = 0;
9208 asc_dvc->is_in_int = 0;
9209 asc_dvc->in_critical_cnt = 0;
9210 asc_dvc->last_q_shortage = 0;
9211 asc_dvc->use_tagged_qng = 0;
9212 asc_dvc->no_scam = 0;
9213 asc_dvc->unit_not_ready = 0;
9214 asc_dvc->queue_full_or_busy = 0;
9215 asc_dvc->redo_scam = 0;
9216 asc_dvc->res2 = 0;
9217 asc_dvc->min_sdtr_index = 0;
9218 asc_dvc->cfg->can_tagged_qng = 0;
9219 asc_dvc->cfg->cmd_qng_enabled = 0;
9220 asc_dvc->dvc_cntl = ASC_DEF_DVC_CNTL;
9221 asc_dvc->init_sdtr = 0;
9222 asc_dvc->max_total_qng = ASC_DEF_MAX_TOTAL_QNG;
9223 asc_dvc->scsi_reset_wait = 3;
9224 asc_dvc->start_motor = ASC_SCSI_WIDTH_BIT_SET;
9225 asc_dvc->max_dma_count = AscGetMaxDmaCount(asc_dvc->bus_type);
9226 asc_dvc->cfg->sdtr_enable = ASC_SCSI_WIDTH_BIT_SET;
9227 asc_dvc->cfg->disc_enable = ASC_SCSI_WIDTH_BIT_SET;
9228 asc_dvc->cfg->chip_scsi_id = ASC_DEF_CHIP_SCSI_ID;
9229 chip_version = AscGetChipVersion(iop_base, asc_dvc->bus_type);
9230 asc_dvc->cfg->chip_version = chip_version;
9231 asc_dvc->sdtr_period_tbl = asc_syn_xfer_period;
9232 asc_dvc->max_sdtr_index = 7;
9233 if ((asc_dvc->bus_type & ASC_IS_PCI) &&
9234 (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3150)) {
9235 asc_dvc->bus_type = ASC_IS_PCI_ULTRA;
9236 asc_dvc->sdtr_period_tbl = asc_syn_ultra_xfer_period;
9237 asc_dvc->max_sdtr_index = 15;
9238 if (chip_version == ASC_CHIP_VER_PCI_ULTRA_3150) {
9239 AscSetExtraControl(iop_base,
9240 (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
9241 } else if (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3050) {
9242 AscSetExtraControl(iop_base,
9243 (SEC_ACTIVE_NEGATE |
9244 SEC_ENABLE_FILTER));
9247 if (asc_dvc->bus_type == ASC_IS_PCI) {
9248 AscSetExtraControl(iop_base,
9249 (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
9252 asc_dvc->cfg->isa_dma_speed = ASC_DEF_ISA_DMA_SPEED;
9253 #ifdef CONFIG_ISA
9254 if ((asc_dvc->bus_type & ASC_IS_ISA) != 0) {
9255 if (chip_version >= ASC_CHIP_MIN_VER_ISA_PNP) {
9256 AscSetChipIFC(iop_base, IFC_INIT_DEFAULT);
9257 asc_dvc->bus_type = ASC_IS_ISAPNP;
9259 asc_dvc->cfg->isa_dma_channel =
9260 (uchar)AscGetIsaDmaChannel(iop_base);
9262 #endif /* CONFIG_ISA */
9263 for (i = 0; i <= ASC_MAX_TID; i++) {
9264 asc_dvc->cur_dvc_qng[i] = 0;
9265 asc_dvc->max_dvc_qng[i] = ASC_MAX_SCSI1_QNG;
9266 asc_dvc->scsiq_busy_head[i] = (ASC_SCSI_Q *)0L;
9267 asc_dvc->scsiq_busy_tail[i] = (ASC_SCSI_Q *)0L;
9268 asc_dvc->cfg->max_tag_qng[i] = ASC_MAX_INRAM_TAG_QNG;
9270 return warn_code;
9273 static int AscWriteEEPCmdReg(PortAddr iop_base, uchar cmd_reg)
9275 int retry;
9277 for (retry = 0; retry < ASC_EEP_MAX_RETRY; retry++) {
9278 unsigned char read_back;
9279 AscSetChipEEPCmd(iop_base, cmd_reg);
9280 mdelay(1);
9281 read_back = AscGetChipEEPCmd(iop_base);
9282 if (read_back == cmd_reg)
9283 return 1;
9285 return 0;
9288 static void AscWaitEEPRead(void)
9290 mdelay(1);
9293 static ushort AscReadEEPWord(PortAddr iop_base, uchar addr)
9295 ushort read_wval;
9296 uchar cmd_reg;
9298 AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
9299 AscWaitEEPRead();
9300 cmd_reg = addr | ASC_EEP_CMD_READ;
9301 AscWriteEEPCmdReg(iop_base, cmd_reg);
9302 AscWaitEEPRead();
9303 read_wval = AscGetChipEEPData(iop_base);
9304 AscWaitEEPRead();
9305 return read_wval;
9308 static ushort AscGetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
9309 ushort bus_type)
9311 ushort wval;
9312 ushort sum;
9313 ushort *wbuf;
9314 int cfg_beg;
9315 int cfg_end;
9316 int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
9317 int s_addr;
9319 wbuf = (ushort *)cfg_buf;
9320 sum = 0;
9321 /* Read two config words; Byte-swapping done by AscReadEEPWord(). */
9322 for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9323 *wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
9324 sum += *wbuf;
9326 if (bus_type & ASC_IS_VL) {
9327 cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
9328 cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
9329 } else {
9330 cfg_beg = ASC_EEP_DVC_CFG_BEG;
9331 cfg_end = ASC_EEP_MAX_DVC_ADDR;
9333 for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9334 wval = AscReadEEPWord(iop_base, (uchar)s_addr);
9335 if (s_addr <= uchar_end_in_config) {
9337 * Swap all char fields - must unswap bytes already swapped
9338 * by AscReadEEPWord().
9340 *wbuf = le16_to_cpu(wval);
9341 } else {
9342 /* Don't swap word field at the end - cntl field. */
9343 *wbuf = wval;
9345 sum += wval; /* Checksum treats all EEPROM data as words. */
9348 * Read the checksum word which will be compared against 'sum'
9349 * by the caller. Word field already swapped.
9351 *wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
9352 return sum;
9355 static int AscTestExternalLram(ASC_DVC_VAR *asc_dvc)
9357 PortAddr iop_base;
9358 ushort q_addr;
9359 ushort saved_word;
9360 int sta;
9362 iop_base = asc_dvc->iop_base;
9363 sta = 0;
9364 q_addr = ASC_QNO_TO_QADDR(241);
9365 saved_word = AscReadLramWord(iop_base, q_addr);
9366 AscSetChipLramAddr(iop_base, q_addr);
9367 AscSetChipLramData(iop_base, 0x55AA);
9368 mdelay(10);
9369 AscSetChipLramAddr(iop_base, q_addr);
9370 if (AscGetChipLramData(iop_base) == 0x55AA) {
9371 sta = 1;
9372 AscWriteLramWord(iop_base, q_addr, saved_word);
9374 return (sta);
9377 static void AscWaitEEPWrite(void)
9379 mdelay(20);
9382 static int AscWriteEEPDataReg(PortAddr iop_base, ushort data_reg)
9384 ushort read_back;
9385 int retry;
9387 retry = 0;
9388 while (TRUE) {
9389 AscSetChipEEPData(iop_base, data_reg);
9390 mdelay(1);
9391 read_back = AscGetChipEEPData(iop_base);
9392 if (read_back == data_reg) {
9393 return (1);
9395 if (retry++ > ASC_EEP_MAX_RETRY) {
9396 return (0);
9401 static ushort AscWriteEEPWord(PortAddr iop_base, uchar addr, ushort word_val)
9403 ushort read_wval;
9405 read_wval = AscReadEEPWord(iop_base, addr);
9406 if (read_wval != word_val) {
9407 AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_ABLE);
9408 AscWaitEEPRead();
9409 AscWriteEEPDataReg(iop_base, word_val);
9410 AscWaitEEPRead();
9411 AscWriteEEPCmdReg(iop_base,
9412 (uchar)((uchar)ASC_EEP_CMD_WRITE | addr));
9413 AscWaitEEPWrite();
9414 AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
9415 AscWaitEEPRead();
9416 return (AscReadEEPWord(iop_base, addr));
9418 return (read_wval);
9421 static int AscSetEEPConfigOnce(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
9422 ushort bus_type)
9424 int n_error;
9425 ushort *wbuf;
9426 ushort word;
9427 ushort sum;
9428 int s_addr;
9429 int cfg_beg;
9430 int cfg_end;
9431 int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
9433 wbuf = (ushort *)cfg_buf;
9434 n_error = 0;
9435 sum = 0;
9436 /* Write two config words; AscWriteEEPWord() will swap bytes. */
9437 for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9438 sum += *wbuf;
9439 if (*wbuf != AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
9440 n_error++;
9443 if (bus_type & ASC_IS_VL) {
9444 cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
9445 cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
9446 } else {
9447 cfg_beg = ASC_EEP_DVC_CFG_BEG;
9448 cfg_end = ASC_EEP_MAX_DVC_ADDR;
9450 for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9451 if (s_addr <= uchar_end_in_config) {
9453 * This is a char field. Swap char fields before they are
9454 * swapped again by AscWriteEEPWord().
9456 word = cpu_to_le16(*wbuf);
9457 if (word !=
9458 AscWriteEEPWord(iop_base, (uchar)s_addr, word)) {
9459 n_error++;
9461 } else {
9462 /* Don't swap word field at the end - cntl field. */
9463 if (*wbuf !=
9464 AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
9465 n_error++;
9468 sum += *wbuf; /* Checksum calculated from word values. */
9470 /* Write checksum word. It will be swapped by AscWriteEEPWord(). */
9471 *wbuf = sum;
9472 if (sum != AscWriteEEPWord(iop_base, (uchar)s_addr, sum)) {
9473 n_error++;
9476 /* Read EEPROM back again. */
9477 wbuf = (ushort *)cfg_buf;
9479 * Read two config words; Byte-swapping done by AscReadEEPWord().
9481 for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9482 if (*wbuf != AscReadEEPWord(iop_base, (uchar)s_addr)) {
9483 n_error++;
9486 if (bus_type & ASC_IS_VL) {
9487 cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
9488 cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
9489 } else {
9490 cfg_beg = ASC_EEP_DVC_CFG_BEG;
9491 cfg_end = ASC_EEP_MAX_DVC_ADDR;
9493 for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9494 if (s_addr <= uchar_end_in_config) {
9496 * Swap all char fields. Must unswap bytes already swapped
9497 * by AscReadEEPWord().
9499 word =
9500 le16_to_cpu(AscReadEEPWord
9501 (iop_base, (uchar)s_addr));
9502 } else {
9503 /* Don't swap word field at the end - cntl field. */
9504 word = AscReadEEPWord(iop_base, (uchar)s_addr);
9506 if (*wbuf != word) {
9507 n_error++;
9510 /* Read checksum; Byte swapping not needed. */
9511 if (AscReadEEPWord(iop_base, (uchar)s_addr) != sum) {
9512 n_error++;
9514 return n_error;
9517 static int AscSetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
9518 ushort bus_type)
9520 int retry;
9521 int n_error;
9523 retry = 0;
9524 while (TRUE) {
9525 if ((n_error = AscSetEEPConfigOnce(iop_base, cfg_buf,
9526 bus_type)) == 0) {
9527 break;
9529 if (++retry > ASC_EEP_MAX_RETRY) {
9530 break;
9533 return n_error;
9536 static ushort AscInitFromEEP(ASC_DVC_VAR *asc_dvc)
9538 ASCEEP_CONFIG eep_config_buf;
9539 ASCEEP_CONFIG *eep_config;
9540 PortAddr iop_base;
9541 ushort chksum;
9542 ushort warn_code;
9543 ushort cfg_msw, cfg_lsw;
9544 int i;
9545 int write_eep = 0;
9547 iop_base = asc_dvc->iop_base;
9548 warn_code = 0;
9549 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0x00FE);
9550 AscStopQueueExe(iop_base);
9551 if ((AscStopChip(iop_base) == FALSE) ||
9552 (AscGetChipScsiCtrl(iop_base) != 0)) {
9553 asc_dvc->init_state |= ASC_INIT_RESET_SCSI_DONE;
9554 AscResetChipAndScsiBus(asc_dvc);
9555 mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
9557 if (AscIsChipHalted(iop_base) == FALSE) {
9558 asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
9559 return (warn_code);
9561 AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
9562 if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
9563 asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
9564 return (warn_code);
9566 eep_config = (ASCEEP_CONFIG *)&eep_config_buf;
9567 cfg_msw = AscGetChipCfgMsw(iop_base);
9568 cfg_lsw = AscGetChipCfgLsw(iop_base);
9569 if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
9570 cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
9571 warn_code |= ASC_WARN_CFG_MSW_RECOVER;
9572 AscSetChipCfgMsw(iop_base, cfg_msw);
9574 chksum = AscGetEEPConfig(iop_base, eep_config, asc_dvc->bus_type);
9575 ASC_DBG(1, "chksum 0x%x\n", chksum);
9576 if (chksum == 0) {
9577 chksum = 0xaa55;
9579 if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
9580 warn_code |= ASC_WARN_AUTO_CONFIG;
9581 if (asc_dvc->cfg->chip_version == 3) {
9582 if (eep_config->cfg_lsw != cfg_lsw) {
9583 warn_code |= ASC_WARN_EEPROM_RECOVER;
9584 eep_config->cfg_lsw =
9585 AscGetChipCfgLsw(iop_base);
9587 if (eep_config->cfg_msw != cfg_msw) {
9588 warn_code |= ASC_WARN_EEPROM_RECOVER;
9589 eep_config->cfg_msw =
9590 AscGetChipCfgMsw(iop_base);
9594 eep_config->cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
9595 eep_config->cfg_lsw |= ASC_CFG0_HOST_INT_ON;
9596 ASC_DBG(1, "eep_config->chksum 0x%x\n", eep_config->chksum);
9597 if (chksum != eep_config->chksum) {
9598 if (AscGetChipVersion(iop_base, asc_dvc->bus_type) ==
9599 ASC_CHIP_VER_PCI_ULTRA_3050) {
9600 ASC_DBG(1, "chksum error ignored; EEPROM-less board\n");
9601 eep_config->init_sdtr = 0xFF;
9602 eep_config->disc_enable = 0xFF;
9603 eep_config->start_motor = 0xFF;
9604 eep_config->use_cmd_qng = 0;
9605 eep_config->max_total_qng = 0xF0;
9606 eep_config->max_tag_qng = 0x20;
9607 eep_config->cntl = 0xBFFF;
9608 ASC_EEP_SET_CHIP_ID(eep_config, 7);
9609 eep_config->no_scam = 0;
9610 eep_config->adapter_info[0] = 0;
9611 eep_config->adapter_info[1] = 0;
9612 eep_config->adapter_info[2] = 0;
9613 eep_config->adapter_info[3] = 0;
9614 eep_config->adapter_info[4] = 0;
9615 /* Indicate EEPROM-less board. */
9616 eep_config->adapter_info[5] = 0xBB;
9617 } else {
9618 ASC_PRINT
9619 ("AscInitFromEEP: EEPROM checksum error; Will try to re-write EEPROM.\n");
9620 write_eep = 1;
9621 warn_code |= ASC_WARN_EEPROM_CHKSUM;
9624 asc_dvc->cfg->sdtr_enable = eep_config->init_sdtr;
9625 asc_dvc->cfg->disc_enable = eep_config->disc_enable;
9626 asc_dvc->cfg->cmd_qng_enabled = eep_config->use_cmd_qng;
9627 asc_dvc->cfg->isa_dma_speed = ASC_EEP_GET_DMA_SPD(eep_config);
9628 asc_dvc->start_motor = eep_config->start_motor;
9629 asc_dvc->dvc_cntl = eep_config->cntl;
9630 asc_dvc->no_scam = eep_config->no_scam;
9631 asc_dvc->cfg->adapter_info[0] = eep_config->adapter_info[0];
9632 asc_dvc->cfg->adapter_info[1] = eep_config->adapter_info[1];
9633 asc_dvc->cfg->adapter_info[2] = eep_config->adapter_info[2];
9634 asc_dvc->cfg->adapter_info[3] = eep_config->adapter_info[3];
9635 asc_dvc->cfg->adapter_info[4] = eep_config->adapter_info[4];
9636 asc_dvc->cfg->adapter_info[5] = eep_config->adapter_info[5];
9637 if (!AscTestExternalLram(asc_dvc)) {
9638 if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) ==
9639 ASC_IS_PCI_ULTRA)) {
9640 eep_config->max_total_qng =
9641 ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG;
9642 eep_config->max_tag_qng =
9643 ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG;
9644 } else {
9645 eep_config->cfg_msw |= 0x0800;
9646 cfg_msw |= 0x0800;
9647 AscSetChipCfgMsw(iop_base, cfg_msw);
9648 eep_config->max_total_qng = ASC_MAX_PCI_INRAM_TOTAL_QNG;
9649 eep_config->max_tag_qng = ASC_MAX_INRAM_TAG_QNG;
9651 } else {
9653 if (eep_config->max_total_qng < ASC_MIN_TOTAL_QNG) {
9654 eep_config->max_total_qng = ASC_MIN_TOTAL_QNG;
9656 if (eep_config->max_total_qng > ASC_MAX_TOTAL_QNG) {
9657 eep_config->max_total_qng = ASC_MAX_TOTAL_QNG;
9659 if (eep_config->max_tag_qng > eep_config->max_total_qng) {
9660 eep_config->max_tag_qng = eep_config->max_total_qng;
9662 if (eep_config->max_tag_qng < ASC_MIN_TAG_Q_PER_DVC) {
9663 eep_config->max_tag_qng = ASC_MIN_TAG_Q_PER_DVC;
9665 asc_dvc->max_total_qng = eep_config->max_total_qng;
9666 if ((eep_config->use_cmd_qng & eep_config->disc_enable) !=
9667 eep_config->use_cmd_qng) {
9668 eep_config->disc_enable = eep_config->use_cmd_qng;
9669 warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
9671 ASC_EEP_SET_CHIP_ID(eep_config,
9672 ASC_EEP_GET_CHIP_ID(eep_config) & ASC_MAX_TID);
9673 asc_dvc->cfg->chip_scsi_id = ASC_EEP_GET_CHIP_ID(eep_config);
9674 if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) &&
9675 !(asc_dvc->dvc_cntl & ASC_CNTL_SDTR_ENABLE_ULTRA)) {
9676 asc_dvc->min_sdtr_index = ASC_SDTR_ULTRA_PCI_10MB_INDEX;
9679 for (i = 0; i <= ASC_MAX_TID; i++) {
9680 asc_dvc->dos_int13_table[i] = eep_config->dos_int13_table[i];
9681 asc_dvc->cfg->max_tag_qng[i] = eep_config->max_tag_qng;
9682 asc_dvc->cfg->sdtr_period_offset[i] =
9683 (uchar)(ASC_DEF_SDTR_OFFSET |
9684 (asc_dvc->min_sdtr_index << 4));
9686 eep_config->cfg_msw = AscGetChipCfgMsw(iop_base);
9687 if (write_eep) {
9688 if ((i = AscSetEEPConfig(iop_base, eep_config,
9689 asc_dvc->bus_type)) != 0) {
9690 ASC_PRINT1
9691 ("AscInitFromEEP: Failed to re-write EEPROM with %d errors.\n",
9693 } else {
9694 ASC_PRINT
9695 ("AscInitFromEEP: Successfully re-wrote EEPROM.\n");
9698 return (warn_code);
9701 static int AscInitGetConfig(struct Scsi_Host *shost)
9703 struct asc_board *board = shost_priv(shost);
9704 ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
9705 unsigned short warn_code = 0;
9707 asc_dvc->init_state = ASC_INIT_STATE_BEG_GET_CFG;
9708 if (asc_dvc->err_code != 0)
9709 return asc_dvc->err_code;
9711 if (AscFindSignature(asc_dvc->iop_base)) {
9712 warn_code |= AscInitAscDvcVar(asc_dvc);
9713 warn_code |= AscInitFromEEP(asc_dvc);
9714 asc_dvc->init_state |= ASC_INIT_STATE_END_GET_CFG;
9715 if (asc_dvc->scsi_reset_wait > ASC_MAX_SCSI_RESET_WAIT)
9716 asc_dvc->scsi_reset_wait = ASC_MAX_SCSI_RESET_WAIT;
9717 } else {
9718 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
9721 switch (warn_code) {
9722 case 0: /* No error */
9723 break;
9724 case ASC_WARN_IO_PORT_ROTATE:
9725 shost_printk(KERN_WARNING, shost, "I/O port address "
9726 "modified\n");
9727 break;
9728 case ASC_WARN_AUTO_CONFIG:
9729 shost_printk(KERN_WARNING, shost, "I/O port increment switch "
9730 "enabled\n");
9731 break;
9732 case ASC_WARN_EEPROM_CHKSUM:
9733 shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
9734 break;
9735 case ASC_WARN_IRQ_MODIFIED:
9736 shost_printk(KERN_WARNING, shost, "IRQ modified\n");
9737 break;
9738 case ASC_WARN_CMD_QNG_CONFLICT:
9739 shost_printk(KERN_WARNING, shost, "tag queuing enabled w/o "
9740 "disconnects\n");
9741 break;
9742 default:
9743 shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
9744 warn_code);
9745 break;
9748 if (asc_dvc->err_code != 0)
9749 shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
9750 "0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
9752 return asc_dvc->err_code;
9755 static int AscInitSetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
9757 struct asc_board *board = shost_priv(shost);
9758 ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
9759 PortAddr iop_base = asc_dvc->iop_base;
9760 unsigned short cfg_msw;
9761 unsigned short warn_code = 0;
9763 asc_dvc->init_state |= ASC_INIT_STATE_BEG_SET_CFG;
9764 if (asc_dvc->err_code != 0)
9765 return asc_dvc->err_code;
9766 if (!AscFindSignature(asc_dvc->iop_base)) {
9767 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
9768 return asc_dvc->err_code;
9771 cfg_msw = AscGetChipCfgMsw(iop_base);
9772 if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
9773 cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
9774 warn_code |= ASC_WARN_CFG_MSW_RECOVER;
9775 AscSetChipCfgMsw(iop_base, cfg_msw);
9777 if ((asc_dvc->cfg->cmd_qng_enabled & asc_dvc->cfg->disc_enable) !=
9778 asc_dvc->cfg->cmd_qng_enabled) {
9779 asc_dvc->cfg->disc_enable = asc_dvc->cfg->cmd_qng_enabled;
9780 warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
9782 if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
9783 warn_code |= ASC_WARN_AUTO_CONFIG;
9785 #ifdef CONFIG_PCI
9786 if (asc_dvc->bus_type & ASC_IS_PCI) {
9787 cfg_msw &= 0xFFC0;
9788 AscSetChipCfgMsw(iop_base, cfg_msw);
9789 if ((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) {
9790 } else {
9791 if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
9792 (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
9793 asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_IF_NOT_DWB;
9794 asc_dvc->bug_fix_cntl |=
9795 ASC_BUG_FIX_ASYN_USE_SYN;
9798 } else
9799 #endif /* CONFIG_PCI */
9800 if (asc_dvc->bus_type == ASC_IS_ISAPNP) {
9801 if (AscGetChipVersion(iop_base, asc_dvc->bus_type)
9802 == ASC_CHIP_VER_ASYN_BUG) {
9803 asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_ASYN_USE_SYN;
9806 if (AscSetChipScsiID(iop_base, asc_dvc->cfg->chip_scsi_id) !=
9807 asc_dvc->cfg->chip_scsi_id) {
9808 asc_dvc->err_code |= ASC_IERR_SET_SCSI_ID;
9810 #ifdef CONFIG_ISA
9811 if (asc_dvc->bus_type & ASC_IS_ISA) {
9812 AscSetIsaDmaChannel(iop_base, asc_dvc->cfg->isa_dma_channel);
9813 AscSetIsaDmaSpeed(iop_base, asc_dvc->cfg->isa_dma_speed);
9815 #endif /* CONFIG_ISA */
9817 asc_dvc->init_state |= ASC_INIT_STATE_END_SET_CFG;
9819 switch (warn_code) {
9820 case 0: /* No error. */
9821 break;
9822 case ASC_WARN_IO_PORT_ROTATE:
9823 shost_printk(KERN_WARNING, shost, "I/O port address "
9824 "modified\n");
9825 break;
9826 case ASC_WARN_AUTO_CONFIG:
9827 shost_printk(KERN_WARNING, shost, "I/O port increment switch "
9828 "enabled\n");
9829 break;
9830 case ASC_WARN_EEPROM_CHKSUM:
9831 shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
9832 break;
9833 case ASC_WARN_IRQ_MODIFIED:
9834 shost_printk(KERN_WARNING, shost, "IRQ modified\n");
9835 break;
9836 case ASC_WARN_CMD_QNG_CONFLICT:
9837 shost_printk(KERN_WARNING, shost, "tag queuing w/o "
9838 "disconnects\n");
9839 break;
9840 default:
9841 shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
9842 warn_code);
9843 break;
9846 if (asc_dvc->err_code != 0)
9847 shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
9848 "0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
9850 return asc_dvc->err_code;
9854 * EEPROM Configuration.
9856 * All drivers should use this structure to set the default EEPROM
9857 * configuration. The BIOS now uses this structure when it is built.
9858 * Additional structure information can be found in a_condor.h where
9859 * the structure is defined.
9861 * The *_Field_IsChar structs are needed to correct for endianness.
9862 * These values are read from the board 16 bits at a time directly
9863 * into the structs. Because some fields are char, the values will be
9864 * in the wrong order. The *_Field_IsChar tells when to flip the
9865 * bytes. Data read and written to PCI memory is automatically swapped
9866 * on big-endian platforms so char fields read as words are actually being
9867 * unswapped on big-endian platforms.
9869 static ADVEEP_3550_CONFIG Default_3550_EEPROM_Config = {
9870 ADV_EEPROM_BIOS_ENABLE, /* cfg_lsw */
9871 0x0000, /* cfg_msw */
9872 0xFFFF, /* disc_enable */
9873 0xFFFF, /* wdtr_able */
9874 0xFFFF, /* sdtr_able */
9875 0xFFFF, /* start_motor */
9876 0xFFFF, /* tagqng_able */
9877 0xFFFF, /* bios_scan */
9878 0, /* scam_tolerant */
9879 7, /* adapter_scsi_id */
9880 0, /* bios_boot_delay */
9881 3, /* scsi_reset_delay */
9882 0, /* bios_id_lun */
9883 0, /* termination */
9884 0, /* reserved1 */
9885 0xFFE7, /* bios_ctrl */
9886 0xFFFF, /* ultra_able */
9887 0, /* reserved2 */
9888 ASC_DEF_MAX_HOST_QNG, /* max_host_qng */
9889 ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */
9890 0, /* dvc_cntl */
9891 0, /* bug_fix */
9892 0, /* serial_number_word1 */
9893 0, /* serial_number_word2 */
9894 0, /* serial_number_word3 */
9895 0, /* check_sum */
9896 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9897 , /* oem_name[16] */
9898 0, /* dvc_err_code */
9899 0, /* adv_err_code */
9900 0, /* adv_err_addr */
9901 0, /* saved_dvc_err_code */
9902 0, /* saved_adv_err_code */
9903 0, /* saved_adv_err_addr */
9904 0 /* num_of_err */
9907 static ADVEEP_3550_CONFIG ADVEEP_3550_Config_Field_IsChar = {
9908 0, /* cfg_lsw */
9909 0, /* cfg_msw */
9910 0, /* -disc_enable */
9911 0, /* wdtr_able */
9912 0, /* sdtr_able */
9913 0, /* start_motor */
9914 0, /* tagqng_able */
9915 0, /* bios_scan */
9916 0, /* scam_tolerant */
9917 1, /* adapter_scsi_id */
9918 1, /* bios_boot_delay */
9919 1, /* scsi_reset_delay */
9920 1, /* bios_id_lun */
9921 1, /* termination */
9922 1, /* reserved1 */
9923 0, /* bios_ctrl */
9924 0, /* ultra_able */
9925 0, /* reserved2 */
9926 1, /* max_host_qng */
9927 1, /* max_dvc_qng */
9928 0, /* dvc_cntl */
9929 0, /* bug_fix */
9930 0, /* serial_number_word1 */
9931 0, /* serial_number_word2 */
9932 0, /* serial_number_word3 */
9933 0, /* check_sum */
9934 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9935 , /* oem_name[16] */
9936 0, /* dvc_err_code */
9937 0, /* adv_err_code */
9938 0, /* adv_err_addr */
9939 0, /* saved_dvc_err_code */
9940 0, /* saved_adv_err_code */
9941 0, /* saved_adv_err_addr */
9942 0 /* num_of_err */
9945 static ADVEEP_38C0800_CONFIG Default_38C0800_EEPROM_Config = {
9946 ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
9947 0x0000, /* 01 cfg_msw */
9948 0xFFFF, /* 02 disc_enable */
9949 0xFFFF, /* 03 wdtr_able */
9950 0x4444, /* 04 sdtr_speed1 */
9951 0xFFFF, /* 05 start_motor */
9952 0xFFFF, /* 06 tagqng_able */
9953 0xFFFF, /* 07 bios_scan */
9954 0, /* 08 scam_tolerant */
9955 7, /* 09 adapter_scsi_id */
9956 0, /* bios_boot_delay */
9957 3, /* 10 scsi_reset_delay */
9958 0, /* bios_id_lun */
9959 0, /* 11 termination_se */
9960 0, /* termination_lvd */
9961 0xFFE7, /* 12 bios_ctrl */
9962 0x4444, /* 13 sdtr_speed2 */
9963 0x4444, /* 14 sdtr_speed3 */
9964 ASC_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
9965 ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */
9966 0, /* 16 dvc_cntl */
9967 0x4444, /* 17 sdtr_speed4 */
9968 0, /* 18 serial_number_word1 */
9969 0, /* 19 serial_number_word2 */
9970 0, /* 20 serial_number_word3 */
9971 0, /* 21 check_sum */
9972 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9973 , /* 22-29 oem_name[16] */
9974 0, /* 30 dvc_err_code */
9975 0, /* 31 adv_err_code */
9976 0, /* 32 adv_err_addr */
9977 0, /* 33 saved_dvc_err_code */
9978 0, /* 34 saved_adv_err_code */
9979 0, /* 35 saved_adv_err_addr */
9980 0, /* 36 reserved */
9981 0, /* 37 reserved */
9982 0, /* 38 reserved */
9983 0, /* 39 reserved */
9984 0, /* 40 reserved */
9985 0, /* 41 reserved */
9986 0, /* 42 reserved */
9987 0, /* 43 reserved */
9988 0, /* 44 reserved */
9989 0, /* 45 reserved */
9990 0, /* 46 reserved */
9991 0, /* 47 reserved */
9992 0, /* 48 reserved */
9993 0, /* 49 reserved */
9994 0, /* 50 reserved */
9995 0, /* 51 reserved */
9996 0, /* 52 reserved */
9997 0, /* 53 reserved */
9998 0, /* 54 reserved */
9999 0, /* 55 reserved */
10000 0, /* 56 cisptr_lsw */
10001 0, /* 57 cisprt_msw */
10002 PCI_VENDOR_ID_ASP, /* 58 subsysvid */
10003 PCI_DEVICE_ID_38C0800_REV1, /* 59 subsysid */
10004 0, /* 60 reserved */
10005 0, /* 61 reserved */
10006 0, /* 62 reserved */
10007 0 /* 63 reserved */
10010 static ADVEEP_38C0800_CONFIG ADVEEP_38C0800_Config_Field_IsChar = {
10011 0, /* 00 cfg_lsw */
10012 0, /* 01 cfg_msw */
10013 0, /* 02 disc_enable */
10014 0, /* 03 wdtr_able */
10015 0, /* 04 sdtr_speed1 */
10016 0, /* 05 start_motor */
10017 0, /* 06 tagqng_able */
10018 0, /* 07 bios_scan */
10019 0, /* 08 scam_tolerant */
10020 1, /* 09 adapter_scsi_id */
10021 1, /* bios_boot_delay */
10022 1, /* 10 scsi_reset_delay */
10023 1, /* bios_id_lun */
10024 1, /* 11 termination_se */
10025 1, /* termination_lvd */
10026 0, /* 12 bios_ctrl */
10027 0, /* 13 sdtr_speed2 */
10028 0, /* 14 sdtr_speed3 */
10029 1, /* 15 max_host_qng */
10030 1, /* max_dvc_qng */
10031 0, /* 16 dvc_cntl */
10032 0, /* 17 sdtr_speed4 */
10033 0, /* 18 serial_number_word1 */
10034 0, /* 19 serial_number_word2 */
10035 0, /* 20 serial_number_word3 */
10036 0, /* 21 check_sum */
10037 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
10038 , /* 22-29 oem_name[16] */
10039 0, /* 30 dvc_err_code */
10040 0, /* 31 adv_err_code */
10041 0, /* 32 adv_err_addr */
10042 0, /* 33 saved_dvc_err_code */
10043 0, /* 34 saved_adv_err_code */
10044 0, /* 35 saved_adv_err_addr */
10045 0, /* 36 reserved */
10046 0, /* 37 reserved */
10047 0, /* 38 reserved */
10048 0, /* 39 reserved */
10049 0, /* 40 reserved */
10050 0, /* 41 reserved */
10051 0, /* 42 reserved */
10052 0, /* 43 reserved */
10053 0, /* 44 reserved */
10054 0, /* 45 reserved */
10055 0, /* 46 reserved */
10056 0, /* 47 reserved */
10057 0, /* 48 reserved */
10058 0, /* 49 reserved */
10059 0, /* 50 reserved */
10060 0, /* 51 reserved */
10061 0, /* 52 reserved */
10062 0, /* 53 reserved */
10063 0, /* 54 reserved */
10064 0, /* 55 reserved */
10065 0, /* 56 cisptr_lsw */
10066 0, /* 57 cisprt_msw */
10067 0, /* 58 subsysvid */
10068 0, /* 59 subsysid */
10069 0, /* 60 reserved */
10070 0, /* 61 reserved */
10071 0, /* 62 reserved */
10072 0 /* 63 reserved */
10075 static ADVEEP_38C1600_CONFIG Default_38C1600_EEPROM_Config = {
10076 ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
10077 0x0000, /* 01 cfg_msw */
10078 0xFFFF, /* 02 disc_enable */
10079 0xFFFF, /* 03 wdtr_able */
10080 0x5555, /* 04 sdtr_speed1 */
10081 0xFFFF, /* 05 start_motor */
10082 0xFFFF, /* 06 tagqng_able */
10083 0xFFFF, /* 07 bios_scan */
10084 0, /* 08 scam_tolerant */
10085 7, /* 09 adapter_scsi_id */
10086 0, /* bios_boot_delay */
10087 3, /* 10 scsi_reset_delay */
10088 0, /* bios_id_lun */
10089 0, /* 11 termination_se */
10090 0, /* termination_lvd */
10091 0xFFE7, /* 12 bios_ctrl */
10092 0x5555, /* 13 sdtr_speed2 */
10093 0x5555, /* 14 sdtr_speed3 */
10094 ASC_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
10095 ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */
10096 0, /* 16 dvc_cntl */
10097 0x5555, /* 17 sdtr_speed4 */
10098 0, /* 18 serial_number_word1 */
10099 0, /* 19 serial_number_word2 */
10100 0, /* 20 serial_number_word3 */
10101 0, /* 21 check_sum */
10102 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
10103 , /* 22-29 oem_name[16] */
10104 0, /* 30 dvc_err_code */
10105 0, /* 31 adv_err_code */
10106 0, /* 32 adv_err_addr */
10107 0, /* 33 saved_dvc_err_code */
10108 0, /* 34 saved_adv_err_code */
10109 0, /* 35 saved_adv_err_addr */
10110 0, /* 36 reserved */
10111 0, /* 37 reserved */
10112 0, /* 38 reserved */
10113 0, /* 39 reserved */
10114 0, /* 40 reserved */
10115 0, /* 41 reserved */
10116 0, /* 42 reserved */
10117 0, /* 43 reserved */
10118 0, /* 44 reserved */
10119 0, /* 45 reserved */
10120 0, /* 46 reserved */
10121 0, /* 47 reserved */
10122 0, /* 48 reserved */
10123 0, /* 49 reserved */
10124 0, /* 50 reserved */
10125 0, /* 51 reserved */
10126 0, /* 52 reserved */
10127 0, /* 53 reserved */
10128 0, /* 54 reserved */
10129 0, /* 55 reserved */
10130 0, /* 56 cisptr_lsw */
10131 0, /* 57 cisprt_msw */
10132 PCI_VENDOR_ID_ASP, /* 58 subsysvid */
10133 PCI_DEVICE_ID_38C1600_REV1, /* 59 subsysid */
10134 0, /* 60 reserved */
10135 0, /* 61 reserved */
10136 0, /* 62 reserved */
10137 0 /* 63 reserved */
10140 static ADVEEP_38C1600_CONFIG ADVEEP_38C1600_Config_Field_IsChar = {
10141 0, /* 00 cfg_lsw */
10142 0, /* 01 cfg_msw */
10143 0, /* 02 disc_enable */
10144 0, /* 03 wdtr_able */
10145 0, /* 04 sdtr_speed1 */
10146 0, /* 05 start_motor */
10147 0, /* 06 tagqng_able */
10148 0, /* 07 bios_scan */
10149 0, /* 08 scam_tolerant */
10150 1, /* 09 adapter_scsi_id */
10151 1, /* bios_boot_delay */
10152 1, /* 10 scsi_reset_delay */
10153 1, /* bios_id_lun */
10154 1, /* 11 termination_se */
10155 1, /* termination_lvd */
10156 0, /* 12 bios_ctrl */
10157 0, /* 13 sdtr_speed2 */
10158 0, /* 14 sdtr_speed3 */
10159 1, /* 15 max_host_qng */
10160 1, /* max_dvc_qng */
10161 0, /* 16 dvc_cntl */
10162 0, /* 17 sdtr_speed4 */
10163 0, /* 18 serial_number_word1 */
10164 0, /* 19 serial_number_word2 */
10165 0, /* 20 serial_number_word3 */
10166 0, /* 21 check_sum */
10167 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
10168 , /* 22-29 oem_name[16] */
10169 0, /* 30 dvc_err_code */
10170 0, /* 31 adv_err_code */
10171 0, /* 32 adv_err_addr */
10172 0, /* 33 saved_dvc_err_code */
10173 0, /* 34 saved_adv_err_code */
10174 0, /* 35 saved_adv_err_addr */
10175 0, /* 36 reserved */
10176 0, /* 37 reserved */
10177 0, /* 38 reserved */
10178 0, /* 39 reserved */
10179 0, /* 40 reserved */
10180 0, /* 41 reserved */
10181 0, /* 42 reserved */
10182 0, /* 43 reserved */
10183 0, /* 44 reserved */
10184 0, /* 45 reserved */
10185 0, /* 46 reserved */
10186 0, /* 47 reserved */
10187 0, /* 48 reserved */
10188 0, /* 49 reserved */
10189 0, /* 50 reserved */
10190 0, /* 51 reserved */
10191 0, /* 52 reserved */
10192 0, /* 53 reserved */
10193 0, /* 54 reserved */
10194 0, /* 55 reserved */
10195 0, /* 56 cisptr_lsw */
10196 0, /* 57 cisprt_msw */
10197 0, /* 58 subsysvid */
10198 0, /* 59 subsysid */
10199 0, /* 60 reserved */
10200 0, /* 61 reserved */
10201 0, /* 62 reserved */
10202 0 /* 63 reserved */
10205 #ifdef CONFIG_PCI
10207 * Wait for EEPROM command to complete
10209 static void AdvWaitEEPCmd(AdvPortAddr iop_base)
10211 int eep_delay_ms;
10213 for (eep_delay_ms = 0; eep_delay_ms < ADV_EEP_DELAY_MS; eep_delay_ms++) {
10214 if (AdvReadWordRegister(iop_base, IOPW_EE_CMD) &
10215 ASC_EEP_CMD_DONE) {
10216 break;
10218 mdelay(1);
10220 if ((AdvReadWordRegister(iop_base, IOPW_EE_CMD) & ASC_EEP_CMD_DONE) ==
10222 BUG();
10226 * Read the EEPROM from specified location
10228 static ushort AdvReadEEPWord(AdvPortAddr iop_base, int eep_word_addr)
10230 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10231 ASC_EEP_CMD_READ | eep_word_addr);
10232 AdvWaitEEPCmd(iop_base);
10233 return AdvReadWordRegister(iop_base, IOPW_EE_DATA);
10237 * Write the EEPROM from 'cfg_buf'.
10239 static void AdvSet3550EEPConfig(AdvPortAddr iop_base,
10240 ADVEEP_3550_CONFIG *cfg_buf)
10242 ushort *wbuf;
10243 ushort addr, chksum;
10244 ushort *charfields;
10246 wbuf = (ushort *)cfg_buf;
10247 charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
10248 chksum = 0;
10250 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
10251 AdvWaitEEPCmd(iop_base);
10254 * Write EEPROM from word 0 to word 20.
10256 for (addr = ADV_EEP_DVC_CFG_BEGIN;
10257 addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
10258 ushort word;
10260 if (*charfields++) {
10261 word = cpu_to_le16(*wbuf);
10262 } else {
10263 word = *wbuf;
10265 chksum += *wbuf; /* Checksum is calculated from word values. */
10266 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10267 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10268 ASC_EEP_CMD_WRITE | addr);
10269 AdvWaitEEPCmd(iop_base);
10270 mdelay(ADV_EEP_DELAY_MS);
10274 * Write EEPROM checksum at word 21.
10276 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
10277 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
10278 AdvWaitEEPCmd(iop_base);
10279 wbuf++;
10280 charfields++;
10283 * Write EEPROM OEM name at words 22 to 29.
10285 for (addr = ADV_EEP_DVC_CTL_BEGIN;
10286 addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
10287 ushort word;
10289 if (*charfields++) {
10290 word = cpu_to_le16(*wbuf);
10291 } else {
10292 word = *wbuf;
10294 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10295 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10296 ASC_EEP_CMD_WRITE | addr);
10297 AdvWaitEEPCmd(iop_base);
10299 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
10300 AdvWaitEEPCmd(iop_base);
10304 * Write the EEPROM from 'cfg_buf'.
10306 static void AdvSet38C0800EEPConfig(AdvPortAddr iop_base,
10307 ADVEEP_38C0800_CONFIG *cfg_buf)
10309 ushort *wbuf;
10310 ushort *charfields;
10311 ushort addr, chksum;
10313 wbuf = (ushort *)cfg_buf;
10314 charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
10315 chksum = 0;
10317 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
10318 AdvWaitEEPCmd(iop_base);
10321 * Write EEPROM from word 0 to word 20.
10323 for (addr = ADV_EEP_DVC_CFG_BEGIN;
10324 addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
10325 ushort word;
10327 if (*charfields++) {
10328 word = cpu_to_le16(*wbuf);
10329 } else {
10330 word = *wbuf;
10332 chksum += *wbuf; /* Checksum is calculated from word values. */
10333 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10334 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10335 ASC_EEP_CMD_WRITE | addr);
10336 AdvWaitEEPCmd(iop_base);
10337 mdelay(ADV_EEP_DELAY_MS);
10341 * Write EEPROM checksum at word 21.
10343 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
10344 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
10345 AdvWaitEEPCmd(iop_base);
10346 wbuf++;
10347 charfields++;
10350 * Write EEPROM OEM name at words 22 to 29.
10352 for (addr = ADV_EEP_DVC_CTL_BEGIN;
10353 addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
10354 ushort word;
10356 if (*charfields++) {
10357 word = cpu_to_le16(*wbuf);
10358 } else {
10359 word = *wbuf;
10361 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10362 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10363 ASC_EEP_CMD_WRITE | addr);
10364 AdvWaitEEPCmd(iop_base);
10366 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
10367 AdvWaitEEPCmd(iop_base);
10371 * Write the EEPROM from 'cfg_buf'.
10373 static void AdvSet38C1600EEPConfig(AdvPortAddr iop_base,
10374 ADVEEP_38C1600_CONFIG *cfg_buf)
10376 ushort *wbuf;
10377 ushort *charfields;
10378 ushort addr, chksum;
10380 wbuf = (ushort *)cfg_buf;
10381 charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
10382 chksum = 0;
10384 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
10385 AdvWaitEEPCmd(iop_base);
10388 * Write EEPROM from word 0 to word 20.
10390 for (addr = ADV_EEP_DVC_CFG_BEGIN;
10391 addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
10392 ushort word;
10394 if (*charfields++) {
10395 word = cpu_to_le16(*wbuf);
10396 } else {
10397 word = *wbuf;
10399 chksum += *wbuf; /* Checksum is calculated from word values. */
10400 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10401 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10402 ASC_EEP_CMD_WRITE | addr);
10403 AdvWaitEEPCmd(iop_base);
10404 mdelay(ADV_EEP_DELAY_MS);
10408 * Write EEPROM checksum at word 21.
10410 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
10411 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
10412 AdvWaitEEPCmd(iop_base);
10413 wbuf++;
10414 charfields++;
10417 * Write EEPROM OEM name at words 22 to 29.
10419 for (addr = ADV_EEP_DVC_CTL_BEGIN;
10420 addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
10421 ushort word;
10423 if (*charfields++) {
10424 word = cpu_to_le16(*wbuf);
10425 } else {
10426 word = *wbuf;
10428 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10429 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10430 ASC_EEP_CMD_WRITE | addr);
10431 AdvWaitEEPCmd(iop_base);
10433 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
10434 AdvWaitEEPCmd(iop_base);
10438 * Read EEPROM configuration into the specified buffer.
10440 * Return a checksum based on the EEPROM configuration read.
10442 static ushort AdvGet3550EEPConfig(AdvPortAddr iop_base,
10443 ADVEEP_3550_CONFIG *cfg_buf)
10445 ushort wval, chksum;
10446 ushort *wbuf;
10447 int eep_addr;
10448 ushort *charfields;
10450 charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
10451 wbuf = (ushort *)cfg_buf;
10452 chksum = 0;
10454 for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10455 eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10456 wval = AdvReadEEPWord(iop_base, eep_addr);
10457 chksum += wval; /* Checksum is calculated from word values. */
10458 if (*charfields++) {
10459 *wbuf = le16_to_cpu(wval);
10460 } else {
10461 *wbuf = wval;
10464 /* Read checksum word. */
10465 *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10466 wbuf++;
10467 charfields++;
10469 /* Read rest of EEPROM not covered by the checksum. */
10470 for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
10471 eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
10472 *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10473 if (*charfields++) {
10474 *wbuf = le16_to_cpu(*wbuf);
10477 return chksum;
10481 * Read EEPROM configuration into the specified buffer.
10483 * Return a checksum based on the EEPROM configuration read.
10485 static ushort AdvGet38C0800EEPConfig(AdvPortAddr iop_base,
10486 ADVEEP_38C0800_CONFIG *cfg_buf)
10488 ushort wval, chksum;
10489 ushort *wbuf;
10490 int eep_addr;
10491 ushort *charfields;
10493 charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
10494 wbuf = (ushort *)cfg_buf;
10495 chksum = 0;
10497 for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10498 eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10499 wval = AdvReadEEPWord(iop_base, eep_addr);
10500 chksum += wval; /* Checksum is calculated from word values. */
10501 if (*charfields++) {
10502 *wbuf = le16_to_cpu(wval);
10503 } else {
10504 *wbuf = wval;
10507 /* Read checksum word. */
10508 *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10509 wbuf++;
10510 charfields++;
10512 /* Read rest of EEPROM not covered by the checksum. */
10513 for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
10514 eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
10515 *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10516 if (*charfields++) {
10517 *wbuf = le16_to_cpu(*wbuf);
10520 return chksum;
10524 * Read EEPROM configuration into the specified buffer.
10526 * Return a checksum based on the EEPROM configuration read.
10528 static ushort AdvGet38C1600EEPConfig(AdvPortAddr iop_base,
10529 ADVEEP_38C1600_CONFIG *cfg_buf)
10531 ushort wval, chksum;
10532 ushort *wbuf;
10533 int eep_addr;
10534 ushort *charfields;
10536 charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
10537 wbuf = (ushort *)cfg_buf;
10538 chksum = 0;
10540 for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10541 eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10542 wval = AdvReadEEPWord(iop_base, eep_addr);
10543 chksum += wval; /* Checksum is calculated from word values. */
10544 if (*charfields++) {
10545 *wbuf = le16_to_cpu(wval);
10546 } else {
10547 *wbuf = wval;
10550 /* Read checksum word. */
10551 *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10552 wbuf++;
10553 charfields++;
10555 /* Read rest of EEPROM not covered by the checksum. */
10556 for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
10557 eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
10558 *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10559 if (*charfields++) {
10560 *wbuf = le16_to_cpu(*wbuf);
10563 return chksum;
10567 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
10568 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
10569 * all of this is done.
10571 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10573 * For a non-fatal error return a warning code. If there are no warnings
10574 * then 0 is returned.
10576 * Note: Chip is stopped on entry.
10578 static int AdvInitFrom3550EEP(ADV_DVC_VAR *asc_dvc)
10580 AdvPortAddr iop_base;
10581 ushort warn_code;
10582 ADVEEP_3550_CONFIG eep_config;
10584 iop_base = asc_dvc->iop_base;
10586 warn_code = 0;
10589 * Read the board's EEPROM configuration.
10591 * Set default values if a bad checksum is found.
10593 if (AdvGet3550EEPConfig(iop_base, &eep_config) != eep_config.check_sum) {
10594 warn_code |= ASC_WARN_EEPROM_CHKSUM;
10597 * Set EEPROM default values.
10599 memcpy(&eep_config, &Default_3550_EEPROM_Config,
10600 sizeof(ADVEEP_3550_CONFIG));
10603 * Assume the 6 byte board serial number that was read from
10604 * EEPROM is correct even if the EEPROM checksum failed.
10606 eep_config.serial_number_word3 =
10607 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
10609 eep_config.serial_number_word2 =
10610 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
10612 eep_config.serial_number_word1 =
10613 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
10615 AdvSet3550EEPConfig(iop_base, &eep_config);
10618 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
10619 * EEPROM configuration that was read.
10621 * This is the mapping of EEPROM fields to Adv Library fields.
10623 asc_dvc->wdtr_able = eep_config.wdtr_able;
10624 asc_dvc->sdtr_able = eep_config.sdtr_able;
10625 asc_dvc->ultra_able = eep_config.ultra_able;
10626 asc_dvc->tagqng_able = eep_config.tagqng_able;
10627 asc_dvc->cfg->disc_enable = eep_config.disc_enable;
10628 asc_dvc->max_host_qng = eep_config.max_host_qng;
10629 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10630 asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
10631 asc_dvc->start_motor = eep_config.start_motor;
10632 asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10633 asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10634 asc_dvc->no_scam = eep_config.scam_tolerant;
10635 asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
10636 asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
10637 asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
10640 * Set the host maximum queuing (max. 253, min. 16) and the per device
10641 * maximum queuing (max. 63, min. 4).
10643 if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10644 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10645 } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10646 /* If the value is zero, assume it is uninitialized. */
10647 if (eep_config.max_host_qng == 0) {
10648 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10649 } else {
10650 eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10654 if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10655 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10656 } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10657 /* If the value is zero, assume it is uninitialized. */
10658 if (eep_config.max_dvc_qng == 0) {
10659 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10660 } else {
10661 eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10666 * If 'max_dvc_qng' is greater than 'max_host_qng', then
10667 * set 'max_dvc_qng' to 'max_host_qng'.
10669 if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10670 eep_config.max_dvc_qng = eep_config.max_host_qng;
10674 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
10675 * values based on possibly adjusted EEPROM values.
10677 asc_dvc->max_host_qng = eep_config.max_host_qng;
10678 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10681 * If the EEPROM 'termination' field is set to automatic (0), then set
10682 * the ADV_DVC_CFG 'termination' field to automatic also.
10684 * If the termination is specified with a non-zero 'termination'
10685 * value check that a legal value is set and set the ADV_DVC_CFG
10686 * 'termination' field appropriately.
10688 if (eep_config.termination == 0) {
10689 asc_dvc->cfg->termination = 0; /* auto termination */
10690 } else {
10691 /* Enable manual control with low off / high off. */
10692 if (eep_config.termination == 1) {
10693 asc_dvc->cfg->termination = TERM_CTL_SEL;
10695 /* Enable manual control with low off / high on. */
10696 } else if (eep_config.termination == 2) {
10697 asc_dvc->cfg->termination = TERM_CTL_SEL | TERM_CTL_H;
10699 /* Enable manual control with low on / high on. */
10700 } else if (eep_config.termination == 3) {
10701 asc_dvc->cfg->termination =
10702 TERM_CTL_SEL | TERM_CTL_H | TERM_CTL_L;
10703 } else {
10705 * The EEPROM 'termination' field contains a bad value. Use
10706 * automatic termination instead.
10708 asc_dvc->cfg->termination = 0;
10709 warn_code |= ASC_WARN_EEPROM_TERMINATION;
10713 return warn_code;
10717 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
10718 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
10719 * all of this is done.
10721 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10723 * For a non-fatal error return a warning code. If there are no warnings
10724 * then 0 is returned.
10726 * Note: Chip is stopped on entry.
10728 static int AdvInitFrom38C0800EEP(ADV_DVC_VAR *asc_dvc)
10730 AdvPortAddr iop_base;
10731 ushort warn_code;
10732 ADVEEP_38C0800_CONFIG eep_config;
10733 uchar tid, termination;
10734 ushort sdtr_speed = 0;
10736 iop_base = asc_dvc->iop_base;
10738 warn_code = 0;
10741 * Read the board's EEPROM configuration.
10743 * Set default values if a bad checksum is found.
10745 if (AdvGet38C0800EEPConfig(iop_base, &eep_config) !=
10746 eep_config.check_sum) {
10747 warn_code |= ASC_WARN_EEPROM_CHKSUM;
10750 * Set EEPROM default values.
10752 memcpy(&eep_config, &Default_38C0800_EEPROM_Config,
10753 sizeof(ADVEEP_38C0800_CONFIG));
10756 * Assume the 6 byte board serial number that was read from
10757 * EEPROM is correct even if the EEPROM checksum failed.
10759 eep_config.serial_number_word3 =
10760 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
10762 eep_config.serial_number_word2 =
10763 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
10765 eep_config.serial_number_word1 =
10766 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
10768 AdvSet38C0800EEPConfig(iop_base, &eep_config);
10771 * Set ADV_DVC_VAR and ADV_DVC_CFG variables from the
10772 * EEPROM configuration that was read.
10774 * This is the mapping of EEPROM fields to Adv Library fields.
10776 asc_dvc->wdtr_able = eep_config.wdtr_able;
10777 asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
10778 asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
10779 asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
10780 asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
10781 asc_dvc->tagqng_able = eep_config.tagqng_able;
10782 asc_dvc->cfg->disc_enable = eep_config.disc_enable;
10783 asc_dvc->max_host_qng = eep_config.max_host_qng;
10784 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10785 asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
10786 asc_dvc->start_motor = eep_config.start_motor;
10787 asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10788 asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10789 asc_dvc->no_scam = eep_config.scam_tolerant;
10790 asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
10791 asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
10792 asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
10795 * For every Target ID if any of its 'sdtr_speed[1234]' bits
10796 * are set, then set an 'sdtr_able' bit for it.
10798 asc_dvc->sdtr_able = 0;
10799 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
10800 if (tid == 0) {
10801 sdtr_speed = asc_dvc->sdtr_speed1;
10802 } else if (tid == 4) {
10803 sdtr_speed = asc_dvc->sdtr_speed2;
10804 } else if (tid == 8) {
10805 sdtr_speed = asc_dvc->sdtr_speed3;
10806 } else if (tid == 12) {
10807 sdtr_speed = asc_dvc->sdtr_speed4;
10809 if (sdtr_speed & ADV_MAX_TID) {
10810 asc_dvc->sdtr_able |= (1 << tid);
10812 sdtr_speed >>= 4;
10816 * Set the host maximum queuing (max. 253, min. 16) and the per device
10817 * maximum queuing (max. 63, min. 4).
10819 if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10820 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10821 } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10822 /* If the value is zero, assume it is uninitialized. */
10823 if (eep_config.max_host_qng == 0) {
10824 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10825 } else {
10826 eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10830 if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10831 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10832 } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10833 /* If the value is zero, assume it is uninitialized. */
10834 if (eep_config.max_dvc_qng == 0) {
10835 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10836 } else {
10837 eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10842 * If 'max_dvc_qng' is greater than 'max_host_qng', then
10843 * set 'max_dvc_qng' to 'max_host_qng'.
10845 if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10846 eep_config.max_dvc_qng = eep_config.max_host_qng;
10850 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
10851 * values based on possibly adjusted EEPROM values.
10853 asc_dvc->max_host_qng = eep_config.max_host_qng;
10854 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10857 * If the EEPROM 'termination' field is set to automatic (0), then set
10858 * the ADV_DVC_CFG 'termination' field to automatic also.
10860 * If the termination is specified with a non-zero 'termination'
10861 * value check that a legal value is set and set the ADV_DVC_CFG
10862 * 'termination' field appropriately.
10864 if (eep_config.termination_se == 0) {
10865 termination = 0; /* auto termination for SE */
10866 } else {
10867 /* Enable manual control with low off / high off. */
10868 if (eep_config.termination_se == 1) {
10869 termination = 0;
10871 /* Enable manual control with low off / high on. */
10872 } else if (eep_config.termination_se == 2) {
10873 termination = TERM_SE_HI;
10875 /* Enable manual control with low on / high on. */
10876 } else if (eep_config.termination_se == 3) {
10877 termination = TERM_SE;
10878 } else {
10880 * The EEPROM 'termination_se' field contains a bad value.
10881 * Use automatic termination instead.
10883 termination = 0;
10884 warn_code |= ASC_WARN_EEPROM_TERMINATION;
10888 if (eep_config.termination_lvd == 0) {
10889 asc_dvc->cfg->termination = termination; /* auto termination for LVD */
10890 } else {
10891 /* Enable manual control with low off / high off. */
10892 if (eep_config.termination_lvd == 1) {
10893 asc_dvc->cfg->termination = termination;
10895 /* Enable manual control with low off / high on. */
10896 } else if (eep_config.termination_lvd == 2) {
10897 asc_dvc->cfg->termination = termination | TERM_LVD_HI;
10899 /* Enable manual control with low on / high on. */
10900 } else if (eep_config.termination_lvd == 3) {
10901 asc_dvc->cfg->termination = termination | TERM_LVD;
10902 } else {
10904 * The EEPROM 'termination_lvd' field contains a bad value.
10905 * Use automatic termination instead.
10907 asc_dvc->cfg->termination = termination;
10908 warn_code |= ASC_WARN_EEPROM_TERMINATION;
10912 return warn_code;
10916 * Read the board's EEPROM configuration. Set fields in ASC_DVC_VAR and
10917 * ASC_DVC_CFG based on the EEPROM settings. The chip is stopped while
10918 * all of this is done.
10920 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
10922 * For a non-fatal error return a warning code. If there are no warnings
10923 * then 0 is returned.
10925 * Note: Chip is stopped on entry.
10927 static int AdvInitFrom38C1600EEP(ADV_DVC_VAR *asc_dvc)
10929 AdvPortAddr iop_base;
10930 ushort warn_code;
10931 ADVEEP_38C1600_CONFIG eep_config;
10932 uchar tid, termination;
10933 ushort sdtr_speed = 0;
10935 iop_base = asc_dvc->iop_base;
10937 warn_code = 0;
10940 * Read the board's EEPROM configuration.
10942 * Set default values if a bad checksum is found.
10944 if (AdvGet38C1600EEPConfig(iop_base, &eep_config) !=
10945 eep_config.check_sum) {
10946 struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
10947 warn_code |= ASC_WARN_EEPROM_CHKSUM;
10950 * Set EEPROM default values.
10952 memcpy(&eep_config, &Default_38C1600_EEPROM_Config,
10953 sizeof(ADVEEP_38C1600_CONFIG));
10955 if (PCI_FUNC(pdev->devfn) != 0) {
10956 u8 ints;
10958 * Disable Bit 14 (BIOS_ENABLE) to fix SPARC Ultra 60
10959 * and old Mac system booting problem. The Expansion
10960 * ROM must be disabled in Function 1 for these systems
10962 eep_config.cfg_lsw &= ~ADV_EEPROM_BIOS_ENABLE;
10964 * Clear the INTAB (bit 11) if the GPIO 0 input
10965 * indicates the Function 1 interrupt line is wired
10966 * to INTB.
10968 * Set/Clear Bit 11 (INTAB) from the GPIO bit 0 input:
10969 * 1 - Function 1 interrupt line wired to INT A.
10970 * 0 - Function 1 interrupt line wired to INT B.
10972 * Note: Function 0 is always wired to INTA.
10973 * Put all 5 GPIO bits in input mode and then read
10974 * their input values.
10976 AdvWriteByteRegister(iop_base, IOPB_GPIO_CNTL, 0);
10977 ints = AdvReadByteRegister(iop_base, IOPB_GPIO_DATA);
10978 if ((ints & 0x01) == 0)
10979 eep_config.cfg_lsw &= ~ADV_EEPROM_INTAB;
10983 * Assume the 6 byte board serial number that was read from
10984 * EEPROM is correct even if the EEPROM checksum failed.
10986 eep_config.serial_number_word3 =
10987 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
10988 eep_config.serial_number_word2 =
10989 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
10990 eep_config.serial_number_word1 =
10991 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
10993 AdvSet38C1600EEPConfig(iop_base, &eep_config);
10997 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
10998 * EEPROM configuration that was read.
11000 * This is the mapping of EEPROM fields to Adv Library fields.
11002 asc_dvc->wdtr_able = eep_config.wdtr_able;
11003 asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
11004 asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
11005 asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
11006 asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
11007 asc_dvc->ppr_able = 0;
11008 asc_dvc->tagqng_able = eep_config.tagqng_able;
11009 asc_dvc->cfg->disc_enable = eep_config.disc_enable;
11010 asc_dvc->max_host_qng = eep_config.max_host_qng;
11011 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11012 asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ASC_MAX_TID);
11013 asc_dvc->start_motor = eep_config.start_motor;
11014 asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
11015 asc_dvc->bios_ctrl = eep_config.bios_ctrl;
11016 asc_dvc->no_scam = eep_config.scam_tolerant;
11019 * For every Target ID if any of its 'sdtr_speed[1234]' bits
11020 * are set, then set an 'sdtr_able' bit for it.
11022 asc_dvc->sdtr_able = 0;
11023 for (tid = 0; tid <= ASC_MAX_TID; tid++) {
11024 if (tid == 0) {
11025 sdtr_speed = asc_dvc->sdtr_speed1;
11026 } else if (tid == 4) {
11027 sdtr_speed = asc_dvc->sdtr_speed2;
11028 } else if (tid == 8) {
11029 sdtr_speed = asc_dvc->sdtr_speed3;
11030 } else if (tid == 12) {
11031 sdtr_speed = asc_dvc->sdtr_speed4;
11033 if (sdtr_speed & ASC_MAX_TID) {
11034 asc_dvc->sdtr_able |= (1 << tid);
11036 sdtr_speed >>= 4;
11040 * Set the host maximum queuing (max. 253, min. 16) and the per device
11041 * maximum queuing (max. 63, min. 4).
11043 if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
11044 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11045 } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
11046 /* If the value is zero, assume it is uninitialized. */
11047 if (eep_config.max_host_qng == 0) {
11048 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11049 } else {
11050 eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
11054 if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
11055 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11056 } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
11057 /* If the value is zero, assume it is uninitialized. */
11058 if (eep_config.max_dvc_qng == 0) {
11059 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11060 } else {
11061 eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
11066 * If 'max_dvc_qng' is greater than 'max_host_qng', then
11067 * set 'max_dvc_qng' to 'max_host_qng'.
11069 if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
11070 eep_config.max_dvc_qng = eep_config.max_host_qng;
11074 * Set ASC_DVC_VAR 'max_host_qng' and ASC_DVC_VAR 'max_dvc_qng'
11075 * values based on possibly adjusted EEPROM values.
11077 asc_dvc->max_host_qng = eep_config.max_host_qng;
11078 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11081 * If the EEPROM 'termination' field is set to automatic (0), then set
11082 * the ASC_DVC_CFG 'termination' field to automatic also.
11084 * If the termination is specified with a non-zero 'termination'
11085 * value check that a legal value is set and set the ASC_DVC_CFG
11086 * 'termination' field appropriately.
11088 if (eep_config.termination_se == 0) {
11089 termination = 0; /* auto termination for SE */
11090 } else {
11091 /* Enable manual control with low off / high off. */
11092 if (eep_config.termination_se == 1) {
11093 termination = 0;
11095 /* Enable manual control with low off / high on. */
11096 } else if (eep_config.termination_se == 2) {
11097 termination = TERM_SE_HI;
11099 /* Enable manual control with low on / high on. */
11100 } else if (eep_config.termination_se == 3) {
11101 termination = TERM_SE;
11102 } else {
11104 * The EEPROM 'termination_se' field contains a bad value.
11105 * Use automatic termination instead.
11107 termination = 0;
11108 warn_code |= ASC_WARN_EEPROM_TERMINATION;
11112 if (eep_config.termination_lvd == 0) {
11113 asc_dvc->cfg->termination = termination; /* auto termination for LVD */
11114 } else {
11115 /* Enable manual control with low off / high off. */
11116 if (eep_config.termination_lvd == 1) {
11117 asc_dvc->cfg->termination = termination;
11119 /* Enable manual control with low off / high on. */
11120 } else if (eep_config.termination_lvd == 2) {
11121 asc_dvc->cfg->termination = termination | TERM_LVD_HI;
11123 /* Enable manual control with low on / high on. */
11124 } else if (eep_config.termination_lvd == 3) {
11125 asc_dvc->cfg->termination = termination | TERM_LVD;
11126 } else {
11128 * The EEPROM 'termination_lvd' field contains a bad value.
11129 * Use automatic termination instead.
11131 asc_dvc->cfg->termination = termination;
11132 warn_code |= ASC_WARN_EEPROM_TERMINATION;
11136 return warn_code;
11140 * Initialize the ADV_DVC_VAR structure.
11142 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
11144 * For a non-fatal error return a warning code. If there are no warnings
11145 * then 0 is returned.
11147 static int AdvInitGetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
11149 struct asc_board *board = shost_priv(shost);
11150 ADV_DVC_VAR *asc_dvc = &board->dvc_var.adv_dvc_var;
11151 unsigned short warn_code = 0;
11152 AdvPortAddr iop_base = asc_dvc->iop_base;
11153 u16 cmd;
11154 int status;
11156 asc_dvc->err_code = 0;
11159 * Save the state of the PCI Configuration Command Register
11160 * "Parity Error Response Control" Bit. If the bit is clear (0),
11161 * in AdvInitAsc3550/38C0800Driver() tell the microcode to ignore
11162 * DMA parity errors.
11164 asc_dvc->cfg->control_flag = 0;
11165 pci_read_config_word(pdev, PCI_COMMAND, &cmd);
11166 if ((cmd & PCI_COMMAND_PARITY) == 0)
11167 asc_dvc->cfg->control_flag |= CONTROL_FLAG_IGNORE_PERR;
11169 asc_dvc->cfg->chip_version =
11170 AdvGetChipVersion(iop_base, asc_dvc->bus_type);
11172 ASC_DBG(1, "iopb_chip_id_1: 0x%x 0x%x\n",
11173 (ushort)AdvReadByteRegister(iop_base, IOPB_CHIP_ID_1),
11174 (ushort)ADV_CHIP_ID_BYTE);
11176 ASC_DBG(1, "iopw_chip_id_0: 0x%x 0x%x\n",
11177 (ushort)AdvReadWordRegister(iop_base, IOPW_CHIP_ID_0),
11178 (ushort)ADV_CHIP_ID_WORD);
11181 * Reset the chip to start and allow register writes.
11183 if (AdvFindSignature(iop_base) == 0) {
11184 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
11185 return ADV_ERROR;
11186 } else {
11188 * The caller must set 'chip_type' to a valid setting.
11190 if (asc_dvc->chip_type != ADV_CHIP_ASC3550 &&
11191 asc_dvc->chip_type != ADV_CHIP_ASC38C0800 &&
11192 asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
11193 asc_dvc->err_code |= ASC_IERR_BAD_CHIPTYPE;
11194 return ADV_ERROR;
11198 * Reset Chip.
11200 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
11201 ADV_CTRL_REG_CMD_RESET);
11202 mdelay(100);
11203 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
11204 ADV_CTRL_REG_CMD_WR_IO_REG);
11206 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
11207 status = AdvInitFrom38C1600EEP(asc_dvc);
11208 } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
11209 status = AdvInitFrom38C0800EEP(asc_dvc);
11210 } else {
11211 status = AdvInitFrom3550EEP(asc_dvc);
11213 warn_code |= status;
11216 if (warn_code != 0)
11217 shost_printk(KERN_WARNING, shost, "warning: 0x%x\n", warn_code);
11219 if (asc_dvc->err_code)
11220 shost_printk(KERN_ERR, shost, "error code 0x%x\n",
11221 asc_dvc->err_code);
11223 return asc_dvc->err_code;
11225 #endif
11227 static struct scsi_host_template advansys_template = {
11228 .proc_name = DRV_NAME,
11229 #ifdef CONFIG_PROC_FS
11230 .show_info = advansys_show_info,
11231 #endif
11232 .name = DRV_NAME,
11233 .info = advansys_info,
11234 .queuecommand = advansys_queuecommand,
11235 .eh_bus_reset_handler = advansys_reset,
11236 .bios_param = advansys_biosparam,
11237 .slave_configure = advansys_slave_configure,
11239 * Because the driver may control an ISA adapter 'unchecked_isa_dma'
11240 * must be set. The flag will be cleared in advansys_board_found
11241 * for non-ISA adapters.
11243 .unchecked_isa_dma = 1,
11245 * All adapters controlled by this driver are capable of large
11246 * scatter-gather lists. According to the mid-level SCSI documentation
11247 * this obviates any performance gain provided by setting
11248 * 'use_clustering'. But empirically while CPU utilization is increased
11249 * by enabling clustering, I/O throughput increases as well.
11251 .use_clustering = ENABLE_CLUSTERING,
11254 static int advansys_wide_init_chip(struct Scsi_Host *shost)
11256 struct asc_board *board = shost_priv(shost);
11257 struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
11258 int req_cnt = 0;
11259 adv_req_t *reqp = NULL;
11260 int sg_cnt = 0;
11261 adv_sgblk_t *sgp;
11262 int warn_code, err_code;
11265 * Allocate buffer carrier structures. The total size
11266 * is about 4 KB, so allocate all at once.
11268 adv_dvc->carrier_buf = kmalloc(ADV_CARRIER_BUFSIZE, GFP_KERNEL);
11269 ASC_DBG(1, "carrier_buf 0x%p\n", adv_dvc->carrier_buf);
11271 if (!adv_dvc->carrier_buf)
11272 goto kmalloc_failed;
11275 * Allocate up to 'max_host_qng' request structures for the Wide
11276 * board. The total size is about 16 KB, so allocate all at once.
11277 * If the allocation fails decrement and try again.
11279 for (req_cnt = adv_dvc->max_host_qng; req_cnt > 0; req_cnt--) {
11280 reqp = kmalloc(sizeof(adv_req_t) * req_cnt, GFP_KERNEL);
11282 ASC_DBG(1, "reqp 0x%p, req_cnt %d, bytes %lu\n", reqp, req_cnt,
11283 (ulong)sizeof(adv_req_t) * req_cnt);
11285 if (reqp)
11286 break;
11289 if (!reqp)
11290 goto kmalloc_failed;
11292 adv_dvc->orig_reqp = reqp;
11295 * Allocate up to ADV_TOT_SG_BLOCK request structures for
11296 * the Wide board. Each structure is about 136 bytes.
11298 board->adv_sgblkp = NULL;
11299 for (sg_cnt = 0; sg_cnt < ADV_TOT_SG_BLOCK; sg_cnt++) {
11300 sgp = kmalloc(sizeof(adv_sgblk_t), GFP_KERNEL);
11302 if (!sgp)
11303 break;
11305 sgp->next_sgblkp = board->adv_sgblkp;
11306 board->adv_sgblkp = sgp;
11310 ASC_DBG(1, "sg_cnt %d * %lu = %lu bytes\n", sg_cnt, sizeof(adv_sgblk_t),
11311 sizeof(adv_sgblk_t) * sg_cnt);
11313 if (!board->adv_sgblkp)
11314 goto kmalloc_failed;
11317 * Point 'adv_reqp' to the request structures and
11318 * link them together.
11320 req_cnt--;
11321 reqp[req_cnt].next_reqp = NULL;
11322 for (; req_cnt > 0; req_cnt--) {
11323 reqp[req_cnt - 1].next_reqp = &reqp[req_cnt];
11325 board->adv_reqp = &reqp[0];
11327 if (adv_dvc->chip_type == ADV_CHIP_ASC3550) {
11328 ASC_DBG(2, "AdvInitAsc3550Driver()\n");
11329 warn_code = AdvInitAsc3550Driver(adv_dvc);
11330 } else if (adv_dvc->chip_type == ADV_CHIP_ASC38C0800) {
11331 ASC_DBG(2, "AdvInitAsc38C0800Driver()\n");
11332 warn_code = AdvInitAsc38C0800Driver(adv_dvc);
11333 } else {
11334 ASC_DBG(2, "AdvInitAsc38C1600Driver()\n");
11335 warn_code = AdvInitAsc38C1600Driver(adv_dvc);
11337 err_code = adv_dvc->err_code;
11339 if (warn_code || err_code) {
11340 shost_printk(KERN_WARNING, shost, "error: warn 0x%x, error "
11341 "0x%x\n", warn_code, err_code);
11344 goto exit;
11346 kmalloc_failed:
11347 shost_printk(KERN_ERR, shost, "error: kmalloc() failed\n");
11348 err_code = ADV_ERROR;
11349 exit:
11350 return err_code;
11353 static void advansys_wide_free_mem(struct asc_board *board)
11355 struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
11356 kfree(adv_dvc->carrier_buf);
11357 adv_dvc->carrier_buf = NULL;
11358 kfree(adv_dvc->orig_reqp);
11359 adv_dvc->orig_reqp = board->adv_reqp = NULL;
11360 while (board->adv_sgblkp) {
11361 adv_sgblk_t *sgp = board->adv_sgblkp;
11362 board->adv_sgblkp = sgp->next_sgblkp;
11363 kfree(sgp);
11367 static int advansys_board_found(struct Scsi_Host *shost, unsigned int iop,
11368 int bus_type)
11370 struct pci_dev *pdev;
11371 struct asc_board *boardp = shost_priv(shost);
11372 ASC_DVC_VAR *asc_dvc_varp = NULL;
11373 ADV_DVC_VAR *adv_dvc_varp = NULL;
11374 int share_irq, warn_code, ret;
11376 pdev = (bus_type == ASC_IS_PCI) ? to_pci_dev(boardp->dev) : NULL;
11378 if (ASC_NARROW_BOARD(boardp)) {
11379 ASC_DBG(1, "narrow board\n");
11380 asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
11381 asc_dvc_varp->bus_type = bus_type;
11382 asc_dvc_varp->drv_ptr = boardp;
11383 asc_dvc_varp->cfg = &boardp->dvc_cfg.asc_dvc_cfg;
11384 asc_dvc_varp->iop_base = iop;
11385 } else {
11386 #ifdef CONFIG_PCI
11387 adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
11388 adv_dvc_varp->drv_ptr = boardp;
11389 adv_dvc_varp->cfg = &boardp->dvc_cfg.adv_dvc_cfg;
11390 if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW) {
11391 ASC_DBG(1, "wide board ASC-3550\n");
11392 adv_dvc_varp->chip_type = ADV_CHIP_ASC3550;
11393 } else if (pdev->device == PCI_DEVICE_ID_38C0800_REV1) {
11394 ASC_DBG(1, "wide board ASC-38C0800\n");
11395 adv_dvc_varp->chip_type = ADV_CHIP_ASC38C0800;
11396 } else {
11397 ASC_DBG(1, "wide board ASC-38C1600\n");
11398 adv_dvc_varp->chip_type = ADV_CHIP_ASC38C1600;
11401 boardp->asc_n_io_port = pci_resource_len(pdev, 1);
11402 boardp->ioremap_addr = pci_ioremap_bar(pdev, 1);
11403 if (!boardp->ioremap_addr) {
11404 shost_printk(KERN_ERR, shost, "ioremap(%lx, %d) "
11405 "returned NULL\n",
11406 (long)pci_resource_start(pdev, 1),
11407 boardp->asc_n_io_port);
11408 ret = -ENODEV;
11409 goto err_shost;
11411 adv_dvc_varp->iop_base = (AdvPortAddr)boardp->ioremap_addr;
11412 ASC_DBG(1, "iop_base: 0x%p\n", adv_dvc_varp->iop_base);
11415 * Even though it isn't used to access wide boards, other
11416 * than for the debug line below, save I/O Port address so
11417 * that it can be reported.
11419 boardp->ioport = iop;
11421 ASC_DBG(1, "iopb_chip_id_1 0x%x, iopw_chip_id_0 0x%x\n",
11422 (ushort)inp(iop + 1), (ushort)inpw(iop));
11423 #endif /* CONFIG_PCI */
11426 if (ASC_NARROW_BOARD(boardp)) {
11428 * Set the board bus type and PCI IRQ before
11429 * calling AscInitGetConfig().
11431 switch (asc_dvc_varp->bus_type) {
11432 #ifdef CONFIG_ISA
11433 case ASC_IS_ISA:
11434 shost->unchecked_isa_dma = TRUE;
11435 share_irq = 0;
11436 break;
11437 case ASC_IS_VL:
11438 shost->unchecked_isa_dma = FALSE;
11439 share_irq = 0;
11440 break;
11441 case ASC_IS_EISA:
11442 shost->unchecked_isa_dma = FALSE;
11443 share_irq = IRQF_SHARED;
11444 break;
11445 #endif /* CONFIG_ISA */
11446 #ifdef CONFIG_PCI
11447 case ASC_IS_PCI:
11448 shost->unchecked_isa_dma = FALSE;
11449 share_irq = IRQF_SHARED;
11450 break;
11451 #endif /* CONFIG_PCI */
11452 default:
11453 shost_printk(KERN_ERR, shost, "unknown adapter type: "
11454 "%d\n", asc_dvc_varp->bus_type);
11455 shost->unchecked_isa_dma = TRUE;
11456 share_irq = 0;
11457 break;
11461 * NOTE: AscInitGetConfig() may change the board's
11462 * bus_type value. The bus_type value should no
11463 * longer be used. If the bus_type field must be
11464 * referenced only use the bit-wise AND operator "&".
11466 ASC_DBG(2, "AscInitGetConfig()\n");
11467 ret = AscInitGetConfig(shost) ? -ENODEV : 0;
11468 } else {
11469 #ifdef CONFIG_PCI
11471 * For Wide boards set PCI information before calling
11472 * AdvInitGetConfig().
11474 shost->unchecked_isa_dma = FALSE;
11475 share_irq = IRQF_SHARED;
11476 ASC_DBG(2, "AdvInitGetConfig()\n");
11478 ret = AdvInitGetConfig(pdev, shost) ? -ENODEV : 0;
11479 #endif /* CONFIG_PCI */
11482 if (ret)
11483 goto err_unmap;
11486 * Save the EEPROM configuration so that it can be displayed
11487 * from /proc/scsi/advansys/[0...].
11489 if (ASC_NARROW_BOARD(boardp)) {
11491 ASCEEP_CONFIG *ep;
11494 * Set the adapter's target id bit in the 'init_tidmask' field.
11496 boardp->init_tidmask |=
11497 ADV_TID_TO_TIDMASK(asc_dvc_varp->cfg->chip_scsi_id);
11500 * Save EEPROM settings for the board.
11502 ep = &boardp->eep_config.asc_eep;
11504 ep->init_sdtr = asc_dvc_varp->cfg->sdtr_enable;
11505 ep->disc_enable = asc_dvc_varp->cfg->disc_enable;
11506 ep->use_cmd_qng = asc_dvc_varp->cfg->cmd_qng_enabled;
11507 ASC_EEP_SET_DMA_SPD(ep, asc_dvc_varp->cfg->isa_dma_speed);
11508 ep->start_motor = asc_dvc_varp->start_motor;
11509 ep->cntl = asc_dvc_varp->dvc_cntl;
11510 ep->no_scam = asc_dvc_varp->no_scam;
11511 ep->max_total_qng = asc_dvc_varp->max_total_qng;
11512 ASC_EEP_SET_CHIP_ID(ep, asc_dvc_varp->cfg->chip_scsi_id);
11513 /* 'max_tag_qng' is set to the same value for every device. */
11514 ep->max_tag_qng = asc_dvc_varp->cfg->max_tag_qng[0];
11515 ep->adapter_info[0] = asc_dvc_varp->cfg->adapter_info[0];
11516 ep->adapter_info[1] = asc_dvc_varp->cfg->adapter_info[1];
11517 ep->adapter_info[2] = asc_dvc_varp->cfg->adapter_info[2];
11518 ep->adapter_info[3] = asc_dvc_varp->cfg->adapter_info[3];
11519 ep->adapter_info[4] = asc_dvc_varp->cfg->adapter_info[4];
11520 ep->adapter_info[5] = asc_dvc_varp->cfg->adapter_info[5];
11523 * Modify board configuration.
11525 ASC_DBG(2, "AscInitSetConfig()\n");
11526 ret = AscInitSetConfig(pdev, shost) ? -ENODEV : 0;
11527 if (ret)
11528 goto err_unmap;
11529 } else {
11530 ADVEEP_3550_CONFIG *ep_3550;
11531 ADVEEP_38C0800_CONFIG *ep_38C0800;
11532 ADVEEP_38C1600_CONFIG *ep_38C1600;
11535 * Save Wide EEP Configuration Information.
11537 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
11538 ep_3550 = &boardp->eep_config.adv_3550_eep;
11540 ep_3550->adapter_scsi_id = adv_dvc_varp->chip_scsi_id;
11541 ep_3550->max_host_qng = adv_dvc_varp->max_host_qng;
11542 ep_3550->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
11543 ep_3550->termination = adv_dvc_varp->cfg->termination;
11544 ep_3550->disc_enable = adv_dvc_varp->cfg->disc_enable;
11545 ep_3550->bios_ctrl = adv_dvc_varp->bios_ctrl;
11546 ep_3550->wdtr_able = adv_dvc_varp->wdtr_able;
11547 ep_3550->sdtr_able = adv_dvc_varp->sdtr_able;
11548 ep_3550->ultra_able = adv_dvc_varp->ultra_able;
11549 ep_3550->tagqng_able = adv_dvc_varp->tagqng_able;
11550 ep_3550->start_motor = adv_dvc_varp->start_motor;
11551 ep_3550->scsi_reset_delay =
11552 adv_dvc_varp->scsi_reset_wait;
11553 ep_3550->serial_number_word1 =
11554 adv_dvc_varp->cfg->serial1;
11555 ep_3550->serial_number_word2 =
11556 adv_dvc_varp->cfg->serial2;
11557 ep_3550->serial_number_word3 =
11558 adv_dvc_varp->cfg->serial3;
11559 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
11560 ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
11562 ep_38C0800->adapter_scsi_id =
11563 adv_dvc_varp->chip_scsi_id;
11564 ep_38C0800->max_host_qng = adv_dvc_varp->max_host_qng;
11565 ep_38C0800->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
11566 ep_38C0800->termination_lvd =
11567 adv_dvc_varp->cfg->termination;
11568 ep_38C0800->disc_enable =
11569 adv_dvc_varp->cfg->disc_enable;
11570 ep_38C0800->bios_ctrl = adv_dvc_varp->bios_ctrl;
11571 ep_38C0800->wdtr_able = adv_dvc_varp->wdtr_able;
11572 ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
11573 ep_38C0800->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
11574 ep_38C0800->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
11575 ep_38C0800->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
11576 ep_38C0800->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
11577 ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
11578 ep_38C0800->start_motor = adv_dvc_varp->start_motor;
11579 ep_38C0800->scsi_reset_delay =
11580 adv_dvc_varp->scsi_reset_wait;
11581 ep_38C0800->serial_number_word1 =
11582 adv_dvc_varp->cfg->serial1;
11583 ep_38C0800->serial_number_word2 =
11584 adv_dvc_varp->cfg->serial2;
11585 ep_38C0800->serial_number_word3 =
11586 adv_dvc_varp->cfg->serial3;
11587 } else {
11588 ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
11590 ep_38C1600->adapter_scsi_id =
11591 adv_dvc_varp->chip_scsi_id;
11592 ep_38C1600->max_host_qng = adv_dvc_varp->max_host_qng;
11593 ep_38C1600->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
11594 ep_38C1600->termination_lvd =
11595 adv_dvc_varp->cfg->termination;
11596 ep_38C1600->disc_enable =
11597 adv_dvc_varp->cfg->disc_enable;
11598 ep_38C1600->bios_ctrl = adv_dvc_varp->bios_ctrl;
11599 ep_38C1600->wdtr_able = adv_dvc_varp->wdtr_able;
11600 ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
11601 ep_38C1600->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
11602 ep_38C1600->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
11603 ep_38C1600->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
11604 ep_38C1600->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
11605 ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
11606 ep_38C1600->start_motor = adv_dvc_varp->start_motor;
11607 ep_38C1600->scsi_reset_delay =
11608 adv_dvc_varp->scsi_reset_wait;
11609 ep_38C1600->serial_number_word1 =
11610 adv_dvc_varp->cfg->serial1;
11611 ep_38C1600->serial_number_word2 =
11612 adv_dvc_varp->cfg->serial2;
11613 ep_38C1600->serial_number_word3 =
11614 adv_dvc_varp->cfg->serial3;
11618 * Set the adapter's target id bit in the 'init_tidmask' field.
11620 boardp->init_tidmask |=
11621 ADV_TID_TO_TIDMASK(adv_dvc_varp->chip_scsi_id);
11625 * Channels are numbered beginning with 0. For AdvanSys one host
11626 * structure supports one channel. Multi-channel boards have a
11627 * separate host structure for each channel.
11629 shost->max_channel = 0;
11630 if (ASC_NARROW_BOARD(boardp)) {
11631 shost->max_id = ASC_MAX_TID + 1;
11632 shost->max_lun = ASC_MAX_LUN + 1;
11633 shost->max_cmd_len = ASC_MAX_CDB_LEN;
11635 shost->io_port = asc_dvc_varp->iop_base;
11636 boardp->asc_n_io_port = ASC_IOADR_GAP;
11637 shost->this_id = asc_dvc_varp->cfg->chip_scsi_id;
11639 /* Set maximum number of queues the adapter can handle. */
11640 shost->can_queue = asc_dvc_varp->max_total_qng;
11641 } else {
11642 shost->max_id = ADV_MAX_TID + 1;
11643 shost->max_lun = ADV_MAX_LUN + 1;
11644 shost->max_cmd_len = ADV_MAX_CDB_LEN;
11647 * Save the I/O Port address and length even though
11648 * I/O ports are not used to access Wide boards.
11649 * Instead the Wide boards are accessed with
11650 * PCI Memory Mapped I/O.
11652 shost->io_port = iop;
11654 shost->this_id = adv_dvc_varp->chip_scsi_id;
11656 /* Set maximum number of queues the adapter can handle. */
11657 shost->can_queue = adv_dvc_varp->max_host_qng;
11661 * Following v1.3.89, 'cmd_per_lun' is no longer needed
11662 * and should be set to zero.
11664 * But because of a bug introduced in v1.3.89 if the driver is
11665 * compiled as a module and 'cmd_per_lun' is zero, the Mid-Level
11666 * SCSI function 'allocate_device' will panic. To allow the driver
11667 * to work as a module in these kernels set 'cmd_per_lun' to 1.
11669 * Note: This is wrong. cmd_per_lun should be set to the depth
11670 * you want on untagged devices always.
11671 #ifdef MODULE
11673 shost->cmd_per_lun = 1;
11674 /* #else
11675 shost->cmd_per_lun = 0;
11676 #endif */
11679 * Set the maximum number of scatter-gather elements the
11680 * adapter can handle.
11682 if (ASC_NARROW_BOARD(boardp)) {
11684 * Allow two commands with 'sg_tablesize' scatter-gather
11685 * elements to be executed simultaneously. This value is
11686 * the theoretical hardware limit. It may be decreased
11687 * below.
11689 shost->sg_tablesize =
11690 (((asc_dvc_varp->max_total_qng - 2) / 2) *
11691 ASC_SG_LIST_PER_Q) + 1;
11692 } else {
11693 shost->sg_tablesize = ADV_MAX_SG_LIST;
11697 * The value of 'sg_tablesize' can not exceed the SCSI
11698 * mid-level driver definition of SG_ALL. SG_ALL also
11699 * must not be exceeded, because it is used to define the
11700 * size of the scatter-gather table in 'struct asc_sg_head'.
11702 if (shost->sg_tablesize > SG_ALL) {
11703 shost->sg_tablesize = SG_ALL;
11706 ASC_DBG(1, "sg_tablesize: %d\n", shost->sg_tablesize);
11708 /* BIOS start address. */
11709 if (ASC_NARROW_BOARD(boardp)) {
11710 shost->base = AscGetChipBiosAddress(asc_dvc_varp->iop_base,
11711 asc_dvc_varp->bus_type);
11712 } else {
11714 * Fill-in BIOS board variables. The Wide BIOS saves
11715 * information in LRAM that is used by the driver.
11717 AdvReadWordLram(adv_dvc_varp->iop_base,
11718 BIOS_SIGNATURE, boardp->bios_signature);
11719 AdvReadWordLram(adv_dvc_varp->iop_base,
11720 BIOS_VERSION, boardp->bios_version);
11721 AdvReadWordLram(adv_dvc_varp->iop_base,
11722 BIOS_CODESEG, boardp->bios_codeseg);
11723 AdvReadWordLram(adv_dvc_varp->iop_base,
11724 BIOS_CODELEN, boardp->bios_codelen);
11726 ASC_DBG(1, "bios_signature 0x%x, bios_version 0x%x\n",
11727 boardp->bios_signature, boardp->bios_version);
11729 ASC_DBG(1, "bios_codeseg 0x%x, bios_codelen 0x%x\n",
11730 boardp->bios_codeseg, boardp->bios_codelen);
11733 * If the BIOS saved a valid signature, then fill in
11734 * the BIOS code segment base address.
11736 if (boardp->bios_signature == 0x55AA) {
11738 * Convert x86 realmode code segment to a linear
11739 * address by shifting left 4.
11741 shost->base = ((ulong)boardp->bios_codeseg << 4);
11742 } else {
11743 shost->base = 0;
11748 * Register Board Resources - I/O Port, DMA, IRQ
11751 /* Register DMA Channel for Narrow boards. */
11752 shost->dma_channel = NO_ISA_DMA; /* Default to no ISA DMA. */
11753 #ifdef CONFIG_ISA
11754 if (ASC_NARROW_BOARD(boardp)) {
11755 /* Register DMA channel for ISA bus. */
11756 if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
11757 shost->dma_channel = asc_dvc_varp->cfg->isa_dma_channel;
11758 ret = request_dma(shost->dma_channel, DRV_NAME);
11759 if (ret) {
11760 shost_printk(KERN_ERR, shost, "request_dma() "
11761 "%d failed %d\n",
11762 shost->dma_channel, ret);
11763 goto err_unmap;
11765 AscEnableIsaDma(shost->dma_channel);
11768 #endif /* CONFIG_ISA */
11770 /* Register IRQ Number. */
11771 ASC_DBG(2, "request_irq(%d, %p)\n", boardp->irq, shost);
11773 ret = request_irq(boardp->irq, advansys_interrupt, share_irq,
11774 DRV_NAME, shost);
11776 if (ret) {
11777 if (ret == -EBUSY) {
11778 shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11779 "already in use\n", boardp->irq);
11780 } else if (ret == -EINVAL) {
11781 shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11782 "not valid\n", boardp->irq);
11783 } else {
11784 shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11785 "failed with %d\n", boardp->irq, ret);
11787 goto err_free_dma;
11791 * Initialize board RISC chip and enable interrupts.
11793 if (ASC_NARROW_BOARD(boardp)) {
11794 ASC_DBG(2, "AscInitAsc1000Driver()\n");
11796 asc_dvc_varp->overrun_buf = kzalloc(ASC_OVERRUN_BSIZE, GFP_KERNEL);
11797 if (!asc_dvc_varp->overrun_buf) {
11798 ret = -ENOMEM;
11799 goto err_free_irq;
11801 warn_code = AscInitAsc1000Driver(asc_dvc_varp);
11803 if (warn_code || asc_dvc_varp->err_code) {
11804 shost_printk(KERN_ERR, shost, "error: init_state 0x%x, "
11805 "warn 0x%x, error 0x%x\n",
11806 asc_dvc_varp->init_state, warn_code,
11807 asc_dvc_varp->err_code);
11808 if (!asc_dvc_varp->overrun_dma) {
11809 ret = -ENODEV;
11810 goto err_free_mem;
11813 } else {
11814 if (advansys_wide_init_chip(shost)) {
11815 ret = -ENODEV;
11816 goto err_free_mem;
11820 ASC_DBG_PRT_SCSI_HOST(2, shost);
11822 ret = scsi_add_host(shost, boardp->dev);
11823 if (ret)
11824 goto err_free_mem;
11826 scsi_scan_host(shost);
11827 return 0;
11829 err_free_mem:
11830 if (ASC_NARROW_BOARD(boardp)) {
11831 if (asc_dvc_varp->overrun_dma)
11832 dma_unmap_single(boardp->dev, asc_dvc_varp->overrun_dma,
11833 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
11834 kfree(asc_dvc_varp->overrun_buf);
11835 } else
11836 advansys_wide_free_mem(boardp);
11837 err_free_irq:
11838 free_irq(boardp->irq, shost);
11839 err_free_dma:
11840 #ifdef CONFIG_ISA
11841 if (shost->dma_channel != NO_ISA_DMA)
11842 free_dma(shost->dma_channel);
11843 #endif
11844 err_unmap:
11845 if (boardp->ioremap_addr)
11846 iounmap(boardp->ioremap_addr);
11847 err_shost:
11848 return ret;
11852 * advansys_release()
11854 * Release resources allocated for a single AdvanSys adapter.
11856 static int advansys_release(struct Scsi_Host *shost)
11858 struct asc_board *board = shost_priv(shost);
11859 ASC_DBG(1, "begin\n");
11860 scsi_remove_host(shost);
11861 free_irq(board->irq, shost);
11862 #ifdef CONFIG_ISA
11863 if (shost->dma_channel != NO_ISA_DMA) {
11864 ASC_DBG(1, "free_dma()\n");
11865 free_dma(shost->dma_channel);
11867 #endif
11868 if (ASC_NARROW_BOARD(board)) {
11869 dma_unmap_single(board->dev,
11870 board->dvc_var.asc_dvc_var.overrun_dma,
11871 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
11872 kfree(board->dvc_var.asc_dvc_var.overrun_buf);
11873 } else {
11874 iounmap(board->ioremap_addr);
11875 advansys_wide_free_mem(board);
11877 scsi_host_put(shost);
11878 ASC_DBG(1, "end\n");
11879 return 0;
11882 #define ASC_IOADR_TABLE_MAX_IX 11
11884 static PortAddr _asc_def_iop_base[ASC_IOADR_TABLE_MAX_IX] = {
11885 0x100, 0x0110, 0x120, 0x0130, 0x140, 0x0150, 0x0190,
11886 0x0210, 0x0230, 0x0250, 0x0330
11890 * The ISA IRQ number is found in bits 2 and 3 of the CfgLsw. It decodes as:
11891 * 00: 10
11892 * 01: 11
11893 * 10: 12
11894 * 11: 15
11896 static unsigned int advansys_isa_irq_no(PortAddr iop_base)
11898 unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
11899 unsigned int chip_irq = ((cfg_lsw >> 2) & 0x03) + 10;
11900 if (chip_irq == 13)
11901 chip_irq = 15;
11902 return chip_irq;
11905 static int advansys_isa_probe(struct device *dev, unsigned int id)
11907 int err = -ENODEV;
11908 PortAddr iop_base = _asc_def_iop_base[id];
11909 struct Scsi_Host *shost;
11910 struct asc_board *board;
11912 if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
11913 ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
11914 return -ENODEV;
11916 ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
11917 if (!AscFindSignature(iop_base))
11918 goto release_region;
11919 if (!(AscGetChipVersion(iop_base, ASC_IS_ISA) & ASC_CHIP_VER_ISA_BIT))
11920 goto release_region;
11922 err = -ENOMEM;
11923 shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11924 if (!shost)
11925 goto release_region;
11927 board = shost_priv(shost);
11928 board->irq = advansys_isa_irq_no(iop_base);
11929 board->dev = dev;
11931 err = advansys_board_found(shost, iop_base, ASC_IS_ISA);
11932 if (err)
11933 goto free_host;
11935 dev_set_drvdata(dev, shost);
11936 return 0;
11938 free_host:
11939 scsi_host_put(shost);
11940 release_region:
11941 release_region(iop_base, ASC_IOADR_GAP);
11942 return err;
11945 static int advansys_isa_remove(struct device *dev, unsigned int id)
11947 int ioport = _asc_def_iop_base[id];
11948 advansys_release(dev_get_drvdata(dev));
11949 release_region(ioport, ASC_IOADR_GAP);
11950 return 0;
11953 static struct isa_driver advansys_isa_driver = {
11954 .probe = advansys_isa_probe,
11955 .remove = advansys_isa_remove,
11956 .driver = {
11957 .owner = THIS_MODULE,
11958 .name = DRV_NAME,
11963 * The VLB IRQ number is found in bits 2 to 4 of the CfgLsw. It decodes as:
11964 * 000: invalid
11965 * 001: 10
11966 * 010: 11
11967 * 011: 12
11968 * 100: invalid
11969 * 101: 14
11970 * 110: 15
11971 * 111: invalid
11973 static unsigned int advansys_vlb_irq_no(PortAddr iop_base)
11975 unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
11976 unsigned int chip_irq = ((cfg_lsw >> 2) & 0x07) + 9;
11977 if ((chip_irq < 10) || (chip_irq == 13) || (chip_irq > 15))
11978 return 0;
11979 return chip_irq;
11982 static int advansys_vlb_probe(struct device *dev, unsigned int id)
11984 int err = -ENODEV;
11985 PortAddr iop_base = _asc_def_iop_base[id];
11986 struct Scsi_Host *shost;
11987 struct asc_board *board;
11989 if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
11990 ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
11991 return -ENODEV;
11993 ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
11994 if (!AscFindSignature(iop_base))
11995 goto release_region;
11997 * I don't think this condition can actually happen, but the old
11998 * driver did it, and the chances of finding a VLB setup in 2007
11999 * to do testing with is slight to none.
12001 if (AscGetChipVersion(iop_base, ASC_IS_VL) > ASC_CHIP_MAX_VER_VL)
12002 goto release_region;
12004 err = -ENOMEM;
12005 shost = scsi_host_alloc(&advansys_template, sizeof(*board));
12006 if (!shost)
12007 goto release_region;
12009 board = shost_priv(shost);
12010 board->irq = advansys_vlb_irq_no(iop_base);
12011 board->dev = dev;
12013 err = advansys_board_found(shost, iop_base, ASC_IS_VL);
12014 if (err)
12015 goto free_host;
12017 dev_set_drvdata(dev, shost);
12018 return 0;
12020 free_host:
12021 scsi_host_put(shost);
12022 release_region:
12023 release_region(iop_base, ASC_IOADR_GAP);
12024 return -ENODEV;
12027 static struct isa_driver advansys_vlb_driver = {
12028 .probe = advansys_vlb_probe,
12029 .remove = advansys_isa_remove,
12030 .driver = {
12031 .owner = THIS_MODULE,
12032 .name = "advansys_vlb",
12036 static struct eisa_device_id advansys_eisa_table[] = {
12037 { "ABP7401" },
12038 { "ABP7501" },
12039 { "" }
12042 MODULE_DEVICE_TABLE(eisa, advansys_eisa_table);
12045 * EISA is a little more tricky than PCI; each EISA device may have two
12046 * channels, and this driver is written to make each channel its own Scsi_Host
12048 struct eisa_scsi_data {
12049 struct Scsi_Host *host[2];
12053 * The EISA IRQ number is found in bits 8 to 10 of the CfgLsw. It decodes as:
12054 * 000: 10
12055 * 001: 11
12056 * 010: 12
12057 * 011: invalid
12058 * 100: 14
12059 * 101: 15
12060 * 110: invalid
12061 * 111: invalid
12063 static unsigned int advansys_eisa_irq_no(struct eisa_device *edev)
12065 unsigned short cfg_lsw = inw(edev->base_addr + 0xc86);
12066 unsigned int chip_irq = ((cfg_lsw >> 8) & 0x07) + 10;
12067 if ((chip_irq == 13) || (chip_irq > 15))
12068 return 0;
12069 return chip_irq;
12072 static int advansys_eisa_probe(struct device *dev)
12074 int i, ioport, irq = 0;
12075 int err;
12076 struct eisa_device *edev = to_eisa_device(dev);
12077 struct eisa_scsi_data *data;
12079 err = -ENOMEM;
12080 data = kzalloc(sizeof(*data), GFP_KERNEL);
12081 if (!data)
12082 goto fail;
12083 ioport = edev->base_addr + 0xc30;
12085 err = -ENODEV;
12086 for (i = 0; i < 2; i++, ioport += 0x20) {
12087 struct asc_board *board;
12088 struct Scsi_Host *shost;
12089 if (!request_region(ioport, ASC_IOADR_GAP, DRV_NAME)) {
12090 printk(KERN_WARNING "Region %x-%x busy\n", ioport,
12091 ioport + ASC_IOADR_GAP - 1);
12092 continue;
12094 if (!AscFindSignature(ioport)) {
12095 release_region(ioport, ASC_IOADR_GAP);
12096 continue;
12100 * I don't know why we need to do this for EISA chips, but
12101 * not for any others. It looks to be equivalent to
12102 * AscGetChipCfgMsw, but I may have overlooked something,
12103 * so I'm not converting it until I get an EISA board to
12104 * test with.
12106 inw(ioport + 4);
12108 if (!irq)
12109 irq = advansys_eisa_irq_no(edev);
12111 err = -ENOMEM;
12112 shost = scsi_host_alloc(&advansys_template, sizeof(*board));
12113 if (!shost)
12114 goto release_region;
12116 board = shost_priv(shost);
12117 board->irq = irq;
12118 board->dev = dev;
12120 err = advansys_board_found(shost, ioport, ASC_IS_EISA);
12121 if (!err) {
12122 data->host[i] = shost;
12123 continue;
12126 scsi_host_put(shost);
12127 release_region:
12128 release_region(ioport, ASC_IOADR_GAP);
12129 break;
12132 if (err)
12133 goto free_data;
12134 dev_set_drvdata(dev, data);
12135 return 0;
12137 free_data:
12138 kfree(data->host[0]);
12139 kfree(data->host[1]);
12140 kfree(data);
12141 fail:
12142 return err;
12145 static int advansys_eisa_remove(struct device *dev)
12147 int i;
12148 struct eisa_scsi_data *data = dev_get_drvdata(dev);
12150 for (i = 0; i < 2; i++) {
12151 int ioport;
12152 struct Scsi_Host *shost = data->host[i];
12153 if (!shost)
12154 continue;
12155 ioport = shost->io_port;
12156 advansys_release(shost);
12157 release_region(ioport, ASC_IOADR_GAP);
12160 kfree(data);
12161 return 0;
12164 static struct eisa_driver advansys_eisa_driver = {
12165 .id_table = advansys_eisa_table,
12166 .driver = {
12167 .name = DRV_NAME,
12168 .probe = advansys_eisa_probe,
12169 .remove = advansys_eisa_remove,
12173 /* PCI Devices supported by this driver */
12174 static struct pci_device_id advansys_pci_tbl[] = {
12175 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_1200A,
12176 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12177 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940,
12178 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12179 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940U,
12180 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12181 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940UW,
12182 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12183 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C0800_REV1,
12184 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12185 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C1600_REV1,
12186 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12190 MODULE_DEVICE_TABLE(pci, advansys_pci_tbl);
12192 static void advansys_set_latency(struct pci_dev *pdev)
12194 if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
12195 (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
12196 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0);
12197 } else {
12198 u8 latency;
12199 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &latency);
12200 if (latency < 0x20)
12201 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x20);
12205 static int advansys_pci_probe(struct pci_dev *pdev,
12206 const struct pci_device_id *ent)
12208 int err, ioport;
12209 struct Scsi_Host *shost;
12210 struct asc_board *board;
12212 err = pci_enable_device(pdev);
12213 if (err)
12214 goto fail;
12215 err = pci_request_regions(pdev, DRV_NAME);
12216 if (err)
12217 goto disable_device;
12218 pci_set_master(pdev);
12219 advansys_set_latency(pdev);
12221 err = -ENODEV;
12222 if (pci_resource_len(pdev, 0) == 0)
12223 goto release_region;
12225 ioport = pci_resource_start(pdev, 0);
12227 err = -ENOMEM;
12228 shost = scsi_host_alloc(&advansys_template, sizeof(*board));
12229 if (!shost)
12230 goto release_region;
12232 board = shost_priv(shost);
12233 board->irq = pdev->irq;
12234 board->dev = &pdev->dev;
12236 if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW ||
12237 pdev->device == PCI_DEVICE_ID_38C0800_REV1 ||
12238 pdev->device == PCI_DEVICE_ID_38C1600_REV1) {
12239 board->flags |= ASC_IS_WIDE_BOARD;
12242 err = advansys_board_found(shost, ioport, ASC_IS_PCI);
12243 if (err)
12244 goto free_host;
12246 pci_set_drvdata(pdev, shost);
12247 return 0;
12249 free_host:
12250 scsi_host_put(shost);
12251 release_region:
12252 pci_release_regions(pdev);
12253 disable_device:
12254 pci_disable_device(pdev);
12255 fail:
12256 return err;
12259 static void advansys_pci_remove(struct pci_dev *pdev)
12261 advansys_release(pci_get_drvdata(pdev));
12262 pci_release_regions(pdev);
12263 pci_disable_device(pdev);
12266 static struct pci_driver advansys_pci_driver = {
12267 .name = DRV_NAME,
12268 .id_table = advansys_pci_tbl,
12269 .probe = advansys_pci_probe,
12270 .remove = advansys_pci_remove,
12273 static int __init advansys_init(void)
12275 int error;
12277 error = isa_register_driver(&advansys_isa_driver,
12278 ASC_IOADR_TABLE_MAX_IX);
12279 if (error)
12280 goto fail;
12282 error = isa_register_driver(&advansys_vlb_driver,
12283 ASC_IOADR_TABLE_MAX_IX);
12284 if (error)
12285 goto unregister_isa;
12287 error = eisa_driver_register(&advansys_eisa_driver);
12288 if (error)
12289 goto unregister_vlb;
12291 error = pci_register_driver(&advansys_pci_driver);
12292 if (error)
12293 goto unregister_eisa;
12295 return 0;
12297 unregister_eisa:
12298 eisa_driver_unregister(&advansys_eisa_driver);
12299 unregister_vlb:
12300 isa_unregister_driver(&advansys_vlb_driver);
12301 unregister_isa:
12302 isa_unregister_driver(&advansys_isa_driver);
12303 fail:
12304 return error;
12307 static void __exit advansys_exit(void)
12309 pci_unregister_driver(&advansys_pci_driver);
12310 eisa_driver_unregister(&advansys_eisa_driver);
12311 isa_unregister_driver(&advansys_vlb_driver);
12312 isa_unregister_driver(&advansys_isa_driver);
12315 module_init(advansys_init);
12316 module_exit(advansys_exit);
12318 MODULE_LICENSE("GPL");
12319 MODULE_FIRMWARE("advansys/mcode.bin");
12320 MODULE_FIRMWARE("advansys/3550.bin");
12321 MODULE_FIRMWARE("advansys/38C0800.bin");
12322 MODULE_FIRMWARE("advansys/38C1600.bin");