2 * Serial Attached SCSI (SAS) Expander discovery and configuration
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7 * This file is licensed under GPLv2.
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of the
12 * License, or (at your option) any later version.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27 #include <linux/slab.h>
29 #include "sas_internal.h"
31 #include <scsi/sas_ata.h>
32 #include <scsi/scsi_transport.h>
33 #include <scsi/scsi_transport_sas.h>
34 #include "../scsi_sas_internal.h"
36 static int sas_discover_expander(struct domain_device
*dev
);
37 static int sas_configure_routing(struct domain_device
*dev
, u8
*sas_addr
);
38 static int sas_configure_phy(struct domain_device
*dev
, int phy_id
,
39 u8
*sas_addr
, int include
);
40 static int sas_disable_routing(struct domain_device
*dev
, u8
*sas_addr
);
42 /* ---------- SMP task management ---------- */
44 static void smp_task_timedout(unsigned long _task
)
46 struct sas_task
*task
= (void *) _task
;
49 spin_lock_irqsave(&task
->task_state_lock
, flags
);
50 if (!(task
->task_state_flags
& SAS_TASK_STATE_DONE
))
51 task
->task_state_flags
|= SAS_TASK_STATE_ABORTED
;
52 spin_unlock_irqrestore(&task
->task_state_lock
, flags
);
54 complete(&task
->slow_task
->completion
);
57 static void smp_task_done(struct sas_task
*task
)
59 if (!del_timer(&task
->slow_task
->timer
))
61 complete(&task
->slow_task
->completion
);
64 /* Give it some long enough timeout. In seconds. */
65 #define SMP_TIMEOUT 10
67 static int smp_execute_task(struct domain_device
*dev
, void *req
, int req_size
,
68 void *resp
, int resp_size
)
71 struct sas_task
*task
= NULL
;
72 struct sas_internal
*i
=
73 to_sas_internal(dev
->port
->ha
->core
.shost
->transportt
);
75 mutex_lock(&dev
->ex_dev
.cmd_mutex
);
76 for (retry
= 0; retry
< 3; retry
++) {
77 if (test_bit(SAS_DEV_GONE
, &dev
->state
)) {
82 task
= sas_alloc_slow_task(GFP_KERNEL
);
88 task
->task_proto
= dev
->tproto
;
89 sg_init_one(&task
->smp_task
.smp_req
, req
, req_size
);
90 sg_init_one(&task
->smp_task
.smp_resp
, resp
, resp_size
);
92 task
->task_done
= smp_task_done
;
94 task
->slow_task
->timer
.data
= (unsigned long) task
;
95 task
->slow_task
->timer
.function
= smp_task_timedout
;
96 task
->slow_task
->timer
.expires
= jiffies
+ SMP_TIMEOUT
*HZ
;
97 add_timer(&task
->slow_task
->timer
);
99 res
= i
->dft
->lldd_execute_task(task
, GFP_KERNEL
);
102 del_timer(&task
->slow_task
->timer
);
103 SAS_DPRINTK("executing SMP task failed:%d\n", res
);
107 wait_for_completion(&task
->slow_task
->completion
);
109 if ((task
->task_state_flags
& SAS_TASK_STATE_ABORTED
)) {
110 SAS_DPRINTK("smp task timed out or aborted\n");
111 i
->dft
->lldd_abort_task(task
);
112 if (!(task
->task_state_flags
& SAS_TASK_STATE_DONE
)) {
113 SAS_DPRINTK("SMP task aborted and not done\n");
117 if (task
->task_status
.resp
== SAS_TASK_COMPLETE
&&
118 task
->task_status
.stat
== SAM_STAT_GOOD
) {
122 if (task
->task_status
.resp
== SAS_TASK_COMPLETE
&&
123 task
->task_status
.stat
== SAS_DATA_UNDERRUN
) {
124 /* no error, but return the number of bytes of
126 res
= task
->task_status
.residual
;
129 if (task
->task_status
.resp
== SAS_TASK_COMPLETE
&&
130 task
->task_status
.stat
== SAS_DATA_OVERRUN
) {
134 if (task
->task_status
.resp
== SAS_TASK_UNDELIVERED
&&
135 task
->task_status
.stat
== SAS_DEVICE_UNKNOWN
)
138 SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
139 "status 0x%x\n", __func__
,
140 SAS_ADDR(dev
->sas_addr
),
141 task
->task_status
.resp
,
142 task
->task_status
.stat
);
147 mutex_unlock(&dev
->ex_dev
.cmd_mutex
);
149 BUG_ON(retry
== 3 && task
!= NULL
);
154 /* ---------- Allocations ---------- */
156 static inline void *alloc_smp_req(int size
)
158 u8
*p
= kzalloc(size
, GFP_KERNEL
);
164 static inline void *alloc_smp_resp(int size
)
166 return kzalloc(size
, GFP_KERNEL
);
169 static char sas_route_char(struct domain_device
*dev
, struct ex_phy
*phy
)
171 switch (phy
->routing_attr
) {
173 if (dev
->ex_dev
.t2t_supp
)
179 case SUBTRACTIVE_ROUTING
:
186 static enum sas_device_type
to_dev_type(struct discover_resp
*dr
)
188 /* This is detecting a failure to transmit initial dev to host
189 * FIS as described in section J.5 of sas-2 r16
191 if (dr
->attached_dev_type
== SAS_PHY_UNUSED
&& dr
->attached_sata_dev
&&
192 dr
->linkrate
>= SAS_LINK_RATE_1_5_GBPS
)
193 return SAS_SATA_PENDING
;
195 return dr
->attached_dev_type
;
198 static void sas_set_ex_phy(struct domain_device
*dev
, int phy_id
, void *rsp
)
200 enum sas_device_type dev_type
;
201 enum sas_linkrate linkrate
;
202 u8 sas_addr
[SAS_ADDR_SIZE
];
203 struct smp_resp
*resp
= rsp
;
204 struct discover_resp
*dr
= &resp
->disc
;
205 struct sas_ha_struct
*ha
= dev
->port
->ha
;
206 struct expander_device
*ex
= &dev
->ex_dev
;
207 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
208 struct sas_rphy
*rphy
= dev
->rphy
;
209 bool new_phy
= !phy
->phy
;
213 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE
, &ha
->state
)))
215 phy
->phy
= sas_phy_alloc(&rphy
->dev
, phy_id
);
217 /* FIXME: error_handling */
221 switch (resp
->result
) {
222 case SMP_RESP_PHY_VACANT
:
223 phy
->phy_state
= PHY_VACANT
;
226 phy
->phy_state
= PHY_NOT_PRESENT
;
228 case SMP_RESP_FUNC_ACC
:
229 phy
->phy_state
= PHY_EMPTY
; /* do not know yet */
233 /* check if anything important changed to squelch debug */
234 dev_type
= phy
->attached_dev_type
;
235 linkrate
= phy
->linkrate
;
236 memcpy(sas_addr
, phy
->attached_sas_addr
, SAS_ADDR_SIZE
);
238 /* Handle vacant phy - rest of dr data is not valid so skip it */
239 if (phy
->phy_state
== PHY_VACANT
) {
240 memset(phy
->attached_sas_addr
, 0, SAS_ADDR_SIZE
);
241 phy
->attached_dev_type
= SAS_PHY_UNUSED
;
242 if (!test_bit(SAS_HA_ATA_EH_ACTIVE
, &ha
->state
)) {
243 phy
->phy_id
= phy_id
;
249 phy
->attached_dev_type
= to_dev_type(dr
);
250 if (test_bit(SAS_HA_ATA_EH_ACTIVE
, &ha
->state
))
252 phy
->phy_id
= phy_id
;
253 phy
->linkrate
= dr
->linkrate
;
254 phy
->attached_sata_host
= dr
->attached_sata_host
;
255 phy
->attached_sata_dev
= dr
->attached_sata_dev
;
256 phy
->attached_sata_ps
= dr
->attached_sata_ps
;
257 phy
->attached_iproto
= dr
->iproto
<< 1;
258 phy
->attached_tproto
= dr
->tproto
<< 1;
259 /* help some expanders that fail to zero sas_address in the 'no
262 if (phy
->attached_dev_type
== SAS_PHY_UNUSED
||
263 phy
->linkrate
< SAS_LINK_RATE_1_5_GBPS
)
264 memset(phy
->attached_sas_addr
, 0, SAS_ADDR_SIZE
);
266 memcpy(phy
->attached_sas_addr
, dr
->attached_sas_addr
, SAS_ADDR_SIZE
);
267 phy
->attached_phy_id
= dr
->attached_phy_id
;
268 phy
->phy_change_count
= dr
->change_count
;
269 phy
->routing_attr
= dr
->routing_attr
;
270 phy
->virtual = dr
->virtual;
271 phy
->last_da_index
= -1;
273 phy
->phy
->identify
.sas_address
= SAS_ADDR(phy
->attached_sas_addr
);
274 phy
->phy
->identify
.device_type
= dr
->attached_dev_type
;
275 phy
->phy
->identify
.initiator_port_protocols
= phy
->attached_iproto
;
276 phy
->phy
->identify
.target_port_protocols
= phy
->attached_tproto
;
277 if (!phy
->attached_tproto
&& dr
->attached_sata_dev
)
278 phy
->phy
->identify
.target_port_protocols
= SAS_PROTOCOL_SATA
;
279 phy
->phy
->identify
.phy_identifier
= phy_id
;
280 phy
->phy
->minimum_linkrate_hw
= dr
->hmin_linkrate
;
281 phy
->phy
->maximum_linkrate_hw
= dr
->hmax_linkrate
;
282 phy
->phy
->minimum_linkrate
= dr
->pmin_linkrate
;
283 phy
->phy
->maximum_linkrate
= dr
->pmax_linkrate
;
284 phy
->phy
->negotiated_linkrate
= phy
->linkrate
;
288 if (sas_phy_add(phy
->phy
)) {
289 sas_phy_free(phy
->phy
);
294 switch (phy
->attached_dev_type
) {
295 case SAS_SATA_PENDING
:
296 type
= "stp pending";
302 if (phy
->attached_iproto
) {
303 if (phy
->attached_tproto
)
304 type
= "host+target";
308 if (dr
->attached_sata_dev
)
314 case SAS_EDGE_EXPANDER_DEVICE
:
315 case SAS_FANOUT_EXPANDER_DEVICE
:
322 /* this routine is polled by libata error recovery so filter
323 * unimportant messages
325 if (new_phy
|| phy
->attached_dev_type
!= dev_type
||
326 phy
->linkrate
!= linkrate
||
327 SAS_ADDR(phy
->attached_sas_addr
) != SAS_ADDR(sas_addr
))
332 /* if the attached device type changed and ata_eh is active,
333 * make sure we run revalidation when eh completes (see:
334 * sas_enable_revalidation)
336 if (test_bit(SAS_HA_ATA_EH_ACTIVE
, &ha
->state
))
337 set_bit(DISCE_REVALIDATE_DOMAIN
, &dev
->port
->disc
.pending
);
339 SAS_DPRINTK("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
340 test_bit(SAS_HA_ATA_EH_ACTIVE
, &ha
->state
) ? "ata: " : "",
341 SAS_ADDR(dev
->sas_addr
), phy
->phy_id
,
342 sas_route_char(dev
, phy
), phy
->linkrate
,
343 SAS_ADDR(phy
->attached_sas_addr
), type
);
346 /* check if we have an existing attached ata device on this expander phy */
347 struct domain_device
*sas_ex_to_ata(struct domain_device
*ex_dev
, int phy_id
)
349 struct ex_phy
*ex_phy
= &ex_dev
->ex_dev
.ex_phy
[phy_id
];
350 struct domain_device
*dev
;
351 struct sas_rphy
*rphy
;
356 rphy
= ex_phy
->port
->rphy
;
360 dev
= sas_find_dev_by_rphy(rphy
);
362 if (dev
&& dev_is_sata(dev
))
368 #define DISCOVER_REQ_SIZE 16
369 #define DISCOVER_RESP_SIZE 56
371 static int sas_ex_phy_discover_helper(struct domain_device
*dev
, u8
*disc_req
,
372 u8
*disc_resp
, int single
)
374 struct discover_resp
*dr
;
377 disc_req
[9] = single
;
379 res
= smp_execute_task(dev
, disc_req
, DISCOVER_REQ_SIZE
,
380 disc_resp
, DISCOVER_RESP_SIZE
);
383 dr
= &((struct smp_resp
*)disc_resp
)->disc
;
384 if (memcmp(dev
->sas_addr
, dr
->attached_sas_addr
, SAS_ADDR_SIZE
) == 0) {
385 sas_printk("Found loopback topology, just ignore it!\n");
388 sas_set_ex_phy(dev
, single
, disc_resp
);
392 int sas_ex_phy_discover(struct domain_device
*dev
, int single
)
394 struct expander_device
*ex
= &dev
->ex_dev
;
399 disc_req
= alloc_smp_req(DISCOVER_REQ_SIZE
);
403 disc_resp
= alloc_smp_resp(DISCOVER_RESP_SIZE
);
409 disc_req
[1] = SMP_DISCOVER
;
411 if (0 <= single
&& single
< ex
->num_phys
) {
412 res
= sas_ex_phy_discover_helper(dev
, disc_req
, disc_resp
, single
);
416 for (i
= 0; i
< ex
->num_phys
; i
++) {
417 res
= sas_ex_phy_discover_helper(dev
, disc_req
,
429 static int sas_expander_discover(struct domain_device
*dev
)
431 struct expander_device
*ex
= &dev
->ex_dev
;
434 ex
->ex_phy
= kzalloc(sizeof(*ex
->ex_phy
)*ex
->num_phys
, GFP_KERNEL
);
438 res
= sas_ex_phy_discover(dev
, -1);
449 #define MAX_EXPANDER_PHYS 128
451 static void ex_assign_report_general(struct domain_device
*dev
,
452 struct smp_resp
*resp
)
454 struct report_general_resp
*rg
= &resp
->rg
;
456 dev
->ex_dev
.ex_change_count
= be16_to_cpu(rg
->change_count
);
457 dev
->ex_dev
.max_route_indexes
= be16_to_cpu(rg
->route_indexes
);
458 dev
->ex_dev
.num_phys
= min(rg
->num_phys
, (u8
)MAX_EXPANDER_PHYS
);
459 dev
->ex_dev
.t2t_supp
= rg
->t2t_supp
;
460 dev
->ex_dev
.conf_route_table
= rg
->conf_route_table
;
461 dev
->ex_dev
.configuring
= rg
->configuring
;
462 memcpy(dev
->ex_dev
.enclosure_logical_id
, rg
->enclosure_logical_id
, 8);
465 #define RG_REQ_SIZE 8
466 #define RG_RESP_SIZE 32
468 static int sas_ex_general(struct domain_device
*dev
)
471 struct smp_resp
*rg_resp
;
475 rg_req
= alloc_smp_req(RG_REQ_SIZE
);
479 rg_resp
= alloc_smp_resp(RG_RESP_SIZE
);
485 rg_req
[1] = SMP_REPORT_GENERAL
;
487 for (i
= 0; i
< 5; i
++) {
488 res
= smp_execute_task(dev
, rg_req
, RG_REQ_SIZE
, rg_resp
,
492 SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
493 SAS_ADDR(dev
->sas_addr
), res
);
495 } else if (rg_resp
->result
!= SMP_RESP_FUNC_ACC
) {
496 SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
497 SAS_ADDR(dev
->sas_addr
), rg_resp
->result
);
498 res
= rg_resp
->result
;
502 ex_assign_report_general(dev
, rg_resp
);
504 if (dev
->ex_dev
.configuring
) {
505 SAS_DPRINTK("RG: ex %llx self-configuring...\n",
506 SAS_ADDR(dev
->sas_addr
));
507 schedule_timeout_interruptible(5*HZ
);
517 static void ex_assign_manuf_info(struct domain_device
*dev
, void
520 u8
*mi_resp
= _mi_resp
;
521 struct sas_rphy
*rphy
= dev
->rphy
;
522 struct sas_expander_device
*edev
= rphy_to_expander_device(rphy
);
524 memcpy(edev
->vendor_id
, mi_resp
+ 12, SAS_EXPANDER_VENDOR_ID_LEN
);
525 memcpy(edev
->product_id
, mi_resp
+ 20, SAS_EXPANDER_PRODUCT_ID_LEN
);
526 memcpy(edev
->product_rev
, mi_resp
+ 36,
527 SAS_EXPANDER_PRODUCT_REV_LEN
);
529 if (mi_resp
[8] & 1) {
530 memcpy(edev
->component_vendor_id
, mi_resp
+ 40,
531 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN
);
532 edev
->component_id
= mi_resp
[48] << 8 | mi_resp
[49];
533 edev
->component_revision_id
= mi_resp
[50];
537 #define MI_REQ_SIZE 8
538 #define MI_RESP_SIZE 64
540 static int sas_ex_manuf_info(struct domain_device
*dev
)
546 mi_req
= alloc_smp_req(MI_REQ_SIZE
);
550 mi_resp
= alloc_smp_resp(MI_RESP_SIZE
);
556 mi_req
[1] = SMP_REPORT_MANUF_INFO
;
558 res
= smp_execute_task(dev
, mi_req
, MI_REQ_SIZE
, mi_resp
,MI_RESP_SIZE
);
560 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
561 SAS_ADDR(dev
->sas_addr
), res
);
563 } else if (mi_resp
[2] != SMP_RESP_FUNC_ACC
) {
564 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
565 SAS_ADDR(dev
->sas_addr
), mi_resp
[2]);
569 ex_assign_manuf_info(dev
, mi_resp
);
576 #define PC_REQ_SIZE 44
577 #define PC_RESP_SIZE 8
579 int sas_smp_phy_control(struct domain_device
*dev
, int phy_id
,
580 enum phy_func phy_func
,
581 struct sas_phy_linkrates
*rates
)
587 pc_req
= alloc_smp_req(PC_REQ_SIZE
);
591 pc_resp
= alloc_smp_resp(PC_RESP_SIZE
);
597 pc_req
[1] = SMP_PHY_CONTROL
;
599 pc_req
[10]= phy_func
;
601 pc_req
[32] = rates
->minimum_linkrate
<< 4;
602 pc_req
[33] = rates
->maximum_linkrate
<< 4;
605 res
= smp_execute_task(dev
, pc_req
, PC_REQ_SIZE
, pc_resp
,PC_RESP_SIZE
);
612 static void sas_ex_disable_phy(struct domain_device
*dev
, int phy_id
)
614 struct expander_device
*ex
= &dev
->ex_dev
;
615 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
617 sas_smp_phy_control(dev
, phy_id
, PHY_FUNC_DISABLE
, NULL
);
618 phy
->linkrate
= SAS_PHY_DISABLED
;
621 static void sas_ex_disable_port(struct domain_device
*dev
, u8
*sas_addr
)
623 struct expander_device
*ex
= &dev
->ex_dev
;
626 for (i
= 0; i
< ex
->num_phys
; i
++) {
627 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
629 if (phy
->phy_state
== PHY_VACANT
||
630 phy
->phy_state
== PHY_NOT_PRESENT
)
633 if (SAS_ADDR(phy
->attached_sas_addr
) == SAS_ADDR(sas_addr
))
634 sas_ex_disable_phy(dev
, i
);
638 static int sas_dev_present_in_domain(struct asd_sas_port
*port
,
641 struct domain_device
*dev
;
643 if (SAS_ADDR(port
->sas_addr
) == SAS_ADDR(sas_addr
))
645 list_for_each_entry(dev
, &port
->dev_list
, dev_list_node
) {
646 if (SAS_ADDR(dev
->sas_addr
) == SAS_ADDR(sas_addr
))
652 #define RPEL_REQ_SIZE 16
653 #define RPEL_RESP_SIZE 32
654 int sas_smp_get_phy_events(struct sas_phy
*phy
)
659 struct sas_rphy
*rphy
= dev_to_rphy(phy
->dev
.parent
);
660 struct domain_device
*dev
= sas_find_dev_by_rphy(rphy
);
662 req
= alloc_smp_req(RPEL_REQ_SIZE
);
666 resp
= alloc_smp_resp(RPEL_RESP_SIZE
);
672 req
[1] = SMP_REPORT_PHY_ERR_LOG
;
673 req
[9] = phy
->number
;
675 res
= smp_execute_task(dev
, req
, RPEL_REQ_SIZE
,
676 resp
, RPEL_RESP_SIZE
);
681 phy
->invalid_dword_count
= scsi_to_u32(&resp
[12]);
682 phy
->running_disparity_error_count
= scsi_to_u32(&resp
[16]);
683 phy
->loss_of_dword_sync_count
= scsi_to_u32(&resp
[20]);
684 phy
->phy_reset_problem_count
= scsi_to_u32(&resp
[24]);
692 #ifdef CONFIG_SCSI_SAS_ATA
694 #define RPS_REQ_SIZE 16
695 #define RPS_RESP_SIZE 60
697 int sas_get_report_phy_sata(struct domain_device
*dev
, int phy_id
,
698 struct smp_resp
*rps_resp
)
701 u8
*rps_req
= alloc_smp_req(RPS_REQ_SIZE
);
702 u8
*resp
= (u8
*)rps_resp
;
707 rps_req
[1] = SMP_REPORT_PHY_SATA
;
710 res
= smp_execute_task(dev
, rps_req
, RPS_REQ_SIZE
,
711 rps_resp
, RPS_RESP_SIZE
);
713 /* 0x34 is the FIS type for the D2H fis. There's a potential
714 * standards cockup here. sas-2 explicitly specifies the FIS
715 * should be encoded so that FIS type is in resp[24].
716 * However, some expanders endian reverse this. Undo the
718 if (!res
&& resp
[27] == 0x34 && resp
[24] != 0x34) {
721 for (i
= 0; i
< 5; i
++) {
726 resp
[j
+ 0] = resp
[j
+ 3];
727 resp
[j
+ 1] = resp
[j
+ 2];
738 static void sas_ex_get_linkrate(struct domain_device
*parent
,
739 struct domain_device
*child
,
740 struct ex_phy
*parent_phy
)
742 struct expander_device
*parent_ex
= &parent
->ex_dev
;
743 struct sas_port
*port
;
748 port
= parent_phy
->port
;
750 for (i
= 0; i
< parent_ex
->num_phys
; i
++) {
751 struct ex_phy
*phy
= &parent_ex
->ex_phy
[i
];
753 if (phy
->phy_state
== PHY_VACANT
||
754 phy
->phy_state
== PHY_NOT_PRESENT
)
757 if (SAS_ADDR(phy
->attached_sas_addr
) ==
758 SAS_ADDR(child
->sas_addr
)) {
760 child
->min_linkrate
= min(parent
->min_linkrate
,
762 child
->max_linkrate
= max(parent
->max_linkrate
,
765 sas_port_add_phy(port
, phy
->phy
);
768 child
->linkrate
= min(parent_phy
->linkrate
, child
->max_linkrate
);
769 child
->pathways
= min(child
->pathways
, parent
->pathways
);
772 static struct domain_device
*sas_ex_discover_end_dev(
773 struct domain_device
*parent
, int phy_id
)
775 struct expander_device
*parent_ex
= &parent
->ex_dev
;
776 struct ex_phy
*phy
= &parent_ex
->ex_phy
[phy_id
];
777 struct domain_device
*child
= NULL
;
778 struct sas_rphy
*rphy
;
781 if (phy
->attached_sata_host
|| phy
->attached_sata_ps
)
784 child
= sas_alloc_device();
788 kref_get(&parent
->kref
);
789 child
->parent
= parent
;
790 child
->port
= parent
->port
;
791 child
->iproto
= phy
->attached_iproto
;
792 memcpy(child
->sas_addr
, phy
->attached_sas_addr
, SAS_ADDR_SIZE
);
793 sas_hash_addr(child
->hashed_sas_addr
, child
->sas_addr
);
795 phy
->port
= sas_port_alloc(&parent
->rphy
->dev
, phy_id
);
796 if (unlikely(!phy
->port
))
798 if (unlikely(sas_port_add(phy
->port
) != 0)) {
799 sas_port_free(phy
->port
);
803 sas_ex_get_linkrate(parent
, child
, phy
);
804 sas_device_set_phy(child
, phy
->port
);
806 #ifdef CONFIG_SCSI_SAS_ATA
807 if ((phy
->attached_tproto
& SAS_PROTOCOL_STP
) || phy
->attached_sata_dev
) {
808 res
= sas_get_ata_info(child
, phy
);
813 res
= sas_ata_init(child
);
816 rphy
= sas_end_device_alloc(phy
->port
);
821 get_device(&rphy
->dev
);
823 list_add_tail(&child
->disco_list_node
, &parent
->port
->disco_list
);
825 res
= sas_discover_sata(child
);
827 SAS_DPRINTK("sas_discover_sata() for device %16llx at "
828 "%016llx:0x%x returned 0x%x\n",
829 SAS_ADDR(child
->sas_addr
),
830 SAS_ADDR(parent
->sas_addr
), phy_id
, res
);
835 if (phy
->attached_tproto
& SAS_PROTOCOL_SSP
) {
836 child
->dev_type
= SAS_END_DEVICE
;
837 rphy
= sas_end_device_alloc(phy
->port
);
838 /* FIXME: error handling */
841 child
->tproto
= phy
->attached_tproto
;
845 get_device(&rphy
->dev
);
846 sas_fill_in_rphy(child
, rphy
);
848 list_add_tail(&child
->disco_list_node
, &parent
->port
->disco_list
);
850 res
= sas_discover_end_dev(child
);
852 SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
853 "at %016llx:0x%x returned 0x%x\n",
854 SAS_ADDR(child
->sas_addr
),
855 SAS_ADDR(parent
->sas_addr
), phy_id
, res
);
859 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
860 phy
->attached_tproto
, SAS_ADDR(parent
->sas_addr
),
865 list_add_tail(&child
->siblings
, &parent_ex
->children
);
869 sas_rphy_free(child
->rphy
);
870 list_del(&child
->disco_list_node
);
871 spin_lock_irq(&parent
->port
->dev_list_lock
);
872 list_del(&child
->dev_list_node
);
873 spin_unlock_irq(&parent
->port
->dev_list_lock
);
875 sas_port_delete(phy
->port
);
878 sas_put_device(child
);
882 /* See if this phy is part of a wide port */
883 static bool sas_ex_join_wide_port(struct domain_device
*parent
, int phy_id
)
885 struct ex_phy
*phy
= &parent
->ex_dev
.ex_phy
[phy_id
];
888 for (i
= 0; i
< parent
->ex_dev
.num_phys
; i
++) {
889 struct ex_phy
*ephy
= &parent
->ex_dev
.ex_phy
[i
];
894 if (!memcmp(phy
->attached_sas_addr
, ephy
->attached_sas_addr
,
895 SAS_ADDR_SIZE
) && ephy
->port
) {
896 sas_port_add_phy(ephy
->port
, phy
->phy
);
897 phy
->port
= ephy
->port
;
898 phy
->phy_state
= PHY_DEVICE_DISCOVERED
;
906 static struct domain_device
*sas_ex_discover_expander(
907 struct domain_device
*parent
, int phy_id
)
909 struct sas_expander_device
*parent_ex
= rphy_to_expander_device(parent
->rphy
);
910 struct ex_phy
*phy
= &parent
->ex_dev
.ex_phy
[phy_id
];
911 struct domain_device
*child
= NULL
;
912 struct sas_rphy
*rphy
;
913 struct sas_expander_device
*edev
;
914 struct asd_sas_port
*port
;
917 if (phy
->routing_attr
== DIRECT_ROUTING
) {
918 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
920 SAS_ADDR(parent
->sas_addr
), phy_id
,
921 SAS_ADDR(phy
->attached_sas_addr
),
922 phy
->attached_phy_id
);
925 child
= sas_alloc_device();
929 phy
->port
= sas_port_alloc(&parent
->rphy
->dev
, phy_id
);
930 /* FIXME: better error handling */
931 BUG_ON(sas_port_add(phy
->port
) != 0);
934 switch (phy
->attached_dev_type
) {
935 case SAS_EDGE_EXPANDER_DEVICE
:
936 rphy
= sas_expander_alloc(phy
->port
,
937 SAS_EDGE_EXPANDER_DEVICE
);
939 case SAS_FANOUT_EXPANDER_DEVICE
:
940 rphy
= sas_expander_alloc(phy
->port
,
941 SAS_FANOUT_EXPANDER_DEVICE
);
944 rphy
= NULL
; /* shut gcc up */
949 get_device(&rphy
->dev
);
950 edev
= rphy_to_expander_device(rphy
);
951 child
->dev_type
= phy
->attached_dev_type
;
952 kref_get(&parent
->kref
);
953 child
->parent
= parent
;
955 child
->iproto
= phy
->attached_iproto
;
956 child
->tproto
= phy
->attached_tproto
;
957 memcpy(child
->sas_addr
, phy
->attached_sas_addr
, SAS_ADDR_SIZE
);
958 sas_hash_addr(child
->hashed_sas_addr
, child
->sas_addr
);
959 sas_ex_get_linkrate(parent
, child
, phy
);
960 edev
->level
= parent_ex
->level
+ 1;
961 parent
->port
->disc
.max_level
= max(parent
->port
->disc
.max_level
,
964 sas_fill_in_rphy(child
, rphy
);
967 spin_lock_irq(&parent
->port
->dev_list_lock
);
968 list_add_tail(&child
->dev_list_node
, &parent
->port
->dev_list
);
969 spin_unlock_irq(&parent
->port
->dev_list_lock
);
971 res
= sas_discover_expander(child
);
973 sas_rphy_delete(rphy
);
974 spin_lock_irq(&parent
->port
->dev_list_lock
);
975 list_del(&child
->dev_list_node
);
976 spin_unlock_irq(&parent
->port
->dev_list_lock
);
977 sas_put_device(child
);
980 list_add_tail(&child
->siblings
, &parent
->ex_dev
.children
);
984 static int sas_ex_discover_dev(struct domain_device
*dev
, int phy_id
)
986 struct expander_device
*ex
= &dev
->ex_dev
;
987 struct ex_phy
*ex_phy
= &ex
->ex_phy
[phy_id
];
988 struct domain_device
*child
= NULL
;
992 if (ex_phy
->linkrate
== SAS_SATA_SPINUP_HOLD
) {
993 if (!sas_smp_phy_control(dev
, phy_id
, PHY_FUNC_LINK_RESET
, NULL
))
994 res
= sas_ex_phy_discover(dev
, phy_id
);
999 /* Parent and domain coherency */
1000 if (!dev
->parent
&& (SAS_ADDR(ex_phy
->attached_sas_addr
) ==
1001 SAS_ADDR(dev
->port
->sas_addr
))) {
1002 sas_add_parent_port(dev
, phy_id
);
1005 if (dev
->parent
&& (SAS_ADDR(ex_phy
->attached_sas_addr
) ==
1006 SAS_ADDR(dev
->parent
->sas_addr
))) {
1007 sas_add_parent_port(dev
, phy_id
);
1008 if (ex_phy
->routing_attr
== TABLE_ROUTING
)
1009 sas_configure_phy(dev
, phy_id
, dev
->port
->sas_addr
, 1);
1013 if (sas_dev_present_in_domain(dev
->port
, ex_phy
->attached_sas_addr
))
1014 sas_ex_disable_port(dev
, ex_phy
->attached_sas_addr
);
1016 if (ex_phy
->attached_dev_type
== SAS_PHY_UNUSED
) {
1017 if (ex_phy
->routing_attr
== DIRECT_ROUTING
) {
1018 memset(ex_phy
->attached_sas_addr
, 0, SAS_ADDR_SIZE
);
1019 sas_configure_routing(dev
, ex_phy
->attached_sas_addr
);
1022 } else if (ex_phy
->linkrate
== SAS_LINK_RATE_UNKNOWN
)
1025 if (ex_phy
->attached_dev_type
!= SAS_END_DEVICE
&&
1026 ex_phy
->attached_dev_type
!= SAS_FANOUT_EXPANDER_DEVICE
&&
1027 ex_phy
->attached_dev_type
!= SAS_EDGE_EXPANDER_DEVICE
&&
1028 ex_phy
->attached_dev_type
!= SAS_SATA_PENDING
) {
1029 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
1030 "phy 0x%x\n", ex_phy
->attached_dev_type
,
1031 SAS_ADDR(dev
->sas_addr
),
1036 res
= sas_configure_routing(dev
, ex_phy
->attached_sas_addr
);
1038 SAS_DPRINTK("configure routing for dev %016llx "
1039 "reported 0x%x. Forgotten\n",
1040 SAS_ADDR(ex_phy
->attached_sas_addr
), res
);
1041 sas_disable_routing(dev
, ex_phy
->attached_sas_addr
);
1045 if (sas_ex_join_wide_port(dev
, phy_id
)) {
1046 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1047 phy_id
, SAS_ADDR(ex_phy
->attached_sas_addr
));
1051 switch (ex_phy
->attached_dev_type
) {
1052 case SAS_END_DEVICE
:
1053 case SAS_SATA_PENDING
:
1054 child
= sas_ex_discover_end_dev(dev
, phy_id
);
1056 case SAS_FANOUT_EXPANDER_DEVICE
:
1057 if (SAS_ADDR(dev
->port
->disc
.fanout_sas_addr
)) {
1058 SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
1059 "attached to ex %016llx phy 0x%x\n",
1060 SAS_ADDR(ex_phy
->attached_sas_addr
),
1061 ex_phy
->attached_phy_id
,
1062 SAS_ADDR(dev
->sas_addr
),
1064 sas_ex_disable_phy(dev
, phy_id
);
1067 memcpy(dev
->port
->disc
.fanout_sas_addr
,
1068 ex_phy
->attached_sas_addr
, SAS_ADDR_SIZE
);
1070 case SAS_EDGE_EXPANDER_DEVICE
:
1071 child
= sas_ex_discover_expander(dev
, phy_id
);
1080 for (i
= 0; i
< ex
->num_phys
; i
++) {
1081 if (ex
->ex_phy
[i
].phy_state
== PHY_VACANT
||
1082 ex
->ex_phy
[i
].phy_state
== PHY_NOT_PRESENT
)
1085 * Due to races, the phy might not get added to the
1086 * wide port, so we add the phy to the wide port here.
1088 if (SAS_ADDR(ex
->ex_phy
[i
].attached_sas_addr
) ==
1089 SAS_ADDR(child
->sas_addr
)) {
1090 ex
->ex_phy
[i
].phy_state
= PHY_DEVICE_DISCOVERED
;
1091 if (sas_ex_join_wide_port(dev
, i
))
1092 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1093 i
, SAS_ADDR(ex
->ex_phy
[i
].attached_sas_addr
));
1102 static int sas_find_sub_addr(struct domain_device
*dev
, u8
*sub_addr
)
1104 struct expander_device
*ex
= &dev
->ex_dev
;
1107 for (i
= 0; i
< ex
->num_phys
; i
++) {
1108 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
1110 if (phy
->phy_state
== PHY_VACANT
||
1111 phy
->phy_state
== PHY_NOT_PRESENT
)
1114 if ((phy
->attached_dev_type
== SAS_EDGE_EXPANDER_DEVICE
||
1115 phy
->attached_dev_type
== SAS_FANOUT_EXPANDER_DEVICE
) &&
1116 phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
1118 memcpy(sub_addr
, phy
->attached_sas_addr
,SAS_ADDR_SIZE
);
1126 static int sas_check_level_subtractive_boundary(struct domain_device
*dev
)
1128 struct expander_device
*ex
= &dev
->ex_dev
;
1129 struct domain_device
*child
;
1130 u8 sub_addr
[8] = {0, };
1132 list_for_each_entry(child
, &ex
->children
, siblings
) {
1133 if (child
->dev_type
!= SAS_EDGE_EXPANDER_DEVICE
&&
1134 child
->dev_type
!= SAS_FANOUT_EXPANDER_DEVICE
)
1136 if (sub_addr
[0] == 0) {
1137 sas_find_sub_addr(child
, sub_addr
);
1142 if (sas_find_sub_addr(child
, s2
) &&
1143 (SAS_ADDR(sub_addr
) != SAS_ADDR(s2
))) {
1145 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1146 "diverges from subtractive "
1147 "boundary %016llx\n",
1148 SAS_ADDR(dev
->sas_addr
),
1149 SAS_ADDR(child
->sas_addr
),
1151 SAS_ADDR(sub_addr
));
1153 sas_ex_disable_port(child
, s2
);
1160 * sas_ex_discover_devices -- discover devices attached to this expander
1161 * dev: pointer to the expander domain device
1162 * single: if you want to do a single phy, else set to -1;
1164 * Configure this expander for use with its devices and register the
1165 * devices of this expander.
1167 static int sas_ex_discover_devices(struct domain_device
*dev
, int single
)
1169 struct expander_device
*ex
= &dev
->ex_dev
;
1170 int i
= 0, end
= ex
->num_phys
;
1173 if (0 <= single
&& single
< end
) {
1178 for ( ; i
< end
; i
++) {
1179 struct ex_phy
*ex_phy
= &ex
->ex_phy
[i
];
1181 if (ex_phy
->phy_state
== PHY_VACANT
||
1182 ex_phy
->phy_state
== PHY_NOT_PRESENT
||
1183 ex_phy
->phy_state
== PHY_DEVICE_DISCOVERED
)
1186 switch (ex_phy
->linkrate
) {
1187 case SAS_PHY_DISABLED
:
1188 case SAS_PHY_RESET_PROBLEM
:
1189 case SAS_SATA_PORT_SELECTOR
:
1192 res
= sas_ex_discover_dev(dev
, i
);
1200 sas_check_level_subtractive_boundary(dev
);
1205 static int sas_check_ex_subtractive_boundary(struct domain_device
*dev
)
1207 struct expander_device
*ex
= &dev
->ex_dev
;
1209 u8
*sub_sas_addr
= NULL
;
1211 if (dev
->dev_type
!= SAS_EDGE_EXPANDER_DEVICE
)
1214 for (i
= 0; i
< ex
->num_phys
; i
++) {
1215 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
1217 if (phy
->phy_state
== PHY_VACANT
||
1218 phy
->phy_state
== PHY_NOT_PRESENT
)
1221 if ((phy
->attached_dev_type
== SAS_FANOUT_EXPANDER_DEVICE
||
1222 phy
->attached_dev_type
== SAS_EDGE_EXPANDER_DEVICE
) &&
1223 phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
1226 sub_sas_addr
= &phy
->attached_sas_addr
[0];
1227 else if (SAS_ADDR(sub_sas_addr
) !=
1228 SAS_ADDR(phy
->attached_sas_addr
)) {
1230 SAS_DPRINTK("ex %016llx phy 0x%x "
1231 "diverges(%016llx) on subtractive "
1232 "boundary(%016llx). Disabled\n",
1233 SAS_ADDR(dev
->sas_addr
), i
,
1234 SAS_ADDR(phy
->attached_sas_addr
),
1235 SAS_ADDR(sub_sas_addr
));
1236 sas_ex_disable_phy(dev
, i
);
1243 static void sas_print_parent_topology_bug(struct domain_device
*child
,
1244 struct ex_phy
*parent_phy
,
1245 struct ex_phy
*child_phy
)
1247 static const char *ex_type
[] = {
1248 [SAS_EDGE_EXPANDER_DEVICE
] = "edge",
1249 [SAS_FANOUT_EXPANDER_DEVICE
] = "fanout",
1251 struct domain_device
*parent
= child
->parent
;
1253 sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx "
1254 "phy 0x%x has %c:%c routing link!\n",
1256 ex_type
[parent
->dev_type
],
1257 SAS_ADDR(parent
->sas_addr
),
1260 ex_type
[child
->dev_type
],
1261 SAS_ADDR(child
->sas_addr
),
1264 sas_route_char(parent
, parent_phy
),
1265 sas_route_char(child
, child_phy
));
1268 static int sas_check_eeds(struct domain_device
*child
,
1269 struct ex_phy
*parent_phy
,
1270 struct ex_phy
*child_phy
)
1273 struct domain_device
*parent
= child
->parent
;
1275 if (SAS_ADDR(parent
->port
->disc
.fanout_sas_addr
) != 0) {
1277 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1278 "phy S:0x%x, while there is a fanout ex %016llx\n",
1279 SAS_ADDR(parent
->sas_addr
),
1281 SAS_ADDR(child
->sas_addr
),
1283 SAS_ADDR(parent
->port
->disc
.fanout_sas_addr
));
1284 } else if (SAS_ADDR(parent
->port
->disc
.eeds_a
) == 0) {
1285 memcpy(parent
->port
->disc
.eeds_a
, parent
->sas_addr
,
1287 memcpy(parent
->port
->disc
.eeds_b
, child
->sas_addr
,
1289 } else if (((SAS_ADDR(parent
->port
->disc
.eeds_a
) ==
1290 SAS_ADDR(parent
->sas_addr
)) ||
1291 (SAS_ADDR(parent
->port
->disc
.eeds_a
) ==
1292 SAS_ADDR(child
->sas_addr
)))
1294 ((SAS_ADDR(parent
->port
->disc
.eeds_b
) ==
1295 SAS_ADDR(parent
->sas_addr
)) ||
1296 (SAS_ADDR(parent
->port
->disc
.eeds_b
) ==
1297 SAS_ADDR(child
->sas_addr
))))
1301 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1302 "phy 0x%x link forms a third EEDS!\n",
1303 SAS_ADDR(parent
->sas_addr
),
1305 SAS_ADDR(child
->sas_addr
),
1312 /* Here we spill over 80 columns. It is intentional.
1314 static int sas_check_parent_topology(struct domain_device
*child
)
1316 struct expander_device
*child_ex
= &child
->ex_dev
;
1317 struct expander_device
*parent_ex
;
1324 if (child
->parent
->dev_type
!= SAS_EDGE_EXPANDER_DEVICE
&&
1325 child
->parent
->dev_type
!= SAS_FANOUT_EXPANDER_DEVICE
)
1328 parent_ex
= &child
->parent
->ex_dev
;
1330 for (i
= 0; i
< parent_ex
->num_phys
; i
++) {
1331 struct ex_phy
*parent_phy
= &parent_ex
->ex_phy
[i
];
1332 struct ex_phy
*child_phy
;
1334 if (parent_phy
->phy_state
== PHY_VACANT
||
1335 parent_phy
->phy_state
== PHY_NOT_PRESENT
)
1338 if (SAS_ADDR(parent_phy
->attached_sas_addr
) != SAS_ADDR(child
->sas_addr
))
1341 child_phy
= &child_ex
->ex_phy
[parent_phy
->attached_phy_id
];
1343 switch (child
->parent
->dev_type
) {
1344 case SAS_EDGE_EXPANDER_DEVICE
:
1345 if (child
->dev_type
== SAS_FANOUT_EXPANDER_DEVICE
) {
1346 if (parent_phy
->routing_attr
!= SUBTRACTIVE_ROUTING
||
1347 child_phy
->routing_attr
!= TABLE_ROUTING
) {
1348 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1351 } else if (parent_phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
1352 if (child_phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
1353 res
= sas_check_eeds(child
, parent_phy
, child_phy
);
1354 } else if (child_phy
->routing_attr
!= TABLE_ROUTING
) {
1355 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1358 } else if (parent_phy
->routing_attr
== TABLE_ROUTING
) {
1359 if (child_phy
->routing_attr
== SUBTRACTIVE_ROUTING
||
1360 (child_phy
->routing_attr
== TABLE_ROUTING
&&
1361 child_ex
->t2t_supp
&& parent_ex
->t2t_supp
)) {
1364 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1369 case SAS_FANOUT_EXPANDER_DEVICE
:
1370 if (parent_phy
->routing_attr
!= TABLE_ROUTING
||
1371 child_phy
->routing_attr
!= SUBTRACTIVE_ROUTING
) {
1372 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1384 #define RRI_REQ_SIZE 16
1385 #define RRI_RESP_SIZE 44
1387 static int sas_configure_present(struct domain_device
*dev
, int phy_id
,
1388 u8
*sas_addr
, int *index
, int *present
)
1391 struct expander_device
*ex
= &dev
->ex_dev
;
1392 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
1399 rri_req
= alloc_smp_req(RRI_REQ_SIZE
);
1403 rri_resp
= alloc_smp_resp(RRI_RESP_SIZE
);
1409 rri_req
[1] = SMP_REPORT_ROUTE_INFO
;
1410 rri_req
[9] = phy_id
;
1412 for (i
= 0; i
< ex
->max_route_indexes
; i
++) {
1413 *(__be16
*)(rri_req
+6) = cpu_to_be16(i
);
1414 res
= smp_execute_task(dev
, rri_req
, RRI_REQ_SIZE
, rri_resp
,
1419 if (res
== SMP_RESP_NO_INDEX
) {
1420 SAS_DPRINTK("overflow of indexes: dev %016llx "
1421 "phy 0x%x index 0x%x\n",
1422 SAS_ADDR(dev
->sas_addr
), phy_id
, i
);
1424 } else if (res
!= SMP_RESP_FUNC_ACC
) {
1425 SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1426 "result 0x%x\n", __func__
,
1427 SAS_ADDR(dev
->sas_addr
), phy_id
, i
, res
);
1430 if (SAS_ADDR(sas_addr
) != 0) {
1431 if (SAS_ADDR(rri_resp
+16) == SAS_ADDR(sas_addr
)) {
1433 if ((rri_resp
[12] & 0x80) == 0x80)
1438 } else if (SAS_ADDR(rri_resp
+16) == 0) {
1443 } else if (SAS_ADDR(rri_resp
+16) == 0 &&
1444 phy
->last_da_index
< i
) {
1445 phy
->last_da_index
= i
;
1458 #define CRI_REQ_SIZE 44
1459 #define CRI_RESP_SIZE 8
1461 static int sas_configure_set(struct domain_device
*dev
, int phy_id
,
1462 u8
*sas_addr
, int index
, int include
)
1468 cri_req
= alloc_smp_req(CRI_REQ_SIZE
);
1472 cri_resp
= alloc_smp_resp(CRI_RESP_SIZE
);
1478 cri_req
[1] = SMP_CONF_ROUTE_INFO
;
1479 *(__be16
*)(cri_req
+6) = cpu_to_be16(index
);
1480 cri_req
[9] = phy_id
;
1481 if (SAS_ADDR(sas_addr
) == 0 || !include
)
1482 cri_req
[12] |= 0x80;
1483 memcpy(cri_req
+16, sas_addr
, SAS_ADDR_SIZE
);
1485 res
= smp_execute_task(dev
, cri_req
, CRI_REQ_SIZE
, cri_resp
,
1490 if (res
== SMP_RESP_NO_INDEX
) {
1491 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1493 SAS_ADDR(dev
->sas_addr
), phy_id
, index
);
1501 static int sas_configure_phy(struct domain_device
*dev
, int phy_id
,
1502 u8
*sas_addr
, int include
)
1508 res
= sas_configure_present(dev
, phy_id
, sas_addr
, &index
, &present
);
1511 if (include
^ present
)
1512 return sas_configure_set(dev
, phy_id
, sas_addr
, index
,include
);
1518 * sas_configure_parent -- configure routing table of parent
1519 * parent: parent expander
1520 * child: child expander
1521 * sas_addr: SAS port identifier of device directly attached to child
1523 static int sas_configure_parent(struct domain_device
*parent
,
1524 struct domain_device
*child
,
1525 u8
*sas_addr
, int include
)
1527 struct expander_device
*ex_parent
= &parent
->ex_dev
;
1531 if (parent
->parent
) {
1532 res
= sas_configure_parent(parent
->parent
, parent
, sas_addr
,
1538 if (ex_parent
->conf_route_table
== 0) {
1539 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1540 SAS_ADDR(parent
->sas_addr
));
1544 for (i
= 0; i
< ex_parent
->num_phys
; i
++) {
1545 struct ex_phy
*phy
= &ex_parent
->ex_phy
[i
];
1547 if ((phy
->routing_attr
== TABLE_ROUTING
) &&
1548 (SAS_ADDR(phy
->attached_sas_addr
) ==
1549 SAS_ADDR(child
->sas_addr
))) {
1550 res
= sas_configure_phy(parent
, i
, sas_addr
, include
);
1560 * sas_configure_routing -- configure routing
1561 * dev: expander device
1562 * sas_addr: port identifier of device directly attached to the expander device
1564 static int sas_configure_routing(struct domain_device
*dev
, u8
*sas_addr
)
1567 return sas_configure_parent(dev
->parent
, dev
, sas_addr
, 1);
1571 static int sas_disable_routing(struct domain_device
*dev
, u8
*sas_addr
)
1574 return sas_configure_parent(dev
->parent
, dev
, sas_addr
, 0);
1579 * sas_discover_expander -- expander discovery
1580 * @ex: pointer to expander domain device
1582 * See comment in sas_discover_sata().
1584 static int sas_discover_expander(struct domain_device
*dev
)
1588 res
= sas_notify_lldd_dev_found(dev
);
1592 res
= sas_ex_general(dev
);
1595 res
= sas_ex_manuf_info(dev
);
1599 res
= sas_expander_discover(dev
);
1601 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1602 SAS_ADDR(dev
->sas_addr
), res
);
1606 sas_check_ex_subtractive_boundary(dev
);
1607 res
= sas_check_parent_topology(dev
);
1612 sas_notify_lldd_dev_gone(dev
);
1616 static int sas_ex_level_discovery(struct asd_sas_port
*port
, const int level
)
1619 struct domain_device
*dev
;
1621 list_for_each_entry(dev
, &port
->dev_list
, dev_list_node
) {
1622 if (dev
->dev_type
== SAS_EDGE_EXPANDER_DEVICE
||
1623 dev
->dev_type
== SAS_FANOUT_EXPANDER_DEVICE
) {
1624 struct sas_expander_device
*ex
=
1625 rphy_to_expander_device(dev
->rphy
);
1627 if (level
== ex
->level
)
1628 res
= sas_ex_discover_devices(dev
, -1);
1630 res
= sas_ex_discover_devices(port
->port_dev
, -1);
1638 static int sas_ex_bfs_disc(struct asd_sas_port
*port
)
1644 level
= port
->disc
.max_level
;
1645 res
= sas_ex_level_discovery(port
, level
);
1647 } while (level
< port
->disc
.max_level
);
1652 int sas_discover_root_expander(struct domain_device
*dev
)
1655 struct sas_expander_device
*ex
= rphy_to_expander_device(dev
->rphy
);
1657 res
= sas_rphy_add(dev
->rphy
);
1661 ex
->level
= dev
->port
->disc
.max_level
; /* 0 */
1662 res
= sas_discover_expander(dev
);
1666 sas_ex_bfs_disc(dev
->port
);
1671 sas_rphy_remove(dev
->rphy
);
1676 /* ---------- Domain revalidation ---------- */
1678 static int sas_get_phy_discover(struct domain_device
*dev
,
1679 int phy_id
, struct smp_resp
*disc_resp
)
1684 disc_req
= alloc_smp_req(DISCOVER_REQ_SIZE
);
1688 disc_req
[1] = SMP_DISCOVER
;
1689 disc_req
[9] = phy_id
;
1691 res
= smp_execute_task(dev
, disc_req
, DISCOVER_REQ_SIZE
,
1692 disc_resp
, DISCOVER_RESP_SIZE
);
1695 else if (disc_resp
->result
!= SMP_RESP_FUNC_ACC
) {
1696 res
= disc_resp
->result
;
1704 static int sas_get_phy_change_count(struct domain_device
*dev
,
1705 int phy_id
, int *pcc
)
1708 struct smp_resp
*disc_resp
;
1710 disc_resp
= alloc_smp_resp(DISCOVER_RESP_SIZE
);
1714 res
= sas_get_phy_discover(dev
, phy_id
, disc_resp
);
1716 *pcc
= disc_resp
->disc
.change_count
;
1722 static int sas_get_phy_attached_dev(struct domain_device
*dev
, int phy_id
,
1723 u8
*sas_addr
, enum sas_device_type
*type
)
1726 struct smp_resp
*disc_resp
;
1727 struct discover_resp
*dr
;
1729 disc_resp
= alloc_smp_resp(DISCOVER_RESP_SIZE
);
1732 dr
= &disc_resp
->disc
;
1734 res
= sas_get_phy_discover(dev
, phy_id
, disc_resp
);
1736 memcpy(sas_addr
, disc_resp
->disc
.attached_sas_addr
, 8);
1737 *type
= to_dev_type(dr
);
1739 memset(sas_addr
, 0, 8);
1745 static int sas_find_bcast_phy(struct domain_device
*dev
, int *phy_id
,
1746 int from_phy
, bool update
)
1748 struct expander_device
*ex
= &dev
->ex_dev
;
1752 for (i
= from_phy
; i
< ex
->num_phys
; i
++) {
1753 int phy_change_count
= 0;
1755 res
= sas_get_phy_change_count(dev
, i
, &phy_change_count
);
1757 case SMP_RESP_PHY_VACANT
:
1758 case SMP_RESP_NO_PHY
:
1760 case SMP_RESP_FUNC_ACC
:
1766 if (phy_change_count
!= ex
->ex_phy
[i
].phy_change_count
) {
1768 ex
->ex_phy
[i
].phy_change_count
=
1777 static int sas_get_ex_change_count(struct domain_device
*dev
, int *ecc
)
1781 struct smp_resp
*rg_resp
;
1783 rg_req
= alloc_smp_req(RG_REQ_SIZE
);
1787 rg_resp
= alloc_smp_resp(RG_RESP_SIZE
);
1793 rg_req
[1] = SMP_REPORT_GENERAL
;
1795 res
= smp_execute_task(dev
, rg_req
, RG_REQ_SIZE
, rg_resp
,
1799 if (rg_resp
->result
!= SMP_RESP_FUNC_ACC
) {
1800 res
= rg_resp
->result
;
1804 *ecc
= be16_to_cpu(rg_resp
->rg
.change_count
);
1811 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE).
1812 * @dev:domain device to be detect.
1813 * @src_dev: the device which originated BROADCAST(CHANGE).
1815 * Add self-configuration expander support. Suppose two expander cascading,
1816 * when the first level expander is self-configuring, hotplug the disks in
1817 * second level expander, BROADCAST(CHANGE) will not only be originated
1818 * in the second level expander, but also be originated in the first level
1819 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1820 * expander changed count in two level expanders will all increment at least
1821 * once, but the phy which chang count has changed is the source device which
1825 static int sas_find_bcast_dev(struct domain_device
*dev
,
1826 struct domain_device
**src_dev
)
1828 struct expander_device
*ex
= &dev
->ex_dev
;
1829 int ex_change_count
= -1;
1832 struct domain_device
*ch
;
1834 res
= sas_get_ex_change_count(dev
, &ex_change_count
);
1837 if (ex_change_count
!= -1 && ex_change_count
!= ex
->ex_change_count
) {
1838 /* Just detect if this expander phys phy change count changed,
1839 * in order to determine if this expander originate BROADCAST,
1840 * and do not update phy change count field in our structure.
1842 res
= sas_find_bcast_phy(dev
, &phy_id
, 0, false);
1845 ex
->ex_change_count
= ex_change_count
;
1846 SAS_DPRINTK("Expander phy change count has changed\n");
1849 SAS_DPRINTK("Expander phys DID NOT change\n");
1851 list_for_each_entry(ch
, &ex
->children
, siblings
) {
1852 if (ch
->dev_type
== SAS_EDGE_EXPANDER_DEVICE
|| ch
->dev_type
== SAS_FANOUT_EXPANDER_DEVICE
) {
1853 res
= sas_find_bcast_dev(ch
, src_dev
);
1862 static void sas_unregister_ex_tree(struct asd_sas_port
*port
, struct domain_device
*dev
)
1864 struct expander_device
*ex
= &dev
->ex_dev
;
1865 struct domain_device
*child
, *n
;
1867 list_for_each_entry_safe(child
, n
, &ex
->children
, siblings
) {
1868 set_bit(SAS_DEV_GONE
, &child
->state
);
1869 if (child
->dev_type
== SAS_EDGE_EXPANDER_DEVICE
||
1870 child
->dev_type
== SAS_FANOUT_EXPANDER_DEVICE
)
1871 sas_unregister_ex_tree(port
, child
);
1873 sas_unregister_dev(port
, child
);
1875 sas_unregister_dev(port
, dev
);
1878 static void sas_unregister_devs_sas_addr(struct domain_device
*parent
,
1879 int phy_id
, bool last
)
1881 struct expander_device
*ex_dev
= &parent
->ex_dev
;
1882 struct ex_phy
*phy
= &ex_dev
->ex_phy
[phy_id
];
1883 struct domain_device
*child
, *n
, *found
= NULL
;
1885 list_for_each_entry_safe(child
, n
,
1886 &ex_dev
->children
, siblings
) {
1887 if (SAS_ADDR(child
->sas_addr
) ==
1888 SAS_ADDR(phy
->attached_sas_addr
)) {
1889 set_bit(SAS_DEV_GONE
, &child
->state
);
1890 if (child
->dev_type
== SAS_EDGE_EXPANDER_DEVICE
||
1891 child
->dev_type
== SAS_FANOUT_EXPANDER_DEVICE
)
1892 sas_unregister_ex_tree(parent
->port
, child
);
1894 sas_unregister_dev(parent
->port
, child
);
1899 sas_disable_routing(parent
, phy
->attached_sas_addr
);
1901 memset(phy
->attached_sas_addr
, 0, SAS_ADDR_SIZE
);
1903 sas_port_delete_phy(phy
->port
, phy
->phy
);
1904 sas_device_set_phy(found
, phy
->port
);
1905 if (phy
->port
->num_phys
== 0)
1906 sas_port_delete(phy
->port
);
1911 static int sas_discover_bfs_by_root_level(struct domain_device
*root
,
1914 struct expander_device
*ex_root
= &root
->ex_dev
;
1915 struct domain_device
*child
;
1918 list_for_each_entry(child
, &ex_root
->children
, siblings
) {
1919 if (child
->dev_type
== SAS_EDGE_EXPANDER_DEVICE
||
1920 child
->dev_type
== SAS_FANOUT_EXPANDER_DEVICE
) {
1921 struct sas_expander_device
*ex
=
1922 rphy_to_expander_device(child
->rphy
);
1924 if (level
> ex
->level
)
1925 res
= sas_discover_bfs_by_root_level(child
,
1927 else if (level
== ex
->level
)
1928 res
= sas_ex_discover_devices(child
, -1);
1934 static int sas_discover_bfs_by_root(struct domain_device
*dev
)
1937 struct sas_expander_device
*ex
= rphy_to_expander_device(dev
->rphy
);
1938 int level
= ex
->level
+1;
1940 res
= sas_ex_discover_devices(dev
, -1);
1944 res
= sas_discover_bfs_by_root_level(dev
, level
);
1947 } while (level
<= dev
->port
->disc
.max_level
);
1952 static int sas_discover_new(struct domain_device
*dev
, int phy_id
)
1954 struct ex_phy
*ex_phy
= &dev
->ex_dev
.ex_phy
[phy_id
];
1955 struct domain_device
*child
;
1958 SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1959 SAS_ADDR(dev
->sas_addr
), phy_id
);
1960 res
= sas_ex_phy_discover(dev
, phy_id
);
1964 if (sas_ex_join_wide_port(dev
, phy_id
))
1967 res
= sas_ex_discover_devices(dev
, phy_id
);
1970 list_for_each_entry(child
, &dev
->ex_dev
.children
, siblings
) {
1971 if (SAS_ADDR(child
->sas_addr
) ==
1972 SAS_ADDR(ex_phy
->attached_sas_addr
)) {
1973 if (child
->dev_type
== SAS_EDGE_EXPANDER_DEVICE
||
1974 child
->dev_type
== SAS_FANOUT_EXPANDER_DEVICE
)
1975 res
= sas_discover_bfs_by_root(child
);
1982 static bool dev_type_flutter(enum sas_device_type
new, enum sas_device_type old
)
1987 /* treat device directed resets as flutter, if we went
1988 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
1990 if ((old
== SAS_SATA_PENDING
&& new == SAS_END_DEVICE
) ||
1991 (old
== SAS_END_DEVICE
&& new == SAS_SATA_PENDING
))
1997 static int sas_rediscover_dev(struct domain_device
*dev
, int phy_id
, bool last
)
1999 struct expander_device
*ex
= &dev
->ex_dev
;
2000 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
2001 enum sas_device_type type
= SAS_PHY_UNUSED
;
2005 memset(sas_addr
, 0, 8);
2006 res
= sas_get_phy_attached_dev(dev
, phy_id
, sas_addr
, &type
);
2008 case SMP_RESP_NO_PHY
:
2009 phy
->phy_state
= PHY_NOT_PRESENT
;
2010 sas_unregister_devs_sas_addr(dev
, phy_id
, last
);
2012 case SMP_RESP_PHY_VACANT
:
2013 phy
->phy_state
= PHY_VACANT
;
2014 sas_unregister_devs_sas_addr(dev
, phy_id
, last
);
2016 case SMP_RESP_FUNC_ACC
:
2024 if ((SAS_ADDR(sas_addr
) == 0) || (res
== -ECOMM
)) {
2025 phy
->phy_state
= PHY_EMPTY
;
2026 sas_unregister_devs_sas_addr(dev
, phy_id
, last
);
2028 } else if (SAS_ADDR(sas_addr
) == SAS_ADDR(phy
->attached_sas_addr
) &&
2029 dev_type_flutter(type
, phy
->attached_dev_type
)) {
2030 struct domain_device
*ata_dev
= sas_ex_to_ata(dev
, phy_id
);
2033 sas_ex_phy_discover(dev
, phy_id
);
2035 if (ata_dev
&& phy
->attached_dev_type
== SAS_SATA_PENDING
)
2036 action
= ", needs recovery";
2037 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter%s\n",
2038 SAS_ADDR(dev
->sas_addr
), phy_id
, action
);
2042 /* delete the old link */
2043 if (SAS_ADDR(phy
->attached_sas_addr
) &&
2044 SAS_ADDR(sas_addr
) != SAS_ADDR(phy
->attached_sas_addr
)) {
2045 SAS_DPRINTK("ex %016llx phy 0x%x replace %016llx\n",
2046 SAS_ADDR(dev
->sas_addr
), phy_id
,
2047 SAS_ADDR(phy
->attached_sas_addr
));
2048 sas_unregister_devs_sas_addr(dev
, phy_id
, last
);
2051 return sas_discover_new(dev
, phy_id
);
2055 * sas_rediscover - revalidate the domain.
2056 * @dev:domain device to be detect.
2057 * @phy_id: the phy id will be detected.
2059 * NOTE: this process _must_ quit (return) as soon as any connection
2060 * errors are encountered. Connection recovery is done elsewhere.
2061 * Discover process only interrogates devices in order to discover the
2062 * domain.For plugging out, we un-register the device only when it is
2063 * the last phy in the port, for other phys in this port, we just delete it
2064 * from the port.For inserting, we do discovery when it is the
2065 * first phy,for other phys in this port, we add it to the port to
2066 * forming the wide-port.
2068 static int sas_rediscover(struct domain_device
*dev
, const int phy_id
)
2070 struct expander_device
*ex
= &dev
->ex_dev
;
2071 struct ex_phy
*changed_phy
= &ex
->ex_phy
[phy_id
];
2074 bool last
= true; /* is this the last phy of the port */
2076 SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
2077 SAS_ADDR(dev
->sas_addr
), phy_id
);
2079 if (SAS_ADDR(changed_phy
->attached_sas_addr
) != 0) {
2080 for (i
= 0; i
< ex
->num_phys
; i
++) {
2081 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
2085 if (SAS_ADDR(phy
->attached_sas_addr
) ==
2086 SAS_ADDR(changed_phy
->attached_sas_addr
)) {
2087 SAS_DPRINTK("phy%d part of wide port with "
2088 "phy%d\n", phy_id
, i
);
2093 res
= sas_rediscover_dev(dev
, phy_id
, last
);
2095 res
= sas_discover_new(dev
, phy_id
);
2100 * sas_revalidate_domain -- revalidate the domain
2101 * @port: port to the domain of interest
2103 * NOTE: this process _must_ quit (return) as soon as any connection
2104 * errors are encountered. Connection recovery is done elsewhere.
2105 * Discover process only interrogates devices in order to discover the
2108 int sas_ex_revalidate_domain(struct domain_device
*port_dev
)
2111 struct domain_device
*dev
= NULL
;
2113 res
= sas_find_bcast_dev(port_dev
, &dev
);
2114 while (res
== 0 && dev
) {
2115 struct expander_device
*ex
= &dev
->ex_dev
;
2120 res
= sas_find_bcast_phy(dev
, &phy_id
, i
, true);
2123 res
= sas_rediscover(dev
, phy_id
);
2125 } while (i
< ex
->num_phys
);
2128 res
= sas_find_bcast_dev(port_dev
, &dev
);
2133 int sas_smp_handler(struct Scsi_Host
*shost
, struct sas_rphy
*rphy
,
2134 struct request
*req
)
2136 struct domain_device
*dev
;
2138 struct request
*rsp
= req
->next_rq
;
2141 printk("%s: space for a smp response is missing\n",
2146 /* no rphy means no smp target support (ie aic94xx host) */
2148 return sas_smp_host_handler(shost
, req
, rsp
);
2150 type
= rphy
->identify
.device_type
;
2152 if (type
!= SAS_EDGE_EXPANDER_DEVICE
&&
2153 type
!= SAS_FANOUT_EXPANDER_DEVICE
) {
2154 printk("%s: can we send a smp request to a device?\n",
2159 dev
= sas_find_dev_by_rphy(rphy
);
2161 printk("%s: fail to find a domain_device?\n", __func__
);
2165 /* do we need to support multiple segments? */
2166 if (bio_multiple_segments(req
->bio
) ||
2167 bio_multiple_segments(rsp
->bio
)) {
2168 printk("%s: multiple segments req %u, rsp %u\n",
2169 __func__
, blk_rq_bytes(req
), blk_rq_bytes(rsp
));
2173 ret
= smp_execute_task(dev
, bio_data(req
->bio
), blk_rq_bytes(req
),
2174 bio_data(rsp
->bio
), blk_rq_bytes(rsp
));
2176 /* positive number is the untransferred residual */
2177 rsp
->resid_len
= ret
;
2180 } else if (ret
== 0) {