2 * Copyright (C) 1999 Eric Youngdale
3 * Copyright (C) 2014 Christoph Hellwig
5 * SCSI queueing library.
6 * Initial versions: Eric Youngdale (eric@andante.org).
7 * Based upon conversations with large numbers
8 * of people at Linux Expo.
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/init.h>
20 #include <linux/pci.h>
21 #include <linux/delay.h>
22 #include <linux/hardirq.h>
23 #include <linux/scatterlist.h>
24 #include <linux/blk-mq.h>
25 #include <linux/ratelimit.h>
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_driver.h>
32 #include <scsi/scsi_eh.h>
33 #include <scsi/scsi_host.h>
35 #include <trace/events/scsi.h>
37 #include "scsi_priv.h"
38 #include "scsi_logging.h"
41 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
42 #define SG_MEMPOOL_SIZE 2
44 struct scsi_host_sg_pool
{
47 struct kmem_cache
*slab
;
51 #define SP(x) { .size = x, "sgpool-" __stringify(x) }
52 #if (SCSI_MAX_SG_SEGMENTS < 32)
53 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
55 static struct scsi_host_sg_pool scsi_sg_pools
[] = {
58 #if (SCSI_MAX_SG_SEGMENTS > 32)
60 #if (SCSI_MAX_SG_SEGMENTS > 64)
62 #if (SCSI_MAX_SG_SEGMENTS > 128)
64 #if (SCSI_MAX_SG_SEGMENTS > 256)
65 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
70 SP(SCSI_MAX_SG_SEGMENTS
)
74 struct kmem_cache
*scsi_sdb_cache
;
77 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
78 * not change behaviour from the previous unplug mechanism, experimentation
79 * may prove this needs changing.
81 #define SCSI_QUEUE_DELAY 3
84 scsi_set_blocked(struct scsi_cmnd
*cmd
, int reason
)
86 struct Scsi_Host
*host
= cmd
->device
->host
;
87 struct scsi_device
*device
= cmd
->device
;
88 struct scsi_target
*starget
= scsi_target(device
);
91 * Set the appropriate busy bit for the device/host.
93 * If the host/device isn't busy, assume that something actually
94 * completed, and that we should be able to queue a command now.
96 * Note that the prior mid-layer assumption that any host could
97 * always queue at least one command is now broken. The mid-layer
98 * will implement a user specifiable stall (see
99 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
100 * if a command is requeued with no other commands outstanding
101 * either for the device or for the host.
104 case SCSI_MLQUEUE_HOST_BUSY
:
105 atomic_set(&host
->host_blocked
, host
->max_host_blocked
);
107 case SCSI_MLQUEUE_DEVICE_BUSY
:
108 case SCSI_MLQUEUE_EH_RETRY
:
109 atomic_set(&device
->device_blocked
,
110 device
->max_device_blocked
);
112 case SCSI_MLQUEUE_TARGET_BUSY
:
113 atomic_set(&starget
->target_blocked
,
114 starget
->max_target_blocked
);
119 static void scsi_mq_requeue_cmd(struct scsi_cmnd
*cmd
)
121 struct scsi_device
*sdev
= cmd
->device
;
122 struct request_queue
*q
= cmd
->request
->q
;
124 blk_mq_requeue_request(cmd
->request
);
125 blk_mq_kick_requeue_list(q
);
126 put_device(&sdev
->sdev_gendev
);
130 * __scsi_queue_insert - private queue insertion
131 * @cmd: The SCSI command being requeued
132 * @reason: The reason for the requeue
133 * @unbusy: Whether the queue should be unbusied
135 * This is a private queue insertion. The public interface
136 * scsi_queue_insert() always assumes the queue should be unbusied
137 * because it's always called before the completion. This function is
138 * for a requeue after completion, which should only occur in this
141 static void __scsi_queue_insert(struct scsi_cmnd
*cmd
, int reason
, int unbusy
)
143 struct scsi_device
*device
= cmd
->device
;
144 struct request_queue
*q
= device
->request_queue
;
147 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO
, cmd
,
148 "Inserting command %p into mlqueue\n", cmd
));
150 scsi_set_blocked(cmd
, reason
);
153 * Decrement the counters, since these commands are no longer
154 * active on the host/device.
157 scsi_device_unbusy(device
);
160 * Requeue this command. It will go before all other commands
161 * that are already in the queue. Schedule requeue work under
162 * lock such that the kblockd_schedule_work() call happens
163 * before blk_cleanup_queue() finishes.
167 scsi_mq_requeue_cmd(cmd
);
170 spin_lock_irqsave(q
->queue_lock
, flags
);
171 blk_requeue_request(q
, cmd
->request
);
172 kblockd_schedule_work(&device
->requeue_work
);
173 spin_unlock_irqrestore(q
->queue_lock
, flags
);
177 * Function: scsi_queue_insert()
179 * Purpose: Insert a command in the midlevel queue.
181 * Arguments: cmd - command that we are adding to queue.
182 * reason - why we are inserting command to queue.
184 * Lock status: Assumed that lock is not held upon entry.
188 * Notes: We do this for one of two cases. Either the host is busy
189 * and it cannot accept any more commands for the time being,
190 * or the device returned QUEUE_FULL and can accept no more
192 * Notes: This could be called either from an interrupt context or a
193 * normal process context.
195 void scsi_queue_insert(struct scsi_cmnd
*cmd
, int reason
)
197 __scsi_queue_insert(cmd
, reason
, 1);
200 * scsi_execute - insert request and wait for the result
203 * @data_direction: data direction
204 * @buffer: data buffer
205 * @bufflen: len of buffer
206 * @sense: optional sense buffer
207 * @timeout: request timeout in seconds
208 * @retries: number of times to retry request
209 * @flags: or into request flags;
210 * @resid: optional residual length
212 * returns the req->errors value which is the scsi_cmnd result
215 int scsi_execute(struct scsi_device
*sdev
, const unsigned char *cmd
,
216 int data_direction
, void *buffer
, unsigned bufflen
,
217 unsigned char *sense
, int timeout
, int retries
, u64 flags
,
221 int write
= (data_direction
== DMA_TO_DEVICE
);
222 int ret
= DRIVER_ERROR
<< 24;
224 req
= blk_get_request(sdev
->request_queue
, write
, __GFP_WAIT
);
227 blk_rq_set_block_pc(req
);
229 if (bufflen
&& blk_rq_map_kern(sdev
->request_queue
, req
,
230 buffer
, bufflen
, __GFP_WAIT
))
233 req
->cmd_len
= COMMAND_SIZE(cmd
[0]);
234 memcpy(req
->cmd
, cmd
, req
->cmd_len
);
237 req
->retries
= retries
;
238 req
->timeout
= timeout
;
239 req
->cmd_flags
|= flags
| REQ_QUIET
| REQ_PREEMPT
;
242 * head injection *required* here otherwise quiesce won't work
244 blk_execute_rq(req
->q
, NULL
, req
, 1);
247 * Some devices (USB mass-storage in particular) may transfer
248 * garbage data together with a residue indicating that the data
249 * is invalid. Prevent the garbage from being misinterpreted
250 * and prevent security leaks by zeroing out the excess data.
252 if (unlikely(req
->resid_len
> 0 && req
->resid_len
<= bufflen
))
253 memset(buffer
+ (bufflen
- req
->resid_len
), 0, req
->resid_len
);
256 *resid
= req
->resid_len
;
259 blk_put_request(req
);
263 EXPORT_SYMBOL(scsi_execute
);
265 int scsi_execute_req_flags(struct scsi_device
*sdev
, const unsigned char *cmd
,
266 int data_direction
, void *buffer
, unsigned bufflen
,
267 struct scsi_sense_hdr
*sshdr
, int timeout
, int retries
,
268 int *resid
, u64 flags
)
274 sense
= kzalloc(SCSI_SENSE_BUFFERSIZE
, GFP_NOIO
);
276 return DRIVER_ERROR
<< 24;
278 result
= scsi_execute(sdev
, cmd
, data_direction
, buffer
, bufflen
,
279 sense
, timeout
, retries
, flags
, resid
);
281 scsi_normalize_sense(sense
, SCSI_SENSE_BUFFERSIZE
, sshdr
);
286 EXPORT_SYMBOL(scsi_execute_req_flags
);
289 * Function: scsi_init_cmd_errh()
291 * Purpose: Initialize cmd fields related to error handling.
293 * Arguments: cmd - command that is ready to be queued.
295 * Notes: This function has the job of initializing a number of
296 * fields related to error handling. Typically this will
297 * be called once for each command, as required.
299 static void scsi_init_cmd_errh(struct scsi_cmnd
*cmd
)
301 cmd
->serial_number
= 0;
302 scsi_set_resid(cmd
, 0);
303 memset(cmd
->sense_buffer
, 0, SCSI_SENSE_BUFFERSIZE
);
304 if (cmd
->cmd_len
== 0)
305 cmd
->cmd_len
= scsi_command_size(cmd
->cmnd
);
308 void scsi_device_unbusy(struct scsi_device
*sdev
)
310 struct Scsi_Host
*shost
= sdev
->host
;
311 struct scsi_target
*starget
= scsi_target(sdev
);
314 atomic_dec(&shost
->host_busy
);
315 if (starget
->can_queue
> 0)
316 atomic_dec(&starget
->target_busy
);
318 if (unlikely(scsi_host_in_recovery(shost
) &&
319 (shost
->host_failed
|| shost
->host_eh_scheduled
))) {
320 spin_lock_irqsave(shost
->host_lock
, flags
);
321 scsi_eh_wakeup(shost
);
322 spin_unlock_irqrestore(shost
->host_lock
, flags
);
325 atomic_dec(&sdev
->device_busy
);
328 static void scsi_kick_queue(struct request_queue
*q
)
331 blk_mq_start_hw_queues(q
);
337 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
338 * and call blk_run_queue for all the scsi_devices on the target -
339 * including current_sdev first.
341 * Called with *no* scsi locks held.
343 static void scsi_single_lun_run(struct scsi_device
*current_sdev
)
345 struct Scsi_Host
*shost
= current_sdev
->host
;
346 struct scsi_device
*sdev
, *tmp
;
347 struct scsi_target
*starget
= scsi_target(current_sdev
);
350 spin_lock_irqsave(shost
->host_lock
, flags
);
351 starget
->starget_sdev_user
= NULL
;
352 spin_unlock_irqrestore(shost
->host_lock
, flags
);
355 * Call blk_run_queue for all LUNs on the target, starting with
356 * current_sdev. We race with others (to set starget_sdev_user),
357 * but in most cases, we will be first. Ideally, each LU on the
358 * target would get some limited time or requests on the target.
360 scsi_kick_queue(current_sdev
->request_queue
);
362 spin_lock_irqsave(shost
->host_lock
, flags
);
363 if (starget
->starget_sdev_user
)
365 list_for_each_entry_safe(sdev
, tmp
, &starget
->devices
,
366 same_target_siblings
) {
367 if (sdev
== current_sdev
)
369 if (scsi_device_get(sdev
))
372 spin_unlock_irqrestore(shost
->host_lock
, flags
);
373 scsi_kick_queue(sdev
->request_queue
);
374 spin_lock_irqsave(shost
->host_lock
, flags
);
376 scsi_device_put(sdev
);
379 spin_unlock_irqrestore(shost
->host_lock
, flags
);
382 static inline bool scsi_device_is_busy(struct scsi_device
*sdev
)
384 if (atomic_read(&sdev
->device_busy
) >= sdev
->queue_depth
)
386 if (atomic_read(&sdev
->device_blocked
) > 0)
391 static inline bool scsi_target_is_busy(struct scsi_target
*starget
)
393 if (starget
->can_queue
> 0) {
394 if (atomic_read(&starget
->target_busy
) >= starget
->can_queue
)
396 if (atomic_read(&starget
->target_blocked
) > 0)
402 static inline bool scsi_host_is_busy(struct Scsi_Host
*shost
)
404 if (shost
->can_queue
> 0 &&
405 atomic_read(&shost
->host_busy
) >= shost
->can_queue
)
407 if (atomic_read(&shost
->host_blocked
) > 0)
409 if (shost
->host_self_blocked
)
414 static void scsi_starved_list_run(struct Scsi_Host
*shost
)
416 LIST_HEAD(starved_list
);
417 struct scsi_device
*sdev
;
420 spin_lock_irqsave(shost
->host_lock
, flags
);
421 list_splice_init(&shost
->starved_list
, &starved_list
);
423 while (!list_empty(&starved_list
)) {
424 struct request_queue
*slq
;
427 * As long as shost is accepting commands and we have
428 * starved queues, call blk_run_queue. scsi_request_fn
429 * drops the queue_lock and can add us back to the
432 * host_lock protects the starved_list and starved_entry.
433 * scsi_request_fn must get the host_lock before checking
434 * or modifying starved_list or starved_entry.
436 if (scsi_host_is_busy(shost
))
439 sdev
= list_entry(starved_list
.next
,
440 struct scsi_device
, starved_entry
);
441 list_del_init(&sdev
->starved_entry
);
442 if (scsi_target_is_busy(scsi_target(sdev
))) {
443 list_move_tail(&sdev
->starved_entry
,
444 &shost
->starved_list
);
449 * Once we drop the host lock, a racing scsi_remove_device()
450 * call may remove the sdev from the starved list and destroy
451 * it and the queue. Mitigate by taking a reference to the
452 * queue and never touching the sdev again after we drop the
453 * host lock. Note: if __scsi_remove_device() invokes
454 * blk_cleanup_queue() before the queue is run from this
455 * function then blk_run_queue() will return immediately since
456 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
458 slq
= sdev
->request_queue
;
459 if (!blk_get_queue(slq
))
461 spin_unlock_irqrestore(shost
->host_lock
, flags
);
463 scsi_kick_queue(slq
);
466 spin_lock_irqsave(shost
->host_lock
, flags
);
468 /* put any unprocessed entries back */
469 list_splice(&starved_list
, &shost
->starved_list
);
470 spin_unlock_irqrestore(shost
->host_lock
, flags
);
474 * Function: scsi_run_queue()
476 * Purpose: Select a proper request queue to serve next
478 * Arguments: q - last request's queue
482 * Notes: The previous command was completely finished, start
483 * a new one if possible.
485 static void scsi_run_queue(struct request_queue
*q
)
487 struct scsi_device
*sdev
= q
->queuedata
;
489 if (scsi_target(sdev
)->single_lun
)
490 scsi_single_lun_run(sdev
);
491 if (!list_empty(&sdev
->host
->starved_list
))
492 scsi_starved_list_run(sdev
->host
);
495 blk_mq_start_stopped_hw_queues(q
, false);
500 void scsi_requeue_run_queue(struct work_struct
*work
)
502 struct scsi_device
*sdev
;
503 struct request_queue
*q
;
505 sdev
= container_of(work
, struct scsi_device
, requeue_work
);
506 q
= sdev
->request_queue
;
511 * Function: scsi_requeue_command()
513 * Purpose: Handle post-processing of completed commands.
515 * Arguments: q - queue to operate on
516 * cmd - command that may need to be requeued.
520 * Notes: After command completion, there may be blocks left
521 * over which weren't finished by the previous command
522 * this can be for a number of reasons - the main one is
523 * I/O errors in the middle of the request, in which case
524 * we need to request the blocks that come after the bad
526 * Notes: Upon return, cmd is a stale pointer.
528 static void scsi_requeue_command(struct request_queue
*q
, struct scsi_cmnd
*cmd
)
530 struct scsi_device
*sdev
= cmd
->device
;
531 struct request
*req
= cmd
->request
;
534 spin_lock_irqsave(q
->queue_lock
, flags
);
535 blk_unprep_request(req
);
537 scsi_put_command(cmd
);
538 blk_requeue_request(q
, req
);
539 spin_unlock_irqrestore(q
->queue_lock
, flags
);
543 put_device(&sdev
->sdev_gendev
);
546 void scsi_run_host_queues(struct Scsi_Host
*shost
)
548 struct scsi_device
*sdev
;
550 shost_for_each_device(sdev
, shost
)
551 scsi_run_queue(sdev
->request_queue
);
554 static inline unsigned int scsi_sgtable_index(unsigned short nents
)
558 BUG_ON(nents
> SCSI_MAX_SG_SEGMENTS
);
563 index
= get_count_order(nents
) - 3;
568 static void scsi_sg_free(struct scatterlist
*sgl
, unsigned int nents
)
570 struct scsi_host_sg_pool
*sgp
;
572 sgp
= scsi_sg_pools
+ scsi_sgtable_index(nents
);
573 mempool_free(sgl
, sgp
->pool
);
576 static struct scatterlist
*scsi_sg_alloc(unsigned int nents
, gfp_t gfp_mask
)
578 struct scsi_host_sg_pool
*sgp
;
580 sgp
= scsi_sg_pools
+ scsi_sgtable_index(nents
);
581 return mempool_alloc(sgp
->pool
, gfp_mask
);
584 static void scsi_free_sgtable(struct scsi_data_buffer
*sdb
, bool mq
)
586 if (mq
&& sdb
->table
.nents
<= SCSI_MAX_SG_SEGMENTS
)
588 __sg_free_table(&sdb
->table
, SCSI_MAX_SG_SEGMENTS
, mq
, scsi_sg_free
);
591 static int scsi_alloc_sgtable(struct scsi_data_buffer
*sdb
, int nents
, bool mq
)
593 struct scatterlist
*first_chunk
= NULL
;
599 if (nents
<= SCSI_MAX_SG_SEGMENTS
) {
600 sdb
->table
.nents
= nents
;
601 sg_init_table(sdb
->table
.sgl
, sdb
->table
.nents
);
604 first_chunk
= sdb
->table
.sgl
;
607 ret
= __sg_alloc_table(&sdb
->table
, nents
, SCSI_MAX_SG_SEGMENTS
,
608 first_chunk
, GFP_ATOMIC
, scsi_sg_alloc
);
610 scsi_free_sgtable(sdb
, mq
);
614 static void scsi_uninit_cmd(struct scsi_cmnd
*cmd
)
616 if (cmd
->request
->cmd_type
== REQ_TYPE_FS
) {
617 struct scsi_driver
*drv
= scsi_cmd_to_driver(cmd
);
619 if (drv
->uninit_command
)
620 drv
->uninit_command(cmd
);
624 static void scsi_mq_free_sgtables(struct scsi_cmnd
*cmd
)
626 if (cmd
->sdb
.table
.nents
)
627 scsi_free_sgtable(&cmd
->sdb
, true);
628 if (cmd
->request
->next_rq
&& cmd
->request
->next_rq
->special
)
629 scsi_free_sgtable(cmd
->request
->next_rq
->special
, true);
630 if (scsi_prot_sg_count(cmd
))
631 scsi_free_sgtable(cmd
->prot_sdb
, true);
634 static void scsi_mq_uninit_cmd(struct scsi_cmnd
*cmd
)
636 struct scsi_device
*sdev
= cmd
->device
;
637 struct Scsi_Host
*shost
= sdev
->host
;
640 scsi_mq_free_sgtables(cmd
);
641 scsi_uninit_cmd(cmd
);
643 if (shost
->use_cmd_list
) {
644 BUG_ON(list_empty(&cmd
->list
));
645 spin_lock_irqsave(&sdev
->list_lock
, flags
);
646 list_del_init(&cmd
->list
);
647 spin_unlock_irqrestore(&sdev
->list_lock
, flags
);
652 * Function: scsi_release_buffers()
654 * Purpose: Free resources allocate for a scsi_command.
656 * Arguments: cmd - command that we are bailing.
658 * Lock status: Assumed that no lock is held upon entry.
662 * Notes: In the event that an upper level driver rejects a
663 * command, we must release resources allocated during
664 * the __init_io() function. Primarily this would involve
665 * the scatter-gather table.
667 static void scsi_release_buffers(struct scsi_cmnd
*cmd
)
669 if (cmd
->sdb
.table
.nents
)
670 scsi_free_sgtable(&cmd
->sdb
, false);
672 memset(&cmd
->sdb
, 0, sizeof(cmd
->sdb
));
674 if (scsi_prot_sg_count(cmd
))
675 scsi_free_sgtable(cmd
->prot_sdb
, false);
678 static void scsi_release_bidi_buffers(struct scsi_cmnd
*cmd
)
680 struct scsi_data_buffer
*bidi_sdb
= cmd
->request
->next_rq
->special
;
682 scsi_free_sgtable(bidi_sdb
, false);
683 kmem_cache_free(scsi_sdb_cache
, bidi_sdb
);
684 cmd
->request
->next_rq
->special
= NULL
;
687 static bool scsi_end_request(struct request
*req
, int error
,
688 unsigned int bytes
, unsigned int bidi_bytes
)
690 struct scsi_cmnd
*cmd
= req
->special
;
691 struct scsi_device
*sdev
= cmd
->device
;
692 struct request_queue
*q
= sdev
->request_queue
;
694 if (blk_update_request(req
, error
, bytes
))
697 /* Bidi request must be completed as a whole */
698 if (unlikely(bidi_bytes
) &&
699 blk_update_request(req
->next_rq
, error
, bidi_bytes
))
702 if (blk_queue_add_random(q
))
703 add_disk_randomness(req
->rq_disk
);
707 * In the MQ case the command gets freed by __blk_mq_end_request,
708 * so we have to do all cleanup that depends on it earlier.
710 * We also can't kick the queues from irq context, so we
711 * will have to defer it to a workqueue.
713 scsi_mq_uninit_cmd(cmd
);
715 __blk_mq_end_request(req
, error
);
717 if (scsi_target(sdev
)->single_lun
||
718 !list_empty(&sdev
->host
->starved_list
))
719 kblockd_schedule_work(&sdev
->requeue_work
);
721 blk_mq_start_stopped_hw_queues(q
, true);
726 scsi_release_bidi_buffers(cmd
);
728 spin_lock_irqsave(q
->queue_lock
, flags
);
729 blk_finish_request(req
, error
);
730 spin_unlock_irqrestore(q
->queue_lock
, flags
);
732 scsi_release_buffers(cmd
);
734 scsi_put_command(cmd
);
738 put_device(&sdev
->sdev_gendev
);
743 * __scsi_error_from_host_byte - translate SCSI error code into errno
744 * @cmd: SCSI command (unused)
745 * @result: scsi error code
747 * Translate SCSI error code into standard UNIX errno.
749 * -ENOLINK temporary transport failure
750 * -EREMOTEIO permanent target failure, do not retry
751 * -EBADE permanent nexus failure, retry on other path
752 * -ENOSPC No write space available
753 * -ENODATA Medium error
754 * -EIO unspecified I/O error
756 static int __scsi_error_from_host_byte(struct scsi_cmnd
*cmd
, int result
)
760 switch(host_byte(result
)) {
761 case DID_TRANSPORT_FAILFAST
:
764 case DID_TARGET_FAILURE
:
765 set_host_byte(cmd
, DID_OK
);
768 case DID_NEXUS_FAILURE
:
769 set_host_byte(cmd
, DID_OK
);
772 case DID_ALLOC_FAILURE
:
773 set_host_byte(cmd
, DID_OK
);
776 case DID_MEDIUM_ERROR
:
777 set_host_byte(cmd
, DID_OK
);
789 * Function: scsi_io_completion()
791 * Purpose: Completion processing for block device I/O requests.
793 * Arguments: cmd - command that is finished.
795 * Lock status: Assumed that no lock is held upon entry.
799 * Notes: We will finish off the specified number of sectors. If we
800 * are done, the command block will be released and the queue
801 * function will be goosed. If we are not done then we have to
802 * figure out what to do next:
804 * a) We can call scsi_requeue_command(). The request
805 * will be unprepared and put back on the queue. Then
806 * a new command will be created for it. This should
807 * be used if we made forward progress, or if we want
808 * to switch from READ(10) to READ(6) for example.
810 * b) We can call __scsi_queue_insert(). The request will
811 * be put back on the queue and retried using the same
812 * command as before, possibly after a delay.
814 * c) We can call scsi_end_request() with -EIO to fail
815 * the remainder of the request.
817 void scsi_io_completion(struct scsi_cmnd
*cmd
, unsigned int good_bytes
)
819 int result
= cmd
->result
;
820 struct request_queue
*q
= cmd
->device
->request_queue
;
821 struct request
*req
= cmd
->request
;
823 struct scsi_sense_hdr sshdr
;
824 bool sense_valid
= false;
825 int sense_deferred
= 0, level
= 0;
826 enum {ACTION_FAIL
, ACTION_REPREP
, ACTION_RETRY
,
827 ACTION_DELAYED_RETRY
} action
;
828 unsigned long wait_for
= (cmd
->allowed
+ 1) * req
->timeout
;
831 sense_valid
= scsi_command_normalize_sense(cmd
, &sshdr
);
833 sense_deferred
= scsi_sense_is_deferred(&sshdr
);
836 if (req
->cmd_type
== REQ_TYPE_BLOCK_PC
) { /* SG_IO ioctl from block level */
838 if (sense_valid
&& req
->sense
) {
840 * SG_IO wants current and deferred errors
842 int len
= 8 + cmd
->sense_buffer
[7];
844 if (len
> SCSI_SENSE_BUFFERSIZE
)
845 len
= SCSI_SENSE_BUFFERSIZE
;
846 memcpy(req
->sense
, cmd
->sense_buffer
, len
);
847 req
->sense_len
= len
;
850 error
= __scsi_error_from_host_byte(cmd
, result
);
853 * __scsi_error_from_host_byte may have reset the host_byte
855 req
->errors
= cmd
->result
;
857 req
->resid_len
= scsi_get_resid(cmd
);
859 if (scsi_bidi_cmnd(cmd
)) {
861 * Bidi commands Must be complete as a whole,
862 * both sides at once.
864 req
->next_rq
->resid_len
= scsi_in(cmd
)->resid
;
865 if (scsi_end_request(req
, 0, blk_rq_bytes(req
),
866 blk_rq_bytes(req
->next_rq
)))
870 } else if (blk_rq_bytes(req
) == 0 && result
&& !sense_deferred
) {
872 * Certain non BLOCK_PC requests are commands that don't
873 * actually transfer anything (FLUSH), so cannot use
874 * good_bytes != blk_rq_bytes(req) as the signal for an error.
875 * This sets the error explicitly for the problem case.
877 error
= __scsi_error_from_host_byte(cmd
, result
);
880 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
881 BUG_ON(blk_bidi_rq(req
));
884 * Next deal with any sectors which we were able to correctly
887 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO
, cmd
,
888 "%u sectors total, %d bytes done.\n",
889 blk_rq_sectors(req
), good_bytes
));
892 * Recovered errors need reporting, but they're always treated
893 * as success, so fiddle the result code here. For BLOCK_PC
894 * we already took a copy of the original into rq->errors which
895 * is what gets returned to the user
897 if (sense_valid
&& (sshdr
.sense_key
== RECOVERED_ERROR
)) {
898 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
899 * print since caller wants ATA registers. Only occurs on
900 * SCSI ATA PASS_THROUGH commands when CK_COND=1
902 if ((sshdr
.asc
== 0x0) && (sshdr
.ascq
== 0x1d))
904 else if (!(req
->cmd_flags
& REQ_QUIET
))
905 scsi_print_sense(cmd
);
907 /* BLOCK_PC may have set error */
912 * If we finished all bytes in the request we are done now.
914 if (!scsi_end_request(req
, error
, good_bytes
, 0))
918 * Kill remainder if no retrys.
920 if (error
&& scsi_noretry_cmd(cmd
)) {
921 if (scsi_end_request(req
, error
, blk_rq_bytes(req
), 0))
927 * If there had been no error, but we have leftover bytes in the
928 * requeues just queue the command up again.
933 error
= __scsi_error_from_host_byte(cmd
, result
);
935 if (host_byte(result
) == DID_RESET
) {
936 /* Third party bus reset or reset for error recovery
937 * reasons. Just retry the command and see what
940 action
= ACTION_RETRY
;
941 } else if (sense_valid
&& !sense_deferred
) {
942 switch (sshdr
.sense_key
) {
944 if (cmd
->device
->removable
) {
945 /* Detected disc change. Set a bit
946 * and quietly refuse further access.
948 cmd
->device
->changed
= 1;
949 action
= ACTION_FAIL
;
951 /* Must have been a power glitch, or a
952 * bus reset. Could not have been a
953 * media change, so we just retry the
954 * command and see what happens.
956 action
= ACTION_RETRY
;
959 case ILLEGAL_REQUEST
:
960 /* If we had an ILLEGAL REQUEST returned, then
961 * we may have performed an unsupported
962 * command. The only thing this should be
963 * would be a ten byte read where only a six
964 * byte read was supported. Also, on a system
965 * where READ CAPACITY failed, we may have
966 * read past the end of the disk.
968 if ((cmd
->device
->use_10_for_rw
&&
969 sshdr
.asc
== 0x20 && sshdr
.ascq
== 0x00) &&
970 (cmd
->cmnd
[0] == READ_10
||
971 cmd
->cmnd
[0] == WRITE_10
)) {
972 /* This will issue a new 6-byte command. */
973 cmd
->device
->use_10_for_rw
= 0;
974 action
= ACTION_REPREP
;
975 } else if (sshdr
.asc
== 0x10) /* DIX */ {
976 action
= ACTION_FAIL
;
978 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
979 } else if (sshdr
.asc
== 0x20 || sshdr
.asc
== 0x24) {
980 action
= ACTION_FAIL
;
983 action
= ACTION_FAIL
;
985 case ABORTED_COMMAND
:
986 action
= ACTION_FAIL
;
987 if (sshdr
.asc
== 0x10) /* DIF */
991 /* If the device is in the process of becoming
992 * ready, or has a temporary blockage, retry.
994 if (sshdr
.asc
== 0x04) {
995 switch (sshdr
.ascq
) {
996 case 0x01: /* becoming ready */
997 case 0x04: /* format in progress */
998 case 0x05: /* rebuild in progress */
999 case 0x06: /* recalculation in progress */
1000 case 0x07: /* operation in progress */
1001 case 0x08: /* Long write in progress */
1002 case 0x09: /* self test in progress */
1003 case 0x14: /* space allocation in progress */
1004 action
= ACTION_DELAYED_RETRY
;
1007 action
= ACTION_FAIL
;
1011 action
= ACTION_FAIL
;
1013 case VOLUME_OVERFLOW
:
1014 /* See SSC3rXX or current. */
1015 action
= ACTION_FAIL
;
1018 action
= ACTION_FAIL
;
1022 action
= ACTION_FAIL
;
1024 if (action
!= ACTION_FAIL
&&
1025 time_before(cmd
->jiffies_at_alloc
+ wait_for
, jiffies
))
1026 action
= ACTION_FAIL
;
1030 /* Give up and fail the remainder of the request */
1031 if (!(req
->cmd_flags
& REQ_QUIET
)) {
1032 static DEFINE_RATELIMIT_STATE(_rs
,
1033 DEFAULT_RATELIMIT_INTERVAL
,
1034 DEFAULT_RATELIMIT_BURST
);
1036 if (unlikely(scsi_logging_level
))
1037 level
= SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT
,
1038 SCSI_LOG_MLCOMPLETE_BITS
);
1041 * if logging is enabled the failure will be printed
1042 * in scsi_log_completion(), so avoid duplicate messages
1044 if (!level
&& __ratelimit(&_rs
)) {
1045 scsi_print_result(cmd
, NULL
, FAILED
);
1046 if (driver_byte(result
) & DRIVER_SENSE
)
1047 scsi_print_sense(cmd
);
1048 scsi_print_command(cmd
);
1051 if (!scsi_end_request(req
, error
, blk_rq_err_bytes(req
), 0))
1056 /* Unprep the request and put it back at the head of the queue.
1057 * A new command will be prepared and issued.
1060 cmd
->request
->cmd_flags
&= ~REQ_DONTPREP
;
1061 scsi_mq_uninit_cmd(cmd
);
1062 scsi_mq_requeue_cmd(cmd
);
1064 scsi_release_buffers(cmd
);
1065 scsi_requeue_command(q
, cmd
);
1069 /* Retry the same command immediately */
1070 __scsi_queue_insert(cmd
, SCSI_MLQUEUE_EH_RETRY
, 0);
1072 case ACTION_DELAYED_RETRY
:
1073 /* Retry the same command after a delay */
1074 __scsi_queue_insert(cmd
, SCSI_MLQUEUE_DEVICE_BUSY
, 0);
1079 static int scsi_init_sgtable(struct request
*req
, struct scsi_data_buffer
*sdb
)
1084 * If sg table allocation fails, requeue request later.
1086 if (unlikely(scsi_alloc_sgtable(sdb
, req
->nr_phys_segments
,
1087 req
->mq_ctx
!= NULL
)))
1088 return BLKPREP_DEFER
;
1091 * Next, walk the list, and fill in the addresses and sizes of
1094 count
= blk_rq_map_sg(req
->q
, req
, sdb
->table
.sgl
);
1095 BUG_ON(count
> sdb
->table
.nents
);
1096 sdb
->table
.nents
= count
;
1097 sdb
->length
= blk_rq_bytes(req
);
1102 * Function: scsi_init_io()
1104 * Purpose: SCSI I/O initialize function.
1106 * Arguments: cmd - Command descriptor we wish to initialize
1108 * Returns: 0 on success
1109 * BLKPREP_DEFER if the failure is retryable
1110 * BLKPREP_KILL if the failure is fatal
1112 int scsi_init_io(struct scsi_cmnd
*cmd
)
1114 struct scsi_device
*sdev
= cmd
->device
;
1115 struct request
*rq
= cmd
->request
;
1116 bool is_mq
= (rq
->mq_ctx
!= NULL
);
1119 BUG_ON(!rq
->nr_phys_segments
);
1121 error
= scsi_init_sgtable(rq
, &cmd
->sdb
);
1125 if (blk_bidi_rq(rq
)) {
1126 if (!rq
->q
->mq_ops
) {
1127 struct scsi_data_buffer
*bidi_sdb
=
1128 kmem_cache_zalloc(scsi_sdb_cache
, GFP_ATOMIC
);
1130 error
= BLKPREP_DEFER
;
1134 rq
->next_rq
->special
= bidi_sdb
;
1137 error
= scsi_init_sgtable(rq
->next_rq
, rq
->next_rq
->special
);
1142 if (blk_integrity_rq(rq
)) {
1143 struct scsi_data_buffer
*prot_sdb
= cmd
->prot_sdb
;
1146 if (prot_sdb
== NULL
) {
1148 * This can happen if someone (e.g. multipath)
1149 * queues a command to a device on an adapter
1150 * that does not support DIX.
1153 error
= BLKPREP_KILL
;
1157 ivecs
= blk_rq_count_integrity_sg(rq
->q
, rq
->bio
);
1159 if (scsi_alloc_sgtable(prot_sdb
, ivecs
, is_mq
)) {
1160 error
= BLKPREP_DEFER
;
1164 count
= blk_rq_map_integrity_sg(rq
->q
, rq
->bio
,
1165 prot_sdb
->table
.sgl
);
1166 BUG_ON(unlikely(count
> ivecs
));
1167 BUG_ON(unlikely(count
> queue_max_integrity_segments(rq
->q
)));
1169 cmd
->prot_sdb
= prot_sdb
;
1170 cmd
->prot_sdb
->table
.nents
= count
;
1176 scsi_mq_free_sgtables(cmd
);
1178 scsi_release_buffers(cmd
);
1179 cmd
->request
->special
= NULL
;
1180 scsi_put_command(cmd
);
1181 put_device(&sdev
->sdev_gendev
);
1185 EXPORT_SYMBOL(scsi_init_io
);
1187 static struct scsi_cmnd
*scsi_get_cmd_from_req(struct scsi_device
*sdev
,
1188 struct request
*req
)
1190 struct scsi_cmnd
*cmd
;
1192 if (!req
->special
) {
1193 /* Bail if we can't get a reference to the device */
1194 if (!get_device(&sdev
->sdev_gendev
))
1197 cmd
= scsi_get_command(sdev
, GFP_ATOMIC
);
1198 if (unlikely(!cmd
)) {
1199 put_device(&sdev
->sdev_gendev
);
1207 /* pull a tag out of the request if we have one */
1208 cmd
->tag
= req
->tag
;
1211 cmd
->cmnd
= req
->cmd
;
1212 cmd
->prot_op
= SCSI_PROT_NORMAL
;
1217 static int scsi_setup_blk_pc_cmnd(struct scsi_device
*sdev
, struct request
*req
)
1219 struct scsi_cmnd
*cmd
= req
->special
;
1222 * BLOCK_PC requests may transfer data, in which case they must
1223 * a bio attached to them. Or they might contain a SCSI command
1224 * that does not transfer data, in which case they may optionally
1225 * submit a request without an attached bio.
1228 int ret
= scsi_init_io(cmd
);
1232 BUG_ON(blk_rq_bytes(req
));
1234 memset(&cmd
->sdb
, 0, sizeof(cmd
->sdb
));
1237 cmd
->cmd_len
= req
->cmd_len
;
1238 cmd
->transfersize
= blk_rq_bytes(req
);
1239 cmd
->allowed
= req
->retries
;
1244 * Setup a REQ_TYPE_FS command. These are simple request from filesystems
1245 * that still need to be translated to SCSI CDBs from the ULD.
1247 static int scsi_setup_fs_cmnd(struct scsi_device
*sdev
, struct request
*req
)
1249 struct scsi_cmnd
*cmd
= req
->special
;
1251 if (unlikely(sdev
->scsi_dh_data
&& sdev
->scsi_dh_data
->scsi_dh
1252 && sdev
->scsi_dh_data
->scsi_dh
->prep_fn
)) {
1253 int ret
= sdev
->scsi_dh_data
->scsi_dh
->prep_fn(sdev
, req
);
1254 if (ret
!= BLKPREP_OK
)
1258 memset(cmd
->cmnd
, 0, BLK_MAX_CDB
);
1259 return scsi_cmd_to_driver(cmd
)->init_command(cmd
);
1262 static int scsi_setup_cmnd(struct scsi_device
*sdev
, struct request
*req
)
1264 struct scsi_cmnd
*cmd
= req
->special
;
1266 if (!blk_rq_bytes(req
))
1267 cmd
->sc_data_direction
= DMA_NONE
;
1268 else if (rq_data_dir(req
) == WRITE
)
1269 cmd
->sc_data_direction
= DMA_TO_DEVICE
;
1271 cmd
->sc_data_direction
= DMA_FROM_DEVICE
;
1273 switch (req
->cmd_type
) {
1275 return scsi_setup_fs_cmnd(sdev
, req
);
1276 case REQ_TYPE_BLOCK_PC
:
1277 return scsi_setup_blk_pc_cmnd(sdev
, req
);
1279 return BLKPREP_KILL
;
1284 scsi_prep_state_check(struct scsi_device
*sdev
, struct request
*req
)
1286 int ret
= BLKPREP_OK
;
1289 * If the device is not in running state we will reject some
1292 if (unlikely(sdev
->sdev_state
!= SDEV_RUNNING
)) {
1293 switch (sdev
->sdev_state
) {
1295 case SDEV_TRANSPORT_OFFLINE
:
1297 * If the device is offline we refuse to process any
1298 * commands. The device must be brought online
1299 * before trying any recovery commands.
1301 sdev_printk(KERN_ERR
, sdev
,
1302 "rejecting I/O to offline device\n");
1307 * If the device is fully deleted, we refuse to
1308 * process any commands as well.
1310 sdev_printk(KERN_ERR
, sdev
,
1311 "rejecting I/O to dead device\n");
1315 case SDEV_CREATED_BLOCK
:
1316 ret
= BLKPREP_DEFER
;
1320 * If the devices is blocked we defer normal commands.
1322 if (!(req
->cmd_flags
& REQ_PREEMPT
))
1323 ret
= BLKPREP_DEFER
;
1327 * For any other not fully online state we only allow
1328 * special commands. In particular any user initiated
1329 * command is not allowed.
1331 if (!(req
->cmd_flags
& REQ_PREEMPT
))
1340 scsi_prep_return(struct request_queue
*q
, struct request
*req
, int ret
)
1342 struct scsi_device
*sdev
= q
->queuedata
;
1346 req
->errors
= DID_NO_CONNECT
<< 16;
1347 /* release the command and kill it */
1349 struct scsi_cmnd
*cmd
= req
->special
;
1350 scsi_release_buffers(cmd
);
1351 scsi_put_command(cmd
);
1352 put_device(&sdev
->sdev_gendev
);
1353 req
->special
= NULL
;
1358 * If we defer, the blk_peek_request() returns NULL, but the
1359 * queue must be restarted, so we schedule a callback to happen
1362 if (atomic_read(&sdev
->device_busy
) == 0)
1363 blk_delay_queue(q
, SCSI_QUEUE_DELAY
);
1366 req
->cmd_flags
|= REQ_DONTPREP
;
1372 static int scsi_prep_fn(struct request_queue
*q
, struct request
*req
)
1374 struct scsi_device
*sdev
= q
->queuedata
;
1375 struct scsi_cmnd
*cmd
;
1378 ret
= scsi_prep_state_check(sdev
, req
);
1379 if (ret
!= BLKPREP_OK
)
1382 cmd
= scsi_get_cmd_from_req(sdev
, req
);
1383 if (unlikely(!cmd
)) {
1384 ret
= BLKPREP_DEFER
;
1388 ret
= scsi_setup_cmnd(sdev
, req
);
1390 return scsi_prep_return(q
, req
, ret
);
1393 static void scsi_unprep_fn(struct request_queue
*q
, struct request
*req
)
1395 scsi_uninit_cmd(req
->special
);
1399 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1402 * Called with the queue_lock held.
1404 static inline int scsi_dev_queue_ready(struct request_queue
*q
,
1405 struct scsi_device
*sdev
)
1409 busy
= atomic_inc_return(&sdev
->device_busy
) - 1;
1410 if (atomic_read(&sdev
->device_blocked
)) {
1415 * unblock after device_blocked iterates to zero
1417 if (atomic_dec_return(&sdev
->device_blocked
) > 0) {
1419 * For the MQ case we take care of this in the caller.
1422 blk_delay_queue(q
, SCSI_QUEUE_DELAY
);
1425 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO
, sdev
,
1426 "unblocking device at zero depth\n"));
1429 if (busy
>= sdev
->queue_depth
)
1434 atomic_dec(&sdev
->device_busy
);
1439 * scsi_target_queue_ready: checks if there we can send commands to target
1440 * @sdev: scsi device on starget to check.
1442 static inline int scsi_target_queue_ready(struct Scsi_Host
*shost
,
1443 struct scsi_device
*sdev
)
1445 struct scsi_target
*starget
= scsi_target(sdev
);
1448 if (starget
->single_lun
) {
1449 spin_lock_irq(shost
->host_lock
);
1450 if (starget
->starget_sdev_user
&&
1451 starget
->starget_sdev_user
!= sdev
) {
1452 spin_unlock_irq(shost
->host_lock
);
1455 starget
->starget_sdev_user
= sdev
;
1456 spin_unlock_irq(shost
->host_lock
);
1459 if (starget
->can_queue
<= 0)
1462 busy
= atomic_inc_return(&starget
->target_busy
) - 1;
1463 if (atomic_read(&starget
->target_blocked
) > 0) {
1468 * unblock after target_blocked iterates to zero
1470 if (atomic_dec_return(&starget
->target_blocked
) > 0)
1473 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO
, starget
,
1474 "unblocking target at zero depth\n"));
1477 if (busy
>= starget
->can_queue
)
1483 spin_lock_irq(shost
->host_lock
);
1484 list_move_tail(&sdev
->starved_entry
, &shost
->starved_list
);
1485 spin_unlock_irq(shost
->host_lock
);
1487 if (starget
->can_queue
> 0)
1488 atomic_dec(&starget
->target_busy
);
1493 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1494 * return 0. We must end up running the queue again whenever 0 is
1495 * returned, else IO can hang.
1497 static inline int scsi_host_queue_ready(struct request_queue
*q
,
1498 struct Scsi_Host
*shost
,
1499 struct scsi_device
*sdev
)
1503 if (scsi_host_in_recovery(shost
))
1506 busy
= atomic_inc_return(&shost
->host_busy
) - 1;
1507 if (atomic_read(&shost
->host_blocked
) > 0) {
1512 * unblock after host_blocked iterates to zero
1514 if (atomic_dec_return(&shost
->host_blocked
) > 0)
1518 shost_printk(KERN_INFO
, shost
,
1519 "unblocking host at zero depth\n"));
1522 if (shost
->can_queue
> 0 && busy
>= shost
->can_queue
)
1524 if (shost
->host_self_blocked
)
1527 /* We're OK to process the command, so we can't be starved */
1528 if (!list_empty(&sdev
->starved_entry
)) {
1529 spin_lock_irq(shost
->host_lock
);
1530 if (!list_empty(&sdev
->starved_entry
))
1531 list_del_init(&sdev
->starved_entry
);
1532 spin_unlock_irq(shost
->host_lock
);
1538 spin_lock_irq(shost
->host_lock
);
1539 if (list_empty(&sdev
->starved_entry
))
1540 list_add_tail(&sdev
->starved_entry
, &shost
->starved_list
);
1541 spin_unlock_irq(shost
->host_lock
);
1543 atomic_dec(&shost
->host_busy
);
1548 * Busy state exporting function for request stacking drivers.
1550 * For efficiency, no lock is taken to check the busy state of
1551 * shost/starget/sdev, since the returned value is not guaranteed and
1552 * may be changed after request stacking drivers call the function,
1553 * regardless of taking lock or not.
1555 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1556 * needs to return 'not busy'. Otherwise, request stacking drivers
1557 * may hold requests forever.
1559 static int scsi_lld_busy(struct request_queue
*q
)
1561 struct scsi_device
*sdev
= q
->queuedata
;
1562 struct Scsi_Host
*shost
;
1564 if (blk_queue_dying(q
))
1570 * Ignore host/starget busy state.
1571 * Since block layer does not have a concept of fairness across
1572 * multiple queues, congestion of host/starget needs to be handled
1575 if (scsi_host_in_recovery(shost
) || scsi_device_is_busy(sdev
))
1582 * Kill a request for a dead device
1584 static void scsi_kill_request(struct request
*req
, struct request_queue
*q
)
1586 struct scsi_cmnd
*cmd
= req
->special
;
1587 struct scsi_device
*sdev
;
1588 struct scsi_target
*starget
;
1589 struct Scsi_Host
*shost
;
1591 blk_start_request(req
);
1593 scmd_printk(KERN_INFO
, cmd
, "killing request\n");
1596 starget
= scsi_target(sdev
);
1598 scsi_init_cmd_errh(cmd
);
1599 cmd
->result
= DID_NO_CONNECT
<< 16;
1600 atomic_inc(&cmd
->device
->iorequest_cnt
);
1603 * SCSI request completion path will do scsi_device_unbusy(),
1604 * bump busy counts. To bump the counters, we need to dance
1605 * with the locks as normal issue path does.
1607 atomic_inc(&sdev
->device_busy
);
1608 atomic_inc(&shost
->host_busy
);
1609 if (starget
->can_queue
> 0)
1610 atomic_inc(&starget
->target_busy
);
1612 blk_complete_request(req
);
1615 static void scsi_softirq_done(struct request
*rq
)
1617 struct scsi_cmnd
*cmd
= rq
->special
;
1618 unsigned long wait_for
= (cmd
->allowed
+ 1) * rq
->timeout
;
1621 INIT_LIST_HEAD(&cmd
->eh_entry
);
1623 atomic_inc(&cmd
->device
->iodone_cnt
);
1625 atomic_inc(&cmd
->device
->ioerr_cnt
);
1627 disposition
= scsi_decide_disposition(cmd
);
1628 if (disposition
!= SUCCESS
&&
1629 time_before(cmd
->jiffies_at_alloc
+ wait_for
, jiffies
)) {
1630 sdev_printk(KERN_ERR
, cmd
->device
,
1631 "timing out command, waited %lus\n",
1633 disposition
= SUCCESS
;
1636 scsi_log_completion(cmd
, disposition
);
1638 switch (disposition
) {
1640 scsi_finish_command(cmd
);
1643 scsi_queue_insert(cmd
, SCSI_MLQUEUE_EH_RETRY
);
1645 case ADD_TO_MLQUEUE
:
1646 scsi_queue_insert(cmd
, SCSI_MLQUEUE_DEVICE_BUSY
);
1649 if (!scsi_eh_scmd_add(cmd
, 0))
1650 scsi_finish_command(cmd
);
1655 * scsi_dispatch_command - Dispatch a command to the low-level driver.
1656 * @cmd: command block we are dispatching.
1658 * Return: nonzero return request was rejected and device's queue needs to be
1661 static int scsi_dispatch_cmd(struct scsi_cmnd
*cmd
)
1663 struct Scsi_Host
*host
= cmd
->device
->host
;
1666 atomic_inc(&cmd
->device
->iorequest_cnt
);
1668 /* check if the device is still usable */
1669 if (unlikely(cmd
->device
->sdev_state
== SDEV_DEL
)) {
1670 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1671 * returns an immediate error upwards, and signals
1672 * that the device is no longer present */
1673 cmd
->result
= DID_NO_CONNECT
<< 16;
1677 /* Check to see if the scsi lld made this device blocked. */
1678 if (unlikely(scsi_device_blocked(cmd
->device
))) {
1680 * in blocked state, the command is just put back on
1681 * the device queue. The suspend state has already
1682 * blocked the queue so future requests should not
1683 * occur until the device transitions out of the
1686 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO
, cmd
,
1687 "queuecommand : device blocked\n"));
1688 return SCSI_MLQUEUE_DEVICE_BUSY
;
1691 /* Store the LUN value in cmnd, if needed. */
1692 if (cmd
->device
->lun_in_cdb
)
1693 cmd
->cmnd
[1] = (cmd
->cmnd
[1] & 0x1f) |
1694 (cmd
->device
->lun
<< 5 & 0xe0);
1699 * Before we queue this command, check if the command
1700 * length exceeds what the host adapter can handle.
1702 if (cmd
->cmd_len
> cmd
->device
->host
->max_cmd_len
) {
1703 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO
, cmd
,
1704 "queuecommand : command too long. "
1705 "cdb_size=%d host->max_cmd_len=%d\n",
1706 cmd
->cmd_len
, cmd
->device
->host
->max_cmd_len
));
1707 cmd
->result
= (DID_ABORT
<< 16);
1711 if (unlikely(host
->shost_state
== SHOST_DEL
)) {
1712 cmd
->result
= (DID_NO_CONNECT
<< 16);
1717 trace_scsi_dispatch_cmd_start(cmd
);
1718 rtn
= host
->hostt
->queuecommand(host
, cmd
);
1720 trace_scsi_dispatch_cmd_error(cmd
, rtn
);
1721 if (rtn
!= SCSI_MLQUEUE_DEVICE_BUSY
&&
1722 rtn
!= SCSI_MLQUEUE_TARGET_BUSY
)
1723 rtn
= SCSI_MLQUEUE_HOST_BUSY
;
1725 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO
, cmd
,
1726 "queuecommand : request rejected\n"));
1731 cmd
->scsi_done(cmd
);
1736 * scsi_done - Invoke completion on finished SCSI command.
1737 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1738 * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1740 * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1741 * which regains ownership of the SCSI command (de facto) from a LLDD, and
1742 * calls blk_complete_request() for further processing.
1744 * This function is interrupt context safe.
1746 static void scsi_done(struct scsi_cmnd
*cmd
)
1748 trace_scsi_dispatch_cmd_done(cmd
);
1749 blk_complete_request(cmd
->request
);
1753 * Function: scsi_request_fn()
1755 * Purpose: Main strategy routine for SCSI.
1757 * Arguments: q - Pointer to actual queue.
1761 * Lock status: IO request lock assumed to be held when called.
1763 static void scsi_request_fn(struct request_queue
*q
)
1764 __releases(q
->queue_lock
)
1765 __acquires(q
->queue_lock
)
1767 struct scsi_device
*sdev
= q
->queuedata
;
1768 struct Scsi_Host
*shost
;
1769 struct scsi_cmnd
*cmd
;
1770 struct request
*req
;
1773 * To start with, we keep looping until the queue is empty, or until
1774 * the host is no longer able to accept any more requests.
1780 * get next queueable request. We do this early to make sure
1781 * that the request is fully prepared even if we cannot
1784 req
= blk_peek_request(q
);
1788 if (unlikely(!scsi_device_online(sdev
))) {
1789 sdev_printk(KERN_ERR
, sdev
,
1790 "rejecting I/O to offline device\n");
1791 scsi_kill_request(req
, q
);
1795 if (!scsi_dev_queue_ready(q
, sdev
))
1799 * Remove the request from the request list.
1801 if (!(blk_queue_tagged(q
) && !blk_queue_start_tag(q
, req
)))
1802 blk_start_request(req
);
1804 spin_unlock_irq(q
->queue_lock
);
1806 if (unlikely(cmd
== NULL
)) {
1807 printk(KERN_CRIT
"impossible request in %s.\n"
1808 "please mail a stack trace to "
1809 "linux-scsi@vger.kernel.org\n",
1811 blk_dump_rq_flags(req
, "foo");
1816 * We hit this when the driver is using a host wide
1817 * tag map. For device level tag maps the queue_depth check
1818 * in the device ready fn would prevent us from trying
1819 * to allocate a tag. Since the map is a shared host resource
1820 * we add the dev to the starved list so it eventually gets
1821 * a run when a tag is freed.
1823 if (blk_queue_tagged(q
) && !(req
->cmd_flags
& REQ_QUEUED
)) {
1824 spin_lock_irq(shost
->host_lock
);
1825 if (list_empty(&sdev
->starved_entry
))
1826 list_add_tail(&sdev
->starved_entry
,
1827 &shost
->starved_list
);
1828 spin_unlock_irq(shost
->host_lock
);
1832 if (!scsi_target_queue_ready(shost
, sdev
))
1835 if (!scsi_host_queue_ready(q
, shost
, sdev
))
1836 goto host_not_ready
;
1838 if (sdev
->simple_tags
)
1839 cmd
->flags
|= SCMD_TAGGED
;
1841 cmd
->flags
&= ~SCMD_TAGGED
;
1844 * Finally, initialize any error handling parameters, and set up
1845 * the timers for timeouts.
1847 scsi_init_cmd_errh(cmd
);
1850 * Dispatch the command to the low-level driver.
1852 cmd
->scsi_done
= scsi_done
;
1853 rtn
= scsi_dispatch_cmd(cmd
);
1855 scsi_queue_insert(cmd
, rtn
);
1856 spin_lock_irq(q
->queue_lock
);
1859 spin_lock_irq(q
->queue_lock
);
1865 if (scsi_target(sdev
)->can_queue
> 0)
1866 atomic_dec(&scsi_target(sdev
)->target_busy
);
1869 * lock q, handle tag, requeue req, and decrement device_busy. We
1870 * must return with queue_lock held.
1872 * Decrementing device_busy without checking it is OK, as all such
1873 * cases (host limits or settings) should run the queue at some
1876 spin_lock_irq(q
->queue_lock
);
1877 blk_requeue_request(q
, req
);
1878 atomic_dec(&sdev
->device_busy
);
1880 if (!atomic_read(&sdev
->device_busy
) && !scsi_device_blocked(sdev
))
1881 blk_delay_queue(q
, SCSI_QUEUE_DELAY
);
1884 static inline int prep_to_mq(int ret
)
1890 return BLK_MQ_RQ_QUEUE_BUSY
;
1892 return BLK_MQ_RQ_QUEUE_ERROR
;
1896 static int scsi_mq_prep_fn(struct request
*req
)
1898 struct scsi_cmnd
*cmd
= blk_mq_rq_to_pdu(req
);
1899 struct scsi_device
*sdev
= req
->q
->queuedata
;
1900 struct Scsi_Host
*shost
= sdev
->host
;
1901 unsigned char *sense_buf
= cmd
->sense_buffer
;
1902 struct scatterlist
*sg
;
1904 memset(cmd
, 0, sizeof(struct scsi_cmnd
));
1910 cmd
->sense_buffer
= sense_buf
;
1912 cmd
->tag
= req
->tag
;
1914 cmd
->cmnd
= req
->cmd
;
1915 cmd
->prot_op
= SCSI_PROT_NORMAL
;
1917 INIT_LIST_HEAD(&cmd
->list
);
1918 INIT_DELAYED_WORK(&cmd
->abort_work
, scmd_eh_abort_handler
);
1919 cmd
->jiffies_at_alloc
= jiffies
;
1921 if (shost
->use_cmd_list
) {
1922 spin_lock_irq(&sdev
->list_lock
);
1923 list_add_tail(&cmd
->list
, &sdev
->cmd_list
);
1924 spin_unlock_irq(&sdev
->list_lock
);
1927 sg
= (void *)cmd
+ sizeof(struct scsi_cmnd
) + shost
->hostt
->cmd_size
;
1928 cmd
->sdb
.table
.sgl
= sg
;
1930 if (scsi_host_get_prot(shost
)) {
1931 cmd
->prot_sdb
= (void *)sg
+
1933 shost
->sg_tablesize
, SCSI_MAX_SG_SEGMENTS
) *
1934 sizeof(struct scatterlist
);
1935 memset(cmd
->prot_sdb
, 0, sizeof(struct scsi_data_buffer
));
1937 cmd
->prot_sdb
->table
.sgl
=
1938 (struct scatterlist
*)(cmd
->prot_sdb
+ 1);
1941 if (blk_bidi_rq(req
)) {
1942 struct request
*next_rq
= req
->next_rq
;
1943 struct scsi_data_buffer
*bidi_sdb
= blk_mq_rq_to_pdu(next_rq
);
1945 memset(bidi_sdb
, 0, sizeof(struct scsi_data_buffer
));
1946 bidi_sdb
->table
.sgl
=
1947 (struct scatterlist
*)(bidi_sdb
+ 1);
1949 next_rq
->special
= bidi_sdb
;
1952 blk_mq_start_request(req
);
1954 return scsi_setup_cmnd(sdev
, req
);
1957 static void scsi_mq_done(struct scsi_cmnd
*cmd
)
1959 trace_scsi_dispatch_cmd_done(cmd
);
1960 blk_mq_complete_request(cmd
->request
);
1963 static int scsi_queue_rq(struct blk_mq_hw_ctx
*hctx
,
1964 const struct blk_mq_queue_data
*bd
)
1966 struct request
*req
= bd
->rq
;
1967 struct request_queue
*q
= req
->q
;
1968 struct scsi_device
*sdev
= q
->queuedata
;
1969 struct Scsi_Host
*shost
= sdev
->host
;
1970 struct scsi_cmnd
*cmd
= blk_mq_rq_to_pdu(req
);
1974 ret
= prep_to_mq(scsi_prep_state_check(sdev
, req
));
1978 ret
= BLK_MQ_RQ_QUEUE_BUSY
;
1979 if (!get_device(&sdev
->sdev_gendev
))
1982 if (!scsi_dev_queue_ready(q
, sdev
))
1983 goto out_put_device
;
1984 if (!scsi_target_queue_ready(shost
, sdev
))
1985 goto out_dec_device_busy
;
1986 if (!scsi_host_queue_ready(q
, shost
, sdev
))
1987 goto out_dec_target_busy
;
1990 if (!(req
->cmd_flags
& REQ_DONTPREP
)) {
1991 ret
= prep_to_mq(scsi_mq_prep_fn(req
));
1993 goto out_dec_host_busy
;
1994 req
->cmd_flags
|= REQ_DONTPREP
;
1996 blk_mq_start_request(req
);
1999 if (sdev
->simple_tags
)
2000 cmd
->flags
|= SCMD_TAGGED
;
2002 cmd
->flags
&= ~SCMD_TAGGED
;
2004 scsi_init_cmd_errh(cmd
);
2005 cmd
->scsi_done
= scsi_mq_done
;
2007 reason
= scsi_dispatch_cmd(cmd
);
2009 scsi_set_blocked(cmd
, reason
);
2010 ret
= BLK_MQ_RQ_QUEUE_BUSY
;
2011 goto out_dec_host_busy
;
2014 return BLK_MQ_RQ_QUEUE_OK
;
2017 atomic_dec(&shost
->host_busy
);
2018 out_dec_target_busy
:
2019 if (scsi_target(sdev
)->can_queue
> 0)
2020 atomic_dec(&scsi_target(sdev
)->target_busy
);
2021 out_dec_device_busy
:
2022 atomic_dec(&sdev
->device_busy
);
2024 put_device(&sdev
->sdev_gendev
);
2027 case BLK_MQ_RQ_QUEUE_BUSY
:
2028 blk_mq_stop_hw_queue(hctx
);
2029 if (atomic_read(&sdev
->device_busy
) == 0 &&
2030 !scsi_device_blocked(sdev
))
2031 blk_mq_delay_queue(hctx
, SCSI_QUEUE_DELAY
);
2033 case BLK_MQ_RQ_QUEUE_ERROR
:
2035 * Make sure to release all allocated ressources when
2036 * we hit an error, as we will never see this command
2039 if (req
->cmd_flags
& REQ_DONTPREP
)
2040 scsi_mq_uninit_cmd(cmd
);
2048 static enum blk_eh_timer_return
scsi_timeout(struct request
*req
,
2052 return BLK_EH_RESET_TIMER
;
2053 return scsi_times_out(req
);
2056 static int scsi_init_request(void *data
, struct request
*rq
,
2057 unsigned int hctx_idx
, unsigned int request_idx
,
2058 unsigned int numa_node
)
2060 struct scsi_cmnd
*cmd
= blk_mq_rq_to_pdu(rq
);
2062 cmd
->sense_buffer
= kzalloc_node(SCSI_SENSE_BUFFERSIZE
, GFP_KERNEL
,
2064 if (!cmd
->sense_buffer
)
2069 static void scsi_exit_request(void *data
, struct request
*rq
,
2070 unsigned int hctx_idx
, unsigned int request_idx
)
2072 struct scsi_cmnd
*cmd
= blk_mq_rq_to_pdu(rq
);
2074 kfree(cmd
->sense_buffer
);
2077 static u64
scsi_calculate_bounce_limit(struct Scsi_Host
*shost
)
2079 struct device
*host_dev
;
2080 u64 bounce_limit
= 0xffffffff;
2082 if (shost
->unchecked_isa_dma
)
2083 return BLK_BOUNCE_ISA
;
2085 * Platforms with virtual-DMA translation
2086 * hardware have no practical limit.
2088 if (!PCI_DMA_BUS_IS_PHYS
)
2089 return BLK_BOUNCE_ANY
;
2091 host_dev
= scsi_get_device(shost
);
2092 if (host_dev
&& host_dev
->dma_mask
)
2093 bounce_limit
= (u64
)dma_max_pfn(host_dev
) << PAGE_SHIFT
;
2095 return bounce_limit
;
2098 static void __scsi_init_queue(struct Scsi_Host
*shost
, struct request_queue
*q
)
2100 struct device
*dev
= shost
->dma_dev
;
2103 * this limit is imposed by hardware restrictions
2105 blk_queue_max_segments(q
, min_t(unsigned short, shost
->sg_tablesize
,
2106 SCSI_MAX_SG_CHAIN_SEGMENTS
));
2108 if (scsi_host_prot_dma(shost
)) {
2109 shost
->sg_prot_tablesize
=
2110 min_not_zero(shost
->sg_prot_tablesize
,
2111 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS
);
2112 BUG_ON(shost
->sg_prot_tablesize
< shost
->sg_tablesize
);
2113 blk_queue_max_integrity_segments(q
, shost
->sg_prot_tablesize
);
2116 blk_queue_max_hw_sectors(q
, shost
->max_sectors
);
2117 blk_queue_bounce_limit(q
, scsi_calculate_bounce_limit(shost
));
2118 blk_queue_segment_boundary(q
, shost
->dma_boundary
);
2119 dma_set_seg_boundary(dev
, shost
->dma_boundary
);
2121 blk_queue_max_segment_size(q
, dma_get_max_seg_size(dev
));
2123 if (!shost
->use_clustering
)
2124 q
->limits
.cluster
= 0;
2127 * set a reasonable default alignment on word boundaries: the
2128 * host and device may alter it using
2129 * blk_queue_update_dma_alignment() later.
2131 blk_queue_dma_alignment(q
, 0x03);
2134 struct request_queue
*__scsi_alloc_queue(struct Scsi_Host
*shost
,
2135 request_fn_proc
*request_fn
)
2137 struct request_queue
*q
;
2139 q
= blk_init_queue(request_fn
, NULL
);
2142 __scsi_init_queue(shost
, q
);
2145 EXPORT_SYMBOL(__scsi_alloc_queue
);
2147 struct request_queue
*scsi_alloc_queue(struct scsi_device
*sdev
)
2149 struct request_queue
*q
;
2151 q
= __scsi_alloc_queue(sdev
->host
, scsi_request_fn
);
2155 blk_queue_prep_rq(q
, scsi_prep_fn
);
2156 blk_queue_unprep_rq(q
, scsi_unprep_fn
);
2157 blk_queue_softirq_done(q
, scsi_softirq_done
);
2158 blk_queue_rq_timed_out(q
, scsi_times_out
);
2159 blk_queue_lld_busy(q
, scsi_lld_busy
);
2163 static struct blk_mq_ops scsi_mq_ops
= {
2164 .map_queue
= blk_mq_map_queue
,
2165 .queue_rq
= scsi_queue_rq
,
2166 .complete
= scsi_softirq_done
,
2167 .timeout
= scsi_timeout
,
2168 .init_request
= scsi_init_request
,
2169 .exit_request
= scsi_exit_request
,
2172 struct request_queue
*scsi_mq_alloc_queue(struct scsi_device
*sdev
)
2174 sdev
->request_queue
= blk_mq_init_queue(&sdev
->host
->tag_set
);
2175 if (IS_ERR(sdev
->request_queue
))
2178 sdev
->request_queue
->queuedata
= sdev
;
2179 __scsi_init_queue(sdev
->host
, sdev
->request_queue
);
2180 return sdev
->request_queue
;
2183 int scsi_mq_setup_tags(struct Scsi_Host
*shost
)
2185 unsigned int cmd_size
, sgl_size
, tbl_size
;
2187 tbl_size
= shost
->sg_tablesize
;
2188 if (tbl_size
> SCSI_MAX_SG_SEGMENTS
)
2189 tbl_size
= SCSI_MAX_SG_SEGMENTS
;
2190 sgl_size
= tbl_size
* sizeof(struct scatterlist
);
2191 cmd_size
= sizeof(struct scsi_cmnd
) + shost
->hostt
->cmd_size
+ sgl_size
;
2192 if (scsi_host_get_prot(shost
))
2193 cmd_size
+= sizeof(struct scsi_data_buffer
) + sgl_size
;
2195 memset(&shost
->tag_set
, 0, sizeof(shost
->tag_set
));
2196 shost
->tag_set
.ops
= &scsi_mq_ops
;
2197 shost
->tag_set
.nr_hw_queues
= shost
->nr_hw_queues
? : 1;
2198 shost
->tag_set
.queue_depth
= shost
->can_queue
;
2199 shost
->tag_set
.cmd_size
= cmd_size
;
2200 shost
->tag_set
.numa_node
= NUMA_NO_NODE
;
2201 shost
->tag_set
.flags
= BLK_MQ_F_SHOULD_MERGE
| BLK_MQ_F_SG_MERGE
;
2202 shost
->tag_set
.flags
|=
2203 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost
->hostt
->tag_alloc_policy
);
2204 shost
->tag_set
.driver_data
= shost
;
2206 return blk_mq_alloc_tag_set(&shost
->tag_set
);
2209 void scsi_mq_destroy_tags(struct Scsi_Host
*shost
)
2211 blk_mq_free_tag_set(&shost
->tag_set
);
2215 * Function: scsi_block_requests()
2217 * Purpose: Utility function used by low-level drivers to prevent further
2218 * commands from being queued to the device.
2220 * Arguments: shost - Host in question
2224 * Lock status: No locks are assumed held.
2226 * Notes: There is no timer nor any other means by which the requests
2227 * get unblocked other than the low-level driver calling
2228 * scsi_unblock_requests().
2230 void scsi_block_requests(struct Scsi_Host
*shost
)
2232 shost
->host_self_blocked
= 1;
2234 EXPORT_SYMBOL(scsi_block_requests
);
2237 * Function: scsi_unblock_requests()
2239 * Purpose: Utility function used by low-level drivers to allow further
2240 * commands from being queued to the device.
2242 * Arguments: shost - Host in question
2246 * Lock status: No locks are assumed held.
2248 * Notes: There is no timer nor any other means by which the requests
2249 * get unblocked other than the low-level driver calling
2250 * scsi_unblock_requests().
2252 * This is done as an API function so that changes to the
2253 * internals of the scsi mid-layer won't require wholesale
2254 * changes to drivers that use this feature.
2256 void scsi_unblock_requests(struct Scsi_Host
*shost
)
2258 shost
->host_self_blocked
= 0;
2259 scsi_run_host_queues(shost
);
2261 EXPORT_SYMBOL(scsi_unblock_requests
);
2263 int __init
scsi_init_queue(void)
2267 scsi_sdb_cache
= kmem_cache_create("scsi_data_buffer",
2268 sizeof(struct scsi_data_buffer
),
2270 if (!scsi_sdb_cache
) {
2271 printk(KERN_ERR
"SCSI: can't init scsi sdb cache\n");
2275 for (i
= 0; i
< SG_MEMPOOL_NR
; i
++) {
2276 struct scsi_host_sg_pool
*sgp
= scsi_sg_pools
+ i
;
2277 int size
= sgp
->size
* sizeof(struct scatterlist
);
2279 sgp
->slab
= kmem_cache_create(sgp
->name
, size
, 0,
2280 SLAB_HWCACHE_ALIGN
, NULL
);
2282 printk(KERN_ERR
"SCSI: can't init sg slab %s\n",
2287 sgp
->pool
= mempool_create_slab_pool(SG_MEMPOOL_SIZE
,
2290 printk(KERN_ERR
"SCSI: can't init sg mempool %s\n",
2299 for (i
= 0; i
< SG_MEMPOOL_NR
; i
++) {
2300 struct scsi_host_sg_pool
*sgp
= scsi_sg_pools
+ i
;
2302 mempool_destroy(sgp
->pool
);
2304 kmem_cache_destroy(sgp
->slab
);
2306 kmem_cache_destroy(scsi_sdb_cache
);
2311 void scsi_exit_queue(void)
2315 kmem_cache_destroy(scsi_sdb_cache
);
2317 for (i
= 0; i
< SG_MEMPOOL_NR
; i
++) {
2318 struct scsi_host_sg_pool
*sgp
= scsi_sg_pools
+ i
;
2319 mempool_destroy(sgp
->pool
);
2320 kmem_cache_destroy(sgp
->slab
);
2325 * scsi_mode_select - issue a mode select
2326 * @sdev: SCSI device to be queried
2327 * @pf: Page format bit (1 == standard, 0 == vendor specific)
2328 * @sp: Save page bit (0 == don't save, 1 == save)
2329 * @modepage: mode page being requested
2330 * @buffer: request buffer (may not be smaller than eight bytes)
2331 * @len: length of request buffer.
2332 * @timeout: command timeout
2333 * @retries: number of retries before failing
2334 * @data: returns a structure abstracting the mode header data
2335 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2336 * must be SCSI_SENSE_BUFFERSIZE big.
2338 * Returns zero if successful; negative error number or scsi
2343 scsi_mode_select(struct scsi_device
*sdev
, int pf
, int sp
, int modepage
,
2344 unsigned char *buffer
, int len
, int timeout
, int retries
,
2345 struct scsi_mode_data
*data
, struct scsi_sense_hdr
*sshdr
)
2347 unsigned char cmd
[10];
2348 unsigned char *real_buffer
;
2351 memset(cmd
, 0, sizeof(cmd
));
2352 cmd
[1] = (pf
? 0x10 : 0) | (sp
? 0x01 : 0);
2354 if (sdev
->use_10_for_ms
) {
2357 real_buffer
= kmalloc(8 + len
, GFP_KERNEL
);
2360 memcpy(real_buffer
+ 8, buffer
, len
);
2364 real_buffer
[2] = data
->medium_type
;
2365 real_buffer
[3] = data
->device_specific
;
2366 real_buffer
[4] = data
->longlba
? 0x01 : 0;
2368 real_buffer
[6] = data
->block_descriptor_length
>> 8;
2369 real_buffer
[7] = data
->block_descriptor_length
;
2371 cmd
[0] = MODE_SELECT_10
;
2375 if (len
> 255 || data
->block_descriptor_length
> 255 ||
2379 real_buffer
= kmalloc(4 + len
, GFP_KERNEL
);
2382 memcpy(real_buffer
+ 4, buffer
, len
);
2385 real_buffer
[1] = data
->medium_type
;
2386 real_buffer
[2] = data
->device_specific
;
2387 real_buffer
[3] = data
->block_descriptor_length
;
2390 cmd
[0] = MODE_SELECT
;
2394 ret
= scsi_execute_req(sdev
, cmd
, DMA_TO_DEVICE
, real_buffer
, len
,
2395 sshdr
, timeout
, retries
, NULL
);
2399 EXPORT_SYMBOL_GPL(scsi_mode_select
);
2402 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2403 * @sdev: SCSI device to be queried
2404 * @dbd: set if mode sense will allow block descriptors to be returned
2405 * @modepage: mode page being requested
2406 * @buffer: request buffer (may not be smaller than eight bytes)
2407 * @len: length of request buffer.
2408 * @timeout: command timeout
2409 * @retries: number of retries before failing
2410 * @data: returns a structure abstracting the mode header data
2411 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2412 * must be SCSI_SENSE_BUFFERSIZE big.
2414 * Returns zero if unsuccessful, or the header offset (either 4
2415 * or 8 depending on whether a six or ten byte command was
2416 * issued) if successful.
2419 scsi_mode_sense(struct scsi_device
*sdev
, int dbd
, int modepage
,
2420 unsigned char *buffer
, int len
, int timeout
, int retries
,
2421 struct scsi_mode_data
*data
, struct scsi_sense_hdr
*sshdr
)
2423 unsigned char cmd
[12];
2427 struct scsi_sense_hdr my_sshdr
;
2429 memset(data
, 0, sizeof(*data
));
2430 memset(&cmd
[0], 0, 12);
2431 cmd
[1] = dbd
& 0x18; /* allows DBD and LLBA bits */
2434 /* caller might not be interested in sense, but we need it */
2439 use_10_for_ms
= sdev
->use_10_for_ms
;
2441 if (use_10_for_ms
) {
2445 cmd
[0] = MODE_SENSE_10
;
2452 cmd
[0] = MODE_SENSE
;
2457 memset(buffer
, 0, len
);
2459 result
= scsi_execute_req(sdev
, cmd
, DMA_FROM_DEVICE
, buffer
, len
,
2460 sshdr
, timeout
, retries
, NULL
);
2462 /* This code looks awful: what it's doing is making sure an
2463 * ILLEGAL REQUEST sense return identifies the actual command
2464 * byte as the problem. MODE_SENSE commands can return
2465 * ILLEGAL REQUEST if the code page isn't supported */
2467 if (use_10_for_ms
&& !scsi_status_is_good(result
) &&
2468 (driver_byte(result
) & DRIVER_SENSE
)) {
2469 if (scsi_sense_valid(sshdr
)) {
2470 if ((sshdr
->sense_key
== ILLEGAL_REQUEST
) &&
2471 (sshdr
->asc
== 0x20) && (sshdr
->ascq
== 0)) {
2473 * Invalid command operation code
2475 sdev
->use_10_for_ms
= 0;
2481 if(scsi_status_is_good(result
)) {
2482 if (unlikely(buffer
[0] == 0x86 && buffer
[1] == 0x0b &&
2483 (modepage
== 6 || modepage
== 8))) {
2484 /* Initio breakage? */
2487 data
->medium_type
= 0;
2488 data
->device_specific
= 0;
2490 data
->block_descriptor_length
= 0;
2491 } else if(use_10_for_ms
) {
2492 data
->length
= buffer
[0]*256 + buffer
[1] + 2;
2493 data
->medium_type
= buffer
[2];
2494 data
->device_specific
= buffer
[3];
2495 data
->longlba
= buffer
[4] & 0x01;
2496 data
->block_descriptor_length
= buffer
[6]*256
2499 data
->length
= buffer
[0] + 1;
2500 data
->medium_type
= buffer
[1];
2501 data
->device_specific
= buffer
[2];
2502 data
->block_descriptor_length
= buffer
[3];
2504 data
->header_length
= header_length
;
2509 EXPORT_SYMBOL(scsi_mode_sense
);
2512 * scsi_test_unit_ready - test if unit is ready
2513 * @sdev: scsi device to change the state of.
2514 * @timeout: command timeout
2515 * @retries: number of retries before failing
2516 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2517 * returning sense. Make sure that this is cleared before passing
2520 * Returns zero if unsuccessful or an error if TUR failed. For
2521 * removable media, UNIT_ATTENTION sets ->changed flag.
2524 scsi_test_unit_ready(struct scsi_device
*sdev
, int timeout
, int retries
,
2525 struct scsi_sense_hdr
*sshdr_external
)
2528 TEST_UNIT_READY
, 0, 0, 0, 0, 0,
2530 struct scsi_sense_hdr
*sshdr
;
2533 if (!sshdr_external
)
2534 sshdr
= kzalloc(sizeof(*sshdr
), GFP_KERNEL
);
2536 sshdr
= sshdr_external
;
2538 /* try to eat the UNIT_ATTENTION if there are enough retries */
2540 result
= scsi_execute_req(sdev
, cmd
, DMA_NONE
, NULL
, 0, sshdr
,
2541 timeout
, retries
, NULL
);
2542 if (sdev
->removable
&& scsi_sense_valid(sshdr
) &&
2543 sshdr
->sense_key
== UNIT_ATTENTION
)
2545 } while (scsi_sense_valid(sshdr
) &&
2546 sshdr
->sense_key
== UNIT_ATTENTION
&& --retries
);
2548 if (!sshdr_external
)
2552 EXPORT_SYMBOL(scsi_test_unit_ready
);
2555 * scsi_device_set_state - Take the given device through the device state model.
2556 * @sdev: scsi device to change the state of.
2557 * @state: state to change to.
2559 * Returns zero if unsuccessful or an error if the requested
2560 * transition is illegal.
2563 scsi_device_set_state(struct scsi_device
*sdev
, enum scsi_device_state state
)
2565 enum scsi_device_state oldstate
= sdev
->sdev_state
;
2567 if (state
== oldstate
)
2573 case SDEV_CREATED_BLOCK
:
2584 case SDEV_TRANSPORT_OFFLINE
:
2597 case SDEV_TRANSPORT_OFFLINE
:
2605 case SDEV_TRANSPORT_OFFLINE
:
2620 case SDEV_CREATED_BLOCK
:
2627 case SDEV_CREATED_BLOCK
:
2642 case SDEV_TRANSPORT_OFFLINE
:
2655 case SDEV_TRANSPORT_OFFLINE
:
2657 case SDEV_CREATED_BLOCK
:
2665 sdev
->sdev_state
= state
;
2669 SCSI_LOG_ERROR_RECOVERY(1,
2670 sdev_printk(KERN_ERR
, sdev
,
2671 "Illegal state transition %s->%s",
2672 scsi_device_state_name(oldstate
),
2673 scsi_device_state_name(state
))
2677 EXPORT_SYMBOL(scsi_device_set_state
);
2680 * sdev_evt_emit - emit a single SCSI device uevent
2681 * @sdev: associated SCSI device
2682 * @evt: event to emit
2684 * Send a single uevent (scsi_event) to the associated scsi_device.
2686 static void scsi_evt_emit(struct scsi_device
*sdev
, struct scsi_event
*evt
)
2691 switch (evt
->evt_type
) {
2692 case SDEV_EVT_MEDIA_CHANGE
:
2693 envp
[idx
++] = "SDEV_MEDIA_CHANGE=1";
2695 case SDEV_EVT_INQUIRY_CHANGE_REPORTED
:
2696 envp
[idx
++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2698 case SDEV_EVT_CAPACITY_CHANGE_REPORTED
:
2699 envp
[idx
++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2701 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED
:
2702 envp
[idx
++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2704 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED
:
2705 envp
[idx
++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2707 case SDEV_EVT_LUN_CHANGE_REPORTED
:
2708 envp
[idx
++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2717 kobject_uevent_env(&sdev
->sdev_gendev
.kobj
, KOBJ_CHANGE
, envp
);
2721 * sdev_evt_thread - send a uevent for each scsi event
2722 * @work: work struct for scsi_device
2724 * Dispatch queued events to their associated scsi_device kobjects
2727 void scsi_evt_thread(struct work_struct
*work
)
2729 struct scsi_device
*sdev
;
2730 enum scsi_device_event evt_type
;
2731 LIST_HEAD(event_list
);
2733 sdev
= container_of(work
, struct scsi_device
, event_work
);
2735 for (evt_type
= SDEV_EVT_FIRST
; evt_type
<= SDEV_EVT_LAST
; evt_type
++)
2736 if (test_and_clear_bit(evt_type
, sdev
->pending_events
))
2737 sdev_evt_send_simple(sdev
, evt_type
, GFP_KERNEL
);
2740 struct scsi_event
*evt
;
2741 struct list_head
*this, *tmp
;
2742 unsigned long flags
;
2744 spin_lock_irqsave(&sdev
->list_lock
, flags
);
2745 list_splice_init(&sdev
->event_list
, &event_list
);
2746 spin_unlock_irqrestore(&sdev
->list_lock
, flags
);
2748 if (list_empty(&event_list
))
2751 list_for_each_safe(this, tmp
, &event_list
) {
2752 evt
= list_entry(this, struct scsi_event
, node
);
2753 list_del(&evt
->node
);
2754 scsi_evt_emit(sdev
, evt
);
2761 * sdev_evt_send - send asserted event to uevent thread
2762 * @sdev: scsi_device event occurred on
2763 * @evt: event to send
2765 * Assert scsi device event asynchronously.
2767 void sdev_evt_send(struct scsi_device
*sdev
, struct scsi_event
*evt
)
2769 unsigned long flags
;
2772 /* FIXME: currently this check eliminates all media change events
2773 * for polled devices. Need to update to discriminate between AN
2774 * and polled events */
2775 if (!test_bit(evt
->evt_type
, sdev
->supported_events
)) {
2781 spin_lock_irqsave(&sdev
->list_lock
, flags
);
2782 list_add_tail(&evt
->node
, &sdev
->event_list
);
2783 schedule_work(&sdev
->event_work
);
2784 spin_unlock_irqrestore(&sdev
->list_lock
, flags
);
2786 EXPORT_SYMBOL_GPL(sdev_evt_send
);
2789 * sdev_evt_alloc - allocate a new scsi event
2790 * @evt_type: type of event to allocate
2791 * @gfpflags: GFP flags for allocation
2793 * Allocates and returns a new scsi_event.
2795 struct scsi_event
*sdev_evt_alloc(enum scsi_device_event evt_type
,
2798 struct scsi_event
*evt
= kzalloc(sizeof(struct scsi_event
), gfpflags
);
2802 evt
->evt_type
= evt_type
;
2803 INIT_LIST_HEAD(&evt
->node
);
2805 /* evt_type-specific initialization, if any */
2807 case SDEV_EVT_MEDIA_CHANGE
:
2808 case SDEV_EVT_INQUIRY_CHANGE_REPORTED
:
2809 case SDEV_EVT_CAPACITY_CHANGE_REPORTED
:
2810 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED
:
2811 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED
:
2812 case SDEV_EVT_LUN_CHANGE_REPORTED
:
2820 EXPORT_SYMBOL_GPL(sdev_evt_alloc
);
2823 * sdev_evt_send_simple - send asserted event to uevent thread
2824 * @sdev: scsi_device event occurred on
2825 * @evt_type: type of event to send
2826 * @gfpflags: GFP flags for allocation
2828 * Assert scsi device event asynchronously, given an event type.
2830 void sdev_evt_send_simple(struct scsi_device
*sdev
,
2831 enum scsi_device_event evt_type
, gfp_t gfpflags
)
2833 struct scsi_event
*evt
= sdev_evt_alloc(evt_type
, gfpflags
);
2835 sdev_printk(KERN_ERR
, sdev
, "event %d eaten due to OOM\n",
2840 sdev_evt_send(sdev
, evt
);
2842 EXPORT_SYMBOL_GPL(sdev_evt_send_simple
);
2845 * scsi_device_quiesce - Block user issued commands.
2846 * @sdev: scsi device to quiesce.
2848 * This works by trying to transition to the SDEV_QUIESCE state
2849 * (which must be a legal transition). When the device is in this
2850 * state, only special requests will be accepted, all others will
2851 * be deferred. Since special requests may also be requeued requests,
2852 * a successful return doesn't guarantee the device will be
2853 * totally quiescent.
2855 * Must be called with user context, may sleep.
2857 * Returns zero if unsuccessful or an error if not.
2860 scsi_device_quiesce(struct scsi_device
*sdev
)
2862 int err
= scsi_device_set_state(sdev
, SDEV_QUIESCE
);
2866 scsi_run_queue(sdev
->request_queue
);
2867 while (atomic_read(&sdev
->device_busy
)) {
2868 msleep_interruptible(200);
2869 scsi_run_queue(sdev
->request_queue
);
2873 EXPORT_SYMBOL(scsi_device_quiesce
);
2876 * scsi_device_resume - Restart user issued commands to a quiesced device.
2877 * @sdev: scsi device to resume.
2879 * Moves the device from quiesced back to running and restarts the
2882 * Must be called with user context, may sleep.
2884 void scsi_device_resume(struct scsi_device
*sdev
)
2886 /* check if the device state was mutated prior to resume, and if
2887 * so assume the state is being managed elsewhere (for example
2888 * device deleted during suspend)
2890 if (sdev
->sdev_state
!= SDEV_QUIESCE
||
2891 scsi_device_set_state(sdev
, SDEV_RUNNING
))
2893 scsi_run_queue(sdev
->request_queue
);
2895 EXPORT_SYMBOL(scsi_device_resume
);
2898 device_quiesce_fn(struct scsi_device
*sdev
, void *data
)
2900 scsi_device_quiesce(sdev
);
2904 scsi_target_quiesce(struct scsi_target
*starget
)
2906 starget_for_each_device(starget
, NULL
, device_quiesce_fn
);
2908 EXPORT_SYMBOL(scsi_target_quiesce
);
2911 device_resume_fn(struct scsi_device
*sdev
, void *data
)
2913 scsi_device_resume(sdev
);
2917 scsi_target_resume(struct scsi_target
*starget
)
2919 starget_for_each_device(starget
, NULL
, device_resume_fn
);
2921 EXPORT_SYMBOL(scsi_target_resume
);
2924 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2925 * @sdev: device to block
2927 * Block request made by scsi lld's to temporarily stop all
2928 * scsi commands on the specified device. Called from interrupt
2929 * or normal process context.
2931 * Returns zero if successful or error if not
2934 * This routine transitions the device to the SDEV_BLOCK state
2935 * (which must be a legal transition). When the device is in this
2936 * state, all commands are deferred until the scsi lld reenables
2937 * the device with scsi_device_unblock or device_block_tmo fires.
2940 scsi_internal_device_block(struct scsi_device
*sdev
)
2942 struct request_queue
*q
= sdev
->request_queue
;
2943 unsigned long flags
;
2946 err
= scsi_device_set_state(sdev
, SDEV_BLOCK
);
2948 err
= scsi_device_set_state(sdev
, SDEV_CREATED_BLOCK
);
2955 * The device has transitioned to SDEV_BLOCK. Stop the
2956 * block layer from calling the midlayer with this device's
2960 blk_mq_stop_hw_queues(q
);
2962 spin_lock_irqsave(q
->queue_lock
, flags
);
2964 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2969 EXPORT_SYMBOL_GPL(scsi_internal_device_block
);
2972 * scsi_internal_device_unblock - resume a device after a block request
2973 * @sdev: device to resume
2974 * @new_state: state to set devices to after unblocking
2976 * Called by scsi lld's or the midlayer to restart the device queue
2977 * for the previously suspended scsi device. Called from interrupt or
2978 * normal process context.
2980 * Returns zero if successful or error if not.
2983 * This routine transitions the device to the SDEV_RUNNING state
2984 * or to one of the offline states (which must be a legal transition)
2985 * allowing the midlayer to goose the queue for this device.
2988 scsi_internal_device_unblock(struct scsi_device
*sdev
,
2989 enum scsi_device_state new_state
)
2991 struct request_queue
*q
= sdev
->request_queue
;
2992 unsigned long flags
;
2995 * Try to transition the scsi device to SDEV_RUNNING or one of the
2996 * offlined states and goose the device queue if successful.
2998 if ((sdev
->sdev_state
== SDEV_BLOCK
) ||
2999 (sdev
->sdev_state
== SDEV_TRANSPORT_OFFLINE
))
3000 sdev
->sdev_state
= new_state
;
3001 else if (sdev
->sdev_state
== SDEV_CREATED_BLOCK
) {
3002 if (new_state
== SDEV_TRANSPORT_OFFLINE
||
3003 new_state
== SDEV_OFFLINE
)
3004 sdev
->sdev_state
= new_state
;
3006 sdev
->sdev_state
= SDEV_CREATED
;
3007 } else if (sdev
->sdev_state
!= SDEV_CANCEL
&&
3008 sdev
->sdev_state
!= SDEV_OFFLINE
)
3012 blk_mq_start_stopped_hw_queues(q
, false);
3014 spin_lock_irqsave(q
->queue_lock
, flags
);
3016 spin_unlock_irqrestore(q
->queue_lock
, flags
);
3021 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock
);
3024 device_block(struct scsi_device
*sdev
, void *data
)
3026 scsi_internal_device_block(sdev
);
3030 target_block(struct device
*dev
, void *data
)
3032 if (scsi_is_target_device(dev
))
3033 starget_for_each_device(to_scsi_target(dev
), NULL
,
3039 scsi_target_block(struct device
*dev
)
3041 if (scsi_is_target_device(dev
))
3042 starget_for_each_device(to_scsi_target(dev
), NULL
,
3045 device_for_each_child(dev
, NULL
, target_block
);
3047 EXPORT_SYMBOL_GPL(scsi_target_block
);
3050 device_unblock(struct scsi_device
*sdev
, void *data
)
3052 scsi_internal_device_unblock(sdev
, *(enum scsi_device_state
*)data
);
3056 target_unblock(struct device
*dev
, void *data
)
3058 if (scsi_is_target_device(dev
))
3059 starget_for_each_device(to_scsi_target(dev
), data
,
3065 scsi_target_unblock(struct device
*dev
, enum scsi_device_state new_state
)
3067 if (scsi_is_target_device(dev
))
3068 starget_for_each_device(to_scsi_target(dev
), &new_state
,
3071 device_for_each_child(dev
, &new_state
, target_unblock
);
3073 EXPORT_SYMBOL_GPL(scsi_target_unblock
);
3076 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3077 * @sgl: scatter-gather list
3078 * @sg_count: number of segments in sg
3079 * @offset: offset in bytes into sg, on return offset into the mapped area
3080 * @len: bytes to map, on return number of bytes mapped
3082 * Returns virtual address of the start of the mapped page
3084 void *scsi_kmap_atomic_sg(struct scatterlist
*sgl
, int sg_count
,
3085 size_t *offset
, size_t *len
)
3088 size_t sg_len
= 0, len_complete
= 0;
3089 struct scatterlist
*sg
;
3092 WARN_ON(!irqs_disabled());
3094 for_each_sg(sgl
, sg
, sg_count
, i
) {
3095 len_complete
= sg_len
; /* Complete sg-entries */
3096 sg_len
+= sg
->length
;
3097 if (sg_len
> *offset
)
3101 if (unlikely(i
== sg_count
)) {
3102 printk(KERN_ERR
"%s: Bytes in sg: %zu, requested offset %zu, "
3104 __func__
, sg_len
, *offset
, sg_count
);
3109 /* Offset starting from the beginning of first page in this sg-entry */
3110 *offset
= *offset
- len_complete
+ sg
->offset
;
3112 /* Assumption: contiguous pages can be accessed as "page + i" */
3113 page
= nth_page(sg_page(sg
), (*offset
>> PAGE_SHIFT
));
3114 *offset
&= ~PAGE_MASK
;
3116 /* Bytes in this sg-entry from *offset to the end of the page */
3117 sg_len
= PAGE_SIZE
- *offset
;
3121 return kmap_atomic(page
);
3123 EXPORT_SYMBOL(scsi_kmap_atomic_sg
);
3126 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3127 * @virt: virtual address to be unmapped
3129 void scsi_kunmap_atomic_sg(void *virt
)
3131 kunmap_atomic(virt
);
3133 EXPORT_SYMBOL(scsi_kunmap_atomic_sg
);
3135 void sdev_disable_disk_events(struct scsi_device
*sdev
)
3137 atomic_inc(&sdev
->disk_events_disable_depth
);
3139 EXPORT_SYMBOL(sdev_disable_disk_events
);
3141 void sdev_enable_disk_events(struct scsi_device
*sdev
)
3143 if (WARN_ON_ONCE(atomic_read(&sdev
->disk_events_disable_depth
) <= 0))
3145 atomic_dec(&sdev
->disk_events_disable_depth
);
3147 EXPORT_SYMBOL(sdev_enable_disk_events
);