2 * Driver for Cirrus Logic EP93xx SPI controller.
4 * Copyright (C) 2010-2011 Mika Westerberg
6 * Explicit FIFO handling code was inspired by amba-pl022 driver.
8 * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
10 * For more information about the SPI controller see documentation on Cirrus
12 * http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
20 #include <linux/clk.h>
21 #include <linux/err.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dmaengine.h>
25 #include <linux/bitops.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/sched.h>
30 #include <linux/scatterlist.h>
31 #include <linux/spi/spi.h>
33 #include <linux/platform_data/dma-ep93xx.h>
34 #include <linux/platform_data/spi-ep93xx.h>
37 #define SSPCR0_MODE_SHIFT 6
38 #define SSPCR0_SCR_SHIFT 8
41 #define SSPCR1_RIE BIT(0)
42 #define SSPCR1_TIE BIT(1)
43 #define SSPCR1_RORIE BIT(2)
44 #define SSPCR1_LBM BIT(3)
45 #define SSPCR1_SSE BIT(4)
46 #define SSPCR1_MS BIT(5)
47 #define SSPCR1_SOD BIT(6)
52 #define SSPSR_TFE BIT(0)
53 #define SSPSR_TNF BIT(1)
54 #define SSPSR_RNE BIT(2)
55 #define SSPSR_RFF BIT(3)
56 #define SSPSR_BSY BIT(4)
57 #define SSPCPSR 0x0010
60 #define SSPIIR_RIS BIT(0)
61 #define SSPIIR_TIS BIT(1)
62 #define SSPIIR_RORIS BIT(2)
65 /* timeout in milliseconds */
67 /* maximum depth of RX/TX FIFO */
68 #define SPI_FIFO_SIZE 8
71 * struct ep93xx_spi - EP93xx SPI controller structure
72 * @pdev: pointer to platform device
73 * @clk: clock for the controller
74 * @regs_base: pointer to ioremap()'d registers
75 * @sspdr_phys: physical address of the SSPDR register
76 * @wait: wait here until given transfer is completed
77 * @current_msg: message that is currently processed (or %NULL if none)
78 * @tx: current byte in transfer to transmit
79 * @rx: current byte in transfer to receive
80 * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
81 * frame decreases this level and sending one frame increases it.
82 * @dma_rx: RX DMA channel
83 * @dma_tx: TX DMA channel
84 * @dma_rx_data: RX parameters passed to the DMA engine
85 * @dma_tx_data: TX parameters passed to the DMA engine
86 * @rx_sgt: sg table for RX transfers
87 * @tx_sgt: sg table for TX transfers
88 * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
92 const struct platform_device
*pdev
;
94 void __iomem
*regs_base
;
95 unsigned long sspdr_phys
;
96 struct completion wait
;
97 struct spi_message
*current_msg
;
101 struct dma_chan
*dma_rx
;
102 struct dma_chan
*dma_tx
;
103 struct ep93xx_dma_data dma_rx_data
;
104 struct ep93xx_dma_data dma_tx_data
;
105 struct sg_table rx_sgt
;
106 struct sg_table tx_sgt
;
111 * struct ep93xx_spi_chip - SPI device hardware settings
112 * @spi: back pointer to the SPI device
113 * @ops: private chip operations
115 struct ep93xx_spi_chip
{
116 const struct spi_device
*spi
;
117 struct ep93xx_spi_chip_ops
*ops
;
120 /* converts bits per word to CR0.DSS value */
121 #define bits_per_word_to_dss(bpw) ((bpw) - 1)
123 static void ep93xx_spi_write_u8(const struct ep93xx_spi
*espi
,
126 writeb(value
, espi
->regs_base
+ reg
);
129 static u8
ep93xx_spi_read_u8(const struct ep93xx_spi
*spi
, u16 reg
)
131 return readb(spi
->regs_base
+ reg
);
134 static void ep93xx_spi_write_u16(const struct ep93xx_spi
*espi
,
137 writew(value
, espi
->regs_base
+ reg
);
140 static u16
ep93xx_spi_read_u16(const struct ep93xx_spi
*spi
, u16 reg
)
142 return readw(spi
->regs_base
+ reg
);
145 static int ep93xx_spi_enable(const struct ep93xx_spi
*espi
)
150 err
= clk_enable(espi
->clk
);
154 regval
= ep93xx_spi_read_u8(espi
, SSPCR1
);
155 regval
|= SSPCR1_SSE
;
156 ep93xx_spi_write_u8(espi
, SSPCR1
, regval
);
161 static void ep93xx_spi_disable(const struct ep93xx_spi
*espi
)
165 regval
= ep93xx_spi_read_u8(espi
, SSPCR1
);
166 regval
&= ~SSPCR1_SSE
;
167 ep93xx_spi_write_u8(espi
, SSPCR1
, regval
);
169 clk_disable(espi
->clk
);
172 static void ep93xx_spi_enable_interrupts(const struct ep93xx_spi
*espi
)
176 regval
= ep93xx_spi_read_u8(espi
, SSPCR1
);
177 regval
|= (SSPCR1_RORIE
| SSPCR1_TIE
| SSPCR1_RIE
);
178 ep93xx_spi_write_u8(espi
, SSPCR1
, regval
);
181 static void ep93xx_spi_disable_interrupts(const struct ep93xx_spi
*espi
)
185 regval
= ep93xx_spi_read_u8(espi
, SSPCR1
);
186 regval
&= ~(SSPCR1_RORIE
| SSPCR1_TIE
| SSPCR1_RIE
);
187 ep93xx_spi_write_u8(espi
, SSPCR1
, regval
);
191 * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
192 * @espi: ep93xx SPI controller struct
193 * @rate: desired SPI output clock rate
194 * @div_cpsr: pointer to return the cpsr (pre-scaler) divider
195 * @div_scr: pointer to return the scr divider
197 static int ep93xx_spi_calc_divisors(const struct ep93xx_spi
*espi
,
198 u32 rate
, u8
*div_cpsr
, u8
*div_scr
)
200 struct spi_master
*master
= platform_get_drvdata(espi
->pdev
);
201 unsigned long spi_clk_rate
= clk_get_rate(espi
->clk
);
205 * Make sure that max value is between values supported by the
206 * controller. Note that minimum value is already checked in
207 * ep93xx_spi_transfer_one_message().
209 rate
= clamp(rate
, master
->min_speed_hz
, master
->max_speed_hz
);
212 * Calculate divisors so that we can get speed according the
214 * rate = spi_clock_rate / (cpsr * (1 + scr))
216 * cpsr must be even number and starts from 2, scr can be any number
219 for (cpsr
= 2; cpsr
<= 254; cpsr
+= 2) {
220 for (scr
= 0; scr
<= 255; scr
++) {
221 if ((spi_clk_rate
/ (cpsr
* (scr
+ 1))) <= rate
) {
223 *div_cpsr
= (u8
)cpsr
;
232 static void ep93xx_spi_cs_control(struct spi_device
*spi
, bool control
)
234 struct ep93xx_spi_chip
*chip
= spi_get_ctldata(spi
);
235 int value
= (spi
->mode
& SPI_CS_HIGH
) ? control
: !control
;
237 if (chip
->ops
&& chip
->ops
->cs_control
)
238 chip
->ops
->cs_control(spi
, value
);
242 * ep93xx_spi_setup() - setup an SPI device
243 * @spi: SPI device to setup
245 * This function sets up SPI device mode, speed etc. Can be called multiple
246 * times for a single device. Returns %0 in case of success, negative error in
247 * case of failure. When this function returns success, the device is
250 static int ep93xx_spi_setup(struct spi_device
*spi
)
252 struct ep93xx_spi
*espi
= spi_master_get_devdata(spi
->master
);
253 struct ep93xx_spi_chip
*chip
;
255 chip
= spi_get_ctldata(spi
);
257 dev_dbg(&espi
->pdev
->dev
, "initial setup for %s\n",
260 chip
= kzalloc(sizeof(*chip
), GFP_KERNEL
);
265 chip
->ops
= spi
->controller_data
;
267 if (chip
->ops
&& chip
->ops
->setup
) {
268 int ret
= chip
->ops
->setup(spi
);
276 spi_set_ctldata(spi
, chip
);
279 ep93xx_spi_cs_control(spi
, false);
284 * ep93xx_spi_cleanup() - cleans up master controller specific state
285 * @spi: SPI device to cleanup
287 * This function releases master controller specific state for given @spi
290 static void ep93xx_spi_cleanup(struct spi_device
*spi
)
292 struct ep93xx_spi_chip
*chip
;
294 chip
= spi_get_ctldata(spi
);
296 if (chip
->ops
&& chip
->ops
->cleanup
)
297 chip
->ops
->cleanup(spi
);
298 spi_set_ctldata(spi
, NULL
);
304 * ep93xx_spi_chip_setup() - configures hardware according to given @chip
305 * @espi: ep93xx SPI controller struct
306 * @chip: chip specific settings
307 * @speed_hz: transfer speed
308 * @bits_per_word: transfer bits_per_word
310 static int ep93xx_spi_chip_setup(const struct ep93xx_spi
*espi
,
311 const struct ep93xx_spi_chip
*chip
,
312 u32 speed_hz
, u8 bits_per_word
)
314 u8 dss
= bits_per_word_to_dss(bits_per_word
);
320 err
= ep93xx_spi_calc_divisors(espi
, speed_hz
, &div_cpsr
, &div_scr
);
324 cr0
= div_scr
<< SSPCR0_SCR_SHIFT
;
325 cr0
|= (chip
->spi
->mode
& (SPI_CPHA
|SPI_CPOL
)) << SSPCR0_MODE_SHIFT
;
328 dev_dbg(&espi
->pdev
->dev
, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
329 chip
->spi
->mode
, div_cpsr
, div_scr
, dss
);
330 dev_dbg(&espi
->pdev
->dev
, "setup: cr0 %#x\n", cr0
);
332 ep93xx_spi_write_u8(espi
, SSPCPSR
, div_cpsr
);
333 ep93xx_spi_write_u16(espi
, SSPCR0
, cr0
);
338 static void ep93xx_do_write(struct ep93xx_spi
*espi
, struct spi_transfer
*t
)
340 if (t
->bits_per_word
> 8) {
344 tx_val
= ((u16
*)t
->tx_buf
)[espi
->tx
];
345 ep93xx_spi_write_u16(espi
, SSPDR
, tx_val
);
346 espi
->tx
+= sizeof(tx_val
);
351 tx_val
= ((u8
*)t
->tx_buf
)[espi
->tx
];
352 ep93xx_spi_write_u8(espi
, SSPDR
, tx_val
);
353 espi
->tx
+= sizeof(tx_val
);
357 static void ep93xx_do_read(struct ep93xx_spi
*espi
, struct spi_transfer
*t
)
359 if (t
->bits_per_word
> 8) {
362 rx_val
= ep93xx_spi_read_u16(espi
, SSPDR
);
364 ((u16
*)t
->rx_buf
)[espi
->rx
] = rx_val
;
365 espi
->rx
+= sizeof(rx_val
);
369 rx_val
= ep93xx_spi_read_u8(espi
, SSPDR
);
371 ((u8
*)t
->rx_buf
)[espi
->rx
] = rx_val
;
372 espi
->rx
+= sizeof(rx_val
);
377 * ep93xx_spi_read_write() - perform next RX/TX transfer
378 * @espi: ep93xx SPI controller struct
380 * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
381 * called several times, the whole transfer will be completed. Returns
382 * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
384 * When this function is finished, RX FIFO should be empty and TX FIFO should be
387 static int ep93xx_spi_read_write(struct ep93xx_spi
*espi
)
389 struct spi_message
*msg
= espi
->current_msg
;
390 struct spi_transfer
*t
= msg
->state
;
392 /* read as long as RX FIFO has frames in it */
393 while ((ep93xx_spi_read_u8(espi
, SSPSR
) & SSPSR_RNE
)) {
394 ep93xx_do_read(espi
, t
);
398 /* write as long as TX FIFO has room */
399 while (espi
->fifo_level
< SPI_FIFO_SIZE
&& espi
->tx
< t
->len
) {
400 ep93xx_do_write(espi
, t
);
404 if (espi
->rx
== t
->len
)
410 static void ep93xx_spi_pio_transfer(struct ep93xx_spi
*espi
)
413 * Now everything is set up for the current transfer. We prime the TX
414 * FIFO, enable interrupts, and wait for the transfer to complete.
416 if (ep93xx_spi_read_write(espi
)) {
417 ep93xx_spi_enable_interrupts(espi
);
418 wait_for_completion(&espi
->wait
);
423 * ep93xx_spi_dma_prepare() - prepares a DMA transfer
424 * @espi: ep93xx SPI controller struct
425 * @dir: DMA transfer direction
427 * Function configures the DMA, maps the buffer and prepares the DMA
428 * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
429 * in case of failure.
431 static struct dma_async_tx_descriptor
*
432 ep93xx_spi_dma_prepare(struct ep93xx_spi
*espi
, enum dma_transfer_direction dir
)
434 struct spi_transfer
*t
= espi
->current_msg
->state
;
435 struct dma_async_tx_descriptor
*txd
;
436 enum dma_slave_buswidth buswidth
;
437 struct dma_slave_config conf
;
438 struct scatterlist
*sg
;
439 struct sg_table
*sgt
;
440 struct dma_chan
*chan
;
441 const void *buf
, *pbuf
;
445 if (t
->bits_per_word
> 8)
446 buswidth
= DMA_SLAVE_BUSWIDTH_2_BYTES
;
448 buswidth
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
450 memset(&conf
, 0, sizeof(conf
));
451 conf
.direction
= dir
;
453 if (dir
== DMA_DEV_TO_MEM
) {
458 conf
.src_addr
= espi
->sspdr_phys
;
459 conf
.src_addr_width
= buswidth
;
465 conf
.dst_addr
= espi
->sspdr_phys
;
466 conf
.dst_addr_width
= buswidth
;
469 ret
= dmaengine_slave_config(chan
, &conf
);
474 * We need to split the transfer into PAGE_SIZE'd chunks. This is
475 * because we are using @espi->zeropage to provide a zero RX buffer
476 * for the TX transfers and we have only allocated one page for that.
478 * For performance reasons we allocate a new sg_table only when
479 * needed. Otherwise we will re-use the current one. Eventually the
480 * last sg_table is released in ep93xx_spi_release_dma().
483 nents
= DIV_ROUND_UP(len
, PAGE_SIZE
);
484 if (nents
!= sgt
->nents
) {
487 ret
= sg_alloc_table(sgt
, nents
, GFP_KERNEL
);
493 for_each_sg(sgt
->sgl
, sg
, sgt
->nents
, i
) {
494 size_t bytes
= min_t(size_t, len
, PAGE_SIZE
);
497 sg_set_page(sg
, virt_to_page(pbuf
), bytes
,
498 offset_in_page(pbuf
));
500 sg_set_page(sg
, virt_to_page(espi
->zeropage
),
509 dev_warn(&espi
->pdev
->dev
, "len = %zu expected 0!\n", len
);
510 return ERR_PTR(-EINVAL
);
513 nents
= dma_map_sg(chan
->device
->dev
, sgt
->sgl
, sgt
->nents
, dir
);
515 return ERR_PTR(-ENOMEM
);
517 txd
= dmaengine_prep_slave_sg(chan
, sgt
->sgl
, nents
, dir
, DMA_CTRL_ACK
);
519 dma_unmap_sg(chan
->device
->dev
, sgt
->sgl
, sgt
->nents
, dir
);
520 return ERR_PTR(-ENOMEM
);
526 * ep93xx_spi_dma_finish() - finishes with a DMA transfer
527 * @espi: ep93xx SPI controller struct
528 * @dir: DMA transfer direction
530 * Function finishes with the DMA transfer. After this, the DMA buffer is
533 static void ep93xx_spi_dma_finish(struct ep93xx_spi
*espi
,
534 enum dma_transfer_direction dir
)
536 struct dma_chan
*chan
;
537 struct sg_table
*sgt
;
539 if (dir
== DMA_DEV_TO_MEM
) {
547 dma_unmap_sg(chan
->device
->dev
, sgt
->sgl
, sgt
->nents
, dir
);
550 static void ep93xx_spi_dma_callback(void *callback_param
)
552 complete(callback_param
);
555 static void ep93xx_spi_dma_transfer(struct ep93xx_spi
*espi
)
557 struct spi_message
*msg
= espi
->current_msg
;
558 struct dma_async_tx_descriptor
*rxd
, *txd
;
560 rxd
= ep93xx_spi_dma_prepare(espi
, DMA_DEV_TO_MEM
);
562 dev_err(&espi
->pdev
->dev
, "DMA RX failed: %ld\n", PTR_ERR(rxd
));
563 msg
->status
= PTR_ERR(rxd
);
567 txd
= ep93xx_spi_dma_prepare(espi
, DMA_MEM_TO_DEV
);
569 ep93xx_spi_dma_finish(espi
, DMA_DEV_TO_MEM
);
570 dev_err(&espi
->pdev
->dev
, "DMA TX failed: %ld\n", PTR_ERR(rxd
));
571 msg
->status
= PTR_ERR(txd
);
575 /* We are ready when RX is done */
576 rxd
->callback
= ep93xx_spi_dma_callback
;
577 rxd
->callback_param
= &espi
->wait
;
579 /* Now submit both descriptors and wait while they finish */
580 dmaengine_submit(rxd
);
581 dmaengine_submit(txd
);
583 dma_async_issue_pending(espi
->dma_rx
);
584 dma_async_issue_pending(espi
->dma_tx
);
586 wait_for_completion(&espi
->wait
);
588 ep93xx_spi_dma_finish(espi
, DMA_MEM_TO_DEV
);
589 ep93xx_spi_dma_finish(espi
, DMA_DEV_TO_MEM
);
593 * ep93xx_spi_process_transfer() - processes one SPI transfer
594 * @espi: ep93xx SPI controller struct
595 * @msg: current message
596 * @t: transfer to process
598 * This function processes one SPI transfer given in @t. Function waits until
599 * transfer is complete (may sleep) and updates @msg->status based on whether
600 * transfer was successfully processed or not.
602 static void ep93xx_spi_process_transfer(struct ep93xx_spi
*espi
,
603 struct spi_message
*msg
,
604 struct spi_transfer
*t
)
606 struct ep93xx_spi_chip
*chip
= spi_get_ctldata(msg
->spi
);
611 err
= ep93xx_spi_chip_setup(espi
, chip
, t
->speed_hz
, t
->bits_per_word
);
613 dev_err(&espi
->pdev
->dev
,
614 "failed to setup chip for transfer\n");
623 * There is no point of setting up DMA for the transfers which will
624 * fit into the FIFO and can be transferred with a single interrupt.
625 * So in these cases we will be using PIO and don't bother for DMA.
627 if (espi
->dma_rx
&& t
->len
> SPI_FIFO_SIZE
)
628 ep93xx_spi_dma_transfer(espi
);
630 ep93xx_spi_pio_transfer(espi
);
633 * In case of error during transmit, we bail out from processing
639 msg
->actual_length
+= t
->len
;
642 * After this transfer is finished, perform any possible
643 * post-transfer actions requested by the protocol driver.
645 if (t
->delay_usecs
) {
646 set_current_state(TASK_UNINTERRUPTIBLE
);
647 schedule_timeout(usecs_to_jiffies(t
->delay_usecs
));
650 if (!list_is_last(&t
->transfer_list
, &msg
->transfers
)) {
652 * In case protocol driver is asking us to drop the
653 * chipselect briefly, we let the scheduler to handle
656 ep93xx_spi_cs_control(msg
->spi
, false);
658 ep93xx_spi_cs_control(msg
->spi
, true);
664 * ep93xx_spi_process_message() - process one SPI message
665 * @espi: ep93xx SPI controller struct
666 * @msg: message to process
668 * This function processes a single SPI message. We go through all transfers in
669 * the message and pass them to ep93xx_spi_process_transfer(). Chipselect is
670 * asserted during the whole message (unless per transfer cs_change is set).
672 * @msg->status contains %0 in case of success or negative error code in case of
675 static void ep93xx_spi_process_message(struct ep93xx_spi
*espi
,
676 struct spi_message
*msg
)
678 unsigned long timeout
;
679 struct spi_transfer
*t
;
683 * Enable the SPI controller and its clock.
685 err
= ep93xx_spi_enable(espi
);
687 dev_err(&espi
->pdev
->dev
, "failed to enable SPI controller\n");
693 * Just to be sure: flush any data from RX FIFO.
695 timeout
= jiffies
+ msecs_to_jiffies(SPI_TIMEOUT
);
696 while (ep93xx_spi_read_u16(espi
, SSPSR
) & SSPSR_RNE
) {
697 if (time_after(jiffies
, timeout
)) {
698 dev_warn(&espi
->pdev
->dev
,
699 "timeout while flushing RX FIFO\n");
700 msg
->status
= -ETIMEDOUT
;
703 ep93xx_spi_read_u16(espi
, SSPDR
);
707 * We explicitly handle FIFO level. This way we don't have to check TX
708 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
710 espi
->fifo_level
= 0;
713 * Assert the chipselect.
715 ep93xx_spi_cs_control(msg
->spi
, true);
717 list_for_each_entry(t
, &msg
->transfers
, transfer_list
) {
718 ep93xx_spi_process_transfer(espi
, msg
, t
);
724 * Now the whole message is transferred (or failed for some reason). We
725 * deselect the device and disable the SPI controller.
727 ep93xx_spi_cs_control(msg
->spi
, false);
728 ep93xx_spi_disable(espi
);
731 static int ep93xx_spi_transfer_one_message(struct spi_master
*master
,
732 struct spi_message
*msg
)
734 struct ep93xx_spi
*espi
= spi_master_get_devdata(master
);
738 msg
->actual_length
= 0;
740 espi
->current_msg
= msg
;
741 ep93xx_spi_process_message(espi
, msg
);
742 espi
->current_msg
= NULL
;
744 spi_finalize_current_message(master
);
749 static irqreturn_t
ep93xx_spi_interrupt(int irq
, void *dev_id
)
751 struct ep93xx_spi
*espi
= dev_id
;
752 u8 irq_status
= ep93xx_spi_read_u8(espi
, SSPIIR
);
755 * If we got ROR (receive overrun) interrupt we know that something is
756 * wrong. Just abort the message.
758 if (unlikely(irq_status
& SSPIIR_RORIS
)) {
759 /* clear the overrun interrupt */
760 ep93xx_spi_write_u8(espi
, SSPICR
, 0);
761 dev_warn(&espi
->pdev
->dev
,
762 "receive overrun, aborting the message\n");
763 espi
->current_msg
->status
= -EIO
;
766 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
767 * simply execute next data transfer.
769 if (ep93xx_spi_read_write(espi
)) {
771 * In normal case, there still is some processing left
772 * for current transfer. Let's wait for the next
780 * Current transfer is finished, either with error or with success. In
781 * any case we disable interrupts and notify the worker to handle
782 * any post-processing of the message.
784 ep93xx_spi_disable_interrupts(espi
);
785 complete(&espi
->wait
);
789 static bool ep93xx_spi_dma_filter(struct dma_chan
*chan
, void *filter_param
)
791 if (ep93xx_dma_chan_is_m2p(chan
))
794 chan
->private = filter_param
;
798 static int ep93xx_spi_setup_dma(struct ep93xx_spi
*espi
)
803 espi
->zeropage
= (void *)get_zeroed_page(GFP_KERNEL
);
808 dma_cap_set(DMA_SLAVE
, mask
);
810 espi
->dma_rx_data
.port
= EP93XX_DMA_SSP
;
811 espi
->dma_rx_data
.direction
= DMA_DEV_TO_MEM
;
812 espi
->dma_rx_data
.name
= "ep93xx-spi-rx";
814 espi
->dma_rx
= dma_request_channel(mask
, ep93xx_spi_dma_filter
,
821 espi
->dma_tx_data
.port
= EP93XX_DMA_SSP
;
822 espi
->dma_tx_data
.direction
= DMA_MEM_TO_DEV
;
823 espi
->dma_tx_data
.name
= "ep93xx-spi-tx";
825 espi
->dma_tx
= dma_request_channel(mask
, ep93xx_spi_dma_filter
,
829 goto fail_release_rx
;
835 dma_release_channel(espi
->dma_rx
);
838 free_page((unsigned long)espi
->zeropage
);
843 static void ep93xx_spi_release_dma(struct ep93xx_spi
*espi
)
846 dma_release_channel(espi
->dma_rx
);
847 sg_free_table(&espi
->rx_sgt
);
850 dma_release_channel(espi
->dma_tx
);
851 sg_free_table(&espi
->tx_sgt
);
855 free_page((unsigned long)espi
->zeropage
);
858 static int ep93xx_spi_probe(struct platform_device
*pdev
)
860 struct spi_master
*master
;
861 struct ep93xx_spi_info
*info
;
862 struct ep93xx_spi
*espi
;
863 struct resource
*res
;
867 info
= dev_get_platdata(&pdev
->dev
);
869 irq
= platform_get_irq(pdev
, 0);
871 dev_err(&pdev
->dev
, "failed to get irq resources\n");
875 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
877 dev_err(&pdev
->dev
, "unable to get iomem resource\n");
881 master
= spi_alloc_master(&pdev
->dev
, sizeof(*espi
));
885 master
->setup
= ep93xx_spi_setup
;
886 master
->transfer_one_message
= ep93xx_spi_transfer_one_message
;
887 master
->cleanup
= ep93xx_spi_cleanup
;
888 master
->bus_num
= pdev
->id
;
889 master
->num_chipselect
= info
->num_chipselect
;
890 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
;
891 master
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(4, 16);
893 platform_set_drvdata(pdev
, master
);
895 espi
= spi_master_get_devdata(master
);
897 espi
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
898 if (IS_ERR(espi
->clk
)) {
899 dev_err(&pdev
->dev
, "unable to get spi clock\n");
900 error
= PTR_ERR(espi
->clk
);
901 goto fail_release_master
;
904 init_completion(&espi
->wait
);
907 * Calculate maximum and minimum supported clock rates
908 * for the controller.
910 master
->max_speed_hz
= clk_get_rate(espi
->clk
) / 2;
911 master
->min_speed_hz
= clk_get_rate(espi
->clk
) / (254 * 256);
914 espi
->sspdr_phys
= res
->start
+ SSPDR
;
916 espi
->regs_base
= devm_ioremap_resource(&pdev
->dev
, res
);
917 if (IS_ERR(espi
->regs_base
)) {
918 error
= PTR_ERR(espi
->regs_base
);
919 goto fail_release_master
;
922 error
= devm_request_irq(&pdev
->dev
, irq
, ep93xx_spi_interrupt
,
923 0, "ep93xx-spi", espi
);
925 dev_err(&pdev
->dev
, "failed to request irq\n");
926 goto fail_release_master
;
929 if (info
->use_dma
&& ep93xx_spi_setup_dma(espi
))
930 dev_warn(&pdev
->dev
, "DMA setup failed. Falling back to PIO\n");
932 /* make sure that the hardware is disabled */
933 ep93xx_spi_write_u8(espi
, SSPCR1
, 0);
935 error
= devm_spi_register_master(&pdev
->dev
, master
);
937 dev_err(&pdev
->dev
, "failed to register SPI master\n");
941 dev_info(&pdev
->dev
, "EP93xx SPI Controller at 0x%08lx irq %d\n",
942 (unsigned long)res
->start
, irq
);
947 ep93xx_spi_release_dma(espi
);
949 spi_master_put(master
);
954 static int ep93xx_spi_remove(struct platform_device
*pdev
)
956 struct spi_master
*master
= platform_get_drvdata(pdev
);
957 struct ep93xx_spi
*espi
= spi_master_get_devdata(master
);
959 ep93xx_spi_release_dma(espi
);
964 static struct platform_driver ep93xx_spi_driver
= {
966 .name
= "ep93xx-spi",
968 .probe
= ep93xx_spi_probe
,
969 .remove
= ep93xx_spi_remove
,
971 module_platform_driver(ep93xx_spi_driver
);
973 MODULE_DESCRIPTION("EP93xx SPI Controller driver");
974 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
975 MODULE_LICENSE("GPL");
976 MODULE_ALIAS("platform:ep93xx-spi");