2 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
3 * Copyright (C) 2013, Intel Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/device.h>
19 #include <linux/ioport.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/interrupt.h>
23 #include <linux/kernel.h>
24 #include <linux/platform_device.h>
25 #include <linux/spi/pxa2xx_spi.h>
26 #include <linux/spi/spi.h>
27 #include <linux/delay.h>
28 #include <linux/gpio.h>
29 #include <linux/slab.h>
30 #include <linux/clk.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/acpi.h>
34 #include "spi-pxa2xx.h"
36 MODULE_AUTHOR("Stephen Street");
37 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
38 MODULE_LICENSE("GPL");
39 MODULE_ALIAS("platform:pxa2xx-spi");
41 #define TIMOUT_DFLT 1000
44 * for testing SSCR1 changes that require SSP restart, basically
45 * everything except the service and interrupt enables, the pxa270 developer
46 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
47 * list, but the PXA255 dev man says all bits without really meaning the
48 * service and interrupt enables
50 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
51 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
52 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
53 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
54 | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
55 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
57 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF \
58 | QUARK_X1000_SSCR1_EFWR \
59 | QUARK_X1000_SSCR1_RFT \
60 | QUARK_X1000_SSCR1_TFT \
61 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
63 #define LPSS_RX_THRESH_DFLT 64
64 #define LPSS_TX_LOTHRESH_DFLT 160
65 #define LPSS_TX_HITHRESH_DFLT 224
67 /* Offset from drv_data->lpss_base */
68 #define GENERAL_REG 0x08
69 #define GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24)
71 #define SPI_CS_CONTROL 0x18
72 #define SPI_CS_CONTROL_SW_MODE BIT(0)
73 #define SPI_CS_CONTROL_CS_HIGH BIT(1)
75 static bool is_lpss_ssp(const struct driver_data
*drv_data
)
77 return drv_data
->ssp_type
== LPSS_SSP
;
80 static bool is_quark_x1000_ssp(const struct driver_data
*drv_data
)
82 return drv_data
->ssp_type
== QUARK_X1000_SSP
;
85 static u32
pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data
*drv_data
)
87 switch (drv_data
->ssp_type
) {
89 return QUARK_X1000_SSCR1_CHANGE_MASK
;
91 return SSCR1_CHANGE_MASK
;
96 pxa2xx_spi_get_rx_default_thre(const struct driver_data
*drv_data
)
98 switch (drv_data
->ssp_type
) {
100 return RX_THRESH_QUARK_X1000_DFLT
;
102 return RX_THRESH_DFLT
;
106 static bool pxa2xx_spi_txfifo_full(const struct driver_data
*drv_data
)
110 switch (drv_data
->ssp_type
) {
111 case QUARK_X1000_SSP
:
112 mask
= QUARK_X1000_SSSR_TFL_MASK
;
115 mask
= SSSR_TFL_MASK
;
119 return (pxa2xx_spi_read(drv_data
, SSSR
) & mask
) == mask
;
122 static void pxa2xx_spi_clear_rx_thre(const struct driver_data
*drv_data
,
127 switch (drv_data
->ssp_type
) {
128 case QUARK_X1000_SSP
:
129 mask
= QUARK_X1000_SSCR1_RFT
;
138 static void pxa2xx_spi_set_rx_thre(const struct driver_data
*drv_data
,
139 u32
*sccr1_reg
, u32 threshold
)
141 switch (drv_data
->ssp_type
) {
142 case QUARK_X1000_SSP
:
143 *sccr1_reg
|= QUARK_X1000_SSCR1_RxTresh(threshold
);
146 *sccr1_reg
|= SSCR1_RxTresh(threshold
);
151 static u32
pxa2xx_configure_sscr0(const struct driver_data
*drv_data
,
152 u32 clk_div
, u8 bits
)
154 switch (drv_data
->ssp_type
) {
155 case QUARK_X1000_SSP
:
157 | QUARK_X1000_SSCR0_Motorola
158 | QUARK_X1000_SSCR0_DataSize(bits
> 32 ? 8 : bits
)
163 | SSCR0_DataSize(bits
> 16 ? bits
- 16 : bits
)
165 | (bits
> 16 ? SSCR0_EDSS
: 0);
170 * Read and write LPSS SSP private registers. Caller must first check that
171 * is_lpss_ssp() returns true before these can be called.
173 static u32
__lpss_ssp_read_priv(struct driver_data
*drv_data
, unsigned offset
)
175 WARN_ON(!drv_data
->lpss_base
);
176 return readl(drv_data
->lpss_base
+ offset
);
179 static void __lpss_ssp_write_priv(struct driver_data
*drv_data
,
180 unsigned offset
, u32 value
)
182 WARN_ON(!drv_data
->lpss_base
);
183 writel(value
, drv_data
->lpss_base
+ offset
);
187 * lpss_ssp_setup - perform LPSS SSP specific setup
188 * @drv_data: pointer to the driver private data
190 * Perform LPSS SSP specific setup. This function must be called first if
191 * one is going to use LPSS SSP private registers.
193 static void lpss_ssp_setup(struct driver_data
*drv_data
)
195 unsigned offset
= 0x400;
199 * Perform auto-detection of the LPSS SSP private registers. They
200 * can be either at 1k or 2k offset from the base address.
202 orig
= readl(drv_data
->ioaddr
+ offset
+ SPI_CS_CONTROL
);
204 /* Test SPI_CS_CONTROL_SW_MODE bit enabling */
205 value
= orig
| SPI_CS_CONTROL_SW_MODE
;
206 writel(value
, drv_data
->ioaddr
+ offset
+ SPI_CS_CONTROL
);
207 value
= readl(drv_data
->ioaddr
+ offset
+ SPI_CS_CONTROL
);
208 if (value
!= (orig
| SPI_CS_CONTROL_SW_MODE
)) {
213 orig
= readl(drv_data
->ioaddr
+ offset
+ SPI_CS_CONTROL
);
215 /* Test SPI_CS_CONTROL_SW_MODE bit disabling */
216 value
= orig
& ~SPI_CS_CONTROL_SW_MODE
;
217 writel(value
, drv_data
->ioaddr
+ offset
+ SPI_CS_CONTROL
);
218 value
= readl(drv_data
->ioaddr
+ offset
+ SPI_CS_CONTROL
);
219 if (value
!= (orig
& ~SPI_CS_CONTROL_SW_MODE
)) {
225 /* Now set the LPSS base */
226 drv_data
->lpss_base
= drv_data
->ioaddr
+ offset
;
228 /* Enable software chip select control */
229 value
= SPI_CS_CONTROL_SW_MODE
| SPI_CS_CONTROL_CS_HIGH
;
230 __lpss_ssp_write_priv(drv_data
, SPI_CS_CONTROL
, value
);
232 /* Enable multiblock DMA transfers */
233 if (drv_data
->master_info
->enable_dma
) {
234 __lpss_ssp_write_priv(drv_data
, SSP_REG
, 1);
236 value
= __lpss_ssp_read_priv(drv_data
, GENERAL_REG
);
237 value
|= GENERAL_REG_RXTO_HOLDOFF_DISABLE
;
238 __lpss_ssp_write_priv(drv_data
, GENERAL_REG
, value
);
242 static void lpss_ssp_cs_control(struct driver_data
*drv_data
, bool enable
)
246 value
= __lpss_ssp_read_priv(drv_data
, SPI_CS_CONTROL
);
248 value
&= ~SPI_CS_CONTROL_CS_HIGH
;
250 value
|= SPI_CS_CONTROL_CS_HIGH
;
251 __lpss_ssp_write_priv(drv_data
, SPI_CS_CONTROL
, value
);
254 static void cs_assert(struct driver_data
*drv_data
)
256 struct chip_data
*chip
= drv_data
->cur_chip
;
258 if (drv_data
->ssp_type
== CE4100_SSP
) {
259 pxa2xx_spi_write(drv_data
, SSSR
, drv_data
->cur_chip
->frm
);
263 if (chip
->cs_control
) {
264 chip
->cs_control(PXA2XX_CS_ASSERT
);
268 if (gpio_is_valid(chip
->gpio_cs
)) {
269 gpio_set_value(chip
->gpio_cs
, chip
->gpio_cs_inverted
);
273 if (is_lpss_ssp(drv_data
))
274 lpss_ssp_cs_control(drv_data
, true);
277 static void cs_deassert(struct driver_data
*drv_data
)
279 struct chip_data
*chip
= drv_data
->cur_chip
;
281 if (drv_data
->ssp_type
== CE4100_SSP
)
284 if (chip
->cs_control
) {
285 chip
->cs_control(PXA2XX_CS_DEASSERT
);
289 if (gpio_is_valid(chip
->gpio_cs
)) {
290 gpio_set_value(chip
->gpio_cs
, !chip
->gpio_cs_inverted
);
294 if (is_lpss_ssp(drv_data
))
295 lpss_ssp_cs_control(drv_data
, false);
298 int pxa2xx_spi_flush(struct driver_data
*drv_data
)
300 unsigned long limit
= loops_per_jiffy
<< 1;
303 while (pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_RNE
)
304 pxa2xx_spi_read(drv_data
, SSDR
);
305 } while ((pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_BSY
) && --limit
);
306 write_SSSR_CS(drv_data
, SSSR_ROR
);
311 static int null_writer(struct driver_data
*drv_data
)
313 u8 n_bytes
= drv_data
->n_bytes
;
315 if (pxa2xx_spi_txfifo_full(drv_data
)
316 || (drv_data
->tx
== drv_data
->tx_end
))
319 pxa2xx_spi_write(drv_data
, SSDR
, 0);
320 drv_data
->tx
+= n_bytes
;
325 static int null_reader(struct driver_data
*drv_data
)
327 u8 n_bytes
= drv_data
->n_bytes
;
329 while ((pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_RNE
)
330 && (drv_data
->rx
< drv_data
->rx_end
)) {
331 pxa2xx_spi_read(drv_data
, SSDR
);
332 drv_data
->rx
+= n_bytes
;
335 return drv_data
->rx
== drv_data
->rx_end
;
338 static int u8_writer(struct driver_data
*drv_data
)
340 if (pxa2xx_spi_txfifo_full(drv_data
)
341 || (drv_data
->tx
== drv_data
->tx_end
))
344 pxa2xx_spi_write(drv_data
, SSDR
, *(u8
*)(drv_data
->tx
));
350 static int u8_reader(struct driver_data
*drv_data
)
352 while ((pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_RNE
)
353 && (drv_data
->rx
< drv_data
->rx_end
)) {
354 *(u8
*)(drv_data
->rx
) = pxa2xx_spi_read(drv_data
, SSDR
);
358 return drv_data
->rx
== drv_data
->rx_end
;
361 static int u16_writer(struct driver_data
*drv_data
)
363 if (pxa2xx_spi_txfifo_full(drv_data
)
364 || (drv_data
->tx
== drv_data
->tx_end
))
367 pxa2xx_spi_write(drv_data
, SSDR
, *(u16
*)(drv_data
->tx
));
373 static int u16_reader(struct driver_data
*drv_data
)
375 while ((pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_RNE
)
376 && (drv_data
->rx
< drv_data
->rx_end
)) {
377 *(u16
*)(drv_data
->rx
) = pxa2xx_spi_read(drv_data
, SSDR
);
381 return drv_data
->rx
== drv_data
->rx_end
;
384 static int u32_writer(struct driver_data
*drv_data
)
386 if (pxa2xx_spi_txfifo_full(drv_data
)
387 || (drv_data
->tx
== drv_data
->tx_end
))
390 pxa2xx_spi_write(drv_data
, SSDR
, *(u32
*)(drv_data
->tx
));
396 static int u32_reader(struct driver_data
*drv_data
)
398 while ((pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_RNE
)
399 && (drv_data
->rx
< drv_data
->rx_end
)) {
400 *(u32
*)(drv_data
->rx
) = pxa2xx_spi_read(drv_data
, SSDR
);
404 return drv_data
->rx
== drv_data
->rx_end
;
407 void *pxa2xx_spi_next_transfer(struct driver_data
*drv_data
)
409 struct spi_message
*msg
= drv_data
->cur_msg
;
410 struct spi_transfer
*trans
= drv_data
->cur_transfer
;
412 /* Move to next transfer */
413 if (trans
->transfer_list
.next
!= &msg
->transfers
) {
414 drv_data
->cur_transfer
=
415 list_entry(trans
->transfer_list
.next
,
418 return RUNNING_STATE
;
423 /* caller already set message->status; dma and pio irqs are blocked */
424 static void giveback(struct driver_data
*drv_data
)
426 struct spi_transfer
* last_transfer
;
427 struct spi_message
*msg
;
429 msg
= drv_data
->cur_msg
;
430 drv_data
->cur_msg
= NULL
;
431 drv_data
->cur_transfer
= NULL
;
433 last_transfer
= list_last_entry(&msg
->transfers
, struct spi_transfer
,
436 /* Delay if requested before any change in chip select */
437 if (last_transfer
->delay_usecs
)
438 udelay(last_transfer
->delay_usecs
);
440 /* Drop chip select UNLESS cs_change is true or we are returning
441 * a message with an error, or next message is for another chip
443 if (!last_transfer
->cs_change
)
444 cs_deassert(drv_data
);
446 struct spi_message
*next_msg
;
448 /* Holding of cs was hinted, but we need to make sure
449 * the next message is for the same chip. Don't waste
450 * time with the following tests unless this was hinted.
452 * We cannot postpone this until pump_messages, because
453 * after calling msg->complete (below) the driver that
454 * sent the current message could be unloaded, which
455 * could invalidate the cs_control() callback...
458 /* get a pointer to the next message, if any */
459 next_msg
= spi_get_next_queued_message(drv_data
->master
);
461 /* see if the next and current messages point
464 if (next_msg
&& next_msg
->spi
!= msg
->spi
)
466 if (!next_msg
|| msg
->state
== ERROR_STATE
)
467 cs_deassert(drv_data
);
470 drv_data
->cur_chip
= NULL
;
471 spi_finalize_current_message(drv_data
->master
);
474 static void reset_sccr1(struct driver_data
*drv_data
)
476 struct chip_data
*chip
= drv_data
->cur_chip
;
479 sccr1_reg
= pxa2xx_spi_read(drv_data
, SSCR1
) & ~drv_data
->int_cr1
;
480 sccr1_reg
&= ~SSCR1_RFT
;
481 sccr1_reg
|= chip
->threshold
;
482 pxa2xx_spi_write(drv_data
, SSCR1
, sccr1_reg
);
485 static void int_error_stop(struct driver_data
*drv_data
, const char* msg
)
487 /* Stop and reset SSP */
488 write_SSSR_CS(drv_data
, drv_data
->clear_sr
);
489 reset_sccr1(drv_data
);
490 if (!pxa25x_ssp_comp(drv_data
))
491 pxa2xx_spi_write(drv_data
, SSTO
, 0);
492 pxa2xx_spi_flush(drv_data
);
493 pxa2xx_spi_write(drv_data
, SSCR0
,
494 pxa2xx_spi_read(drv_data
, SSCR0
) & ~SSCR0_SSE
);
496 dev_err(&drv_data
->pdev
->dev
, "%s\n", msg
);
498 drv_data
->cur_msg
->state
= ERROR_STATE
;
499 tasklet_schedule(&drv_data
->pump_transfers
);
502 static void int_transfer_complete(struct driver_data
*drv_data
)
505 write_SSSR_CS(drv_data
, drv_data
->clear_sr
);
506 reset_sccr1(drv_data
);
507 if (!pxa25x_ssp_comp(drv_data
))
508 pxa2xx_spi_write(drv_data
, SSTO
, 0);
510 /* Update total byte transferred return count actual bytes read */
511 drv_data
->cur_msg
->actual_length
+= drv_data
->len
-
512 (drv_data
->rx_end
- drv_data
->rx
);
514 /* Transfer delays and chip select release are
515 * handled in pump_transfers or giveback
518 /* Move to next transfer */
519 drv_data
->cur_msg
->state
= pxa2xx_spi_next_transfer(drv_data
);
521 /* Schedule transfer tasklet */
522 tasklet_schedule(&drv_data
->pump_transfers
);
525 static irqreturn_t
interrupt_transfer(struct driver_data
*drv_data
)
527 u32 irq_mask
= (pxa2xx_spi_read(drv_data
, SSCR1
) & SSCR1_TIE
) ?
528 drv_data
->mask_sr
: drv_data
->mask_sr
& ~SSSR_TFS
;
530 u32 irq_status
= pxa2xx_spi_read(drv_data
, SSSR
) & irq_mask
;
532 if (irq_status
& SSSR_ROR
) {
533 int_error_stop(drv_data
, "interrupt_transfer: fifo overrun");
537 if (irq_status
& SSSR_TINT
) {
538 pxa2xx_spi_write(drv_data
, SSSR
, SSSR_TINT
);
539 if (drv_data
->read(drv_data
)) {
540 int_transfer_complete(drv_data
);
545 /* Drain rx fifo, Fill tx fifo and prevent overruns */
547 if (drv_data
->read(drv_data
)) {
548 int_transfer_complete(drv_data
);
551 } while (drv_data
->write(drv_data
));
553 if (drv_data
->read(drv_data
)) {
554 int_transfer_complete(drv_data
);
558 if (drv_data
->tx
== drv_data
->tx_end
) {
562 sccr1_reg
= pxa2xx_spi_read(drv_data
, SSCR1
);
563 sccr1_reg
&= ~SSCR1_TIE
;
566 * PXA25x_SSP has no timeout, set up rx threshould for the
567 * remaining RX bytes.
569 if (pxa25x_ssp_comp(drv_data
)) {
572 pxa2xx_spi_clear_rx_thre(drv_data
, &sccr1_reg
);
574 bytes_left
= drv_data
->rx_end
- drv_data
->rx
;
575 switch (drv_data
->n_bytes
) {
582 rx_thre
= pxa2xx_spi_get_rx_default_thre(drv_data
);
583 if (rx_thre
> bytes_left
)
584 rx_thre
= bytes_left
;
586 pxa2xx_spi_set_rx_thre(drv_data
, &sccr1_reg
, rx_thre
);
588 pxa2xx_spi_write(drv_data
, SSCR1
, sccr1_reg
);
591 /* We did something */
595 static irqreturn_t
ssp_int(int irq
, void *dev_id
)
597 struct driver_data
*drv_data
= dev_id
;
599 u32 mask
= drv_data
->mask_sr
;
603 * The IRQ might be shared with other peripherals so we must first
604 * check that are we RPM suspended or not. If we are we assume that
605 * the IRQ was not for us (we shouldn't be RPM suspended when the
606 * interrupt is enabled).
608 if (pm_runtime_suspended(&drv_data
->pdev
->dev
))
612 * If the device is not yet in RPM suspended state and we get an
613 * interrupt that is meant for another device, check if status bits
614 * are all set to one. That means that the device is already
617 status
= pxa2xx_spi_read(drv_data
, SSSR
);
621 sccr1_reg
= pxa2xx_spi_read(drv_data
, SSCR1
);
623 /* Ignore possible writes if we don't need to write */
624 if (!(sccr1_reg
& SSCR1_TIE
))
627 if (!(status
& mask
))
630 if (!drv_data
->cur_msg
) {
632 pxa2xx_spi_write(drv_data
, SSCR0
,
633 pxa2xx_spi_read(drv_data
, SSCR0
)
635 pxa2xx_spi_write(drv_data
, SSCR1
,
636 pxa2xx_spi_read(drv_data
, SSCR1
)
637 & ~drv_data
->int_cr1
);
638 if (!pxa25x_ssp_comp(drv_data
))
639 pxa2xx_spi_write(drv_data
, SSTO
, 0);
640 write_SSSR_CS(drv_data
, drv_data
->clear_sr
);
642 dev_err(&drv_data
->pdev
->dev
,
643 "bad message state in interrupt handler\n");
649 return drv_data
->transfer_handler(drv_data
);
653 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
654 * input frequency by fractions of 2^24. It also has a divider by 5.
656 * There are formulas to get baud rate value for given input frequency and
657 * divider parameters, such as DDS_CLK_RATE and SCR:
661 * Fssp = Fsys * DDS_CLK_RATE / 2^24 (1)
662 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1)) (2)
664 * DDS_CLK_RATE either 2^n or 2^n / 5.
665 * SCR is in range 0 .. 255
667 * Divisor = 5^i * 2^j * 2 * k
668 * i = [0, 1] i = 1 iff j = 0 or j > 3
669 * j = [0, 23] j = 0 iff i = 1
671 * Special case: j = 0, i = 1: Divisor = 2 / 5
673 * Accordingly to the specification the recommended values for DDS_CLK_RATE
675 * Case 1: 2^n, n = [0, 23]
676 * Case 2: 2^24 * 2 / 5 (0x666666)
677 * Case 3: less than or equal to 2^24 / 5 / 16 (0x33333)
679 * In all cases the lowest possible value is better.
681 * The function calculates parameters for all cases and chooses the one closest
682 * to the asked baud rate.
684 static unsigned int quark_x1000_get_clk_div(int rate
, u32
*dds
)
686 unsigned long xtal
= 200000000;
687 unsigned long fref
= xtal
/ 2; /* mandatory division by 2,
690 unsigned long fref1
= fref
/ 2; /* case 1 */
691 unsigned long fref2
= fref
* 2 / 5; /* case 2 */
693 unsigned long q
, q1
, q2
;
699 /* Set initial value for DDS_CLK_RATE */
700 mul
= (1 << 24) >> 1;
702 /* Calculate initial quot */
703 q1
= DIV_ROUND_CLOSEST(fref1
, rate
);
705 /* Scale q1 if it's too big */
707 /* Scale q1 to range [1, 512] */
708 scale
= fls_long(q1
- 1);
714 /* Round the result if we have a remainder */
718 /* Decrease DDS_CLK_RATE as much as we can without loss in precision */
723 /* Get the remainder */
724 r1
= abs(fref1
/ (1 << (24 - fls_long(mul
))) / q1
- rate
);
728 q2
= DIV_ROUND_CLOSEST(fref2
, rate
);
729 r2
= abs(fref2
/ q2
- rate
);
732 * Choose the best between two: less remainder we have the better. We
733 * can't go case 2 if q2 is greater than 256 since SCR register can
734 * hold only values 0 .. 255.
736 if (r2
>= r1
|| q2
> 256) {
737 /* case 1 is better */
741 /* case 2 is better */
744 mul
= (1 << 24) * 2 / 5;
747 /* Check case 3 only If the divisor is big enough */
748 if (fref
/ rate
>= 80) {
752 /* Calculate initial quot */
753 q1
= DIV_ROUND_CLOSEST(fref
, rate
);
756 /* Get the remainder */
757 fssp
= (u64
)fref
* m
;
758 do_div(fssp
, 1 << 24);
759 r1
= abs(fssp
- rate
);
761 /* Choose this one if it suits better */
763 /* case 3 is better */
773 static unsigned int ssp_get_clk_div(struct driver_data
*drv_data
, int rate
)
775 unsigned long ssp_clk
= drv_data
->max_clk_rate
;
776 const struct ssp_device
*ssp
= drv_data
->ssp
;
778 rate
= min_t(int, ssp_clk
, rate
);
780 if (ssp
->type
== PXA25x_SSP
|| ssp
->type
== CE4100_SSP
)
781 return (ssp_clk
/ (2 * rate
) - 1) & 0xff;
783 return (ssp_clk
/ rate
- 1) & 0xfff;
786 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data
*drv_data
,
787 struct chip_data
*chip
, int rate
)
789 unsigned int clk_div
;
791 switch (drv_data
->ssp_type
) {
792 case QUARK_X1000_SSP
:
793 clk_div
= quark_x1000_get_clk_div(rate
, &chip
->dds_rate
);
796 clk_div
= ssp_get_clk_div(drv_data
, rate
);
802 static void pump_transfers(unsigned long data
)
804 struct driver_data
*drv_data
= (struct driver_data
*)data
;
805 struct spi_message
*message
= NULL
;
806 struct spi_transfer
*transfer
= NULL
;
807 struct spi_transfer
*previous
= NULL
;
808 struct chip_data
*chip
= NULL
;
814 u32 dma_thresh
= drv_data
->cur_chip
->dma_threshold
;
815 u32 dma_burst
= drv_data
->cur_chip
->dma_burst_size
;
816 u32 change_mask
= pxa2xx_spi_get_ssrc1_change_mask(drv_data
);
818 /* Get current state information */
819 message
= drv_data
->cur_msg
;
820 transfer
= drv_data
->cur_transfer
;
821 chip
= drv_data
->cur_chip
;
823 /* Handle for abort */
824 if (message
->state
== ERROR_STATE
) {
825 message
->status
= -EIO
;
830 /* Handle end of message */
831 if (message
->state
== DONE_STATE
) {
837 /* Delay if requested at end of transfer before CS change */
838 if (message
->state
== RUNNING_STATE
) {
839 previous
= list_entry(transfer
->transfer_list
.prev
,
842 if (previous
->delay_usecs
)
843 udelay(previous
->delay_usecs
);
845 /* Drop chip select only if cs_change is requested */
846 if (previous
->cs_change
)
847 cs_deassert(drv_data
);
850 /* Check if we can DMA this transfer */
851 if (!pxa2xx_spi_dma_is_possible(transfer
->len
) && chip
->enable_dma
) {
853 /* reject already-mapped transfers; PIO won't always work */
854 if (message
->is_dma_mapped
855 || transfer
->rx_dma
|| transfer
->tx_dma
) {
856 dev_err(&drv_data
->pdev
->dev
,
857 "pump_transfers: mapped transfer length of "
858 "%u is greater than %d\n",
859 transfer
->len
, MAX_DMA_LEN
);
860 message
->status
= -EINVAL
;
865 /* warn ... we force this to PIO mode */
866 dev_warn_ratelimited(&message
->spi
->dev
,
867 "pump_transfers: DMA disabled for transfer length %ld "
869 (long)drv_data
->len
, MAX_DMA_LEN
);
872 /* Setup the transfer state based on the type of transfer */
873 if (pxa2xx_spi_flush(drv_data
) == 0) {
874 dev_err(&drv_data
->pdev
->dev
, "pump_transfers: flush failed\n");
875 message
->status
= -EIO
;
879 drv_data
->n_bytes
= chip
->n_bytes
;
880 drv_data
->tx
= (void *)transfer
->tx_buf
;
881 drv_data
->tx_end
= drv_data
->tx
+ transfer
->len
;
882 drv_data
->rx
= transfer
->rx_buf
;
883 drv_data
->rx_end
= drv_data
->rx
+ transfer
->len
;
884 drv_data
->rx_dma
= transfer
->rx_dma
;
885 drv_data
->tx_dma
= transfer
->tx_dma
;
886 drv_data
->len
= transfer
->len
;
887 drv_data
->write
= drv_data
->tx
? chip
->write
: null_writer
;
888 drv_data
->read
= drv_data
->rx
? chip
->read
: null_reader
;
890 /* Change speed and bit per word on a per transfer */
892 if (transfer
->speed_hz
|| transfer
->bits_per_word
) {
894 bits
= chip
->bits_per_word
;
895 speed
= chip
->speed_hz
;
897 if (transfer
->speed_hz
)
898 speed
= transfer
->speed_hz
;
900 if (transfer
->bits_per_word
)
901 bits
= transfer
->bits_per_word
;
903 clk_div
= pxa2xx_ssp_get_clk_div(drv_data
, chip
, speed
);
906 drv_data
->n_bytes
= 1;
907 drv_data
->read
= drv_data
->read
!= null_reader
?
908 u8_reader
: null_reader
;
909 drv_data
->write
= drv_data
->write
!= null_writer
?
910 u8_writer
: null_writer
;
911 } else if (bits
<= 16) {
912 drv_data
->n_bytes
= 2;
913 drv_data
->read
= drv_data
->read
!= null_reader
?
914 u16_reader
: null_reader
;
915 drv_data
->write
= drv_data
->write
!= null_writer
?
916 u16_writer
: null_writer
;
917 } else if (bits
<= 32) {
918 drv_data
->n_bytes
= 4;
919 drv_data
->read
= drv_data
->read
!= null_reader
?
920 u32_reader
: null_reader
;
921 drv_data
->write
= drv_data
->write
!= null_writer
?
922 u32_writer
: null_writer
;
924 /* if bits/word is changed in dma mode, then must check the
925 * thresholds and burst also */
926 if (chip
->enable_dma
) {
927 if (pxa2xx_spi_set_dma_burst_and_threshold(chip
,
931 dev_warn_ratelimited(&message
->spi
->dev
,
932 "pump_transfers: DMA burst size reduced to match bits_per_word\n");
935 cr0
= pxa2xx_configure_sscr0(drv_data
, clk_div
, bits
);
938 message
->state
= RUNNING_STATE
;
940 drv_data
->dma_mapped
= 0;
941 if (pxa2xx_spi_dma_is_possible(drv_data
->len
))
942 drv_data
->dma_mapped
= pxa2xx_spi_map_dma_buffers(drv_data
);
943 if (drv_data
->dma_mapped
) {
945 /* Ensure we have the correct interrupt handler */
946 drv_data
->transfer_handler
= pxa2xx_spi_dma_transfer
;
948 pxa2xx_spi_dma_prepare(drv_data
, dma_burst
);
950 /* Clear status and start DMA engine */
951 cr1
= chip
->cr1
| dma_thresh
| drv_data
->dma_cr1
;
952 pxa2xx_spi_write(drv_data
, SSSR
, drv_data
->clear_sr
);
954 pxa2xx_spi_dma_start(drv_data
);
956 /* Ensure we have the correct interrupt handler */
957 drv_data
->transfer_handler
= interrupt_transfer
;
960 cr1
= chip
->cr1
| chip
->threshold
| drv_data
->int_cr1
;
961 write_SSSR_CS(drv_data
, drv_data
->clear_sr
);
964 if (is_lpss_ssp(drv_data
)) {
965 if ((pxa2xx_spi_read(drv_data
, SSIRF
) & 0xff)
966 != chip
->lpss_rx_threshold
)
967 pxa2xx_spi_write(drv_data
, SSIRF
,
968 chip
->lpss_rx_threshold
);
969 if ((pxa2xx_spi_read(drv_data
, SSITF
) & 0xffff)
970 != chip
->lpss_tx_threshold
)
971 pxa2xx_spi_write(drv_data
, SSITF
,
972 chip
->lpss_tx_threshold
);
975 if (is_quark_x1000_ssp(drv_data
) &&
976 (pxa2xx_spi_read(drv_data
, DDS_RATE
) != chip
->dds_rate
))
977 pxa2xx_spi_write(drv_data
, DDS_RATE
, chip
->dds_rate
);
979 /* see if we need to reload the config registers */
980 if ((pxa2xx_spi_read(drv_data
, SSCR0
) != cr0
)
981 || (pxa2xx_spi_read(drv_data
, SSCR1
) & change_mask
)
982 != (cr1
& change_mask
)) {
983 /* stop the SSP, and update the other bits */
984 pxa2xx_spi_write(drv_data
, SSCR0
, cr0
& ~SSCR0_SSE
);
985 if (!pxa25x_ssp_comp(drv_data
))
986 pxa2xx_spi_write(drv_data
, SSTO
, chip
->timeout
);
987 /* first set CR1 without interrupt and service enables */
988 pxa2xx_spi_write(drv_data
, SSCR1
, cr1
& change_mask
);
989 /* restart the SSP */
990 pxa2xx_spi_write(drv_data
, SSCR0
, cr0
);
993 if (!pxa25x_ssp_comp(drv_data
))
994 pxa2xx_spi_write(drv_data
, SSTO
, chip
->timeout
);
999 /* after chip select, release the data by enabling service
1000 * requests and interrupts, without changing any mode bits */
1001 pxa2xx_spi_write(drv_data
, SSCR1
, cr1
);
1004 static int pxa2xx_spi_transfer_one_message(struct spi_master
*master
,
1005 struct spi_message
*msg
)
1007 struct driver_data
*drv_data
= spi_master_get_devdata(master
);
1009 drv_data
->cur_msg
= msg
;
1010 /* Initial message state*/
1011 drv_data
->cur_msg
->state
= START_STATE
;
1012 drv_data
->cur_transfer
= list_entry(drv_data
->cur_msg
->transfers
.next
,
1013 struct spi_transfer
,
1016 /* prepare to setup the SSP, in pump_transfers, using the per
1017 * chip configuration */
1018 drv_data
->cur_chip
= spi_get_ctldata(drv_data
->cur_msg
->spi
);
1020 /* Mark as busy and launch transfers */
1021 tasklet_schedule(&drv_data
->pump_transfers
);
1025 static int pxa2xx_spi_unprepare_transfer(struct spi_master
*master
)
1027 struct driver_data
*drv_data
= spi_master_get_devdata(master
);
1029 /* Disable the SSP now */
1030 pxa2xx_spi_write(drv_data
, SSCR0
,
1031 pxa2xx_spi_read(drv_data
, SSCR0
) & ~SSCR0_SSE
);
1036 static int setup_cs(struct spi_device
*spi
, struct chip_data
*chip
,
1037 struct pxa2xx_spi_chip
*chip_info
)
1041 if (chip
== NULL
|| chip_info
== NULL
)
1044 /* NOTE: setup() can be called multiple times, possibly with
1045 * different chip_info, release previously requested GPIO
1047 if (gpio_is_valid(chip
->gpio_cs
))
1048 gpio_free(chip
->gpio_cs
);
1050 /* If (*cs_control) is provided, ignore GPIO chip select */
1051 if (chip_info
->cs_control
) {
1052 chip
->cs_control
= chip_info
->cs_control
;
1056 if (gpio_is_valid(chip_info
->gpio_cs
)) {
1057 err
= gpio_request(chip_info
->gpio_cs
, "SPI_CS");
1059 dev_err(&spi
->dev
, "failed to request chip select GPIO%d\n",
1060 chip_info
->gpio_cs
);
1064 chip
->gpio_cs
= chip_info
->gpio_cs
;
1065 chip
->gpio_cs_inverted
= spi
->mode
& SPI_CS_HIGH
;
1067 err
= gpio_direction_output(chip
->gpio_cs
,
1068 !chip
->gpio_cs_inverted
);
1074 static int setup(struct spi_device
*spi
)
1076 struct pxa2xx_spi_chip
*chip_info
= NULL
;
1077 struct chip_data
*chip
;
1078 struct driver_data
*drv_data
= spi_master_get_devdata(spi
->master
);
1079 unsigned int clk_div
;
1080 uint tx_thres
, tx_hi_thres
, rx_thres
;
1082 switch (drv_data
->ssp_type
) {
1083 case QUARK_X1000_SSP
:
1084 tx_thres
= TX_THRESH_QUARK_X1000_DFLT
;
1086 rx_thres
= RX_THRESH_QUARK_X1000_DFLT
;
1089 tx_thres
= LPSS_TX_LOTHRESH_DFLT
;
1090 tx_hi_thres
= LPSS_TX_HITHRESH_DFLT
;
1091 rx_thres
= LPSS_RX_THRESH_DFLT
;
1094 tx_thres
= TX_THRESH_DFLT
;
1096 rx_thres
= RX_THRESH_DFLT
;
1100 /* Only alloc on first setup */
1101 chip
= spi_get_ctldata(spi
);
1103 chip
= kzalloc(sizeof(struct chip_data
), GFP_KERNEL
);
1107 if (drv_data
->ssp_type
== CE4100_SSP
) {
1108 if (spi
->chip_select
> 4) {
1110 "failed setup: cs number must not be > 4.\n");
1115 chip
->frm
= spi
->chip_select
;
1118 chip
->enable_dma
= 0;
1119 chip
->timeout
= TIMOUT_DFLT
;
1122 /* protocol drivers may change the chip settings, so...
1123 * if chip_info exists, use it */
1124 chip_info
= spi
->controller_data
;
1126 /* chip_info isn't always needed */
1129 if (chip_info
->timeout
)
1130 chip
->timeout
= chip_info
->timeout
;
1131 if (chip_info
->tx_threshold
)
1132 tx_thres
= chip_info
->tx_threshold
;
1133 if (chip_info
->tx_hi_threshold
)
1134 tx_hi_thres
= chip_info
->tx_hi_threshold
;
1135 if (chip_info
->rx_threshold
)
1136 rx_thres
= chip_info
->rx_threshold
;
1137 chip
->enable_dma
= drv_data
->master_info
->enable_dma
;
1138 chip
->dma_threshold
= 0;
1139 if (chip_info
->enable_loopback
)
1140 chip
->cr1
= SSCR1_LBM
;
1141 } else if (ACPI_HANDLE(&spi
->dev
)) {
1143 * Slave devices enumerated from ACPI namespace don't
1144 * usually have chip_info but we still might want to use
1147 chip
->enable_dma
= drv_data
->master_info
->enable_dma
;
1150 chip
->lpss_rx_threshold
= SSIRF_RxThresh(rx_thres
);
1151 chip
->lpss_tx_threshold
= SSITF_TxLoThresh(tx_thres
)
1152 | SSITF_TxHiThresh(tx_hi_thres
);
1154 /* set dma burst and threshold outside of chip_info path so that if
1155 * chip_info goes away after setting chip->enable_dma, the
1156 * burst and threshold can still respond to changes in bits_per_word */
1157 if (chip
->enable_dma
) {
1158 /* set up legal burst and threshold for dma */
1159 if (pxa2xx_spi_set_dma_burst_and_threshold(chip
, spi
,
1161 &chip
->dma_burst_size
,
1162 &chip
->dma_threshold
)) {
1164 "in setup: DMA burst size reduced to match bits_per_word\n");
1168 clk_div
= pxa2xx_ssp_get_clk_div(drv_data
, chip
, spi
->max_speed_hz
);
1169 chip
->speed_hz
= spi
->max_speed_hz
;
1171 chip
->cr0
= pxa2xx_configure_sscr0(drv_data
, clk_div
,
1172 spi
->bits_per_word
);
1173 switch (drv_data
->ssp_type
) {
1174 case QUARK_X1000_SSP
:
1175 chip
->threshold
= (QUARK_X1000_SSCR1_RxTresh(rx_thres
)
1176 & QUARK_X1000_SSCR1_RFT
)
1177 | (QUARK_X1000_SSCR1_TxTresh(tx_thres
)
1178 & QUARK_X1000_SSCR1_TFT
);
1181 chip
->threshold
= (SSCR1_RxTresh(rx_thres
) & SSCR1_RFT
) |
1182 (SSCR1_TxTresh(tx_thres
) & SSCR1_TFT
);
1186 chip
->cr1
&= ~(SSCR1_SPO
| SSCR1_SPH
);
1187 chip
->cr1
|= (((spi
->mode
& SPI_CPHA
) != 0) ? SSCR1_SPH
: 0)
1188 | (((spi
->mode
& SPI_CPOL
) != 0) ? SSCR1_SPO
: 0);
1190 if (spi
->mode
& SPI_LOOP
)
1191 chip
->cr1
|= SSCR1_LBM
;
1193 /* NOTE: PXA25x_SSP _could_ use external clocking ... */
1194 if (!pxa25x_ssp_comp(drv_data
))
1195 dev_dbg(&spi
->dev
, "%ld Hz actual, %s\n",
1196 drv_data
->max_clk_rate
1197 / (1 + ((chip
->cr0
& SSCR0_SCR(0xfff)) >> 8)),
1198 chip
->enable_dma
? "DMA" : "PIO");
1200 dev_dbg(&spi
->dev
, "%ld Hz actual, %s\n",
1201 drv_data
->max_clk_rate
/ 2
1202 / (1 + ((chip
->cr0
& SSCR0_SCR(0x0ff)) >> 8)),
1203 chip
->enable_dma
? "DMA" : "PIO");
1205 if (spi
->bits_per_word
<= 8) {
1207 chip
->read
= u8_reader
;
1208 chip
->write
= u8_writer
;
1209 } else if (spi
->bits_per_word
<= 16) {
1211 chip
->read
= u16_reader
;
1212 chip
->write
= u16_writer
;
1213 } else if (spi
->bits_per_word
<= 32) {
1214 if (!is_quark_x1000_ssp(drv_data
))
1215 chip
->cr0
|= SSCR0_EDSS
;
1217 chip
->read
= u32_reader
;
1218 chip
->write
= u32_writer
;
1220 chip
->bits_per_word
= spi
->bits_per_word
;
1222 spi_set_ctldata(spi
, chip
);
1224 if (drv_data
->ssp_type
== CE4100_SSP
)
1227 return setup_cs(spi
, chip
, chip_info
);
1230 static void cleanup(struct spi_device
*spi
)
1232 struct chip_data
*chip
= spi_get_ctldata(spi
);
1233 struct driver_data
*drv_data
= spi_master_get_devdata(spi
->master
);
1238 if (drv_data
->ssp_type
!= CE4100_SSP
&& gpio_is_valid(chip
->gpio_cs
))
1239 gpio_free(chip
->gpio_cs
);
1245 static struct pxa2xx_spi_master
*
1246 pxa2xx_spi_acpi_get_pdata(struct platform_device
*pdev
)
1248 struct pxa2xx_spi_master
*pdata
;
1249 struct acpi_device
*adev
;
1250 struct ssp_device
*ssp
;
1251 struct resource
*res
;
1254 if (!ACPI_HANDLE(&pdev
->dev
) ||
1255 acpi_bus_get_device(ACPI_HANDLE(&pdev
->dev
), &adev
))
1258 pdata
= devm_kzalloc(&pdev
->dev
, sizeof(*pdata
), GFP_KERNEL
);
1262 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1268 ssp
->phys_base
= res
->start
;
1269 ssp
->mmio_base
= devm_ioremap_resource(&pdev
->dev
, res
);
1270 if (IS_ERR(ssp
->mmio_base
))
1273 ssp
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
1274 ssp
->irq
= platform_get_irq(pdev
, 0);
1275 ssp
->type
= LPSS_SSP
;
1279 if (adev
->pnp
.unique_id
&& !kstrtoint(adev
->pnp
.unique_id
, 0, &devid
))
1280 ssp
->port_id
= devid
;
1282 pdata
->num_chipselect
= 1;
1283 pdata
->enable_dma
= true;
1288 static struct acpi_device_id pxa2xx_spi_acpi_match
[] = {
1297 MODULE_DEVICE_TABLE(acpi
, pxa2xx_spi_acpi_match
);
1299 static inline struct pxa2xx_spi_master
*
1300 pxa2xx_spi_acpi_get_pdata(struct platform_device
*pdev
)
1306 static int pxa2xx_spi_probe(struct platform_device
*pdev
)
1308 struct device
*dev
= &pdev
->dev
;
1309 struct pxa2xx_spi_master
*platform_info
;
1310 struct spi_master
*master
;
1311 struct driver_data
*drv_data
;
1312 struct ssp_device
*ssp
;
1316 platform_info
= dev_get_platdata(dev
);
1317 if (!platform_info
) {
1318 platform_info
= pxa2xx_spi_acpi_get_pdata(pdev
);
1319 if (!platform_info
) {
1320 dev_err(&pdev
->dev
, "missing platform data\n");
1325 ssp
= pxa_ssp_request(pdev
->id
, pdev
->name
);
1327 ssp
= &platform_info
->ssp
;
1329 if (!ssp
->mmio_base
) {
1330 dev_err(&pdev
->dev
, "failed to get ssp\n");
1334 /* Allocate master with space for drv_data and null dma buffer */
1335 master
= spi_alloc_master(dev
, sizeof(struct driver_data
) + 16);
1337 dev_err(&pdev
->dev
, "cannot alloc spi_master\n");
1341 drv_data
= spi_master_get_devdata(master
);
1342 drv_data
->master
= master
;
1343 drv_data
->master_info
= platform_info
;
1344 drv_data
->pdev
= pdev
;
1345 drv_data
->ssp
= ssp
;
1347 master
->dev
.parent
= &pdev
->dev
;
1348 master
->dev
.of_node
= pdev
->dev
.of_node
;
1349 /* the spi->mode bits understood by this driver: */
1350 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
| SPI_LOOP
;
1352 master
->bus_num
= ssp
->port_id
;
1353 master
->num_chipselect
= platform_info
->num_chipselect
;
1354 master
->dma_alignment
= DMA_ALIGNMENT
;
1355 master
->cleanup
= cleanup
;
1356 master
->setup
= setup
;
1357 master
->transfer_one_message
= pxa2xx_spi_transfer_one_message
;
1358 master
->unprepare_transfer_hardware
= pxa2xx_spi_unprepare_transfer
;
1359 master
->auto_runtime_pm
= true;
1361 drv_data
->ssp_type
= ssp
->type
;
1362 drv_data
->null_dma_buf
= (u32
*)PTR_ALIGN(&drv_data
[1], DMA_ALIGNMENT
);
1364 drv_data
->ioaddr
= ssp
->mmio_base
;
1365 drv_data
->ssdr_physical
= ssp
->phys_base
+ SSDR
;
1366 if (pxa25x_ssp_comp(drv_data
)) {
1367 switch (drv_data
->ssp_type
) {
1368 case QUARK_X1000_SSP
:
1369 master
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(4, 32);
1372 master
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(4, 16);
1376 drv_data
->int_cr1
= SSCR1_TIE
| SSCR1_RIE
;
1377 drv_data
->dma_cr1
= 0;
1378 drv_data
->clear_sr
= SSSR_ROR
;
1379 drv_data
->mask_sr
= SSSR_RFS
| SSSR_TFS
| SSSR_ROR
;
1381 master
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(4, 32);
1382 drv_data
->int_cr1
= SSCR1_TIE
| SSCR1_RIE
| SSCR1_TINTE
;
1383 drv_data
->dma_cr1
= DEFAULT_DMA_CR1
;
1384 drv_data
->clear_sr
= SSSR_ROR
| SSSR_TINT
;
1385 drv_data
->mask_sr
= SSSR_TINT
| SSSR_RFS
| SSSR_TFS
| SSSR_ROR
;
1388 status
= request_irq(ssp
->irq
, ssp_int
, IRQF_SHARED
, dev_name(dev
),
1391 dev_err(&pdev
->dev
, "cannot get IRQ %d\n", ssp
->irq
);
1392 goto out_error_master_alloc
;
1395 /* Setup DMA if requested */
1396 drv_data
->tx_channel
= -1;
1397 drv_data
->rx_channel
= -1;
1398 if (platform_info
->enable_dma
) {
1399 status
= pxa2xx_spi_dma_setup(drv_data
);
1401 dev_dbg(dev
, "no DMA channels available, using PIO\n");
1402 platform_info
->enable_dma
= false;
1406 /* Enable SOC clock */
1407 clk_prepare_enable(ssp
->clk
);
1409 drv_data
->max_clk_rate
= clk_get_rate(ssp
->clk
);
1411 /* Load default SSP configuration */
1412 pxa2xx_spi_write(drv_data
, SSCR0
, 0);
1413 switch (drv_data
->ssp_type
) {
1414 case QUARK_X1000_SSP
:
1415 tmp
= QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT
)
1416 | QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT
);
1417 pxa2xx_spi_write(drv_data
, SSCR1
, tmp
);
1419 /* using the Motorola SPI protocol and use 8 bit frame */
1420 pxa2xx_spi_write(drv_data
, SSCR0
,
1421 QUARK_X1000_SSCR0_Motorola
1422 | QUARK_X1000_SSCR0_DataSize(8));
1425 tmp
= SSCR1_RxTresh(RX_THRESH_DFLT
) |
1426 SSCR1_TxTresh(TX_THRESH_DFLT
);
1427 pxa2xx_spi_write(drv_data
, SSCR1
, tmp
);
1428 tmp
= SSCR0_SCR(2) | SSCR0_Motorola
| SSCR0_DataSize(8);
1429 pxa2xx_spi_write(drv_data
, SSCR0
, tmp
);
1433 if (!pxa25x_ssp_comp(drv_data
))
1434 pxa2xx_spi_write(drv_data
, SSTO
, 0);
1436 if (!is_quark_x1000_ssp(drv_data
))
1437 pxa2xx_spi_write(drv_data
, SSPSP
, 0);
1439 if (is_lpss_ssp(drv_data
))
1440 lpss_ssp_setup(drv_data
);
1442 tasklet_init(&drv_data
->pump_transfers
, pump_transfers
,
1443 (unsigned long)drv_data
);
1445 pm_runtime_set_autosuspend_delay(&pdev
->dev
, 50);
1446 pm_runtime_use_autosuspend(&pdev
->dev
);
1447 pm_runtime_set_active(&pdev
->dev
);
1448 pm_runtime_enable(&pdev
->dev
);
1450 /* Register with the SPI framework */
1451 platform_set_drvdata(pdev
, drv_data
);
1452 status
= devm_spi_register_master(&pdev
->dev
, master
);
1454 dev_err(&pdev
->dev
, "problem registering spi master\n");
1455 goto out_error_clock_enabled
;
1460 out_error_clock_enabled
:
1461 clk_disable_unprepare(ssp
->clk
);
1462 pxa2xx_spi_dma_release(drv_data
);
1463 free_irq(ssp
->irq
, drv_data
);
1465 out_error_master_alloc
:
1466 spi_master_put(master
);
1471 static int pxa2xx_spi_remove(struct platform_device
*pdev
)
1473 struct driver_data
*drv_data
= platform_get_drvdata(pdev
);
1474 struct ssp_device
*ssp
;
1478 ssp
= drv_data
->ssp
;
1480 pm_runtime_get_sync(&pdev
->dev
);
1482 /* Disable the SSP at the peripheral and SOC level */
1483 pxa2xx_spi_write(drv_data
, SSCR0
, 0);
1484 clk_disable_unprepare(ssp
->clk
);
1487 if (drv_data
->master_info
->enable_dma
)
1488 pxa2xx_spi_dma_release(drv_data
);
1490 pm_runtime_put_noidle(&pdev
->dev
);
1491 pm_runtime_disable(&pdev
->dev
);
1494 free_irq(ssp
->irq
, drv_data
);
1502 static void pxa2xx_spi_shutdown(struct platform_device
*pdev
)
1506 if ((status
= pxa2xx_spi_remove(pdev
)) != 0)
1507 dev_err(&pdev
->dev
, "shutdown failed with %d\n", status
);
1510 #ifdef CONFIG_PM_SLEEP
1511 static int pxa2xx_spi_suspend(struct device
*dev
)
1513 struct driver_data
*drv_data
= dev_get_drvdata(dev
);
1514 struct ssp_device
*ssp
= drv_data
->ssp
;
1517 status
= spi_master_suspend(drv_data
->master
);
1520 pxa2xx_spi_write(drv_data
, SSCR0
, 0);
1522 if (!pm_runtime_suspended(dev
))
1523 clk_disable_unprepare(ssp
->clk
);
1528 static int pxa2xx_spi_resume(struct device
*dev
)
1530 struct driver_data
*drv_data
= dev_get_drvdata(dev
);
1531 struct ssp_device
*ssp
= drv_data
->ssp
;
1534 pxa2xx_spi_dma_resume(drv_data
);
1536 /* Enable the SSP clock */
1537 if (!pm_runtime_suspended(dev
))
1538 clk_prepare_enable(ssp
->clk
);
1540 /* Restore LPSS private register bits */
1541 if (is_lpss_ssp(drv_data
))
1542 lpss_ssp_setup(drv_data
);
1544 /* Start the queue running */
1545 status
= spi_master_resume(drv_data
->master
);
1547 dev_err(dev
, "problem starting queue (%d)\n", status
);
1556 static int pxa2xx_spi_runtime_suspend(struct device
*dev
)
1558 struct driver_data
*drv_data
= dev_get_drvdata(dev
);
1560 clk_disable_unprepare(drv_data
->ssp
->clk
);
1564 static int pxa2xx_spi_runtime_resume(struct device
*dev
)
1566 struct driver_data
*drv_data
= dev_get_drvdata(dev
);
1568 clk_prepare_enable(drv_data
->ssp
->clk
);
1573 static const struct dev_pm_ops pxa2xx_spi_pm_ops
= {
1574 SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend
, pxa2xx_spi_resume
)
1575 SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend
,
1576 pxa2xx_spi_runtime_resume
, NULL
)
1579 static struct platform_driver driver
= {
1581 .name
= "pxa2xx-spi",
1582 .pm
= &pxa2xx_spi_pm_ops
,
1583 .acpi_match_table
= ACPI_PTR(pxa2xx_spi_acpi_match
),
1585 .probe
= pxa2xx_spi_probe
,
1586 .remove
= pxa2xx_spi_remove
,
1587 .shutdown
= pxa2xx_spi_shutdown
,
1590 static int __init
pxa2xx_spi_init(void)
1592 return platform_driver_register(&driver
);
1594 subsys_initcall(pxa2xx_spi_init
);
1596 static void __exit
pxa2xx_spi_exit(void)
1598 platform_driver_unregister(&driver
);
1600 module_exit(pxa2xx_spi_exit
);