udf: improve error management in udf_CS0toUTF8()
[linux/fpc-iii.git] / drivers / spi / spi-sirf.c
blobf5715c9f68b0e0cb3dd2f7f568fed38798820796
1 /*
2 * SPI bus driver for CSR SiRFprimaII
4 * Copyright (c) 2011 Cambridge Silicon Radio Limited, a CSR plc group company.
6 * Licensed under GPLv2 or later.
7 */
9 #include <linux/module.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/clk.h>
13 #include <linux/completion.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/of.h>
17 #include <linux/bitops.h>
18 #include <linux/err.h>
19 #include <linux/platform_device.h>
20 #include <linux/of_gpio.h>
21 #include <linux/spi/spi.h>
22 #include <linux/spi/spi_bitbang.h>
23 #include <linux/dmaengine.h>
24 #include <linux/dma-direction.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/reset.h>
28 #define DRIVER_NAME "sirfsoc_spi"
30 #define SIRFSOC_SPI_CTRL 0x0000
31 #define SIRFSOC_SPI_CMD 0x0004
32 #define SIRFSOC_SPI_TX_RX_EN 0x0008
33 #define SIRFSOC_SPI_INT_EN 0x000C
34 #define SIRFSOC_SPI_INT_STATUS 0x0010
35 #define SIRFSOC_SPI_TX_DMA_IO_CTRL 0x0100
36 #define SIRFSOC_SPI_TX_DMA_IO_LEN 0x0104
37 #define SIRFSOC_SPI_TXFIFO_CTRL 0x0108
38 #define SIRFSOC_SPI_TXFIFO_LEVEL_CHK 0x010C
39 #define SIRFSOC_SPI_TXFIFO_OP 0x0110
40 #define SIRFSOC_SPI_TXFIFO_STATUS 0x0114
41 #define SIRFSOC_SPI_TXFIFO_DATA 0x0118
42 #define SIRFSOC_SPI_RX_DMA_IO_CTRL 0x0120
43 #define SIRFSOC_SPI_RX_DMA_IO_LEN 0x0124
44 #define SIRFSOC_SPI_RXFIFO_CTRL 0x0128
45 #define SIRFSOC_SPI_RXFIFO_LEVEL_CHK 0x012C
46 #define SIRFSOC_SPI_RXFIFO_OP 0x0130
47 #define SIRFSOC_SPI_RXFIFO_STATUS 0x0134
48 #define SIRFSOC_SPI_RXFIFO_DATA 0x0138
49 #define SIRFSOC_SPI_DUMMY_DELAY_CTL 0x0144
51 /* SPI CTRL register defines */
52 #define SIRFSOC_SPI_SLV_MODE BIT(16)
53 #define SIRFSOC_SPI_CMD_MODE BIT(17)
54 #define SIRFSOC_SPI_CS_IO_OUT BIT(18)
55 #define SIRFSOC_SPI_CS_IO_MODE BIT(19)
56 #define SIRFSOC_SPI_CLK_IDLE_STAT BIT(20)
57 #define SIRFSOC_SPI_CS_IDLE_STAT BIT(21)
58 #define SIRFSOC_SPI_TRAN_MSB BIT(22)
59 #define SIRFSOC_SPI_DRV_POS_EDGE BIT(23)
60 #define SIRFSOC_SPI_CS_HOLD_TIME BIT(24)
61 #define SIRFSOC_SPI_CLK_SAMPLE_MODE BIT(25)
62 #define SIRFSOC_SPI_TRAN_DAT_FORMAT_8 (0 << 26)
63 #define SIRFSOC_SPI_TRAN_DAT_FORMAT_12 (1 << 26)
64 #define SIRFSOC_SPI_TRAN_DAT_FORMAT_16 (2 << 26)
65 #define SIRFSOC_SPI_TRAN_DAT_FORMAT_32 (3 << 26)
66 #define SIRFSOC_SPI_CMD_BYTE_NUM(x) ((x & 3) << 28)
67 #define SIRFSOC_SPI_ENA_AUTO_CLR BIT(30)
68 #define SIRFSOC_SPI_MUL_DAT_MODE BIT(31)
70 /* Interrupt Enable */
71 #define SIRFSOC_SPI_RX_DONE_INT_EN BIT(0)
72 #define SIRFSOC_SPI_TX_DONE_INT_EN BIT(1)
73 #define SIRFSOC_SPI_RX_OFLOW_INT_EN BIT(2)
74 #define SIRFSOC_SPI_TX_UFLOW_INT_EN BIT(3)
75 #define SIRFSOC_SPI_RX_IO_DMA_INT_EN BIT(4)
76 #define SIRFSOC_SPI_TX_IO_DMA_INT_EN BIT(5)
77 #define SIRFSOC_SPI_RXFIFO_FULL_INT_EN BIT(6)
78 #define SIRFSOC_SPI_TXFIFO_EMPTY_INT_EN BIT(7)
79 #define SIRFSOC_SPI_RXFIFO_THD_INT_EN BIT(8)
80 #define SIRFSOC_SPI_TXFIFO_THD_INT_EN BIT(9)
81 #define SIRFSOC_SPI_FRM_END_INT_EN BIT(10)
83 #define SIRFSOC_SPI_INT_MASK_ALL 0x1FFF
85 /* Interrupt status */
86 #define SIRFSOC_SPI_RX_DONE BIT(0)
87 #define SIRFSOC_SPI_TX_DONE BIT(1)
88 #define SIRFSOC_SPI_RX_OFLOW BIT(2)
89 #define SIRFSOC_SPI_TX_UFLOW BIT(3)
90 #define SIRFSOC_SPI_RX_IO_DMA BIT(4)
91 #define SIRFSOC_SPI_RX_FIFO_FULL BIT(6)
92 #define SIRFSOC_SPI_TXFIFO_EMPTY BIT(7)
93 #define SIRFSOC_SPI_RXFIFO_THD_REACH BIT(8)
94 #define SIRFSOC_SPI_TXFIFO_THD_REACH BIT(9)
95 #define SIRFSOC_SPI_FRM_END BIT(10)
97 /* TX RX enable */
98 #define SIRFSOC_SPI_RX_EN BIT(0)
99 #define SIRFSOC_SPI_TX_EN BIT(1)
100 #define SIRFSOC_SPI_CMD_TX_EN BIT(2)
102 #define SIRFSOC_SPI_IO_MODE_SEL BIT(0)
103 #define SIRFSOC_SPI_RX_DMA_FLUSH BIT(2)
105 /* FIFO OPs */
106 #define SIRFSOC_SPI_FIFO_RESET BIT(0)
107 #define SIRFSOC_SPI_FIFO_START BIT(1)
109 /* FIFO CTRL */
110 #define SIRFSOC_SPI_FIFO_WIDTH_BYTE (0 << 0)
111 #define SIRFSOC_SPI_FIFO_WIDTH_WORD (1 << 0)
112 #define SIRFSOC_SPI_FIFO_WIDTH_DWORD (2 << 0)
114 /* FIFO Status */
115 #define SIRFSOC_SPI_FIFO_LEVEL_MASK 0xFF
116 #define SIRFSOC_SPI_FIFO_FULL BIT(8)
117 #define SIRFSOC_SPI_FIFO_EMPTY BIT(9)
119 /* 256 bytes rx/tx FIFO */
120 #define SIRFSOC_SPI_FIFO_SIZE 256
121 #define SIRFSOC_SPI_DAT_FRM_LEN_MAX (64 * 1024)
123 #define SIRFSOC_SPI_FIFO_SC(x) ((x) & 0x3F)
124 #define SIRFSOC_SPI_FIFO_LC(x) (((x) & 0x3F) << 10)
125 #define SIRFSOC_SPI_FIFO_HC(x) (((x) & 0x3F) << 20)
126 #define SIRFSOC_SPI_FIFO_THD(x) (((x) & 0xFF) << 2)
129 * only if the rx/tx buffer and transfer size are 4-bytes aligned, we use dma
130 * due to the limitation of dma controller
133 #define ALIGNED(x) (!((u32)x & 0x3))
134 #define IS_DMA_VALID(x) (x && ALIGNED(x->tx_buf) && ALIGNED(x->rx_buf) && \
135 ALIGNED(x->len) && (x->len < 2 * PAGE_SIZE))
137 #define SIRFSOC_MAX_CMD_BYTES 4
138 #define SIRFSOC_SPI_DEFAULT_FRQ 1000000
140 struct sirfsoc_spi {
141 struct spi_bitbang bitbang;
142 struct completion rx_done;
143 struct completion tx_done;
145 void __iomem *base;
146 u32 ctrl_freq; /* SPI controller clock speed */
147 struct clk *clk;
149 /* rx & tx bufs from the spi_transfer */
150 const void *tx;
151 void *rx;
153 /* place received word into rx buffer */
154 void (*rx_word) (struct sirfsoc_spi *);
155 /* get word from tx buffer for sending */
156 void (*tx_word) (struct sirfsoc_spi *);
158 /* number of words left to be tranmitted/received */
159 unsigned int left_tx_word;
160 unsigned int left_rx_word;
162 /* rx & tx DMA channels */
163 struct dma_chan *rx_chan;
164 struct dma_chan *tx_chan;
165 dma_addr_t src_start;
166 dma_addr_t dst_start;
167 void *dummypage;
168 int word_width; /* in bytes */
171 * if tx size is not more than 4 and rx size is NULL, use
172 * command model
174 bool tx_by_cmd;
175 bool hw_cs;
178 static void spi_sirfsoc_rx_word_u8(struct sirfsoc_spi *sspi)
180 u32 data;
181 u8 *rx = sspi->rx;
183 data = readl(sspi->base + SIRFSOC_SPI_RXFIFO_DATA);
185 if (rx) {
186 *rx++ = (u8) data;
187 sspi->rx = rx;
190 sspi->left_rx_word--;
193 static void spi_sirfsoc_tx_word_u8(struct sirfsoc_spi *sspi)
195 u32 data = 0;
196 const u8 *tx = sspi->tx;
198 if (tx) {
199 data = *tx++;
200 sspi->tx = tx;
203 writel(data, sspi->base + SIRFSOC_SPI_TXFIFO_DATA);
204 sspi->left_tx_word--;
207 static void spi_sirfsoc_rx_word_u16(struct sirfsoc_spi *sspi)
209 u32 data;
210 u16 *rx = sspi->rx;
212 data = readl(sspi->base + SIRFSOC_SPI_RXFIFO_DATA);
214 if (rx) {
215 *rx++ = (u16) data;
216 sspi->rx = rx;
219 sspi->left_rx_word--;
222 static void spi_sirfsoc_tx_word_u16(struct sirfsoc_spi *sspi)
224 u32 data = 0;
225 const u16 *tx = sspi->tx;
227 if (tx) {
228 data = *tx++;
229 sspi->tx = tx;
232 writel(data, sspi->base + SIRFSOC_SPI_TXFIFO_DATA);
233 sspi->left_tx_word--;
236 static void spi_sirfsoc_rx_word_u32(struct sirfsoc_spi *sspi)
238 u32 data;
239 u32 *rx = sspi->rx;
241 data = readl(sspi->base + SIRFSOC_SPI_RXFIFO_DATA);
243 if (rx) {
244 *rx++ = (u32) data;
245 sspi->rx = rx;
248 sspi->left_rx_word--;
252 static void spi_sirfsoc_tx_word_u32(struct sirfsoc_spi *sspi)
254 u32 data = 0;
255 const u32 *tx = sspi->tx;
257 if (tx) {
258 data = *tx++;
259 sspi->tx = tx;
262 writel(data, sspi->base + SIRFSOC_SPI_TXFIFO_DATA);
263 sspi->left_tx_word--;
266 static irqreturn_t spi_sirfsoc_irq(int irq, void *dev_id)
268 struct sirfsoc_spi *sspi = dev_id;
269 u32 spi_stat = readl(sspi->base + SIRFSOC_SPI_INT_STATUS);
270 if (sspi->tx_by_cmd && (spi_stat & SIRFSOC_SPI_FRM_END)) {
271 complete(&sspi->tx_done);
272 writel(0x0, sspi->base + SIRFSOC_SPI_INT_EN);
273 writel(SIRFSOC_SPI_INT_MASK_ALL,
274 sspi->base + SIRFSOC_SPI_INT_STATUS);
275 return IRQ_HANDLED;
278 /* Error Conditions */
279 if (spi_stat & SIRFSOC_SPI_RX_OFLOW ||
280 spi_stat & SIRFSOC_SPI_TX_UFLOW) {
281 complete(&sspi->tx_done);
282 complete(&sspi->rx_done);
283 writel(0x0, sspi->base + SIRFSOC_SPI_INT_EN);
284 writel(SIRFSOC_SPI_INT_MASK_ALL,
285 sspi->base + SIRFSOC_SPI_INT_STATUS);
286 return IRQ_HANDLED;
288 if (spi_stat & SIRFSOC_SPI_TXFIFO_EMPTY)
289 complete(&sspi->tx_done);
290 while (!(readl(sspi->base + SIRFSOC_SPI_INT_STATUS) &
291 SIRFSOC_SPI_RX_IO_DMA))
292 cpu_relax();
293 complete(&sspi->rx_done);
294 writel(0x0, sspi->base + SIRFSOC_SPI_INT_EN);
295 writel(SIRFSOC_SPI_INT_MASK_ALL,
296 sspi->base + SIRFSOC_SPI_INT_STATUS);
298 return IRQ_HANDLED;
301 static void spi_sirfsoc_dma_fini_callback(void *data)
303 struct completion *dma_complete = data;
305 complete(dma_complete);
308 static void spi_sirfsoc_cmd_transfer(struct spi_device *spi,
309 struct spi_transfer *t)
311 struct sirfsoc_spi *sspi;
312 int timeout = t->len * 10;
313 u32 cmd;
315 sspi = spi_master_get_devdata(spi->master);
316 writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
317 writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
318 memcpy(&cmd, sspi->tx, t->len);
319 if (sspi->word_width == 1 && !(spi->mode & SPI_LSB_FIRST))
320 cmd = cpu_to_be32(cmd) >>
321 ((SIRFSOC_MAX_CMD_BYTES - t->len) * 8);
322 if (sspi->word_width == 2 && t->len == 4 &&
323 (!(spi->mode & SPI_LSB_FIRST)))
324 cmd = ((cmd & 0xffff) << 16) | (cmd >> 16);
325 writel(cmd, sspi->base + SIRFSOC_SPI_CMD);
326 writel(SIRFSOC_SPI_FRM_END_INT_EN,
327 sspi->base + SIRFSOC_SPI_INT_EN);
328 writel(SIRFSOC_SPI_CMD_TX_EN,
329 sspi->base + SIRFSOC_SPI_TX_RX_EN);
330 if (wait_for_completion_timeout(&sspi->tx_done, timeout) == 0) {
331 dev_err(&spi->dev, "cmd transfer timeout\n");
332 return;
334 sspi->left_rx_word -= t->len;
337 static void spi_sirfsoc_dma_transfer(struct spi_device *spi,
338 struct spi_transfer *t)
340 struct sirfsoc_spi *sspi;
341 struct dma_async_tx_descriptor *rx_desc, *tx_desc;
342 int timeout = t->len * 10;
344 sspi = spi_master_get_devdata(spi->master);
345 writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
346 writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
347 writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
348 writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
349 writel(0, sspi->base + SIRFSOC_SPI_INT_EN);
350 writel(SIRFSOC_SPI_INT_MASK_ALL, sspi->base + SIRFSOC_SPI_INT_STATUS);
351 if (sspi->left_tx_word < SIRFSOC_SPI_DAT_FRM_LEN_MAX) {
352 writel(readl(sspi->base + SIRFSOC_SPI_CTRL) |
353 SIRFSOC_SPI_ENA_AUTO_CLR | SIRFSOC_SPI_MUL_DAT_MODE,
354 sspi->base + SIRFSOC_SPI_CTRL);
355 writel(sspi->left_tx_word - 1,
356 sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN);
357 writel(sspi->left_tx_word - 1,
358 sspi->base + SIRFSOC_SPI_RX_DMA_IO_LEN);
359 } else {
360 writel(readl(sspi->base + SIRFSOC_SPI_CTRL),
361 sspi->base + SIRFSOC_SPI_CTRL);
362 writel(0, sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN);
363 writel(0, sspi->base + SIRFSOC_SPI_RX_DMA_IO_LEN);
365 sspi->dst_start = dma_map_single(&spi->dev, sspi->rx, t->len,
366 (t->tx_buf != t->rx_buf) ?
367 DMA_FROM_DEVICE : DMA_BIDIRECTIONAL);
368 rx_desc = dmaengine_prep_slave_single(sspi->rx_chan,
369 sspi->dst_start, t->len, DMA_DEV_TO_MEM,
370 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
371 rx_desc->callback = spi_sirfsoc_dma_fini_callback;
372 rx_desc->callback_param = &sspi->rx_done;
374 sspi->src_start = dma_map_single(&spi->dev, (void *)sspi->tx, t->len,
375 (t->tx_buf != t->rx_buf) ?
376 DMA_TO_DEVICE : DMA_BIDIRECTIONAL);
377 tx_desc = dmaengine_prep_slave_single(sspi->tx_chan,
378 sspi->src_start, t->len, DMA_MEM_TO_DEV,
379 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
380 tx_desc->callback = spi_sirfsoc_dma_fini_callback;
381 tx_desc->callback_param = &sspi->tx_done;
383 dmaengine_submit(tx_desc);
384 dmaengine_submit(rx_desc);
385 dma_async_issue_pending(sspi->tx_chan);
386 dma_async_issue_pending(sspi->rx_chan);
387 writel(SIRFSOC_SPI_RX_EN | SIRFSOC_SPI_TX_EN,
388 sspi->base + SIRFSOC_SPI_TX_RX_EN);
389 if (wait_for_completion_timeout(&sspi->rx_done, timeout) == 0) {
390 dev_err(&spi->dev, "transfer timeout\n");
391 dmaengine_terminate_all(sspi->rx_chan);
392 } else
393 sspi->left_rx_word = 0;
395 * we only wait tx-done event if transferring by DMA. for PIO,
396 * we get rx data by writing tx data, so if rx is done, tx has
397 * done earlier
399 if (wait_for_completion_timeout(&sspi->tx_done, timeout) == 0) {
400 dev_err(&spi->dev, "transfer timeout\n");
401 dmaengine_terminate_all(sspi->tx_chan);
403 dma_unmap_single(&spi->dev, sspi->src_start, t->len, DMA_TO_DEVICE);
404 dma_unmap_single(&spi->dev, sspi->dst_start, t->len, DMA_FROM_DEVICE);
405 /* TX, RX FIFO stop */
406 writel(0, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
407 writel(0, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
408 if (sspi->left_tx_word >= SIRFSOC_SPI_DAT_FRM_LEN_MAX)
409 writel(0, sspi->base + SIRFSOC_SPI_TX_RX_EN);
412 static void spi_sirfsoc_pio_transfer(struct spi_device *spi,
413 struct spi_transfer *t)
415 struct sirfsoc_spi *sspi;
416 int timeout = t->len * 10;
418 sspi = spi_master_get_devdata(spi->master);
419 do {
420 writel(SIRFSOC_SPI_FIFO_RESET,
421 sspi->base + SIRFSOC_SPI_RXFIFO_OP);
422 writel(SIRFSOC_SPI_FIFO_RESET,
423 sspi->base + SIRFSOC_SPI_TXFIFO_OP);
424 writel(SIRFSOC_SPI_FIFO_START,
425 sspi->base + SIRFSOC_SPI_RXFIFO_OP);
426 writel(SIRFSOC_SPI_FIFO_START,
427 sspi->base + SIRFSOC_SPI_TXFIFO_OP);
428 writel(0, sspi->base + SIRFSOC_SPI_INT_EN);
429 writel(SIRFSOC_SPI_INT_MASK_ALL,
430 sspi->base + SIRFSOC_SPI_INT_STATUS);
431 writel(readl(sspi->base + SIRFSOC_SPI_CTRL) |
432 SIRFSOC_SPI_MUL_DAT_MODE | SIRFSOC_SPI_ENA_AUTO_CLR,
433 sspi->base + SIRFSOC_SPI_CTRL);
434 writel(min(sspi->left_tx_word, (u32)(256 / sspi->word_width))
435 - 1, sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN);
436 writel(min(sspi->left_rx_word, (u32)(256 / sspi->word_width))
437 - 1, sspi->base + SIRFSOC_SPI_RX_DMA_IO_LEN);
438 while (!((readl(sspi->base + SIRFSOC_SPI_TXFIFO_STATUS)
439 & SIRFSOC_SPI_FIFO_FULL)) && sspi->left_tx_word)
440 sspi->tx_word(sspi);
441 writel(SIRFSOC_SPI_TXFIFO_EMPTY_INT_EN |
442 SIRFSOC_SPI_TX_UFLOW_INT_EN |
443 SIRFSOC_SPI_RX_OFLOW_INT_EN |
444 SIRFSOC_SPI_RX_IO_DMA_INT_EN,
445 sspi->base + SIRFSOC_SPI_INT_EN);
446 writel(SIRFSOC_SPI_RX_EN | SIRFSOC_SPI_TX_EN,
447 sspi->base + SIRFSOC_SPI_TX_RX_EN);
448 if (!wait_for_completion_timeout(&sspi->tx_done, timeout) ||
449 !wait_for_completion_timeout(&sspi->rx_done, timeout)) {
450 dev_err(&spi->dev, "transfer timeout\n");
451 break;
453 while (!((readl(sspi->base + SIRFSOC_SPI_RXFIFO_STATUS)
454 & SIRFSOC_SPI_FIFO_EMPTY)) && sspi->left_rx_word)
455 sspi->rx_word(sspi);
456 writel(0, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
457 writel(0, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
458 } while (sspi->left_tx_word != 0 || sspi->left_rx_word != 0);
461 static int spi_sirfsoc_transfer(struct spi_device *spi, struct spi_transfer *t)
463 struct sirfsoc_spi *sspi;
464 sspi = spi_master_get_devdata(spi->master);
466 sspi->tx = t->tx_buf ? t->tx_buf : sspi->dummypage;
467 sspi->rx = t->rx_buf ? t->rx_buf : sspi->dummypage;
468 sspi->left_tx_word = sspi->left_rx_word = t->len / sspi->word_width;
469 reinit_completion(&sspi->rx_done);
470 reinit_completion(&sspi->tx_done);
472 * in the transfer, if transfer data using command register with rx_buf
473 * null, just fill command data into command register and wait for its
474 * completion.
476 if (sspi->tx_by_cmd)
477 spi_sirfsoc_cmd_transfer(spi, t);
478 else if (IS_DMA_VALID(t))
479 spi_sirfsoc_dma_transfer(spi, t);
480 else
481 spi_sirfsoc_pio_transfer(spi, t);
483 return t->len - sspi->left_rx_word * sspi->word_width;
486 static void spi_sirfsoc_chipselect(struct spi_device *spi, int value)
488 struct sirfsoc_spi *sspi = spi_master_get_devdata(spi->master);
490 if (sspi->hw_cs) {
491 u32 regval = readl(sspi->base + SIRFSOC_SPI_CTRL);
492 switch (value) {
493 case BITBANG_CS_ACTIVE:
494 if (spi->mode & SPI_CS_HIGH)
495 regval |= SIRFSOC_SPI_CS_IO_OUT;
496 else
497 regval &= ~SIRFSOC_SPI_CS_IO_OUT;
498 break;
499 case BITBANG_CS_INACTIVE:
500 if (spi->mode & SPI_CS_HIGH)
501 regval &= ~SIRFSOC_SPI_CS_IO_OUT;
502 else
503 regval |= SIRFSOC_SPI_CS_IO_OUT;
504 break;
506 writel(regval, sspi->base + SIRFSOC_SPI_CTRL);
507 } else {
508 switch (value) {
509 case BITBANG_CS_ACTIVE:
510 gpio_direction_output(spi->cs_gpio,
511 spi->mode & SPI_CS_HIGH ? 1 : 0);
512 break;
513 case BITBANG_CS_INACTIVE:
514 gpio_direction_output(spi->cs_gpio,
515 spi->mode & SPI_CS_HIGH ? 0 : 1);
516 break;
521 static int
522 spi_sirfsoc_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
524 struct sirfsoc_spi *sspi;
525 u8 bits_per_word = 0;
526 int hz = 0;
527 u32 regval;
528 u32 txfifo_ctrl, rxfifo_ctrl;
529 u32 fifo_size = SIRFSOC_SPI_FIFO_SIZE / 4;
531 sspi = spi_master_get_devdata(spi->master);
533 bits_per_word = (t) ? t->bits_per_word : spi->bits_per_word;
534 hz = t && t->speed_hz ? t->speed_hz : spi->max_speed_hz;
536 regval = (sspi->ctrl_freq / (2 * hz)) - 1;
537 if (regval > 0xFFFF || regval < 0) {
538 dev_err(&spi->dev, "Speed %d not supported\n", hz);
539 return -EINVAL;
542 switch (bits_per_word) {
543 case 8:
544 regval |= SIRFSOC_SPI_TRAN_DAT_FORMAT_8;
545 sspi->rx_word = spi_sirfsoc_rx_word_u8;
546 sspi->tx_word = spi_sirfsoc_tx_word_u8;
547 break;
548 case 12:
549 case 16:
550 regval |= (bits_per_word == 12) ?
551 SIRFSOC_SPI_TRAN_DAT_FORMAT_12 :
552 SIRFSOC_SPI_TRAN_DAT_FORMAT_16;
553 sspi->rx_word = spi_sirfsoc_rx_word_u16;
554 sspi->tx_word = spi_sirfsoc_tx_word_u16;
555 break;
556 case 32:
557 regval |= SIRFSOC_SPI_TRAN_DAT_FORMAT_32;
558 sspi->rx_word = spi_sirfsoc_rx_word_u32;
559 sspi->tx_word = spi_sirfsoc_tx_word_u32;
560 break;
561 default:
562 BUG();
565 sspi->word_width = DIV_ROUND_UP(bits_per_word, 8);
566 txfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
567 (sspi->word_width >> 1);
568 rxfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
569 (sspi->word_width >> 1);
571 if (!(spi->mode & SPI_CS_HIGH))
572 regval |= SIRFSOC_SPI_CS_IDLE_STAT;
573 if (!(spi->mode & SPI_LSB_FIRST))
574 regval |= SIRFSOC_SPI_TRAN_MSB;
575 if (spi->mode & SPI_CPOL)
576 regval |= SIRFSOC_SPI_CLK_IDLE_STAT;
579 * Data should be driven at least 1/2 cycle before the fetch edge
580 * to make sure that data gets stable at the fetch edge.
582 if (((spi->mode & SPI_CPOL) && (spi->mode & SPI_CPHA)) ||
583 (!(spi->mode & SPI_CPOL) && !(spi->mode & SPI_CPHA)))
584 regval &= ~SIRFSOC_SPI_DRV_POS_EDGE;
585 else
586 regval |= SIRFSOC_SPI_DRV_POS_EDGE;
588 writel(SIRFSOC_SPI_FIFO_SC(fifo_size - 2) |
589 SIRFSOC_SPI_FIFO_LC(fifo_size / 2) |
590 SIRFSOC_SPI_FIFO_HC(2),
591 sspi->base + SIRFSOC_SPI_TXFIFO_LEVEL_CHK);
592 writel(SIRFSOC_SPI_FIFO_SC(2) |
593 SIRFSOC_SPI_FIFO_LC(fifo_size / 2) |
594 SIRFSOC_SPI_FIFO_HC(fifo_size - 2),
595 sspi->base + SIRFSOC_SPI_RXFIFO_LEVEL_CHK);
596 writel(txfifo_ctrl, sspi->base + SIRFSOC_SPI_TXFIFO_CTRL);
597 writel(rxfifo_ctrl, sspi->base + SIRFSOC_SPI_RXFIFO_CTRL);
599 if (t && t->tx_buf && !t->rx_buf && (t->len <= SIRFSOC_MAX_CMD_BYTES)) {
600 regval |= (SIRFSOC_SPI_CMD_BYTE_NUM((t->len - 1)) |
601 SIRFSOC_SPI_CMD_MODE);
602 sspi->tx_by_cmd = true;
603 } else {
604 regval &= ~SIRFSOC_SPI_CMD_MODE;
605 sspi->tx_by_cmd = false;
608 * it should never set to hardware cs mode because in hardware cs mode,
609 * cs signal can't controlled by driver.
611 regval |= SIRFSOC_SPI_CS_IO_MODE;
612 writel(regval, sspi->base + SIRFSOC_SPI_CTRL);
614 if (IS_DMA_VALID(t)) {
615 /* Enable DMA mode for RX, TX */
616 writel(0, sspi->base + SIRFSOC_SPI_TX_DMA_IO_CTRL);
617 writel(SIRFSOC_SPI_RX_DMA_FLUSH,
618 sspi->base + SIRFSOC_SPI_RX_DMA_IO_CTRL);
619 } else {
620 /* Enable IO mode for RX, TX */
621 writel(SIRFSOC_SPI_IO_MODE_SEL,
622 sspi->base + SIRFSOC_SPI_TX_DMA_IO_CTRL);
623 writel(SIRFSOC_SPI_IO_MODE_SEL,
624 sspi->base + SIRFSOC_SPI_RX_DMA_IO_CTRL);
627 return 0;
630 static int spi_sirfsoc_setup(struct spi_device *spi)
632 struct sirfsoc_spi *sspi;
634 sspi = spi_master_get_devdata(spi->master);
636 if (spi->cs_gpio == -ENOENT)
637 sspi->hw_cs = true;
638 else
639 sspi->hw_cs = false;
640 return spi_sirfsoc_setup_transfer(spi, NULL);
643 static int spi_sirfsoc_probe(struct platform_device *pdev)
645 struct sirfsoc_spi *sspi;
646 struct spi_master *master;
647 struct resource *mem_res;
648 int irq;
649 int i, ret;
651 ret = device_reset(&pdev->dev);
652 if (ret) {
653 dev_err(&pdev->dev, "SPI reset failed!\n");
654 return ret;
657 master = spi_alloc_master(&pdev->dev, sizeof(*sspi));
658 if (!master) {
659 dev_err(&pdev->dev, "Unable to allocate SPI master\n");
660 return -ENOMEM;
662 platform_set_drvdata(pdev, master);
663 sspi = spi_master_get_devdata(master);
665 mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
666 sspi->base = devm_ioremap_resource(&pdev->dev, mem_res);
667 if (IS_ERR(sspi->base)) {
668 ret = PTR_ERR(sspi->base);
669 goto free_master;
672 irq = platform_get_irq(pdev, 0);
673 if (irq < 0) {
674 ret = -ENXIO;
675 goto free_master;
677 ret = devm_request_irq(&pdev->dev, irq, spi_sirfsoc_irq, 0,
678 DRIVER_NAME, sspi);
679 if (ret)
680 goto free_master;
682 sspi->bitbang.master = master;
683 sspi->bitbang.chipselect = spi_sirfsoc_chipselect;
684 sspi->bitbang.setup_transfer = spi_sirfsoc_setup_transfer;
685 sspi->bitbang.txrx_bufs = spi_sirfsoc_transfer;
686 sspi->bitbang.master->setup = spi_sirfsoc_setup;
687 master->bus_num = pdev->id;
688 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST | SPI_CS_HIGH;
689 master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(12) |
690 SPI_BPW_MASK(16) | SPI_BPW_MASK(32);
691 master->max_speed_hz = SIRFSOC_SPI_DEFAULT_FRQ;
692 sspi->bitbang.master->dev.of_node = pdev->dev.of_node;
694 /* request DMA channels */
695 sspi->rx_chan = dma_request_slave_channel(&pdev->dev, "rx");
696 if (!sspi->rx_chan) {
697 dev_err(&pdev->dev, "can not allocate rx dma channel\n");
698 ret = -ENODEV;
699 goto free_master;
701 sspi->tx_chan = dma_request_slave_channel(&pdev->dev, "tx");
702 if (!sspi->tx_chan) {
703 dev_err(&pdev->dev, "can not allocate tx dma channel\n");
704 ret = -ENODEV;
705 goto free_rx_dma;
708 sspi->clk = clk_get(&pdev->dev, NULL);
709 if (IS_ERR(sspi->clk)) {
710 ret = PTR_ERR(sspi->clk);
711 goto free_tx_dma;
713 clk_prepare_enable(sspi->clk);
714 sspi->ctrl_freq = clk_get_rate(sspi->clk);
716 init_completion(&sspi->rx_done);
717 init_completion(&sspi->tx_done);
719 writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
720 writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
721 writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
722 writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
723 /* We are not using dummy delay between command and data */
724 writel(0, sspi->base + SIRFSOC_SPI_DUMMY_DELAY_CTL);
726 sspi->dummypage = kmalloc(2 * PAGE_SIZE, GFP_KERNEL);
727 if (!sspi->dummypage) {
728 ret = -ENOMEM;
729 goto free_clk;
732 ret = spi_bitbang_start(&sspi->bitbang);
733 if (ret)
734 goto free_dummypage;
735 for (i = 0; master->cs_gpios && i < master->num_chipselect; i++) {
736 if (master->cs_gpios[i] == -ENOENT)
737 continue;
738 if (!gpio_is_valid(master->cs_gpios[i])) {
739 dev_err(&pdev->dev, "no valid gpio\n");
740 ret = -EINVAL;
741 goto free_dummypage;
743 ret = devm_gpio_request(&pdev->dev,
744 master->cs_gpios[i], DRIVER_NAME);
745 if (ret) {
746 dev_err(&pdev->dev, "failed to request gpio\n");
747 goto free_dummypage;
750 dev_info(&pdev->dev, "registerred, bus number = %d\n", master->bus_num);
752 return 0;
753 free_dummypage:
754 kfree(sspi->dummypage);
755 free_clk:
756 clk_disable_unprepare(sspi->clk);
757 clk_put(sspi->clk);
758 free_tx_dma:
759 dma_release_channel(sspi->tx_chan);
760 free_rx_dma:
761 dma_release_channel(sspi->rx_chan);
762 free_master:
763 spi_master_put(master);
765 return ret;
768 static int spi_sirfsoc_remove(struct platform_device *pdev)
770 struct spi_master *master;
771 struct sirfsoc_spi *sspi;
773 master = platform_get_drvdata(pdev);
774 sspi = spi_master_get_devdata(master);
776 spi_bitbang_stop(&sspi->bitbang);
777 kfree(sspi->dummypage);
778 clk_disable_unprepare(sspi->clk);
779 clk_put(sspi->clk);
780 dma_release_channel(sspi->rx_chan);
781 dma_release_channel(sspi->tx_chan);
782 spi_master_put(master);
783 return 0;
786 #ifdef CONFIG_PM_SLEEP
787 static int spi_sirfsoc_suspend(struct device *dev)
789 struct spi_master *master = dev_get_drvdata(dev);
790 struct sirfsoc_spi *sspi = spi_master_get_devdata(master);
791 int ret;
793 ret = spi_master_suspend(master);
794 if (ret)
795 return ret;
797 clk_disable(sspi->clk);
798 return 0;
801 static int spi_sirfsoc_resume(struct device *dev)
803 struct spi_master *master = dev_get_drvdata(dev);
804 struct sirfsoc_spi *sspi = spi_master_get_devdata(master);
806 clk_enable(sspi->clk);
807 writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
808 writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
809 writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
810 writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
812 return spi_master_resume(master);
814 #endif
816 static SIMPLE_DEV_PM_OPS(spi_sirfsoc_pm_ops, spi_sirfsoc_suspend,
817 spi_sirfsoc_resume);
819 static const struct of_device_id spi_sirfsoc_of_match[] = {
820 { .compatible = "sirf,prima2-spi", },
823 MODULE_DEVICE_TABLE(of, spi_sirfsoc_of_match);
825 static struct platform_driver spi_sirfsoc_driver = {
826 .driver = {
827 .name = DRIVER_NAME,
828 .pm = &spi_sirfsoc_pm_ops,
829 .of_match_table = spi_sirfsoc_of_match,
831 .probe = spi_sirfsoc_probe,
832 .remove = spi_sirfsoc_remove,
834 module_platform_driver(spi_sirfsoc_driver);
835 MODULE_DESCRIPTION("SiRF SoC SPI master driver");
836 MODULE_AUTHOR("Zhiwu Song <Zhiwu.Song@csr.com>");
837 MODULE_AUTHOR("Barry Song <Baohua.Song@csr.com>");
838 MODULE_LICENSE("GPL v2");