5 * Super block routines for the OSTA-UDF(tm) filesystem.
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
68 VDS_POS_PRIMARY_VOL_DESC
,
69 VDS_POS_UNALLOC_SPACE_DESC
,
70 VDS_POS_LOGICAL_VOL_DESC
,
71 VDS_POS_IMP_USE_VOL_DESC
,
75 #define VSD_FIRST_SECTOR_OFFSET 32768
76 #define VSD_MAX_SECTOR_OFFSET 0x800000
79 * Maximum number of Terminating Descriptor / Logical Volume Integrity
80 * Descriptor redirections. The chosen numbers are arbitrary - just that we
81 * hopefully don't limit any real use of rewritten inode on write-once media
82 * but avoid looping for too long on corrupted media.
84 #define UDF_MAX_TD_NESTING 64
85 #define UDF_MAX_LVID_NESTING 1000
87 enum { UDF_MAX_LINKS
= 0xffff };
89 /* These are the "meat" - everything else is stuffing */
90 static int udf_fill_super(struct super_block
*, void *, int);
91 static void udf_put_super(struct super_block
*);
92 static int udf_sync_fs(struct super_block
*, int);
93 static int udf_remount_fs(struct super_block
*, int *, char *);
94 static void udf_load_logicalvolint(struct super_block
*, struct kernel_extent_ad
);
95 static void udf_open_lvid(struct super_block
*);
96 static void udf_close_lvid(struct super_block
*);
97 static unsigned int udf_count_free(struct super_block
*);
98 static int udf_statfs(struct dentry
*, struct kstatfs
*);
99 static int udf_show_options(struct seq_file
*, struct dentry
*);
101 struct logicalVolIntegrityDescImpUse
*udf_sb_lvidiu(struct super_block
*sb
)
103 struct logicalVolIntegrityDesc
*lvid
;
104 unsigned int partnum
;
107 if (!UDF_SB(sb
)->s_lvid_bh
)
109 lvid
= (struct logicalVolIntegrityDesc
*)UDF_SB(sb
)->s_lvid_bh
->b_data
;
110 partnum
= le32_to_cpu(lvid
->numOfPartitions
);
111 if ((sb
->s_blocksize
- sizeof(struct logicalVolIntegrityDescImpUse
) -
112 offsetof(struct logicalVolIntegrityDesc
, impUse
)) /
113 (2 * sizeof(uint32_t)) < partnum
) {
114 udf_err(sb
, "Logical volume integrity descriptor corrupted "
115 "(numOfPartitions = %u)!\n", partnum
);
118 /* The offset is to skip freeSpaceTable and sizeTable arrays */
119 offset
= partnum
* 2 * sizeof(uint32_t);
120 return (struct logicalVolIntegrityDescImpUse
*)&(lvid
->impUse
[offset
]);
123 /* UDF filesystem type */
124 static struct dentry
*udf_mount(struct file_system_type
*fs_type
,
125 int flags
, const char *dev_name
, void *data
)
127 return mount_bdev(fs_type
, flags
, dev_name
, data
, udf_fill_super
);
130 static struct file_system_type udf_fstype
= {
131 .owner
= THIS_MODULE
,
134 .kill_sb
= kill_block_super
,
135 .fs_flags
= FS_REQUIRES_DEV
,
137 MODULE_ALIAS_FS("udf");
139 static struct kmem_cache
*udf_inode_cachep
;
141 static struct inode
*udf_alloc_inode(struct super_block
*sb
)
143 struct udf_inode_info
*ei
;
144 ei
= kmem_cache_alloc(udf_inode_cachep
, GFP_KERNEL
);
149 ei
->i_lenExtents
= 0;
150 ei
->i_lenStreams
= 0;
151 ei
->i_next_alloc_block
= 0;
152 ei
->i_next_alloc_goal
= 0;
155 init_rwsem(&ei
->i_data_sem
);
156 ei
->cached_extent
.lstart
= -1;
157 spin_lock_init(&ei
->i_extent_cache_lock
);
159 return &ei
->vfs_inode
;
162 static void udf_free_in_core_inode(struct inode
*inode
)
164 kmem_cache_free(udf_inode_cachep
, UDF_I(inode
));
167 static void init_once(void *foo
)
169 struct udf_inode_info
*ei
= (struct udf_inode_info
*)foo
;
171 ei
->i_ext
.i_data
= NULL
;
172 inode_init_once(&ei
->vfs_inode
);
175 static int __init
init_inodecache(void)
177 udf_inode_cachep
= kmem_cache_create("udf_inode_cache",
178 sizeof(struct udf_inode_info
),
179 0, (SLAB_RECLAIM_ACCOUNT
|
183 if (!udf_inode_cachep
)
188 static void destroy_inodecache(void)
191 * Make sure all delayed rcu free inodes are flushed before we
195 kmem_cache_destroy(udf_inode_cachep
);
198 /* Superblock operations */
199 static const struct super_operations udf_sb_ops
= {
200 .alloc_inode
= udf_alloc_inode
,
201 .free_inode
= udf_free_in_core_inode
,
202 .write_inode
= udf_write_inode
,
203 .evict_inode
= udf_evict_inode
,
204 .put_super
= udf_put_super
,
205 .sync_fs
= udf_sync_fs
,
206 .statfs
= udf_statfs
,
207 .remount_fs
= udf_remount_fs
,
208 .show_options
= udf_show_options
,
213 unsigned int blocksize
;
214 unsigned int session
;
215 unsigned int lastblock
;
223 struct nls_table
*nls_map
;
226 static int __init
init_udf_fs(void)
230 err
= init_inodecache();
233 err
= register_filesystem(&udf_fstype
);
240 destroy_inodecache();
246 static void __exit
exit_udf_fs(void)
248 unregister_filesystem(&udf_fstype
);
249 destroy_inodecache();
252 static int udf_sb_alloc_partition_maps(struct super_block
*sb
, u32 count
)
254 struct udf_sb_info
*sbi
= UDF_SB(sb
);
256 sbi
->s_partmaps
= kcalloc(count
, sizeof(*sbi
->s_partmaps
), GFP_KERNEL
);
257 if (!sbi
->s_partmaps
) {
258 sbi
->s_partitions
= 0;
262 sbi
->s_partitions
= count
;
266 static void udf_sb_free_bitmap(struct udf_bitmap
*bitmap
)
269 int nr_groups
= bitmap
->s_nr_groups
;
271 for (i
= 0; i
< nr_groups
; i
++)
272 brelse(bitmap
->s_block_bitmap
[i
]);
277 static void udf_free_partition(struct udf_part_map
*map
)
280 struct udf_meta_data
*mdata
;
282 if (map
->s_partition_flags
& UDF_PART_FLAG_UNALLOC_TABLE
)
283 iput(map
->s_uspace
.s_table
);
284 if (map
->s_partition_flags
& UDF_PART_FLAG_UNALLOC_BITMAP
)
285 udf_sb_free_bitmap(map
->s_uspace
.s_bitmap
);
286 if (map
->s_partition_type
== UDF_SPARABLE_MAP15
)
287 for (i
= 0; i
< 4; i
++)
288 brelse(map
->s_type_specific
.s_sparing
.s_spar_map
[i
]);
289 else if (map
->s_partition_type
== UDF_METADATA_MAP25
) {
290 mdata
= &map
->s_type_specific
.s_metadata
;
291 iput(mdata
->s_metadata_fe
);
292 mdata
->s_metadata_fe
= NULL
;
294 iput(mdata
->s_mirror_fe
);
295 mdata
->s_mirror_fe
= NULL
;
297 iput(mdata
->s_bitmap_fe
);
298 mdata
->s_bitmap_fe
= NULL
;
302 static void udf_sb_free_partitions(struct super_block
*sb
)
304 struct udf_sb_info
*sbi
= UDF_SB(sb
);
307 if (!sbi
->s_partmaps
)
309 for (i
= 0; i
< sbi
->s_partitions
; i
++)
310 udf_free_partition(&sbi
->s_partmaps
[i
]);
311 kfree(sbi
->s_partmaps
);
312 sbi
->s_partmaps
= NULL
;
315 static int udf_show_options(struct seq_file
*seq
, struct dentry
*root
)
317 struct super_block
*sb
= root
->d_sb
;
318 struct udf_sb_info
*sbi
= UDF_SB(sb
);
320 if (!UDF_QUERY_FLAG(sb
, UDF_FLAG_STRICT
))
321 seq_puts(seq
, ",nostrict");
322 if (UDF_QUERY_FLAG(sb
, UDF_FLAG_BLOCKSIZE_SET
))
323 seq_printf(seq
, ",bs=%lu", sb
->s_blocksize
);
324 if (UDF_QUERY_FLAG(sb
, UDF_FLAG_UNHIDE
))
325 seq_puts(seq
, ",unhide");
326 if (UDF_QUERY_FLAG(sb
, UDF_FLAG_UNDELETE
))
327 seq_puts(seq
, ",undelete");
328 if (!UDF_QUERY_FLAG(sb
, UDF_FLAG_USE_AD_IN_ICB
))
329 seq_puts(seq
, ",noadinicb");
330 if (UDF_QUERY_FLAG(sb
, UDF_FLAG_USE_SHORT_AD
))
331 seq_puts(seq
, ",shortad");
332 if (UDF_QUERY_FLAG(sb
, UDF_FLAG_UID_FORGET
))
333 seq_puts(seq
, ",uid=forget");
334 if (UDF_QUERY_FLAG(sb
, UDF_FLAG_GID_FORGET
))
335 seq_puts(seq
, ",gid=forget");
336 if (UDF_QUERY_FLAG(sb
, UDF_FLAG_UID_SET
))
337 seq_printf(seq
, ",uid=%u", from_kuid(&init_user_ns
, sbi
->s_uid
));
338 if (UDF_QUERY_FLAG(sb
, UDF_FLAG_GID_SET
))
339 seq_printf(seq
, ",gid=%u", from_kgid(&init_user_ns
, sbi
->s_gid
));
340 if (sbi
->s_umask
!= 0)
341 seq_printf(seq
, ",umask=%ho", sbi
->s_umask
);
342 if (sbi
->s_fmode
!= UDF_INVALID_MODE
)
343 seq_printf(seq
, ",mode=%ho", sbi
->s_fmode
);
344 if (sbi
->s_dmode
!= UDF_INVALID_MODE
)
345 seq_printf(seq
, ",dmode=%ho", sbi
->s_dmode
);
346 if (UDF_QUERY_FLAG(sb
, UDF_FLAG_SESSION_SET
))
347 seq_printf(seq
, ",session=%d", sbi
->s_session
);
348 if (UDF_QUERY_FLAG(sb
, UDF_FLAG_LASTBLOCK_SET
))
349 seq_printf(seq
, ",lastblock=%u", sbi
->s_last_block
);
350 if (sbi
->s_anchor
!= 0)
351 seq_printf(seq
, ",anchor=%u", sbi
->s_anchor
);
352 if (UDF_QUERY_FLAG(sb
, UDF_FLAG_UTF8
))
353 seq_puts(seq
, ",utf8");
354 if (UDF_QUERY_FLAG(sb
, UDF_FLAG_NLS_MAP
) && sbi
->s_nls_map
)
355 seq_printf(seq
, ",iocharset=%s", sbi
->s_nls_map
->charset
);
364 * Parse mount options.
367 * The following mount options are supported:
369 * gid= Set the default group.
370 * umask= Set the default umask.
371 * mode= Set the default file permissions.
372 * dmode= Set the default directory permissions.
373 * uid= Set the default user.
374 * bs= Set the block size.
375 * unhide Show otherwise hidden files.
376 * undelete Show deleted files in lists.
377 * adinicb Embed data in the inode (default)
378 * noadinicb Don't embed data in the inode
379 * shortad Use short ad's
380 * longad Use long ad's (default)
381 * nostrict Unset strict conformance
382 * iocharset= Set the NLS character set
384 * The remaining are for debugging and disaster recovery:
386 * novrs Skip volume sequence recognition
388 * The following expect a offset from 0.
390 * session= Set the CDROM session (default= last session)
391 * anchor= Override standard anchor location. (default= 256)
392 * volume= Override the VolumeDesc location. (unused)
393 * partition= Override the PartitionDesc location. (unused)
394 * lastblock= Set the last block of the filesystem/
396 * The following expect a offset from the partition root.
398 * fileset= Override the fileset block location. (unused)
399 * rootdir= Override the root directory location. (unused)
400 * WARNING: overriding the rootdir to a non-directory may
401 * yield highly unpredictable results.
404 * options Pointer to mount options string.
405 * uopts Pointer to mount options variable.
408 * <return> 1 Mount options parsed okay.
409 * <return> 0 Error parsing mount options.
412 * July 1, 1997 - Andrew E. Mileski
413 * Written, tested, and released.
417 Opt_novrs
, Opt_nostrict
, Opt_bs
, Opt_unhide
, Opt_undelete
,
418 Opt_noadinicb
, Opt_adinicb
, Opt_shortad
, Opt_longad
,
419 Opt_gid
, Opt_uid
, Opt_umask
, Opt_session
, Opt_lastblock
,
420 Opt_anchor
, Opt_volume
, Opt_partition
, Opt_fileset
,
421 Opt_rootdir
, Opt_utf8
, Opt_iocharset
,
422 Opt_err
, Opt_uforget
, Opt_uignore
, Opt_gforget
, Opt_gignore
,
426 static const match_table_t tokens
= {
427 {Opt_novrs
, "novrs"},
428 {Opt_nostrict
, "nostrict"},
430 {Opt_unhide
, "unhide"},
431 {Opt_undelete
, "undelete"},
432 {Opt_noadinicb
, "noadinicb"},
433 {Opt_adinicb
, "adinicb"},
434 {Opt_shortad
, "shortad"},
435 {Opt_longad
, "longad"},
436 {Opt_uforget
, "uid=forget"},
437 {Opt_uignore
, "uid=ignore"},
438 {Opt_gforget
, "gid=forget"},
439 {Opt_gignore
, "gid=ignore"},
442 {Opt_umask
, "umask=%o"},
443 {Opt_session
, "session=%u"},
444 {Opt_lastblock
, "lastblock=%u"},
445 {Opt_anchor
, "anchor=%u"},
446 {Opt_volume
, "volume=%u"},
447 {Opt_partition
, "partition=%u"},
448 {Opt_fileset
, "fileset=%u"},
449 {Opt_rootdir
, "rootdir=%u"},
451 {Opt_iocharset
, "iocharset=%s"},
452 {Opt_fmode
, "mode=%o"},
453 {Opt_dmode
, "dmode=%o"},
457 static int udf_parse_options(char *options
, struct udf_options
*uopt
,
464 uopt
->session
= 0xFFFFFFFF;
471 while ((p
= strsep(&options
, ",")) != NULL
) {
472 substring_t args
[MAX_OPT_ARGS
];
478 token
= match_token(p
, tokens
, args
);
484 if (match_int(&args
[0], &option
))
487 if (n
!= 512 && n
!= 1024 && n
!= 2048 && n
!= 4096)
490 uopt
->flags
|= (1 << UDF_FLAG_BLOCKSIZE_SET
);
493 uopt
->flags
|= (1 << UDF_FLAG_UNHIDE
);
496 uopt
->flags
|= (1 << UDF_FLAG_UNDELETE
);
499 uopt
->flags
&= ~(1 << UDF_FLAG_USE_AD_IN_ICB
);
502 uopt
->flags
|= (1 << UDF_FLAG_USE_AD_IN_ICB
);
505 uopt
->flags
|= (1 << UDF_FLAG_USE_SHORT_AD
);
508 uopt
->flags
&= ~(1 << UDF_FLAG_USE_SHORT_AD
);
511 if (match_int(args
, &option
))
513 uopt
->gid
= make_kgid(current_user_ns(), option
);
514 if (!gid_valid(uopt
->gid
))
516 uopt
->flags
|= (1 << UDF_FLAG_GID_SET
);
519 if (match_int(args
, &option
))
521 uopt
->uid
= make_kuid(current_user_ns(), option
);
522 if (!uid_valid(uopt
->uid
))
524 uopt
->flags
|= (1 << UDF_FLAG_UID_SET
);
527 if (match_octal(args
, &option
))
529 uopt
->umask
= option
;
532 uopt
->flags
&= ~(1 << UDF_FLAG_STRICT
);
535 if (match_int(args
, &option
))
537 uopt
->session
= option
;
539 uopt
->flags
|= (1 << UDF_FLAG_SESSION_SET
);
542 if (match_int(args
, &option
))
544 uopt
->lastblock
= option
;
546 uopt
->flags
|= (1 << UDF_FLAG_LASTBLOCK_SET
);
549 if (match_int(args
, &option
))
551 uopt
->anchor
= option
;
557 /* Ignored (never implemented properly) */
560 uopt
->flags
|= (1 << UDF_FLAG_UTF8
);
565 unload_nls(uopt
->nls_map
);
567 * load_nls() failure is handled later in
568 * udf_fill_super() after all options are
571 uopt
->nls_map
= load_nls(args
[0].from
);
572 uopt
->flags
|= (1 << UDF_FLAG_NLS_MAP
);
576 uopt
->flags
|= (1 << UDF_FLAG_UID_FORGET
);
580 /* These options are superseeded by uid=<number> */
583 uopt
->flags
|= (1 << UDF_FLAG_GID_FORGET
);
586 if (match_octal(args
, &option
))
588 uopt
->fmode
= option
& 0777;
591 if (match_octal(args
, &option
))
593 uopt
->dmode
= option
& 0777;
596 pr_err("bad mount option \"%s\" or missing value\n", p
);
603 static int udf_remount_fs(struct super_block
*sb
, int *flags
, char *options
)
605 struct udf_options uopt
;
606 struct udf_sb_info
*sbi
= UDF_SB(sb
);
609 if (!(*flags
& SB_RDONLY
) && UDF_QUERY_FLAG(sb
, UDF_FLAG_RW_INCOMPAT
))
614 uopt
.flags
= sbi
->s_flags
;
615 uopt
.uid
= sbi
->s_uid
;
616 uopt
.gid
= sbi
->s_gid
;
617 uopt
.umask
= sbi
->s_umask
;
618 uopt
.fmode
= sbi
->s_fmode
;
619 uopt
.dmode
= sbi
->s_dmode
;
622 if (!udf_parse_options(options
, &uopt
, true))
625 write_lock(&sbi
->s_cred_lock
);
626 sbi
->s_flags
= uopt
.flags
;
627 sbi
->s_uid
= uopt
.uid
;
628 sbi
->s_gid
= uopt
.gid
;
629 sbi
->s_umask
= uopt
.umask
;
630 sbi
->s_fmode
= uopt
.fmode
;
631 sbi
->s_dmode
= uopt
.dmode
;
632 write_unlock(&sbi
->s_cred_lock
);
634 if ((bool)(*flags
& SB_RDONLY
) == sb_rdonly(sb
))
637 if (*flags
& SB_RDONLY
)
647 * Check VSD descriptor. Returns -1 in case we are at the end of volume
648 * recognition area, 0 if the descriptor is valid but non-interesting, 1 if
649 * we found one of NSR descriptors we are looking for.
651 static int identify_vsd(const struct volStructDesc
*vsd
)
655 if (!memcmp(vsd
->stdIdent
, VSD_STD_ID_CD001
, VSD_STD_ID_LEN
)) {
656 switch (vsd
->structType
) {
658 udf_debug("ISO9660 Boot Record found\n");
661 udf_debug("ISO9660 Primary Volume Descriptor found\n");
664 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
667 udf_debug("ISO9660 Volume Partition Descriptor found\n");
670 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
673 udf_debug("ISO9660 VRS (%u) found\n", vsd
->structType
);
676 } else if (!memcmp(vsd
->stdIdent
, VSD_STD_ID_BEA01
, VSD_STD_ID_LEN
))
678 else if (!memcmp(vsd
->stdIdent
, VSD_STD_ID_NSR02
, VSD_STD_ID_LEN
))
680 else if (!memcmp(vsd
->stdIdent
, VSD_STD_ID_NSR03
, VSD_STD_ID_LEN
))
682 else if (!memcmp(vsd
->stdIdent
, VSD_STD_ID_BOOT2
, VSD_STD_ID_LEN
))
684 else if (!memcmp(vsd
->stdIdent
, VSD_STD_ID_CDW02
, VSD_STD_ID_LEN
))
687 /* TEA01 or invalid id : end of volume recognition area */
695 * Check Volume Structure Descriptors (ECMA 167 2/9.1)
696 * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1)
697 * @return 1 if NSR02 or NSR03 found,
698 * -1 if first sector read error, 0 otherwise
700 static int udf_check_vsd(struct super_block
*sb
)
702 struct volStructDesc
*vsd
= NULL
;
703 loff_t sector
= VSD_FIRST_SECTOR_OFFSET
;
705 struct buffer_head
*bh
= NULL
;
707 struct udf_sb_info
*sbi
;
710 if (sb
->s_blocksize
< sizeof(struct volStructDesc
))
711 sectorsize
= sizeof(struct volStructDesc
);
713 sectorsize
= sb
->s_blocksize
;
715 sector
+= (((loff_t
)sbi
->s_session
) << sb
->s_blocksize_bits
);
717 udf_debug("Starting at sector %u (%lu byte sectors)\n",
718 (unsigned int)(sector
>> sb
->s_blocksize_bits
),
720 /* Process the sequence (if applicable). The hard limit on the sector
721 * offset is arbitrary, hopefully large enough so that all valid UDF
722 * filesystems will be recognised. There is no mention of an upper
723 * bound to the size of the volume recognition area in the standard.
724 * The limit will prevent the code to read all the sectors of a
725 * specially crafted image (like a bluray disc full of CD001 sectors),
726 * potentially causing minutes or even hours of uninterruptible I/O
727 * activity. This actually happened with uninitialised SSD partitions
728 * (all 0xFF) before the check for the limit and all valid IDs were
730 for (; !nsr
&& sector
< VSD_MAX_SECTOR_OFFSET
; sector
+= sectorsize
) {
732 bh
= udf_tread(sb
, sector
>> sb
->s_blocksize_bits
);
736 vsd
= (struct volStructDesc
*)(bh
->b_data
+
737 (sector
& (sb
->s_blocksize
- 1)));
738 nsr
= identify_vsd(vsd
);
739 /* Found NSR or end? */
745 * Special handling for improperly formatted VRS (e.g., Win10)
746 * where components are separated by 2048 bytes even though
749 if (sb
->s_blocksize
== 4096) {
750 nsr
= identify_vsd(vsd
+ 1);
751 /* Ignore unknown IDs... */
760 else if (!bh
&& sector
- (sbi
->s_session
<< sb
->s_blocksize_bits
) ==
761 VSD_FIRST_SECTOR_OFFSET
)
767 static int udf_verify_domain_identifier(struct super_block
*sb
,
768 struct regid
*ident
, char *dname
)
770 struct domainEntityIDSuffix
*suffix
;
772 if (memcmp(ident
->ident
, UDF_ID_COMPLIANT
, strlen(UDF_ID_COMPLIANT
))) {
773 udf_warn(sb
, "Not OSTA UDF compliant %s descriptor.\n", dname
);
776 if (ident
->flags
& (1 << ENTITYID_FLAGS_DIRTY
)) {
777 udf_warn(sb
, "Possibly not OSTA UDF compliant %s descriptor.\n",
781 suffix
= (struct domainEntityIDSuffix
*)ident
->identSuffix
;
782 if (suffix
->flags
& (1 << ENTITYIDSUFFIX_FLAGS_HARDWRITEPROTECT
) ||
783 suffix
->flags
& (1 << ENTITYIDSUFFIX_FLAGS_SOFTWRITEPROTECT
)) {
784 if (!sb_rdonly(sb
)) {
785 udf_warn(sb
, "Descriptor for %s marked write protected."
786 " Forcing read only mount.\n", dname
);
795 UDF_SET_FLAG(sb
, UDF_FLAG_RW_INCOMPAT
);
799 static int udf_load_fileset(struct super_block
*sb
, struct fileSetDesc
*fset
,
800 struct kernel_lb_addr
*root
)
804 ret
= udf_verify_domain_identifier(sb
, &fset
->domainIdent
, "file set");
808 *root
= lelb_to_cpu(fset
->rootDirectoryICB
.extLocation
);
809 UDF_SB(sb
)->s_serial_number
= le16_to_cpu(fset
->descTag
.tagSerialNum
);
811 udf_debug("Rootdir at block=%u, partition=%u\n",
812 root
->logicalBlockNum
, root
->partitionReferenceNum
);
816 static int udf_find_fileset(struct super_block
*sb
,
817 struct kernel_lb_addr
*fileset
,
818 struct kernel_lb_addr
*root
)
820 struct buffer_head
*bh
= NULL
;
824 if (fileset
->logicalBlockNum
== 0xFFFFFFFF &&
825 fileset
->partitionReferenceNum
== 0xFFFF)
828 bh
= udf_read_ptagged(sb
, fileset
, 0, &ident
);
831 if (ident
!= TAG_IDENT_FSD
) {
836 udf_debug("Fileset at block=%u, partition=%u\n",
837 fileset
->logicalBlockNum
, fileset
->partitionReferenceNum
);
839 UDF_SB(sb
)->s_partition
= fileset
->partitionReferenceNum
;
840 ret
= udf_load_fileset(sb
, (struct fileSetDesc
*)bh
->b_data
, root
);
846 * Load primary Volume Descriptor Sequence
848 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
851 static int udf_load_pvoldesc(struct super_block
*sb
, sector_t block
)
853 struct primaryVolDesc
*pvoldesc
;
855 struct buffer_head
*bh
;
858 struct timestamp
*ts
;
860 outstr
= kmalloc(128, GFP_NOFS
);
864 bh
= udf_read_tagged(sb
, block
, block
, &ident
);
870 if (ident
!= TAG_IDENT_PVD
) {
875 pvoldesc
= (struct primaryVolDesc
*)bh
->b_data
;
877 udf_disk_stamp_to_time(&UDF_SB(sb
)->s_record_time
,
878 pvoldesc
->recordingDateAndTime
);
879 ts
= &pvoldesc
->recordingDateAndTime
;
880 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
881 le16_to_cpu(ts
->year
), ts
->month
, ts
->day
, ts
->hour
,
882 ts
->minute
, le16_to_cpu(ts
->typeAndTimezone
));
884 ret
= udf_dstrCS0toChar(sb
, outstr
, 31, pvoldesc
->volIdent
, 32);
886 strcpy(UDF_SB(sb
)->s_volume_ident
, "InvalidName");
887 pr_warn("incorrect volume identification, setting to "
890 strncpy(UDF_SB(sb
)->s_volume_ident
, outstr
, ret
);
892 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb
)->s_volume_ident
);
894 ret
= udf_dstrCS0toChar(sb
, outstr
, 127, pvoldesc
->volSetIdent
, 128);
900 udf_debug("volSetIdent[] = '%s'\n", outstr
);
910 struct inode
*udf_find_metadata_inode_efe(struct super_block
*sb
,
911 u32 meta_file_loc
, u32 partition_ref
)
913 struct kernel_lb_addr addr
;
914 struct inode
*metadata_fe
;
916 addr
.logicalBlockNum
= meta_file_loc
;
917 addr
.partitionReferenceNum
= partition_ref
;
919 metadata_fe
= udf_iget_special(sb
, &addr
);
921 if (IS_ERR(metadata_fe
)) {
922 udf_warn(sb
, "metadata inode efe not found\n");
925 if (UDF_I(metadata_fe
)->i_alloc_type
!= ICBTAG_FLAG_AD_SHORT
) {
926 udf_warn(sb
, "metadata inode efe does not have short allocation descriptors!\n");
928 return ERR_PTR(-EIO
);
934 static int udf_load_metadata_files(struct super_block
*sb
, int partition
,
937 struct udf_sb_info
*sbi
= UDF_SB(sb
);
938 struct udf_part_map
*map
;
939 struct udf_meta_data
*mdata
;
940 struct kernel_lb_addr addr
;
943 map
= &sbi
->s_partmaps
[partition
];
944 mdata
= &map
->s_type_specific
.s_metadata
;
945 mdata
->s_phys_partition_ref
= type1_index
;
947 /* metadata address */
948 udf_debug("Metadata file location: block = %u part = %u\n",
949 mdata
->s_meta_file_loc
, mdata
->s_phys_partition_ref
);
951 fe
= udf_find_metadata_inode_efe(sb
, mdata
->s_meta_file_loc
,
952 mdata
->s_phys_partition_ref
);
954 /* mirror file entry */
955 udf_debug("Mirror metadata file location: block = %u part = %u\n",
956 mdata
->s_mirror_file_loc
, mdata
->s_phys_partition_ref
);
958 fe
= udf_find_metadata_inode_efe(sb
, mdata
->s_mirror_file_loc
,
959 mdata
->s_phys_partition_ref
);
962 udf_err(sb
, "Both metadata and mirror metadata inode efe can not found\n");
965 mdata
->s_mirror_fe
= fe
;
967 mdata
->s_metadata_fe
= fe
;
973 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
975 if (mdata
->s_bitmap_file_loc
!= 0xFFFFFFFF) {
976 addr
.logicalBlockNum
= mdata
->s_bitmap_file_loc
;
977 addr
.partitionReferenceNum
= mdata
->s_phys_partition_ref
;
979 udf_debug("Bitmap file location: block = %u part = %u\n",
980 addr
.logicalBlockNum
, addr
.partitionReferenceNum
);
982 fe
= udf_iget_special(sb
, &addr
);
985 udf_warn(sb
, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
987 udf_err(sb
, "bitmap inode efe not found and attempted read-write mount\n");
991 mdata
->s_bitmap_fe
= fe
;
994 udf_debug("udf_load_metadata_files Ok\n");
998 int udf_compute_nr_groups(struct super_block
*sb
, u32 partition
)
1000 struct udf_part_map
*map
= &UDF_SB(sb
)->s_partmaps
[partition
];
1001 return DIV_ROUND_UP(map
->s_partition_len
+
1002 (sizeof(struct spaceBitmapDesc
) << 3),
1003 sb
->s_blocksize
* 8);
1006 static struct udf_bitmap
*udf_sb_alloc_bitmap(struct super_block
*sb
, u32 index
)
1008 struct udf_bitmap
*bitmap
;
1012 nr_groups
= udf_compute_nr_groups(sb
, index
);
1013 size
= sizeof(struct udf_bitmap
) +
1014 (sizeof(struct buffer_head
*) * nr_groups
);
1016 if (size
<= PAGE_SIZE
)
1017 bitmap
= kzalloc(size
, GFP_KERNEL
);
1019 bitmap
= vzalloc(size
); /* TODO: get rid of vzalloc */
1024 bitmap
->s_nr_groups
= nr_groups
;
1028 static int check_partition_desc(struct super_block
*sb
,
1029 struct partitionDesc
*p
,
1030 struct udf_part_map
*map
)
1032 bool umap
, utable
, fmap
, ftable
;
1033 struct partitionHeaderDesc
*phd
;
1035 switch (le32_to_cpu(p
->accessType
)) {
1036 case PD_ACCESS_TYPE_READ_ONLY
:
1037 case PD_ACCESS_TYPE_WRITE_ONCE
:
1038 case PD_ACCESS_TYPE_REWRITABLE
:
1039 case PD_ACCESS_TYPE_NONE
:
1043 /* No Partition Header Descriptor? */
1044 if (strcmp(p
->partitionContents
.ident
, PD_PARTITION_CONTENTS_NSR02
) &&
1045 strcmp(p
->partitionContents
.ident
, PD_PARTITION_CONTENTS_NSR03
))
1048 phd
= (struct partitionHeaderDesc
*)p
->partitionContentsUse
;
1049 utable
= phd
->unallocSpaceTable
.extLength
;
1050 umap
= phd
->unallocSpaceBitmap
.extLength
;
1051 ftable
= phd
->freedSpaceTable
.extLength
;
1052 fmap
= phd
->freedSpaceBitmap
.extLength
;
1054 /* No allocation info? */
1055 if (!utable
&& !umap
&& !ftable
&& !fmap
)
1058 /* We don't support blocks that require erasing before overwrite */
1061 /* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1065 if (map
->s_partition_type
== UDF_VIRTUAL_MAP15
||
1066 map
->s_partition_type
== UDF_VIRTUAL_MAP20
)
1073 UDF_SET_FLAG(sb
, UDF_FLAG_RW_INCOMPAT
);
1077 static int udf_fill_partdesc_info(struct super_block
*sb
,
1078 struct partitionDesc
*p
, int p_index
)
1080 struct udf_part_map
*map
;
1081 struct udf_sb_info
*sbi
= UDF_SB(sb
);
1082 struct partitionHeaderDesc
*phd
;
1085 map
= &sbi
->s_partmaps
[p_index
];
1087 map
->s_partition_len
= le32_to_cpu(p
->partitionLength
); /* blocks */
1088 map
->s_partition_root
= le32_to_cpu(p
->partitionStartingLocation
);
1090 if (p
->accessType
== cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY
))
1091 map
->s_partition_flags
|= UDF_PART_FLAG_READ_ONLY
;
1092 if (p
->accessType
== cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE
))
1093 map
->s_partition_flags
|= UDF_PART_FLAG_WRITE_ONCE
;
1094 if (p
->accessType
== cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE
))
1095 map
->s_partition_flags
|= UDF_PART_FLAG_REWRITABLE
;
1096 if (p
->accessType
== cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE
))
1097 map
->s_partition_flags
|= UDF_PART_FLAG_OVERWRITABLE
;
1099 udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1100 p_index
, map
->s_partition_type
,
1101 map
->s_partition_root
, map
->s_partition_len
);
1103 err
= check_partition_desc(sb
, p
, map
);
1108 * Skip loading allocation info it we cannot ever write to the fs.
1109 * This is a correctness thing as we may have decided to force ro mount
1110 * to avoid allocation info we don't support.
1112 if (UDF_QUERY_FLAG(sb
, UDF_FLAG_RW_INCOMPAT
))
1115 phd
= (struct partitionHeaderDesc
*)p
->partitionContentsUse
;
1116 if (phd
->unallocSpaceTable
.extLength
) {
1117 struct kernel_lb_addr loc
= {
1118 .logicalBlockNum
= le32_to_cpu(
1119 phd
->unallocSpaceTable
.extPosition
),
1120 .partitionReferenceNum
= p_index
,
1122 struct inode
*inode
;
1124 inode
= udf_iget_special(sb
, &loc
);
1125 if (IS_ERR(inode
)) {
1126 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1128 return PTR_ERR(inode
);
1130 map
->s_uspace
.s_table
= inode
;
1131 map
->s_partition_flags
|= UDF_PART_FLAG_UNALLOC_TABLE
;
1132 udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1133 p_index
, map
->s_uspace
.s_table
->i_ino
);
1136 if (phd
->unallocSpaceBitmap
.extLength
) {
1137 struct udf_bitmap
*bitmap
= udf_sb_alloc_bitmap(sb
, p_index
);
1140 map
->s_uspace
.s_bitmap
= bitmap
;
1141 bitmap
->s_extPosition
= le32_to_cpu(
1142 phd
->unallocSpaceBitmap
.extPosition
);
1143 map
->s_partition_flags
|= UDF_PART_FLAG_UNALLOC_BITMAP
;
1144 udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1145 p_index
, bitmap
->s_extPosition
);
1151 static void udf_find_vat_block(struct super_block
*sb
, int p_index
,
1152 int type1_index
, sector_t start_block
)
1154 struct udf_sb_info
*sbi
= UDF_SB(sb
);
1155 struct udf_part_map
*map
= &sbi
->s_partmaps
[p_index
];
1157 struct kernel_lb_addr ino
;
1158 struct inode
*inode
;
1161 * VAT file entry is in the last recorded block. Some broken disks have
1162 * it a few blocks before so try a bit harder...
1164 ino
.partitionReferenceNum
= type1_index
;
1165 for (vat_block
= start_block
;
1166 vat_block
>= map
->s_partition_root
&&
1167 vat_block
>= start_block
- 3; vat_block
--) {
1168 ino
.logicalBlockNum
= vat_block
- map
->s_partition_root
;
1169 inode
= udf_iget_special(sb
, &ino
);
1170 if (!IS_ERR(inode
)) {
1171 sbi
->s_vat_inode
= inode
;
1177 static int udf_load_vat(struct super_block
*sb
, int p_index
, int type1_index
)
1179 struct udf_sb_info
*sbi
= UDF_SB(sb
);
1180 struct udf_part_map
*map
= &sbi
->s_partmaps
[p_index
];
1181 struct buffer_head
*bh
= NULL
;
1182 struct udf_inode_info
*vati
;
1184 struct virtualAllocationTable20
*vat20
;
1185 sector_t blocks
= i_size_read(sb
->s_bdev
->bd_inode
) >>
1186 sb
->s_blocksize_bits
;
1188 udf_find_vat_block(sb
, p_index
, type1_index
, sbi
->s_last_block
);
1189 if (!sbi
->s_vat_inode
&&
1190 sbi
->s_last_block
!= blocks
- 1) {
1191 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1192 (unsigned long)sbi
->s_last_block
,
1193 (unsigned long)blocks
- 1);
1194 udf_find_vat_block(sb
, p_index
, type1_index
, blocks
- 1);
1196 if (!sbi
->s_vat_inode
)
1199 if (map
->s_partition_type
== UDF_VIRTUAL_MAP15
) {
1200 map
->s_type_specific
.s_virtual
.s_start_offset
= 0;
1201 map
->s_type_specific
.s_virtual
.s_num_entries
=
1202 (sbi
->s_vat_inode
->i_size
- 36) >> 2;
1203 } else if (map
->s_partition_type
== UDF_VIRTUAL_MAP20
) {
1204 vati
= UDF_I(sbi
->s_vat_inode
);
1205 if (vati
->i_alloc_type
!= ICBTAG_FLAG_AD_IN_ICB
) {
1206 pos
= udf_block_map(sbi
->s_vat_inode
, 0);
1207 bh
= sb_bread(sb
, pos
);
1210 vat20
= (struct virtualAllocationTable20
*)bh
->b_data
;
1212 vat20
= (struct virtualAllocationTable20
*)
1216 map
->s_type_specific
.s_virtual
.s_start_offset
=
1217 le16_to_cpu(vat20
->lengthHeader
);
1218 map
->s_type_specific
.s_virtual
.s_num_entries
=
1219 (sbi
->s_vat_inode
->i_size
-
1220 map
->s_type_specific
.s_virtual
.
1221 s_start_offset
) >> 2;
1228 * Load partition descriptor block
1230 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1233 static int udf_load_partdesc(struct super_block
*sb
, sector_t block
)
1235 struct buffer_head
*bh
;
1236 struct partitionDesc
*p
;
1237 struct udf_part_map
*map
;
1238 struct udf_sb_info
*sbi
= UDF_SB(sb
);
1240 uint16_t partitionNumber
;
1244 bh
= udf_read_tagged(sb
, block
, block
, &ident
);
1247 if (ident
!= TAG_IDENT_PD
) {
1252 p
= (struct partitionDesc
*)bh
->b_data
;
1253 partitionNumber
= le16_to_cpu(p
->partitionNumber
);
1255 /* First scan for TYPE1 and SPARABLE partitions */
1256 for (i
= 0; i
< sbi
->s_partitions
; i
++) {
1257 map
= &sbi
->s_partmaps
[i
];
1258 udf_debug("Searching map: (%u == %u)\n",
1259 map
->s_partition_num
, partitionNumber
);
1260 if (map
->s_partition_num
== partitionNumber
&&
1261 (map
->s_partition_type
== UDF_TYPE1_MAP15
||
1262 map
->s_partition_type
== UDF_SPARABLE_MAP15
))
1266 if (i
>= sbi
->s_partitions
) {
1267 udf_debug("Partition (%u) not found in partition map\n",
1273 ret
= udf_fill_partdesc_info(sb
, p
, i
);
1278 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1279 * PHYSICAL partitions are already set up
1282 map
= NULL
; /* supress 'maybe used uninitialized' warning */
1283 for (i
= 0; i
< sbi
->s_partitions
; i
++) {
1284 map
= &sbi
->s_partmaps
[i
];
1286 if (map
->s_partition_num
== partitionNumber
&&
1287 (map
->s_partition_type
== UDF_VIRTUAL_MAP15
||
1288 map
->s_partition_type
== UDF_VIRTUAL_MAP20
||
1289 map
->s_partition_type
== UDF_METADATA_MAP25
))
1293 if (i
>= sbi
->s_partitions
) {
1298 ret
= udf_fill_partdesc_info(sb
, p
, i
);
1302 if (map
->s_partition_type
== UDF_METADATA_MAP25
) {
1303 ret
= udf_load_metadata_files(sb
, i
, type1_idx
);
1305 udf_err(sb
, "error loading MetaData partition map %d\n",
1311 * If we have a partition with virtual map, we don't handle
1312 * writing to it (we overwrite blocks instead of relocating
1315 if (!sb_rdonly(sb
)) {
1319 UDF_SET_FLAG(sb
, UDF_FLAG_RW_INCOMPAT
);
1320 ret
= udf_load_vat(sb
, i
, type1_idx
);
1326 /* In case loading failed, we handle cleanup in udf_fill_super */
1331 static int udf_load_sparable_map(struct super_block
*sb
,
1332 struct udf_part_map
*map
,
1333 struct sparablePartitionMap
*spm
)
1337 struct sparingTable
*st
;
1338 struct udf_sparing_data
*sdata
= &map
->s_type_specific
.s_sparing
;
1340 struct buffer_head
*bh
;
1342 map
->s_partition_type
= UDF_SPARABLE_MAP15
;
1343 sdata
->s_packet_len
= le16_to_cpu(spm
->packetLength
);
1344 if (!is_power_of_2(sdata
->s_packet_len
)) {
1345 udf_err(sb
, "error loading logical volume descriptor: "
1346 "Invalid packet length %u\n",
1347 (unsigned)sdata
->s_packet_len
);
1350 if (spm
->numSparingTables
> 4) {
1351 udf_err(sb
, "error loading logical volume descriptor: "
1352 "Too many sparing tables (%d)\n",
1353 (int)spm
->numSparingTables
);
1357 for (i
= 0; i
< spm
->numSparingTables
; i
++) {
1358 loc
= le32_to_cpu(spm
->locSparingTable
[i
]);
1359 bh
= udf_read_tagged(sb
, loc
, loc
, &ident
);
1363 st
= (struct sparingTable
*)bh
->b_data
;
1365 strncmp(st
->sparingIdent
.ident
, UDF_ID_SPARING
,
1366 strlen(UDF_ID_SPARING
)) ||
1367 sizeof(*st
) + le16_to_cpu(st
->reallocationTableLen
) >
1373 sdata
->s_spar_map
[i
] = bh
;
1375 map
->s_partition_func
= udf_get_pblock_spar15
;
1379 static int udf_load_logicalvol(struct super_block
*sb
, sector_t block
,
1380 struct kernel_lb_addr
*fileset
)
1382 struct logicalVolDesc
*lvd
;
1385 struct udf_sb_info
*sbi
= UDF_SB(sb
);
1386 struct genericPartitionMap
*gpm
;
1388 struct buffer_head
*bh
;
1389 unsigned int table_len
;
1392 bh
= udf_read_tagged(sb
, block
, block
, &ident
);
1395 BUG_ON(ident
!= TAG_IDENT_LVD
);
1396 lvd
= (struct logicalVolDesc
*)bh
->b_data
;
1397 table_len
= le32_to_cpu(lvd
->mapTableLength
);
1398 if (table_len
> sb
->s_blocksize
- sizeof(*lvd
)) {
1399 udf_err(sb
, "error loading logical volume descriptor: "
1400 "Partition table too long (%u > %lu)\n", table_len
,
1401 sb
->s_blocksize
- sizeof(*lvd
));
1406 ret
= udf_verify_domain_identifier(sb
, &lvd
->domainIdent
,
1410 ret
= udf_sb_alloc_partition_maps(sb
, le32_to_cpu(lvd
->numPartitionMaps
));
1414 for (i
= 0, offset
= 0;
1415 i
< sbi
->s_partitions
&& offset
< table_len
;
1416 i
++, offset
+= gpm
->partitionMapLength
) {
1417 struct udf_part_map
*map
= &sbi
->s_partmaps
[i
];
1418 gpm
= (struct genericPartitionMap
*)
1419 &(lvd
->partitionMaps
[offset
]);
1420 type
= gpm
->partitionMapType
;
1422 struct genericPartitionMap1
*gpm1
=
1423 (struct genericPartitionMap1
*)gpm
;
1424 map
->s_partition_type
= UDF_TYPE1_MAP15
;
1425 map
->s_volumeseqnum
= le16_to_cpu(gpm1
->volSeqNum
);
1426 map
->s_partition_num
= le16_to_cpu(gpm1
->partitionNum
);
1427 map
->s_partition_func
= NULL
;
1428 } else if (type
== 2) {
1429 struct udfPartitionMap2
*upm2
=
1430 (struct udfPartitionMap2
*)gpm
;
1431 if (!strncmp(upm2
->partIdent
.ident
, UDF_ID_VIRTUAL
,
1432 strlen(UDF_ID_VIRTUAL
))) {
1434 le16_to_cpu(((__le16
*)upm2
->partIdent
.
1437 map
->s_partition_type
=
1439 map
->s_partition_func
=
1440 udf_get_pblock_virt15
;
1442 map
->s_partition_type
=
1444 map
->s_partition_func
=
1445 udf_get_pblock_virt20
;
1447 } else if (!strncmp(upm2
->partIdent
.ident
,
1449 strlen(UDF_ID_SPARABLE
))) {
1450 ret
= udf_load_sparable_map(sb
, map
,
1451 (struct sparablePartitionMap
*)gpm
);
1454 } else if (!strncmp(upm2
->partIdent
.ident
,
1456 strlen(UDF_ID_METADATA
))) {
1457 struct udf_meta_data
*mdata
=
1458 &map
->s_type_specific
.s_metadata
;
1459 struct metadataPartitionMap
*mdm
=
1460 (struct metadataPartitionMap
*)
1461 &(lvd
->partitionMaps
[offset
]);
1462 udf_debug("Parsing Logical vol part %d type %u id=%s\n",
1463 i
, type
, UDF_ID_METADATA
);
1465 map
->s_partition_type
= UDF_METADATA_MAP25
;
1466 map
->s_partition_func
= udf_get_pblock_meta25
;
1468 mdata
->s_meta_file_loc
=
1469 le32_to_cpu(mdm
->metadataFileLoc
);
1470 mdata
->s_mirror_file_loc
=
1471 le32_to_cpu(mdm
->metadataMirrorFileLoc
);
1472 mdata
->s_bitmap_file_loc
=
1473 le32_to_cpu(mdm
->metadataBitmapFileLoc
);
1474 mdata
->s_alloc_unit_size
=
1475 le32_to_cpu(mdm
->allocUnitSize
);
1476 mdata
->s_align_unit_size
=
1477 le16_to_cpu(mdm
->alignUnitSize
);
1478 if (mdm
->flags
& 0x01)
1479 mdata
->s_flags
|= MF_DUPLICATE_MD
;
1481 udf_debug("Metadata Ident suffix=0x%x\n",
1482 le16_to_cpu(*(__le16
*)
1483 mdm
->partIdent
.identSuffix
));
1484 udf_debug("Metadata part num=%u\n",
1485 le16_to_cpu(mdm
->partitionNum
));
1486 udf_debug("Metadata part alloc unit size=%u\n",
1487 le32_to_cpu(mdm
->allocUnitSize
));
1488 udf_debug("Metadata file loc=%u\n",
1489 le32_to_cpu(mdm
->metadataFileLoc
));
1490 udf_debug("Mirror file loc=%u\n",
1491 le32_to_cpu(mdm
->metadataMirrorFileLoc
));
1492 udf_debug("Bitmap file loc=%u\n",
1493 le32_to_cpu(mdm
->metadataBitmapFileLoc
));
1494 udf_debug("Flags: %d %u\n",
1495 mdata
->s_flags
, mdm
->flags
);
1497 udf_debug("Unknown ident: %s\n",
1498 upm2
->partIdent
.ident
);
1501 map
->s_volumeseqnum
= le16_to_cpu(upm2
->volSeqNum
);
1502 map
->s_partition_num
= le16_to_cpu(upm2
->partitionNum
);
1504 udf_debug("Partition (%d:%u) type %u on volume %u\n",
1505 i
, map
->s_partition_num
, type
, map
->s_volumeseqnum
);
1509 struct long_ad
*la
= (struct long_ad
*)&(lvd
->logicalVolContentsUse
[0]);
1511 *fileset
= lelb_to_cpu(la
->extLocation
);
1512 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1513 fileset
->logicalBlockNum
,
1514 fileset
->partitionReferenceNum
);
1516 if (lvd
->integritySeqExt
.extLength
)
1517 udf_load_logicalvolint(sb
, leea_to_cpu(lvd
->integritySeqExt
));
1520 if (!sbi
->s_lvid_bh
) {
1521 /* We can't generate unique IDs without a valid LVID */
1522 if (sb_rdonly(sb
)) {
1523 UDF_SET_FLAG(sb
, UDF_FLAG_RW_INCOMPAT
);
1525 udf_warn(sb
, "Damaged or missing LVID, forcing "
1526 "readonly mount\n");
1536 * Find the prevailing Logical Volume Integrity Descriptor.
1538 static void udf_load_logicalvolint(struct super_block
*sb
, struct kernel_extent_ad loc
)
1540 struct buffer_head
*bh
, *final_bh
;
1542 struct udf_sb_info
*sbi
= UDF_SB(sb
);
1543 struct logicalVolIntegrityDesc
*lvid
;
1544 int indirections
= 0;
1546 while (++indirections
<= UDF_MAX_LVID_NESTING
) {
1548 while (loc
.extLength
> 0 &&
1549 (bh
= udf_read_tagged(sb
, loc
.extLocation
,
1550 loc
.extLocation
, &ident
))) {
1551 if (ident
!= TAG_IDENT_LVID
) {
1559 loc
.extLength
-= sb
->s_blocksize
;
1566 brelse(sbi
->s_lvid_bh
);
1567 sbi
->s_lvid_bh
= final_bh
;
1569 lvid
= (struct logicalVolIntegrityDesc
*)final_bh
->b_data
;
1570 if (lvid
->nextIntegrityExt
.extLength
== 0)
1573 loc
= leea_to_cpu(lvid
->nextIntegrityExt
);
1576 udf_warn(sb
, "Too many LVID indirections (max %u), ignoring.\n",
1577 UDF_MAX_LVID_NESTING
);
1578 brelse(sbi
->s_lvid_bh
);
1579 sbi
->s_lvid_bh
= NULL
;
1583 * Step for reallocation of table of partition descriptor sequence numbers.
1584 * Must be power of 2.
1586 #define PART_DESC_ALLOC_STEP 32
1588 struct part_desc_seq_scan_data
{
1589 struct udf_vds_record rec
;
1593 struct desc_seq_scan_data
{
1594 struct udf_vds_record vds
[VDS_POS_LENGTH
];
1595 unsigned int size_part_descs
;
1596 unsigned int num_part_descs
;
1597 struct part_desc_seq_scan_data
*part_descs_loc
;
1600 static struct udf_vds_record
*handle_partition_descriptor(
1601 struct buffer_head
*bh
,
1602 struct desc_seq_scan_data
*data
)
1604 struct partitionDesc
*desc
= (struct partitionDesc
*)bh
->b_data
;
1608 partnum
= le16_to_cpu(desc
->partitionNumber
);
1609 for (i
= 0; i
< data
->num_part_descs
; i
++)
1610 if (partnum
== data
->part_descs_loc
[i
].partnum
)
1611 return &(data
->part_descs_loc
[i
].rec
);
1612 if (data
->num_part_descs
>= data
->size_part_descs
) {
1613 struct part_desc_seq_scan_data
*new_loc
;
1614 unsigned int new_size
= ALIGN(partnum
, PART_DESC_ALLOC_STEP
);
1616 new_loc
= kcalloc(new_size
, sizeof(*new_loc
), GFP_KERNEL
);
1618 return ERR_PTR(-ENOMEM
);
1619 memcpy(new_loc
, data
->part_descs_loc
,
1620 data
->size_part_descs
* sizeof(*new_loc
));
1621 kfree(data
->part_descs_loc
);
1622 data
->part_descs_loc
= new_loc
;
1623 data
->size_part_descs
= new_size
;
1625 return &(data
->part_descs_loc
[data
->num_part_descs
++].rec
);
1629 static struct udf_vds_record
*get_volume_descriptor_record(uint16_t ident
,
1630 struct buffer_head
*bh
, struct desc_seq_scan_data
*data
)
1633 case TAG_IDENT_PVD
: /* ISO 13346 3/10.1 */
1634 return &(data
->vds
[VDS_POS_PRIMARY_VOL_DESC
]);
1635 case TAG_IDENT_IUVD
: /* ISO 13346 3/10.4 */
1636 return &(data
->vds
[VDS_POS_IMP_USE_VOL_DESC
]);
1637 case TAG_IDENT_LVD
: /* ISO 13346 3/10.6 */
1638 return &(data
->vds
[VDS_POS_LOGICAL_VOL_DESC
]);
1639 case TAG_IDENT_USD
: /* ISO 13346 3/10.8 */
1640 return &(data
->vds
[VDS_POS_UNALLOC_SPACE_DESC
]);
1641 case TAG_IDENT_PD
: /* ISO 13346 3/10.5 */
1642 return handle_partition_descriptor(bh
, data
);
1648 * Process a main/reserve volume descriptor sequence.
1649 * @block First block of first extent of the sequence.
1650 * @lastblock Lastblock of first extent of the sequence.
1651 * @fileset There we store extent containing root fileset
1653 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1656 static noinline
int udf_process_sequence(
1657 struct super_block
*sb
,
1658 sector_t block
, sector_t lastblock
,
1659 struct kernel_lb_addr
*fileset
)
1661 struct buffer_head
*bh
= NULL
;
1662 struct udf_vds_record
*curr
;
1663 struct generic_desc
*gd
;
1664 struct volDescPtr
*vdp
;
1669 unsigned int indirections
= 0;
1670 struct desc_seq_scan_data data
;
1673 memset(data
.vds
, 0, sizeof(struct udf_vds_record
) * VDS_POS_LENGTH
);
1674 data
.size_part_descs
= PART_DESC_ALLOC_STEP
;
1675 data
.num_part_descs
= 0;
1676 data
.part_descs_loc
= kcalloc(data
.size_part_descs
,
1677 sizeof(*data
.part_descs_loc
),
1679 if (!data
.part_descs_loc
)
1683 * Read the main descriptor sequence and find which descriptors
1686 for (; (!done
&& block
<= lastblock
); block
++) {
1687 bh
= udf_read_tagged(sb
, block
, block
, &ident
);
1691 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1692 gd
= (struct generic_desc
*)bh
->b_data
;
1693 vdsn
= le32_to_cpu(gd
->volDescSeqNum
);
1695 case TAG_IDENT_VDP
: /* ISO 13346 3/10.3 */
1696 if (++indirections
> UDF_MAX_TD_NESTING
) {
1697 udf_err(sb
, "too many Volume Descriptor "
1698 "Pointers (max %u supported)\n",
1699 UDF_MAX_TD_NESTING
);
1704 vdp
= (struct volDescPtr
*)bh
->b_data
;
1705 block
= le32_to_cpu(vdp
->nextVolDescSeqExt
.extLocation
);
1706 lastblock
= le32_to_cpu(
1707 vdp
->nextVolDescSeqExt
.extLength
) >>
1708 sb
->s_blocksize_bits
;
1709 lastblock
+= block
- 1;
1710 /* For loop is going to increment 'block' again */
1713 case TAG_IDENT_PVD
: /* ISO 13346 3/10.1 */
1714 case TAG_IDENT_IUVD
: /* ISO 13346 3/10.4 */
1715 case TAG_IDENT_LVD
: /* ISO 13346 3/10.6 */
1716 case TAG_IDENT_USD
: /* ISO 13346 3/10.8 */
1717 case TAG_IDENT_PD
: /* ISO 13346 3/10.5 */
1718 curr
= get_volume_descriptor_record(ident
, bh
, &data
);
1721 return PTR_ERR(curr
);
1723 /* Descriptor we don't care about? */
1726 if (vdsn
>= curr
->volDescSeqNum
) {
1727 curr
->volDescSeqNum
= vdsn
;
1728 curr
->block
= block
;
1731 case TAG_IDENT_TD
: /* ISO 13346 3/10.9 */
1738 * Now read interesting descriptors again and process them
1739 * in a suitable order
1741 if (!data
.vds
[VDS_POS_PRIMARY_VOL_DESC
].block
) {
1742 udf_err(sb
, "Primary Volume Descriptor not found!\n");
1745 ret
= udf_load_pvoldesc(sb
, data
.vds
[VDS_POS_PRIMARY_VOL_DESC
].block
);
1749 if (data
.vds
[VDS_POS_LOGICAL_VOL_DESC
].block
) {
1750 ret
= udf_load_logicalvol(sb
,
1751 data
.vds
[VDS_POS_LOGICAL_VOL_DESC
].block
,
1757 /* Now handle prevailing Partition Descriptors */
1758 for (i
= 0; i
< data
.num_part_descs
; i
++) {
1759 ret
= udf_load_partdesc(sb
, data
.part_descs_loc
[i
].rec
.block
);
1768 * Load Volume Descriptor Sequence described by anchor in bh
1770 * Returns <0 on error, 0 on success
1772 static int udf_load_sequence(struct super_block
*sb
, struct buffer_head
*bh
,
1773 struct kernel_lb_addr
*fileset
)
1775 struct anchorVolDescPtr
*anchor
;
1776 sector_t main_s
, main_e
, reserve_s
, reserve_e
;
1779 anchor
= (struct anchorVolDescPtr
*)bh
->b_data
;
1781 /* Locate the main sequence */
1782 main_s
= le32_to_cpu(anchor
->mainVolDescSeqExt
.extLocation
);
1783 main_e
= le32_to_cpu(anchor
->mainVolDescSeqExt
.extLength
);
1784 main_e
= main_e
>> sb
->s_blocksize_bits
;
1785 main_e
+= main_s
- 1;
1787 /* Locate the reserve sequence */
1788 reserve_s
= le32_to_cpu(anchor
->reserveVolDescSeqExt
.extLocation
);
1789 reserve_e
= le32_to_cpu(anchor
->reserveVolDescSeqExt
.extLength
);
1790 reserve_e
= reserve_e
>> sb
->s_blocksize_bits
;
1791 reserve_e
+= reserve_s
- 1;
1793 /* Process the main & reserve sequences */
1794 /* responsible for finding the PartitionDesc(s) */
1795 ret
= udf_process_sequence(sb
, main_s
, main_e
, fileset
);
1798 udf_sb_free_partitions(sb
);
1799 ret
= udf_process_sequence(sb
, reserve_s
, reserve_e
, fileset
);
1801 udf_sb_free_partitions(sb
);
1802 /* No sequence was OK, return -EIO */
1810 * Check whether there is an anchor block in the given block and
1811 * load Volume Descriptor Sequence if so.
1813 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1816 static int udf_check_anchor_block(struct super_block
*sb
, sector_t block
,
1817 struct kernel_lb_addr
*fileset
)
1819 struct buffer_head
*bh
;
1823 if (UDF_QUERY_FLAG(sb
, UDF_FLAG_VARCONV
) &&
1824 udf_fixed_to_variable(block
) >=
1825 i_size_read(sb
->s_bdev
->bd_inode
) >> sb
->s_blocksize_bits
)
1828 bh
= udf_read_tagged(sb
, block
, block
, &ident
);
1831 if (ident
!= TAG_IDENT_AVDP
) {
1835 ret
= udf_load_sequence(sb
, bh
, fileset
);
1841 * Search for an anchor volume descriptor pointer.
1843 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1846 static int udf_scan_anchors(struct super_block
*sb
, sector_t
*lastblock
,
1847 struct kernel_lb_addr
*fileset
)
1851 struct udf_sb_info
*sbi
= UDF_SB(sb
);
1855 /* First try user provided anchor */
1856 if (sbi
->s_anchor
) {
1857 ret
= udf_check_anchor_block(sb
, sbi
->s_anchor
, fileset
);
1862 * according to spec, anchor is in either:
1866 * however, if the disc isn't closed, it could be 512.
1868 ret
= udf_check_anchor_block(sb
, sbi
->s_session
+ 256, fileset
);
1872 * The trouble is which block is the last one. Drives often misreport
1873 * this so we try various possibilities.
1875 last
[last_count
++] = *lastblock
;
1876 if (*lastblock
>= 1)
1877 last
[last_count
++] = *lastblock
- 1;
1878 last
[last_count
++] = *lastblock
+ 1;
1879 if (*lastblock
>= 2)
1880 last
[last_count
++] = *lastblock
- 2;
1881 if (*lastblock
>= 150)
1882 last
[last_count
++] = *lastblock
- 150;
1883 if (*lastblock
>= 152)
1884 last
[last_count
++] = *lastblock
- 152;
1886 for (i
= 0; i
< last_count
; i
++) {
1887 if (last
[i
] >= i_size_read(sb
->s_bdev
->bd_inode
) >>
1888 sb
->s_blocksize_bits
)
1890 ret
= udf_check_anchor_block(sb
, last
[i
], fileset
);
1891 if (ret
!= -EAGAIN
) {
1893 *lastblock
= last
[i
];
1898 ret
= udf_check_anchor_block(sb
, last
[i
] - 256, fileset
);
1899 if (ret
!= -EAGAIN
) {
1901 *lastblock
= last
[i
];
1906 /* Finally try block 512 in case media is open */
1907 return udf_check_anchor_block(sb
, sbi
->s_session
+ 512, fileset
);
1911 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1912 * area specified by it. The function expects sbi->s_lastblock to be the last
1913 * block on the media.
1915 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1918 static int udf_find_anchor(struct super_block
*sb
,
1919 struct kernel_lb_addr
*fileset
)
1921 struct udf_sb_info
*sbi
= UDF_SB(sb
);
1922 sector_t lastblock
= sbi
->s_last_block
;
1925 ret
= udf_scan_anchors(sb
, &lastblock
, fileset
);
1929 /* No anchor found? Try VARCONV conversion of block numbers */
1930 UDF_SET_FLAG(sb
, UDF_FLAG_VARCONV
);
1931 lastblock
= udf_variable_to_fixed(sbi
->s_last_block
);
1932 /* Firstly, we try to not convert number of the last block */
1933 ret
= udf_scan_anchors(sb
, &lastblock
, fileset
);
1937 lastblock
= sbi
->s_last_block
;
1938 /* Secondly, we try with converted number of the last block */
1939 ret
= udf_scan_anchors(sb
, &lastblock
, fileset
);
1941 /* VARCONV didn't help. Clear it. */
1942 UDF_CLEAR_FLAG(sb
, UDF_FLAG_VARCONV
);
1946 sbi
->s_last_block
= lastblock
;
1951 * Check Volume Structure Descriptor, find Anchor block and load Volume
1952 * Descriptor Sequence.
1954 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1955 * block was not found.
1957 static int udf_load_vrs(struct super_block
*sb
, struct udf_options
*uopt
,
1958 int silent
, struct kernel_lb_addr
*fileset
)
1960 struct udf_sb_info
*sbi
= UDF_SB(sb
);
1964 if (!sb_set_blocksize(sb
, uopt
->blocksize
)) {
1966 udf_warn(sb
, "Bad block size\n");
1969 sbi
->s_last_block
= uopt
->lastblock
;
1971 /* Check that it is NSR02 compliant */
1972 nsr
= udf_check_vsd(sb
);
1975 udf_warn(sb
, "No VRS found\n");
1979 udf_debug("Failed to read sector at offset %d. "
1980 "Assuming open disc. Skipping validity "
1981 "check\n", VSD_FIRST_SECTOR_OFFSET
);
1982 if (!sbi
->s_last_block
)
1983 sbi
->s_last_block
= udf_get_last_block(sb
);
1985 udf_debug("Validity check skipped because of novrs option\n");
1988 /* Look for anchor block and load Volume Descriptor Sequence */
1989 sbi
->s_anchor
= uopt
->anchor
;
1990 ret
= udf_find_anchor(sb
, fileset
);
1992 if (!silent
&& ret
== -EAGAIN
)
1993 udf_warn(sb
, "No anchor found\n");
1999 static void udf_finalize_lvid(struct logicalVolIntegrityDesc
*lvid
)
2001 struct timespec64 ts
;
2003 ktime_get_real_ts64(&ts
);
2004 udf_time_to_disk_stamp(&lvid
->recordingDateAndTime
, ts
);
2005 lvid
->descTag
.descCRC
= cpu_to_le16(
2006 crc_itu_t(0, (char *)lvid
+ sizeof(struct tag
),
2007 le16_to_cpu(lvid
->descTag
.descCRCLength
)));
2008 lvid
->descTag
.tagChecksum
= udf_tag_checksum(&lvid
->descTag
);
2011 static void udf_open_lvid(struct super_block
*sb
)
2013 struct udf_sb_info
*sbi
= UDF_SB(sb
);
2014 struct buffer_head
*bh
= sbi
->s_lvid_bh
;
2015 struct logicalVolIntegrityDesc
*lvid
;
2016 struct logicalVolIntegrityDescImpUse
*lvidiu
;
2020 lvid
= (struct logicalVolIntegrityDesc
*)bh
->b_data
;
2021 lvidiu
= udf_sb_lvidiu(sb
);
2025 mutex_lock(&sbi
->s_alloc_mutex
);
2026 lvidiu
->impIdent
.identSuffix
[0] = UDF_OS_CLASS_UNIX
;
2027 lvidiu
->impIdent
.identSuffix
[1] = UDF_OS_ID_LINUX
;
2028 if (le32_to_cpu(lvid
->integrityType
) == LVID_INTEGRITY_TYPE_CLOSE
)
2029 lvid
->integrityType
= cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN
);
2031 UDF_SET_FLAG(sb
, UDF_FLAG_INCONSISTENT
);
2033 udf_finalize_lvid(lvid
);
2034 mark_buffer_dirty(bh
);
2035 sbi
->s_lvid_dirty
= 0;
2036 mutex_unlock(&sbi
->s_alloc_mutex
);
2037 /* Make opening of filesystem visible on the media immediately */
2038 sync_dirty_buffer(bh
);
2041 static void udf_close_lvid(struct super_block
*sb
)
2043 struct udf_sb_info
*sbi
= UDF_SB(sb
);
2044 struct buffer_head
*bh
= sbi
->s_lvid_bh
;
2045 struct logicalVolIntegrityDesc
*lvid
;
2046 struct logicalVolIntegrityDescImpUse
*lvidiu
;
2050 lvid
= (struct logicalVolIntegrityDesc
*)bh
->b_data
;
2051 lvidiu
= udf_sb_lvidiu(sb
);
2055 mutex_lock(&sbi
->s_alloc_mutex
);
2056 lvidiu
->impIdent
.identSuffix
[0] = UDF_OS_CLASS_UNIX
;
2057 lvidiu
->impIdent
.identSuffix
[1] = UDF_OS_ID_LINUX
;
2058 if (UDF_MAX_WRITE_VERSION
> le16_to_cpu(lvidiu
->maxUDFWriteRev
))
2059 lvidiu
->maxUDFWriteRev
= cpu_to_le16(UDF_MAX_WRITE_VERSION
);
2060 if (sbi
->s_udfrev
> le16_to_cpu(lvidiu
->minUDFReadRev
))
2061 lvidiu
->minUDFReadRev
= cpu_to_le16(sbi
->s_udfrev
);
2062 if (sbi
->s_udfrev
> le16_to_cpu(lvidiu
->minUDFWriteRev
))
2063 lvidiu
->minUDFWriteRev
= cpu_to_le16(sbi
->s_udfrev
);
2064 if (!UDF_QUERY_FLAG(sb
, UDF_FLAG_INCONSISTENT
))
2065 lvid
->integrityType
= cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE
);
2068 * We set buffer uptodate unconditionally here to avoid spurious
2069 * warnings from mark_buffer_dirty() when previous EIO has marked
2070 * the buffer as !uptodate
2072 set_buffer_uptodate(bh
);
2073 udf_finalize_lvid(lvid
);
2074 mark_buffer_dirty(bh
);
2075 sbi
->s_lvid_dirty
= 0;
2076 mutex_unlock(&sbi
->s_alloc_mutex
);
2077 /* Make closing of filesystem visible on the media immediately */
2078 sync_dirty_buffer(bh
);
2081 u64
lvid_get_unique_id(struct super_block
*sb
)
2083 struct buffer_head
*bh
;
2084 struct udf_sb_info
*sbi
= UDF_SB(sb
);
2085 struct logicalVolIntegrityDesc
*lvid
;
2086 struct logicalVolHeaderDesc
*lvhd
;
2090 bh
= sbi
->s_lvid_bh
;
2094 lvid
= (struct logicalVolIntegrityDesc
*)bh
->b_data
;
2095 lvhd
= (struct logicalVolHeaderDesc
*)lvid
->logicalVolContentsUse
;
2097 mutex_lock(&sbi
->s_alloc_mutex
);
2098 ret
= uniqueID
= le64_to_cpu(lvhd
->uniqueID
);
2099 if (!(++uniqueID
& 0xFFFFFFFF))
2101 lvhd
->uniqueID
= cpu_to_le64(uniqueID
);
2102 udf_updated_lvid(sb
);
2103 mutex_unlock(&sbi
->s_alloc_mutex
);
2108 static int udf_fill_super(struct super_block
*sb
, void *options
, int silent
)
2111 struct inode
*inode
= NULL
;
2112 struct udf_options uopt
;
2113 struct kernel_lb_addr rootdir
, fileset
;
2114 struct udf_sb_info
*sbi
;
2115 bool lvid_open
= false;
2117 uopt
.flags
= (1 << UDF_FLAG_USE_AD_IN_ICB
) | (1 << UDF_FLAG_STRICT
);
2118 /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2119 uopt
.uid
= make_kuid(current_user_ns(), overflowuid
);
2120 uopt
.gid
= make_kgid(current_user_ns(), overflowgid
);
2122 uopt
.fmode
= UDF_INVALID_MODE
;
2123 uopt
.dmode
= UDF_INVALID_MODE
;
2124 uopt
.nls_map
= NULL
;
2126 sbi
= kzalloc(sizeof(*sbi
), GFP_KERNEL
);
2130 sb
->s_fs_info
= sbi
;
2132 mutex_init(&sbi
->s_alloc_mutex
);
2134 if (!udf_parse_options((char *)options
, &uopt
, false))
2135 goto parse_options_failure
;
2137 if (uopt
.flags
& (1 << UDF_FLAG_UTF8
) &&
2138 uopt
.flags
& (1 << UDF_FLAG_NLS_MAP
)) {
2139 udf_err(sb
, "utf8 cannot be combined with iocharset\n");
2140 goto parse_options_failure
;
2142 if ((uopt
.flags
& (1 << UDF_FLAG_NLS_MAP
)) && !uopt
.nls_map
) {
2143 uopt
.nls_map
= load_nls_default();
2145 uopt
.flags
&= ~(1 << UDF_FLAG_NLS_MAP
);
2147 udf_debug("Using default NLS map\n");
2149 if (!(uopt
.flags
& (1 << UDF_FLAG_NLS_MAP
)))
2150 uopt
.flags
|= (1 << UDF_FLAG_UTF8
);
2152 fileset
.logicalBlockNum
= 0xFFFFFFFF;
2153 fileset
.partitionReferenceNum
= 0xFFFF;
2155 sbi
->s_flags
= uopt
.flags
;
2156 sbi
->s_uid
= uopt
.uid
;
2157 sbi
->s_gid
= uopt
.gid
;
2158 sbi
->s_umask
= uopt
.umask
;
2159 sbi
->s_fmode
= uopt
.fmode
;
2160 sbi
->s_dmode
= uopt
.dmode
;
2161 sbi
->s_nls_map
= uopt
.nls_map
;
2162 rwlock_init(&sbi
->s_cred_lock
);
2164 if (uopt
.session
== 0xFFFFFFFF)
2165 sbi
->s_session
= udf_get_last_session(sb
);
2167 sbi
->s_session
= uopt
.session
;
2169 udf_debug("Multi-session=%d\n", sbi
->s_session
);
2171 /* Fill in the rest of the superblock */
2172 sb
->s_op
= &udf_sb_ops
;
2173 sb
->s_export_op
= &udf_export_ops
;
2175 sb
->s_magic
= UDF_SUPER_MAGIC
;
2176 sb
->s_time_gran
= 1000;
2178 if (uopt
.flags
& (1 << UDF_FLAG_BLOCKSIZE_SET
)) {
2179 ret
= udf_load_vrs(sb
, &uopt
, silent
, &fileset
);
2181 uopt
.blocksize
= bdev_logical_block_size(sb
->s_bdev
);
2182 while (uopt
.blocksize
<= 4096) {
2183 ret
= udf_load_vrs(sb
, &uopt
, silent
, &fileset
);
2185 if (!silent
&& ret
!= -EACCES
) {
2186 pr_notice("Scanning with blocksize %u failed\n",
2189 brelse(sbi
->s_lvid_bh
);
2190 sbi
->s_lvid_bh
= NULL
;
2192 * EACCES is special - we want to propagate to
2193 * upper layers that we cannot handle RW mount.
2200 uopt
.blocksize
<<= 1;
2204 if (ret
== -EAGAIN
) {
2205 udf_warn(sb
, "No partition found (1)\n");
2211 udf_debug("Lastblock=%u\n", sbi
->s_last_block
);
2213 if (sbi
->s_lvid_bh
) {
2214 struct logicalVolIntegrityDescImpUse
*lvidiu
=
2216 uint16_t minUDFReadRev
;
2217 uint16_t minUDFWriteRev
;
2223 minUDFReadRev
= le16_to_cpu(lvidiu
->minUDFReadRev
);
2224 minUDFWriteRev
= le16_to_cpu(lvidiu
->minUDFWriteRev
);
2225 if (minUDFReadRev
> UDF_MAX_READ_VERSION
) {
2226 udf_err(sb
, "minUDFReadRev=%x (max is %x)\n",
2228 UDF_MAX_READ_VERSION
);
2231 } else if (minUDFWriteRev
> UDF_MAX_WRITE_VERSION
) {
2232 if (!sb_rdonly(sb
)) {
2236 UDF_SET_FLAG(sb
, UDF_FLAG_RW_INCOMPAT
);
2239 sbi
->s_udfrev
= minUDFWriteRev
;
2241 if (minUDFReadRev
>= UDF_VERS_USE_EXTENDED_FE
)
2242 UDF_SET_FLAG(sb
, UDF_FLAG_USE_EXTENDED_FE
);
2243 if (minUDFReadRev
>= UDF_VERS_USE_STREAMS
)
2244 UDF_SET_FLAG(sb
, UDF_FLAG_USE_STREAMS
);
2247 if (!sbi
->s_partitions
) {
2248 udf_warn(sb
, "No partition found (2)\n");
2253 if (sbi
->s_partmaps
[sbi
->s_partition
].s_partition_flags
&
2254 UDF_PART_FLAG_READ_ONLY
) {
2255 if (!sb_rdonly(sb
)) {
2259 UDF_SET_FLAG(sb
, UDF_FLAG_RW_INCOMPAT
);
2262 ret
= udf_find_fileset(sb
, &fileset
, &rootdir
);
2264 udf_warn(sb
, "No fileset found\n");
2269 struct timestamp ts
;
2270 udf_time_to_disk_stamp(&ts
, sbi
->s_record_time
);
2271 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2272 sbi
->s_volume_ident
,
2273 le16_to_cpu(ts
.year
), ts
.month
, ts
.day
,
2274 ts
.hour
, ts
.minute
, le16_to_cpu(ts
.typeAndTimezone
));
2276 if (!sb_rdonly(sb
)) {
2281 /* Assign the root inode */
2282 /* assign inodes by physical block number */
2283 /* perhaps it's not extensible enough, but for now ... */
2284 inode
= udf_iget(sb
, &rootdir
);
2285 if (IS_ERR(inode
)) {
2286 udf_err(sb
, "Error in udf_iget, block=%u, partition=%u\n",
2287 rootdir
.logicalBlockNum
, rootdir
.partitionReferenceNum
);
2288 ret
= PTR_ERR(inode
);
2292 /* Allocate a dentry for the root inode */
2293 sb
->s_root
= d_make_root(inode
);
2295 udf_err(sb
, "Couldn't allocate root dentry\n");
2299 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
2300 sb
->s_max_links
= UDF_MAX_LINKS
;
2304 iput(sbi
->s_vat_inode
);
2305 parse_options_failure
:
2307 unload_nls(uopt
.nls_map
);
2310 brelse(sbi
->s_lvid_bh
);
2311 udf_sb_free_partitions(sb
);
2313 sb
->s_fs_info
= NULL
;
2318 void _udf_err(struct super_block
*sb
, const char *function
,
2319 const char *fmt
, ...)
2321 struct va_format vaf
;
2324 va_start(args
, fmt
);
2329 pr_err("error (device %s): %s: %pV", sb
->s_id
, function
, &vaf
);
2334 void _udf_warn(struct super_block
*sb
, const char *function
,
2335 const char *fmt
, ...)
2337 struct va_format vaf
;
2340 va_start(args
, fmt
);
2345 pr_warn("warning (device %s): %s: %pV", sb
->s_id
, function
, &vaf
);
2350 static void udf_put_super(struct super_block
*sb
)
2352 struct udf_sb_info
*sbi
;
2356 iput(sbi
->s_vat_inode
);
2357 if (UDF_QUERY_FLAG(sb
, UDF_FLAG_NLS_MAP
))
2358 unload_nls(sbi
->s_nls_map
);
2361 brelse(sbi
->s_lvid_bh
);
2362 udf_sb_free_partitions(sb
);
2363 mutex_destroy(&sbi
->s_alloc_mutex
);
2364 kfree(sb
->s_fs_info
);
2365 sb
->s_fs_info
= NULL
;
2368 static int udf_sync_fs(struct super_block
*sb
, int wait
)
2370 struct udf_sb_info
*sbi
= UDF_SB(sb
);
2372 mutex_lock(&sbi
->s_alloc_mutex
);
2373 if (sbi
->s_lvid_dirty
) {
2374 struct buffer_head
*bh
= sbi
->s_lvid_bh
;
2375 struct logicalVolIntegrityDesc
*lvid
;
2377 lvid
= (struct logicalVolIntegrityDesc
*)bh
->b_data
;
2378 udf_finalize_lvid(lvid
);
2381 * Blockdevice will be synced later so we don't have to submit
2384 mark_buffer_dirty(bh
);
2385 sbi
->s_lvid_dirty
= 0;
2387 mutex_unlock(&sbi
->s_alloc_mutex
);
2392 static int udf_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
2394 struct super_block
*sb
= dentry
->d_sb
;
2395 struct udf_sb_info
*sbi
= UDF_SB(sb
);
2396 struct logicalVolIntegrityDescImpUse
*lvidiu
;
2397 u64 id
= huge_encode_dev(sb
->s_bdev
->bd_dev
);
2399 lvidiu
= udf_sb_lvidiu(sb
);
2400 buf
->f_type
= UDF_SUPER_MAGIC
;
2401 buf
->f_bsize
= sb
->s_blocksize
;
2402 buf
->f_blocks
= sbi
->s_partmaps
[sbi
->s_partition
].s_partition_len
;
2403 buf
->f_bfree
= udf_count_free(sb
);
2404 buf
->f_bavail
= buf
->f_bfree
;
2405 buf
->f_files
= (lvidiu
!= NULL
? (le32_to_cpu(lvidiu
->numFiles
) +
2406 le32_to_cpu(lvidiu
->numDirs
)) : 0)
2408 buf
->f_ffree
= buf
->f_bfree
;
2409 buf
->f_namelen
= UDF_NAME_LEN
;
2410 buf
->f_fsid
.val
[0] = (u32
)id
;
2411 buf
->f_fsid
.val
[1] = (u32
)(id
>> 32);
2416 static unsigned int udf_count_free_bitmap(struct super_block
*sb
,
2417 struct udf_bitmap
*bitmap
)
2419 struct buffer_head
*bh
= NULL
;
2420 unsigned int accum
= 0;
2422 udf_pblk_t block
= 0, newblock
;
2423 struct kernel_lb_addr loc
;
2427 struct spaceBitmapDesc
*bm
;
2429 loc
.logicalBlockNum
= bitmap
->s_extPosition
;
2430 loc
.partitionReferenceNum
= UDF_SB(sb
)->s_partition
;
2431 bh
= udf_read_ptagged(sb
, &loc
, 0, &ident
);
2434 udf_err(sb
, "udf_count_free failed\n");
2436 } else if (ident
!= TAG_IDENT_SBD
) {
2438 udf_err(sb
, "udf_count_free failed\n");
2442 bm
= (struct spaceBitmapDesc
*)bh
->b_data
;
2443 bytes
= le32_to_cpu(bm
->numOfBytes
);
2444 index
= sizeof(struct spaceBitmapDesc
); /* offset in first block only */
2445 ptr
= (uint8_t *)bh
->b_data
;
2448 u32 cur_bytes
= min_t(u32
, bytes
, sb
->s_blocksize
- index
);
2449 accum
+= bitmap_weight((const unsigned long *)(ptr
+ index
),
2454 newblock
= udf_get_lb_pblock(sb
, &loc
, ++block
);
2455 bh
= udf_tread(sb
, newblock
);
2457 udf_debug("read failed\n");
2461 ptr
= (uint8_t *)bh
->b_data
;
2469 static unsigned int udf_count_free_table(struct super_block
*sb
,
2470 struct inode
*table
)
2472 unsigned int accum
= 0;
2474 struct kernel_lb_addr eloc
;
2476 struct extent_position epos
;
2478 mutex_lock(&UDF_SB(sb
)->s_alloc_mutex
);
2479 epos
.block
= UDF_I(table
)->i_location
;
2480 epos
.offset
= sizeof(struct unallocSpaceEntry
);
2483 while ((etype
= udf_next_aext(table
, &epos
, &eloc
, &elen
, 1)) != -1)
2484 accum
+= (elen
>> table
->i_sb
->s_blocksize_bits
);
2487 mutex_unlock(&UDF_SB(sb
)->s_alloc_mutex
);
2492 static unsigned int udf_count_free(struct super_block
*sb
)
2494 unsigned int accum
= 0;
2495 struct udf_sb_info
*sbi
;
2496 struct udf_part_map
*map
;
2499 if (sbi
->s_lvid_bh
) {
2500 struct logicalVolIntegrityDesc
*lvid
=
2501 (struct logicalVolIntegrityDesc
*)
2502 sbi
->s_lvid_bh
->b_data
;
2503 if (le32_to_cpu(lvid
->numOfPartitions
) > sbi
->s_partition
) {
2504 accum
= le32_to_cpu(
2505 lvid
->freeSpaceTable
[sbi
->s_partition
]);
2506 if (accum
== 0xFFFFFFFF)
2514 map
= &sbi
->s_partmaps
[sbi
->s_partition
];
2515 if (map
->s_partition_flags
& UDF_PART_FLAG_UNALLOC_BITMAP
) {
2516 accum
+= udf_count_free_bitmap(sb
,
2517 map
->s_uspace
.s_bitmap
);
2522 if (map
->s_partition_flags
& UDF_PART_FLAG_UNALLOC_TABLE
) {
2523 accum
+= udf_count_free_table(sb
,
2524 map
->s_uspace
.s_table
);
2529 MODULE_AUTHOR("Ben Fennema");
2530 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2531 MODULE_LICENSE("GPL");
2532 module_init(init_udf_fs
)
2533 module_exit(exit_udf_fs
)