ACPI / utils: Move acpi_dev_get_first_match_dev() under CONFIG_ACPI
[linux/fpc-iii.git] / fs / userfaultfd.c
blobf9fd18670e22dfb3b9608007c93b9bff6353e245
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/userfaultfd.c
5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
6 * Copyright (C) 2008-2009 Red Hat, Inc.
7 * Copyright (C) 2015 Red Hat, Inc.
9 * Some part derived from fs/eventfd.c (anon inode setup) and
10 * mm/ksm.c (mm hashing).
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
17 #include <linux/mm.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/seq_file.h>
21 #include <linux/file.h>
22 #include <linux/bug.h>
23 #include <linux/anon_inodes.h>
24 #include <linux/syscalls.h>
25 #include <linux/userfaultfd_k.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ioctl.h>
28 #include <linux/security.h>
29 #include <linux/hugetlb.h>
31 int sysctl_unprivileged_userfaultfd __read_mostly = 1;
33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
35 enum userfaultfd_state {
36 UFFD_STATE_WAIT_API,
37 UFFD_STATE_RUNNING,
41 * Start with fault_pending_wqh and fault_wqh so they're more likely
42 * to be in the same cacheline.
44 * Locking order:
45 * fd_wqh.lock
46 * fault_pending_wqh.lock
47 * fault_wqh.lock
48 * event_wqh.lock
50 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
51 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
52 * also taken in IRQ context.
54 struct userfaultfd_ctx {
55 /* waitqueue head for the pending (i.e. not read) userfaults */
56 wait_queue_head_t fault_pending_wqh;
57 /* waitqueue head for the userfaults */
58 wait_queue_head_t fault_wqh;
59 /* waitqueue head for the pseudo fd to wakeup poll/read */
60 wait_queue_head_t fd_wqh;
61 /* waitqueue head for events */
62 wait_queue_head_t event_wqh;
63 /* a refile sequence protected by fault_pending_wqh lock */
64 struct seqcount refile_seq;
65 /* pseudo fd refcounting */
66 refcount_t refcount;
67 /* userfaultfd syscall flags */
68 unsigned int flags;
69 /* features requested from the userspace */
70 unsigned int features;
71 /* state machine */
72 enum userfaultfd_state state;
73 /* released */
74 bool released;
75 /* memory mappings are changing because of non-cooperative event */
76 bool mmap_changing;
77 /* mm with one ore more vmas attached to this userfaultfd_ctx */
78 struct mm_struct *mm;
81 struct userfaultfd_fork_ctx {
82 struct userfaultfd_ctx *orig;
83 struct userfaultfd_ctx *new;
84 struct list_head list;
87 struct userfaultfd_unmap_ctx {
88 struct userfaultfd_ctx *ctx;
89 unsigned long start;
90 unsigned long end;
91 struct list_head list;
94 struct userfaultfd_wait_queue {
95 struct uffd_msg msg;
96 wait_queue_entry_t wq;
97 struct userfaultfd_ctx *ctx;
98 bool waken;
101 struct userfaultfd_wake_range {
102 unsigned long start;
103 unsigned long len;
106 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
107 int wake_flags, void *key)
109 struct userfaultfd_wake_range *range = key;
110 int ret;
111 struct userfaultfd_wait_queue *uwq;
112 unsigned long start, len;
114 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
115 ret = 0;
116 /* len == 0 means wake all */
117 start = range->start;
118 len = range->len;
119 if (len && (start > uwq->msg.arg.pagefault.address ||
120 start + len <= uwq->msg.arg.pagefault.address))
121 goto out;
122 WRITE_ONCE(uwq->waken, true);
124 * The Program-Order guarantees provided by the scheduler
125 * ensure uwq->waken is visible before the task is woken.
127 ret = wake_up_state(wq->private, mode);
128 if (ret) {
130 * Wake only once, autoremove behavior.
132 * After the effect of list_del_init is visible to the other
133 * CPUs, the waitqueue may disappear from under us, see the
134 * !list_empty_careful() in handle_userfault().
136 * try_to_wake_up() has an implicit smp_mb(), and the
137 * wq->private is read before calling the extern function
138 * "wake_up_state" (which in turns calls try_to_wake_up).
140 list_del_init(&wq->entry);
142 out:
143 return ret;
147 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
148 * context.
149 * @ctx: [in] Pointer to the userfaultfd context.
151 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
153 refcount_inc(&ctx->refcount);
157 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
158 * context.
159 * @ctx: [in] Pointer to userfaultfd context.
161 * The userfaultfd context reference must have been previously acquired either
162 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
164 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
166 if (refcount_dec_and_test(&ctx->refcount)) {
167 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
168 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
169 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
170 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
171 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
172 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
173 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
174 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
175 mmdrop(ctx->mm);
176 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
180 static inline void msg_init(struct uffd_msg *msg)
182 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
184 * Must use memset to zero out the paddings or kernel data is
185 * leaked to userland.
187 memset(msg, 0, sizeof(struct uffd_msg));
190 static inline struct uffd_msg userfault_msg(unsigned long address,
191 unsigned int flags,
192 unsigned long reason,
193 unsigned int features)
195 struct uffd_msg msg;
196 msg_init(&msg);
197 msg.event = UFFD_EVENT_PAGEFAULT;
198 msg.arg.pagefault.address = address;
199 if (flags & FAULT_FLAG_WRITE)
201 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
202 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
203 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
204 * was a read fault, otherwise if set it means it's
205 * a write fault.
207 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
208 if (reason & VM_UFFD_WP)
210 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
211 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
212 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
213 * a missing fault, otherwise if set it means it's a
214 * write protect fault.
216 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
217 if (features & UFFD_FEATURE_THREAD_ID)
218 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
219 return msg;
222 #ifdef CONFIG_HUGETLB_PAGE
224 * Same functionality as userfaultfd_must_wait below with modifications for
225 * hugepmd ranges.
227 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
228 struct vm_area_struct *vma,
229 unsigned long address,
230 unsigned long flags,
231 unsigned long reason)
233 struct mm_struct *mm = ctx->mm;
234 pte_t *ptep, pte;
235 bool ret = true;
237 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
239 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
241 if (!ptep)
242 goto out;
244 ret = false;
245 pte = huge_ptep_get(ptep);
248 * Lockless access: we're in a wait_event so it's ok if it
249 * changes under us.
251 if (huge_pte_none(pte))
252 ret = true;
253 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
254 ret = true;
255 out:
256 return ret;
258 #else
259 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
260 struct vm_area_struct *vma,
261 unsigned long address,
262 unsigned long flags,
263 unsigned long reason)
265 return false; /* should never get here */
267 #endif /* CONFIG_HUGETLB_PAGE */
270 * Verify the pagetables are still not ok after having reigstered into
271 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
272 * userfault that has already been resolved, if userfaultfd_read and
273 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
274 * threads.
276 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
277 unsigned long address,
278 unsigned long flags,
279 unsigned long reason)
281 struct mm_struct *mm = ctx->mm;
282 pgd_t *pgd;
283 p4d_t *p4d;
284 pud_t *pud;
285 pmd_t *pmd, _pmd;
286 pte_t *pte;
287 bool ret = true;
289 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
291 pgd = pgd_offset(mm, address);
292 if (!pgd_present(*pgd))
293 goto out;
294 p4d = p4d_offset(pgd, address);
295 if (!p4d_present(*p4d))
296 goto out;
297 pud = pud_offset(p4d, address);
298 if (!pud_present(*pud))
299 goto out;
300 pmd = pmd_offset(pud, address);
302 * READ_ONCE must function as a barrier with narrower scope
303 * and it must be equivalent to:
304 * _pmd = *pmd; barrier();
306 * This is to deal with the instability (as in
307 * pmd_trans_unstable) of the pmd.
309 _pmd = READ_ONCE(*pmd);
310 if (pmd_none(_pmd))
311 goto out;
313 ret = false;
314 if (!pmd_present(_pmd))
315 goto out;
317 if (pmd_trans_huge(_pmd))
318 goto out;
321 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
322 * and use the standard pte_offset_map() instead of parsing _pmd.
324 pte = pte_offset_map(pmd, address);
326 * Lockless access: we're in a wait_event so it's ok if it
327 * changes under us.
329 if (pte_none(*pte))
330 ret = true;
331 pte_unmap(pte);
333 out:
334 return ret;
338 * The locking rules involved in returning VM_FAULT_RETRY depending on
339 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
340 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
341 * recommendation in __lock_page_or_retry is not an understatement.
343 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
344 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
345 * not set.
347 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
348 * set, VM_FAULT_RETRY can still be returned if and only if there are
349 * fatal_signal_pending()s, and the mmap_sem must be released before
350 * returning it.
352 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
354 struct mm_struct *mm = vmf->vma->vm_mm;
355 struct userfaultfd_ctx *ctx;
356 struct userfaultfd_wait_queue uwq;
357 vm_fault_t ret = VM_FAULT_SIGBUS;
358 bool must_wait, return_to_userland;
359 long blocking_state;
362 * We don't do userfault handling for the final child pid update.
364 * We also don't do userfault handling during
365 * coredumping. hugetlbfs has the special
366 * follow_hugetlb_page() to skip missing pages in the
367 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
368 * the no_page_table() helper in follow_page_mask(), but the
369 * shmem_vm_ops->fault method is invoked even during
370 * coredumping without mmap_sem and it ends up here.
372 if (current->flags & (PF_EXITING|PF_DUMPCORE))
373 goto out;
376 * Coredumping runs without mmap_sem so we can only check that
377 * the mmap_sem is held, if PF_DUMPCORE was not set.
379 WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem));
381 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
382 if (!ctx)
383 goto out;
385 BUG_ON(ctx->mm != mm);
387 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
388 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
390 if (ctx->features & UFFD_FEATURE_SIGBUS)
391 goto out;
394 * If it's already released don't get it. This avoids to loop
395 * in __get_user_pages if userfaultfd_release waits on the
396 * caller of handle_userfault to release the mmap_sem.
398 if (unlikely(READ_ONCE(ctx->released))) {
400 * Don't return VM_FAULT_SIGBUS in this case, so a non
401 * cooperative manager can close the uffd after the
402 * last UFFDIO_COPY, without risking to trigger an
403 * involuntary SIGBUS if the process was starting the
404 * userfaultfd while the userfaultfd was still armed
405 * (but after the last UFFDIO_COPY). If the uffd
406 * wasn't already closed when the userfault reached
407 * this point, that would normally be solved by
408 * userfaultfd_must_wait returning 'false'.
410 * If we were to return VM_FAULT_SIGBUS here, the non
411 * cooperative manager would be instead forced to
412 * always call UFFDIO_UNREGISTER before it can safely
413 * close the uffd.
415 ret = VM_FAULT_NOPAGE;
416 goto out;
420 * Check that we can return VM_FAULT_RETRY.
422 * NOTE: it should become possible to return VM_FAULT_RETRY
423 * even if FAULT_FLAG_TRIED is set without leading to gup()
424 * -EBUSY failures, if the userfaultfd is to be extended for
425 * VM_UFFD_WP tracking and we intend to arm the userfault
426 * without first stopping userland access to the memory. For
427 * VM_UFFD_MISSING userfaults this is enough for now.
429 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
431 * Validate the invariant that nowait must allow retry
432 * to be sure not to return SIGBUS erroneously on
433 * nowait invocations.
435 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
436 #ifdef CONFIG_DEBUG_VM
437 if (printk_ratelimit()) {
438 printk(KERN_WARNING
439 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
440 vmf->flags);
441 dump_stack();
443 #endif
444 goto out;
448 * Handle nowait, not much to do other than tell it to retry
449 * and wait.
451 ret = VM_FAULT_RETRY;
452 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
453 goto out;
455 /* take the reference before dropping the mmap_sem */
456 userfaultfd_ctx_get(ctx);
458 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
459 uwq.wq.private = current;
460 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
461 ctx->features);
462 uwq.ctx = ctx;
463 uwq.waken = false;
465 return_to_userland =
466 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
467 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
468 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
469 TASK_KILLABLE;
471 spin_lock_irq(&ctx->fault_pending_wqh.lock);
473 * After the __add_wait_queue the uwq is visible to userland
474 * through poll/read().
476 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
478 * The smp_mb() after __set_current_state prevents the reads
479 * following the spin_unlock to happen before the list_add in
480 * __add_wait_queue.
482 set_current_state(blocking_state);
483 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
485 if (!is_vm_hugetlb_page(vmf->vma))
486 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
487 reason);
488 else
489 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
490 vmf->address,
491 vmf->flags, reason);
492 up_read(&mm->mmap_sem);
494 if (likely(must_wait && !READ_ONCE(ctx->released) &&
495 (return_to_userland ? !signal_pending(current) :
496 !fatal_signal_pending(current)))) {
497 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
498 schedule();
499 ret |= VM_FAULT_MAJOR;
502 * False wakeups can orginate even from rwsem before
503 * up_read() however userfaults will wait either for a
504 * targeted wakeup on the specific uwq waitqueue from
505 * wake_userfault() or for signals or for uffd
506 * release.
508 while (!READ_ONCE(uwq.waken)) {
510 * This needs the full smp_store_mb()
511 * guarantee as the state write must be
512 * visible to other CPUs before reading
513 * uwq.waken from other CPUs.
515 set_current_state(blocking_state);
516 if (READ_ONCE(uwq.waken) ||
517 READ_ONCE(ctx->released) ||
518 (return_to_userland ? signal_pending(current) :
519 fatal_signal_pending(current)))
520 break;
521 schedule();
525 __set_current_state(TASK_RUNNING);
527 if (return_to_userland) {
528 if (signal_pending(current) &&
529 !fatal_signal_pending(current)) {
531 * If we got a SIGSTOP or SIGCONT and this is
532 * a normal userland page fault, just let
533 * userland return so the signal will be
534 * handled and gdb debugging works. The page
535 * fault code immediately after we return from
536 * this function is going to release the
537 * mmap_sem and it's not depending on it
538 * (unlike gup would if we were not to return
539 * VM_FAULT_RETRY).
541 * If a fatal signal is pending we still take
542 * the streamlined VM_FAULT_RETRY failure path
543 * and there's no need to retake the mmap_sem
544 * in such case.
546 down_read(&mm->mmap_sem);
547 ret = VM_FAULT_NOPAGE;
552 * Here we race with the list_del; list_add in
553 * userfaultfd_ctx_read(), however because we don't ever run
554 * list_del_init() to refile across the two lists, the prev
555 * and next pointers will never point to self. list_add also
556 * would never let any of the two pointers to point to
557 * self. So list_empty_careful won't risk to see both pointers
558 * pointing to self at any time during the list refile. The
559 * only case where list_del_init() is called is the full
560 * removal in the wake function and there we don't re-list_add
561 * and it's fine not to block on the spinlock. The uwq on this
562 * kernel stack can be released after the list_del_init.
564 if (!list_empty_careful(&uwq.wq.entry)) {
565 spin_lock_irq(&ctx->fault_pending_wqh.lock);
567 * No need of list_del_init(), the uwq on the stack
568 * will be freed shortly anyway.
570 list_del(&uwq.wq.entry);
571 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
575 * ctx may go away after this if the userfault pseudo fd is
576 * already released.
578 userfaultfd_ctx_put(ctx);
580 out:
581 return ret;
584 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
585 struct userfaultfd_wait_queue *ewq)
587 struct userfaultfd_ctx *release_new_ctx;
589 if (WARN_ON_ONCE(current->flags & PF_EXITING))
590 goto out;
592 ewq->ctx = ctx;
593 init_waitqueue_entry(&ewq->wq, current);
594 release_new_ctx = NULL;
596 spin_lock_irq(&ctx->event_wqh.lock);
598 * After the __add_wait_queue the uwq is visible to userland
599 * through poll/read().
601 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
602 for (;;) {
603 set_current_state(TASK_KILLABLE);
604 if (ewq->msg.event == 0)
605 break;
606 if (READ_ONCE(ctx->released) ||
607 fatal_signal_pending(current)) {
609 * &ewq->wq may be queued in fork_event, but
610 * __remove_wait_queue ignores the head
611 * parameter. It would be a problem if it
612 * didn't.
614 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
615 if (ewq->msg.event == UFFD_EVENT_FORK) {
616 struct userfaultfd_ctx *new;
618 new = (struct userfaultfd_ctx *)
619 (unsigned long)
620 ewq->msg.arg.reserved.reserved1;
621 release_new_ctx = new;
623 break;
626 spin_unlock_irq(&ctx->event_wqh.lock);
628 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
629 schedule();
631 spin_lock_irq(&ctx->event_wqh.lock);
633 __set_current_state(TASK_RUNNING);
634 spin_unlock_irq(&ctx->event_wqh.lock);
636 if (release_new_ctx) {
637 struct vm_area_struct *vma;
638 struct mm_struct *mm = release_new_ctx->mm;
640 /* the various vma->vm_userfaultfd_ctx still points to it */
641 down_write(&mm->mmap_sem);
642 /* no task can run (and in turn coredump) yet */
643 VM_WARN_ON(!mmget_still_valid(mm));
644 for (vma = mm->mmap; vma; vma = vma->vm_next)
645 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
646 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
647 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
649 up_write(&mm->mmap_sem);
651 userfaultfd_ctx_put(release_new_ctx);
655 * ctx may go away after this if the userfault pseudo fd is
656 * already released.
658 out:
659 WRITE_ONCE(ctx->mmap_changing, false);
660 userfaultfd_ctx_put(ctx);
663 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
664 struct userfaultfd_wait_queue *ewq)
666 ewq->msg.event = 0;
667 wake_up_locked(&ctx->event_wqh);
668 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
671 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
673 struct userfaultfd_ctx *ctx = NULL, *octx;
674 struct userfaultfd_fork_ctx *fctx;
676 octx = vma->vm_userfaultfd_ctx.ctx;
677 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
678 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
679 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
680 return 0;
683 list_for_each_entry(fctx, fcs, list)
684 if (fctx->orig == octx) {
685 ctx = fctx->new;
686 break;
689 if (!ctx) {
690 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
691 if (!fctx)
692 return -ENOMEM;
694 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
695 if (!ctx) {
696 kfree(fctx);
697 return -ENOMEM;
700 refcount_set(&ctx->refcount, 1);
701 ctx->flags = octx->flags;
702 ctx->state = UFFD_STATE_RUNNING;
703 ctx->features = octx->features;
704 ctx->released = false;
705 ctx->mmap_changing = false;
706 ctx->mm = vma->vm_mm;
707 mmgrab(ctx->mm);
709 userfaultfd_ctx_get(octx);
710 WRITE_ONCE(octx->mmap_changing, true);
711 fctx->orig = octx;
712 fctx->new = ctx;
713 list_add_tail(&fctx->list, fcs);
716 vma->vm_userfaultfd_ctx.ctx = ctx;
717 return 0;
720 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
722 struct userfaultfd_ctx *ctx = fctx->orig;
723 struct userfaultfd_wait_queue ewq;
725 msg_init(&ewq.msg);
727 ewq.msg.event = UFFD_EVENT_FORK;
728 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
730 userfaultfd_event_wait_completion(ctx, &ewq);
733 void dup_userfaultfd_complete(struct list_head *fcs)
735 struct userfaultfd_fork_ctx *fctx, *n;
737 list_for_each_entry_safe(fctx, n, fcs, list) {
738 dup_fctx(fctx);
739 list_del(&fctx->list);
740 kfree(fctx);
744 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
745 struct vm_userfaultfd_ctx *vm_ctx)
747 struct userfaultfd_ctx *ctx;
749 ctx = vma->vm_userfaultfd_ctx.ctx;
751 if (!ctx)
752 return;
754 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
755 vm_ctx->ctx = ctx;
756 userfaultfd_ctx_get(ctx);
757 WRITE_ONCE(ctx->mmap_changing, true);
758 } else {
759 /* Drop uffd context if remap feature not enabled */
760 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
761 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
765 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
766 unsigned long from, unsigned long to,
767 unsigned long len)
769 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
770 struct userfaultfd_wait_queue ewq;
772 if (!ctx)
773 return;
775 if (to & ~PAGE_MASK) {
776 userfaultfd_ctx_put(ctx);
777 return;
780 msg_init(&ewq.msg);
782 ewq.msg.event = UFFD_EVENT_REMAP;
783 ewq.msg.arg.remap.from = from;
784 ewq.msg.arg.remap.to = to;
785 ewq.msg.arg.remap.len = len;
787 userfaultfd_event_wait_completion(ctx, &ewq);
790 bool userfaultfd_remove(struct vm_area_struct *vma,
791 unsigned long start, unsigned long end)
793 struct mm_struct *mm = vma->vm_mm;
794 struct userfaultfd_ctx *ctx;
795 struct userfaultfd_wait_queue ewq;
797 ctx = vma->vm_userfaultfd_ctx.ctx;
798 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
799 return true;
801 userfaultfd_ctx_get(ctx);
802 WRITE_ONCE(ctx->mmap_changing, true);
803 up_read(&mm->mmap_sem);
805 msg_init(&ewq.msg);
807 ewq.msg.event = UFFD_EVENT_REMOVE;
808 ewq.msg.arg.remove.start = start;
809 ewq.msg.arg.remove.end = end;
811 userfaultfd_event_wait_completion(ctx, &ewq);
813 return false;
816 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
817 unsigned long start, unsigned long end)
819 struct userfaultfd_unmap_ctx *unmap_ctx;
821 list_for_each_entry(unmap_ctx, unmaps, list)
822 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
823 unmap_ctx->end == end)
824 return true;
826 return false;
829 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
830 unsigned long start, unsigned long end,
831 struct list_head *unmaps)
833 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
834 struct userfaultfd_unmap_ctx *unmap_ctx;
835 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
837 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
838 has_unmap_ctx(ctx, unmaps, start, end))
839 continue;
841 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
842 if (!unmap_ctx)
843 return -ENOMEM;
845 userfaultfd_ctx_get(ctx);
846 WRITE_ONCE(ctx->mmap_changing, true);
847 unmap_ctx->ctx = ctx;
848 unmap_ctx->start = start;
849 unmap_ctx->end = end;
850 list_add_tail(&unmap_ctx->list, unmaps);
853 return 0;
856 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
858 struct userfaultfd_unmap_ctx *ctx, *n;
859 struct userfaultfd_wait_queue ewq;
861 list_for_each_entry_safe(ctx, n, uf, list) {
862 msg_init(&ewq.msg);
864 ewq.msg.event = UFFD_EVENT_UNMAP;
865 ewq.msg.arg.remove.start = ctx->start;
866 ewq.msg.arg.remove.end = ctx->end;
868 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
870 list_del(&ctx->list);
871 kfree(ctx);
875 static int userfaultfd_release(struct inode *inode, struct file *file)
877 struct userfaultfd_ctx *ctx = file->private_data;
878 struct mm_struct *mm = ctx->mm;
879 struct vm_area_struct *vma, *prev;
880 /* len == 0 means wake all */
881 struct userfaultfd_wake_range range = { .len = 0, };
882 unsigned long new_flags;
883 bool still_valid;
885 WRITE_ONCE(ctx->released, true);
887 if (!mmget_not_zero(mm))
888 goto wakeup;
891 * Flush page faults out of all CPUs. NOTE: all page faults
892 * must be retried without returning VM_FAULT_SIGBUS if
893 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
894 * changes while handle_userfault released the mmap_sem. So
895 * it's critical that released is set to true (above), before
896 * taking the mmap_sem for writing.
898 down_write(&mm->mmap_sem);
899 still_valid = mmget_still_valid(mm);
900 prev = NULL;
901 for (vma = mm->mmap; vma; vma = vma->vm_next) {
902 cond_resched();
903 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
904 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
905 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
906 prev = vma;
907 continue;
909 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
910 if (still_valid) {
911 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
912 new_flags, vma->anon_vma,
913 vma->vm_file, vma->vm_pgoff,
914 vma_policy(vma),
915 NULL_VM_UFFD_CTX);
916 if (prev)
917 vma = prev;
918 else
919 prev = vma;
921 vma->vm_flags = new_flags;
922 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
924 up_write(&mm->mmap_sem);
925 mmput(mm);
926 wakeup:
928 * After no new page faults can wait on this fault_*wqh, flush
929 * the last page faults that may have been already waiting on
930 * the fault_*wqh.
932 spin_lock_irq(&ctx->fault_pending_wqh.lock);
933 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
934 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
935 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
937 /* Flush pending events that may still wait on event_wqh */
938 wake_up_all(&ctx->event_wqh);
940 wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
941 userfaultfd_ctx_put(ctx);
942 return 0;
945 /* fault_pending_wqh.lock must be hold by the caller */
946 static inline struct userfaultfd_wait_queue *find_userfault_in(
947 wait_queue_head_t *wqh)
949 wait_queue_entry_t *wq;
950 struct userfaultfd_wait_queue *uwq;
952 lockdep_assert_held(&wqh->lock);
954 uwq = NULL;
955 if (!waitqueue_active(wqh))
956 goto out;
957 /* walk in reverse to provide FIFO behavior to read userfaults */
958 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
959 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
960 out:
961 return uwq;
964 static inline struct userfaultfd_wait_queue *find_userfault(
965 struct userfaultfd_ctx *ctx)
967 return find_userfault_in(&ctx->fault_pending_wqh);
970 static inline struct userfaultfd_wait_queue *find_userfault_evt(
971 struct userfaultfd_ctx *ctx)
973 return find_userfault_in(&ctx->event_wqh);
976 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
978 struct userfaultfd_ctx *ctx = file->private_data;
979 __poll_t ret;
981 poll_wait(file, &ctx->fd_wqh, wait);
983 switch (ctx->state) {
984 case UFFD_STATE_WAIT_API:
985 return EPOLLERR;
986 case UFFD_STATE_RUNNING:
988 * poll() never guarantees that read won't block.
989 * userfaults can be waken before they're read().
991 if (unlikely(!(file->f_flags & O_NONBLOCK)))
992 return EPOLLERR;
994 * lockless access to see if there are pending faults
995 * __pollwait last action is the add_wait_queue but
996 * the spin_unlock would allow the waitqueue_active to
997 * pass above the actual list_add inside
998 * add_wait_queue critical section. So use a full
999 * memory barrier to serialize the list_add write of
1000 * add_wait_queue() with the waitqueue_active read
1001 * below.
1003 ret = 0;
1004 smp_mb();
1005 if (waitqueue_active(&ctx->fault_pending_wqh))
1006 ret = EPOLLIN;
1007 else if (waitqueue_active(&ctx->event_wqh))
1008 ret = EPOLLIN;
1010 return ret;
1011 default:
1012 WARN_ON_ONCE(1);
1013 return EPOLLERR;
1017 static const struct file_operations userfaultfd_fops;
1019 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
1020 struct userfaultfd_ctx *new,
1021 struct uffd_msg *msg)
1023 int fd;
1025 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new,
1026 O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS));
1027 if (fd < 0)
1028 return fd;
1030 msg->arg.reserved.reserved1 = 0;
1031 msg->arg.fork.ufd = fd;
1032 return 0;
1035 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1036 struct uffd_msg *msg)
1038 ssize_t ret;
1039 DECLARE_WAITQUEUE(wait, current);
1040 struct userfaultfd_wait_queue *uwq;
1042 * Handling fork event requires sleeping operations, so
1043 * we drop the event_wqh lock, then do these ops, then
1044 * lock it back and wake up the waiter. While the lock is
1045 * dropped the ewq may go away so we keep track of it
1046 * carefully.
1048 LIST_HEAD(fork_event);
1049 struct userfaultfd_ctx *fork_nctx = NULL;
1051 /* always take the fd_wqh lock before the fault_pending_wqh lock */
1052 spin_lock_irq(&ctx->fd_wqh.lock);
1053 __add_wait_queue(&ctx->fd_wqh, &wait);
1054 for (;;) {
1055 set_current_state(TASK_INTERRUPTIBLE);
1056 spin_lock(&ctx->fault_pending_wqh.lock);
1057 uwq = find_userfault(ctx);
1058 if (uwq) {
1060 * Use a seqcount to repeat the lockless check
1061 * in wake_userfault() to avoid missing
1062 * wakeups because during the refile both
1063 * waitqueue could become empty if this is the
1064 * only userfault.
1066 write_seqcount_begin(&ctx->refile_seq);
1069 * The fault_pending_wqh.lock prevents the uwq
1070 * to disappear from under us.
1072 * Refile this userfault from
1073 * fault_pending_wqh to fault_wqh, it's not
1074 * pending anymore after we read it.
1076 * Use list_del() by hand (as
1077 * userfaultfd_wake_function also uses
1078 * list_del_init() by hand) to be sure nobody
1079 * changes __remove_wait_queue() to use
1080 * list_del_init() in turn breaking the
1081 * !list_empty_careful() check in
1082 * handle_userfault(). The uwq->wq.head list
1083 * must never be empty at any time during the
1084 * refile, or the waitqueue could disappear
1085 * from under us. The "wait_queue_head_t"
1086 * parameter of __remove_wait_queue() is unused
1087 * anyway.
1089 list_del(&uwq->wq.entry);
1090 add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1092 write_seqcount_end(&ctx->refile_seq);
1094 /* careful to always initialize msg if ret == 0 */
1095 *msg = uwq->msg;
1096 spin_unlock(&ctx->fault_pending_wqh.lock);
1097 ret = 0;
1098 break;
1100 spin_unlock(&ctx->fault_pending_wqh.lock);
1102 spin_lock(&ctx->event_wqh.lock);
1103 uwq = find_userfault_evt(ctx);
1104 if (uwq) {
1105 *msg = uwq->msg;
1107 if (uwq->msg.event == UFFD_EVENT_FORK) {
1108 fork_nctx = (struct userfaultfd_ctx *)
1109 (unsigned long)
1110 uwq->msg.arg.reserved.reserved1;
1111 list_move(&uwq->wq.entry, &fork_event);
1113 * fork_nctx can be freed as soon as
1114 * we drop the lock, unless we take a
1115 * reference on it.
1117 userfaultfd_ctx_get(fork_nctx);
1118 spin_unlock(&ctx->event_wqh.lock);
1119 ret = 0;
1120 break;
1123 userfaultfd_event_complete(ctx, uwq);
1124 spin_unlock(&ctx->event_wqh.lock);
1125 ret = 0;
1126 break;
1128 spin_unlock(&ctx->event_wqh.lock);
1130 if (signal_pending(current)) {
1131 ret = -ERESTARTSYS;
1132 break;
1134 if (no_wait) {
1135 ret = -EAGAIN;
1136 break;
1138 spin_unlock_irq(&ctx->fd_wqh.lock);
1139 schedule();
1140 spin_lock_irq(&ctx->fd_wqh.lock);
1142 __remove_wait_queue(&ctx->fd_wqh, &wait);
1143 __set_current_state(TASK_RUNNING);
1144 spin_unlock_irq(&ctx->fd_wqh.lock);
1146 if (!ret && msg->event == UFFD_EVENT_FORK) {
1147 ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1148 spin_lock_irq(&ctx->event_wqh.lock);
1149 if (!list_empty(&fork_event)) {
1151 * The fork thread didn't abort, so we can
1152 * drop the temporary refcount.
1154 userfaultfd_ctx_put(fork_nctx);
1156 uwq = list_first_entry(&fork_event,
1157 typeof(*uwq),
1158 wq.entry);
1160 * If fork_event list wasn't empty and in turn
1161 * the event wasn't already released by fork
1162 * (the event is allocated on fork kernel
1163 * stack), put the event back to its place in
1164 * the event_wq. fork_event head will be freed
1165 * as soon as we return so the event cannot
1166 * stay queued there no matter the current
1167 * "ret" value.
1169 list_del(&uwq->wq.entry);
1170 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1173 * Leave the event in the waitqueue and report
1174 * error to userland if we failed to resolve
1175 * the userfault fork.
1177 if (likely(!ret))
1178 userfaultfd_event_complete(ctx, uwq);
1179 } else {
1181 * Here the fork thread aborted and the
1182 * refcount from the fork thread on fork_nctx
1183 * has already been released. We still hold
1184 * the reference we took before releasing the
1185 * lock above. If resolve_userfault_fork
1186 * failed we've to drop it because the
1187 * fork_nctx has to be freed in such case. If
1188 * it succeeded we'll hold it because the new
1189 * uffd references it.
1191 if (ret)
1192 userfaultfd_ctx_put(fork_nctx);
1194 spin_unlock_irq(&ctx->event_wqh.lock);
1197 return ret;
1200 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1201 size_t count, loff_t *ppos)
1203 struct userfaultfd_ctx *ctx = file->private_data;
1204 ssize_t _ret, ret = 0;
1205 struct uffd_msg msg;
1206 int no_wait = file->f_flags & O_NONBLOCK;
1208 if (ctx->state == UFFD_STATE_WAIT_API)
1209 return -EINVAL;
1211 for (;;) {
1212 if (count < sizeof(msg))
1213 return ret ? ret : -EINVAL;
1214 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1215 if (_ret < 0)
1216 return ret ? ret : _ret;
1217 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1218 return ret ? ret : -EFAULT;
1219 ret += sizeof(msg);
1220 buf += sizeof(msg);
1221 count -= sizeof(msg);
1223 * Allow to read more than one fault at time but only
1224 * block if waiting for the very first one.
1226 no_wait = O_NONBLOCK;
1230 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1231 struct userfaultfd_wake_range *range)
1233 spin_lock_irq(&ctx->fault_pending_wqh.lock);
1234 /* wake all in the range and autoremove */
1235 if (waitqueue_active(&ctx->fault_pending_wqh))
1236 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1237 range);
1238 if (waitqueue_active(&ctx->fault_wqh))
1239 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1240 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1243 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1244 struct userfaultfd_wake_range *range)
1246 unsigned seq;
1247 bool need_wakeup;
1250 * To be sure waitqueue_active() is not reordered by the CPU
1251 * before the pagetable update, use an explicit SMP memory
1252 * barrier here. PT lock release or up_read(mmap_sem) still
1253 * have release semantics that can allow the
1254 * waitqueue_active() to be reordered before the pte update.
1256 smp_mb();
1259 * Use waitqueue_active because it's very frequent to
1260 * change the address space atomically even if there are no
1261 * userfaults yet. So we take the spinlock only when we're
1262 * sure we've userfaults to wake.
1264 do {
1265 seq = read_seqcount_begin(&ctx->refile_seq);
1266 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1267 waitqueue_active(&ctx->fault_wqh);
1268 cond_resched();
1269 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1270 if (need_wakeup)
1271 __wake_userfault(ctx, range);
1274 static __always_inline int validate_range(struct mm_struct *mm,
1275 __u64 *start, __u64 len)
1277 __u64 task_size = mm->task_size;
1279 *start = untagged_addr(*start);
1281 if (*start & ~PAGE_MASK)
1282 return -EINVAL;
1283 if (len & ~PAGE_MASK)
1284 return -EINVAL;
1285 if (!len)
1286 return -EINVAL;
1287 if (*start < mmap_min_addr)
1288 return -EINVAL;
1289 if (*start >= task_size)
1290 return -EINVAL;
1291 if (len > task_size - *start)
1292 return -EINVAL;
1293 return 0;
1296 static inline bool vma_can_userfault(struct vm_area_struct *vma)
1298 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1299 vma_is_shmem(vma);
1302 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1303 unsigned long arg)
1305 struct mm_struct *mm = ctx->mm;
1306 struct vm_area_struct *vma, *prev, *cur;
1307 int ret;
1308 struct uffdio_register uffdio_register;
1309 struct uffdio_register __user *user_uffdio_register;
1310 unsigned long vm_flags, new_flags;
1311 bool found;
1312 bool basic_ioctls;
1313 unsigned long start, end, vma_end;
1315 user_uffdio_register = (struct uffdio_register __user *) arg;
1317 ret = -EFAULT;
1318 if (copy_from_user(&uffdio_register, user_uffdio_register,
1319 sizeof(uffdio_register)-sizeof(__u64)))
1320 goto out;
1322 ret = -EINVAL;
1323 if (!uffdio_register.mode)
1324 goto out;
1325 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1326 UFFDIO_REGISTER_MODE_WP))
1327 goto out;
1328 vm_flags = 0;
1329 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1330 vm_flags |= VM_UFFD_MISSING;
1331 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1332 vm_flags |= VM_UFFD_WP;
1334 * FIXME: remove the below error constraint by
1335 * implementing the wprotect tracking mode.
1337 ret = -EINVAL;
1338 goto out;
1341 ret = validate_range(mm, &uffdio_register.range.start,
1342 uffdio_register.range.len);
1343 if (ret)
1344 goto out;
1346 start = uffdio_register.range.start;
1347 end = start + uffdio_register.range.len;
1349 ret = -ENOMEM;
1350 if (!mmget_not_zero(mm))
1351 goto out;
1353 down_write(&mm->mmap_sem);
1354 if (!mmget_still_valid(mm))
1355 goto out_unlock;
1356 vma = find_vma_prev(mm, start, &prev);
1357 if (!vma)
1358 goto out_unlock;
1360 /* check that there's at least one vma in the range */
1361 ret = -EINVAL;
1362 if (vma->vm_start >= end)
1363 goto out_unlock;
1366 * If the first vma contains huge pages, make sure start address
1367 * is aligned to huge page size.
1369 if (is_vm_hugetlb_page(vma)) {
1370 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1372 if (start & (vma_hpagesize - 1))
1373 goto out_unlock;
1377 * Search for not compatible vmas.
1379 found = false;
1380 basic_ioctls = false;
1381 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1382 cond_resched();
1384 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1385 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1387 /* check not compatible vmas */
1388 ret = -EINVAL;
1389 if (!vma_can_userfault(cur))
1390 goto out_unlock;
1393 * UFFDIO_COPY will fill file holes even without
1394 * PROT_WRITE. This check enforces that if this is a
1395 * MAP_SHARED, the process has write permission to the backing
1396 * file. If VM_MAYWRITE is set it also enforces that on a
1397 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1398 * F_WRITE_SEAL can be taken until the vma is destroyed.
1400 ret = -EPERM;
1401 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1402 goto out_unlock;
1405 * If this vma contains ending address, and huge pages
1406 * check alignment.
1408 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1409 end > cur->vm_start) {
1410 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1412 ret = -EINVAL;
1414 if (end & (vma_hpagesize - 1))
1415 goto out_unlock;
1419 * Check that this vma isn't already owned by a
1420 * different userfaultfd. We can't allow more than one
1421 * userfaultfd to own a single vma simultaneously or we
1422 * wouldn't know which one to deliver the userfaults to.
1424 ret = -EBUSY;
1425 if (cur->vm_userfaultfd_ctx.ctx &&
1426 cur->vm_userfaultfd_ctx.ctx != ctx)
1427 goto out_unlock;
1430 * Note vmas containing huge pages
1432 if (is_vm_hugetlb_page(cur))
1433 basic_ioctls = true;
1435 found = true;
1437 BUG_ON(!found);
1439 if (vma->vm_start < start)
1440 prev = vma;
1442 ret = 0;
1443 do {
1444 cond_resched();
1446 BUG_ON(!vma_can_userfault(vma));
1447 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1448 vma->vm_userfaultfd_ctx.ctx != ctx);
1449 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1452 * Nothing to do: this vma is already registered into this
1453 * userfaultfd and with the right tracking mode too.
1455 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1456 (vma->vm_flags & vm_flags) == vm_flags)
1457 goto skip;
1459 if (vma->vm_start > start)
1460 start = vma->vm_start;
1461 vma_end = min(end, vma->vm_end);
1463 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1464 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1465 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1466 vma_policy(vma),
1467 ((struct vm_userfaultfd_ctx){ ctx }));
1468 if (prev) {
1469 vma = prev;
1470 goto next;
1472 if (vma->vm_start < start) {
1473 ret = split_vma(mm, vma, start, 1);
1474 if (ret)
1475 break;
1477 if (vma->vm_end > end) {
1478 ret = split_vma(mm, vma, end, 0);
1479 if (ret)
1480 break;
1482 next:
1484 * In the vma_merge() successful mprotect-like case 8:
1485 * the next vma was merged into the current one and
1486 * the current one has not been updated yet.
1488 vma->vm_flags = new_flags;
1489 vma->vm_userfaultfd_ctx.ctx = ctx;
1491 skip:
1492 prev = vma;
1493 start = vma->vm_end;
1494 vma = vma->vm_next;
1495 } while (vma && vma->vm_start < end);
1496 out_unlock:
1497 up_write(&mm->mmap_sem);
1498 mmput(mm);
1499 if (!ret) {
1501 * Now that we scanned all vmas we can already tell
1502 * userland which ioctls methods are guaranteed to
1503 * succeed on this range.
1505 if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1506 UFFD_API_RANGE_IOCTLS,
1507 &user_uffdio_register->ioctls))
1508 ret = -EFAULT;
1510 out:
1511 return ret;
1514 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1515 unsigned long arg)
1517 struct mm_struct *mm = ctx->mm;
1518 struct vm_area_struct *vma, *prev, *cur;
1519 int ret;
1520 struct uffdio_range uffdio_unregister;
1521 unsigned long new_flags;
1522 bool found;
1523 unsigned long start, end, vma_end;
1524 const void __user *buf = (void __user *)arg;
1526 ret = -EFAULT;
1527 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1528 goto out;
1530 ret = validate_range(mm, &uffdio_unregister.start,
1531 uffdio_unregister.len);
1532 if (ret)
1533 goto out;
1535 start = uffdio_unregister.start;
1536 end = start + uffdio_unregister.len;
1538 ret = -ENOMEM;
1539 if (!mmget_not_zero(mm))
1540 goto out;
1542 down_write(&mm->mmap_sem);
1543 if (!mmget_still_valid(mm))
1544 goto out_unlock;
1545 vma = find_vma_prev(mm, start, &prev);
1546 if (!vma)
1547 goto out_unlock;
1549 /* check that there's at least one vma in the range */
1550 ret = -EINVAL;
1551 if (vma->vm_start >= end)
1552 goto out_unlock;
1555 * If the first vma contains huge pages, make sure start address
1556 * is aligned to huge page size.
1558 if (is_vm_hugetlb_page(vma)) {
1559 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1561 if (start & (vma_hpagesize - 1))
1562 goto out_unlock;
1566 * Search for not compatible vmas.
1568 found = false;
1569 ret = -EINVAL;
1570 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1571 cond_resched();
1573 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1574 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1577 * Check not compatible vmas, not strictly required
1578 * here as not compatible vmas cannot have an
1579 * userfaultfd_ctx registered on them, but this
1580 * provides for more strict behavior to notice
1581 * unregistration errors.
1583 if (!vma_can_userfault(cur))
1584 goto out_unlock;
1586 found = true;
1588 BUG_ON(!found);
1590 if (vma->vm_start < start)
1591 prev = vma;
1593 ret = 0;
1594 do {
1595 cond_resched();
1597 BUG_ON(!vma_can_userfault(vma));
1600 * Nothing to do: this vma is already registered into this
1601 * userfaultfd and with the right tracking mode too.
1603 if (!vma->vm_userfaultfd_ctx.ctx)
1604 goto skip;
1606 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1608 if (vma->vm_start > start)
1609 start = vma->vm_start;
1610 vma_end = min(end, vma->vm_end);
1612 if (userfaultfd_missing(vma)) {
1614 * Wake any concurrent pending userfault while
1615 * we unregister, so they will not hang
1616 * permanently and it avoids userland to call
1617 * UFFDIO_WAKE explicitly.
1619 struct userfaultfd_wake_range range;
1620 range.start = start;
1621 range.len = vma_end - start;
1622 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1625 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1626 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1627 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1628 vma_policy(vma),
1629 NULL_VM_UFFD_CTX);
1630 if (prev) {
1631 vma = prev;
1632 goto next;
1634 if (vma->vm_start < start) {
1635 ret = split_vma(mm, vma, start, 1);
1636 if (ret)
1637 break;
1639 if (vma->vm_end > end) {
1640 ret = split_vma(mm, vma, end, 0);
1641 if (ret)
1642 break;
1644 next:
1646 * In the vma_merge() successful mprotect-like case 8:
1647 * the next vma was merged into the current one and
1648 * the current one has not been updated yet.
1650 vma->vm_flags = new_flags;
1651 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1653 skip:
1654 prev = vma;
1655 start = vma->vm_end;
1656 vma = vma->vm_next;
1657 } while (vma && vma->vm_start < end);
1658 out_unlock:
1659 up_write(&mm->mmap_sem);
1660 mmput(mm);
1661 out:
1662 return ret;
1666 * userfaultfd_wake may be used in combination with the
1667 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1669 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1670 unsigned long arg)
1672 int ret;
1673 struct uffdio_range uffdio_wake;
1674 struct userfaultfd_wake_range range;
1675 const void __user *buf = (void __user *)arg;
1677 ret = -EFAULT;
1678 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1679 goto out;
1681 ret = validate_range(ctx->mm, &uffdio_wake.start, uffdio_wake.len);
1682 if (ret)
1683 goto out;
1685 range.start = uffdio_wake.start;
1686 range.len = uffdio_wake.len;
1689 * len == 0 means wake all and we don't want to wake all here,
1690 * so check it again to be sure.
1692 VM_BUG_ON(!range.len);
1694 wake_userfault(ctx, &range);
1695 ret = 0;
1697 out:
1698 return ret;
1701 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1702 unsigned long arg)
1704 __s64 ret;
1705 struct uffdio_copy uffdio_copy;
1706 struct uffdio_copy __user *user_uffdio_copy;
1707 struct userfaultfd_wake_range range;
1709 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1711 ret = -EAGAIN;
1712 if (READ_ONCE(ctx->mmap_changing))
1713 goto out;
1715 ret = -EFAULT;
1716 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1717 /* don't copy "copy" last field */
1718 sizeof(uffdio_copy)-sizeof(__s64)))
1719 goto out;
1721 ret = validate_range(ctx->mm, &uffdio_copy.dst, uffdio_copy.len);
1722 if (ret)
1723 goto out;
1725 * double check for wraparound just in case. copy_from_user()
1726 * will later check uffdio_copy.src + uffdio_copy.len to fit
1727 * in the userland range.
1729 ret = -EINVAL;
1730 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1731 goto out;
1732 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1733 goto out;
1734 if (mmget_not_zero(ctx->mm)) {
1735 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1736 uffdio_copy.len, &ctx->mmap_changing);
1737 mmput(ctx->mm);
1738 } else {
1739 return -ESRCH;
1741 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1742 return -EFAULT;
1743 if (ret < 0)
1744 goto out;
1745 BUG_ON(!ret);
1746 /* len == 0 would wake all */
1747 range.len = ret;
1748 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1749 range.start = uffdio_copy.dst;
1750 wake_userfault(ctx, &range);
1752 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1753 out:
1754 return ret;
1757 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1758 unsigned long arg)
1760 __s64 ret;
1761 struct uffdio_zeropage uffdio_zeropage;
1762 struct uffdio_zeropage __user *user_uffdio_zeropage;
1763 struct userfaultfd_wake_range range;
1765 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1767 ret = -EAGAIN;
1768 if (READ_ONCE(ctx->mmap_changing))
1769 goto out;
1771 ret = -EFAULT;
1772 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1773 /* don't copy "zeropage" last field */
1774 sizeof(uffdio_zeropage)-sizeof(__s64)))
1775 goto out;
1777 ret = validate_range(ctx->mm, &uffdio_zeropage.range.start,
1778 uffdio_zeropage.range.len);
1779 if (ret)
1780 goto out;
1781 ret = -EINVAL;
1782 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1783 goto out;
1785 if (mmget_not_zero(ctx->mm)) {
1786 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1787 uffdio_zeropage.range.len,
1788 &ctx->mmap_changing);
1789 mmput(ctx->mm);
1790 } else {
1791 return -ESRCH;
1793 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1794 return -EFAULT;
1795 if (ret < 0)
1796 goto out;
1797 /* len == 0 would wake all */
1798 BUG_ON(!ret);
1799 range.len = ret;
1800 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1801 range.start = uffdio_zeropage.range.start;
1802 wake_userfault(ctx, &range);
1804 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1805 out:
1806 return ret;
1809 static inline unsigned int uffd_ctx_features(__u64 user_features)
1812 * For the current set of features the bits just coincide
1814 return (unsigned int)user_features;
1818 * userland asks for a certain API version and we return which bits
1819 * and ioctl commands are implemented in this kernel for such API
1820 * version or -EINVAL if unknown.
1822 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1823 unsigned long arg)
1825 struct uffdio_api uffdio_api;
1826 void __user *buf = (void __user *)arg;
1827 int ret;
1828 __u64 features;
1830 ret = -EINVAL;
1831 if (ctx->state != UFFD_STATE_WAIT_API)
1832 goto out;
1833 ret = -EFAULT;
1834 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1835 goto out;
1836 features = uffdio_api.features;
1837 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) {
1838 memset(&uffdio_api, 0, sizeof(uffdio_api));
1839 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1840 goto out;
1841 ret = -EINVAL;
1842 goto out;
1844 /* report all available features and ioctls to userland */
1845 uffdio_api.features = UFFD_API_FEATURES;
1846 uffdio_api.ioctls = UFFD_API_IOCTLS;
1847 ret = -EFAULT;
1848 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1849 goto out;
1850 ctx->state = UFFD_STATE_RUNNING;
1851 /* only enable the requested features for this uffd context */
1852 ctx->features = uffd_ctx_features(features);
1853 ret = 0;
1854 out:
1855 return ret;
1858 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1859 unsigned long arg)
1861 int ret = -EINVAL;
1862 struct userfaultfd_ctx *ctx = file->private_data;
1864 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1865 return -EINVAL;
1867 switch(cmd) {
1868 case UFFDIO_API:
1869 ret = userfaultfd_api(ctx, arg);
1870 break;
1871 case UFFDIO_REGISTER:
1872 ret = userfaultfd_register(ctx, arg);
1873 break;
1874 case UFFDIO_UNREGISTER:
1875 ret = userfaultfd_unregister(ctx, arg);
1876 break;
1877 case UFFDIO_WAKE:
1878 ret = userfaultfd_wake(ctx, arg);
1879 break;
1880 case UFFDIO_COPY:
1881 ret = userfaultfd_copy(ctx, arg);
1882 break;
1883 case UFFDIO_ZEROPAGE:
1884 ret = userfaultfd_zeropage(ctx, arg);
1885 break;
1887 return ret;
1890 #ifdef CONFIG_PROC_FS
1891 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1893 struct userfaultfd_ctx *ctx = f->private_data;
1894 wait_queue_entry_t *wq;
1895 unsigned long pending = 0, total = 0;
1897 spin_lock_irq(&ctx->fault_pending_wqh.lock);
1898 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1899 pending++;
1900 total++;
1902 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1903 total++;
1905 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1908 * If more protocols will be added, there will be all shown
1909 * separated by a space. Like this:
1910 * protocols: aa:... bb:...
1912 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1913 pending, total, UFFD_API, ctx->features,
1914 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1916 #endif
1918 static const struct file_operations userfaultfd_fops = {
1919 #ifdef CONFIG_PROC_FS
1920 .show_fdinfo = userfaultfd_show_fdinfo,
1921 #endif
1922 .release = userfaultfd_release,
1923 .poll = userfaultfd_poll,
1924 .read = userfaultfd_read,
1925 .unlocked_ioctl = userfaultfd_ioctl,
1926 .compat_ioctl = userfaultfd_ioctl,
1927 .llseek = noop_llseek,
1930 static void init_once_userfaultfd_ctx(void *mem)
1932 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1934 init_waitqueue_head(&ctx->fault_pending_wqh);
1935 init_waitqueue_head(&ctx->fault_wqh);
1936 init_waitqueue_head(&ctx->event_wqh);
1937 init_waitqueue_head(&ctx->fd_wqh);
1938 seqcount_init(&ctx->refile_seq);
1941 SYSCALL_DEFINE1(userfaultfd, int, flags)
1943 struct userfaultfd_ctx *ctx;
1944 int fd;
1946 if (!sysctl_unprivileged_userfaultfd && !capable(CAP_SYS_PTRACE))
1947 return -EPERM;
1949 BUG_ON(!current->mm);
1951 /* Check the UFFD_* constants for consistency. */
1952 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1953 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1955 if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1956 return -EINVAL;
1958 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1959 if (!ctx)
1960 return -ENOMEM;
1962 refcount_set(&ctx->refcount, 1);
1963 ctx->flags = flags;
1964 ctx->features = 0;
1965 ctx->state = UFFD_STATE_WAIT_API;
1966 ctx->released = false;
1967 ctx->mmap_changing = false;
1968 ctx->mm = current->mm;
1969 /* prevent the mm struct to be freed */
1970 mmgrab(ctx->mm);
1972 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx,
1973 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1974 if (fd < 0) {
1975 mmdrop(ctx->mm);
1976 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1978 return fd;
1981 static int __init userfaultfd_init(void)
1983 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1984 sizeof(struct userfaultfd_ctx),
1986 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1987 init_once_userfaultfd_ctx);
1988 return 0;
1990 __initcall(userfaultfd_init);