2 * super.c - NTFS kernel super block handling. Part of the Linux-NTFS project.
4 * Copyright (c) 2001-2012 Anton Altaparmakov and Tuxera Inc.
5 * Copyright (c) 2001,2002 Richard Russon
7 * This program/include file is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as published
9 * by the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program/include file is distributed in the hope that it will be
13 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
14 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program (in the main directory of the Linux-NTFS
19 * distribution in the file COPYING); if not, write to the Free Software
20 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24 #include <linux/stddef.h>
25 #include <linux/init.h>
26 #include <linux/slab.h>
27 #include <linux/string.h>
28 #include <linux/spinlock.h>
29 #include <linux/blkdev.h> /* For bdev_logical_block_size(). */
30 #include <linux/backing-dev.h>
31 #include <linux/buffer_head.h>
32 #include <linux/vfs.h>
33 #include <linux/moduleparam.h>
34 #include <linux/bitmap.h>
49 /* Number of mounted filesystems which have compression enabled. */
50 static unsigned long ntfs_nr_compression_users
;
52 /* A global default upcase table and a corresponding reference count. */
53 static ntfschar
*default_upcase
;
54 static unsigned long ntfs_nr_upcase_users
;
56 /* Error constants/strings used in inode.c::ntfs_show_options(). */
58 /* One of these must be present, default is ON_ERRORS_CONTINUE. */
59 ON_ERRORS_PANIC
= 0x01,
60 ON_ERRORS_REMOUNT_RO
= 0x02,
61 ON_ERRORS_CONTINUE
= 0x04,
62 /* Optional, can be combined with any of the above. */
63 ON_ERRORS_RECOVER
= 0x10,
66 const option_t on_errors_arr
[] = {
67 { ON_ERRORS_PANIC
, "panic" },
68 { ON_ERRORS_REMOUNT_RO
, "remount-ro", },
69 { ON_ERRORS_CONTINUE
, "continue", },
70 { ON_ERRORS_RECOVER
, "recover" },
77 * Copied from old ntfs driver (which copied from vfat driver).
79 static int simple_getbool(char *s
, bool *setval
)
82 if (!strcmp(s
, "1") || !strcmp(s
, "yes") || !strcmp(s
, "true"))
84 else if (!strcmp(s
, "0") || !strcmp(s
, "no") ||
95 * parse_options - parse the (re)mount options
97 * @opt: string containing the (re)mount options
99 * Parse the recognized options in @opt for the ntfs volume described by @vol.
101 static bool parse_options(ntfs_volume
*vol
, char *opt
)
104 static char *utf8
= "utf8";
105 int errors
= 0, sloppy
= 0;
106 kuid_t uid
= INVALID_UID
;
107 kgid_t gid
= INVALID_GID
;
108 umode_t fmask
= (umode_t
)-1, dmask
= (umode_t
)-1;
109 int mft_zone_multiplier
= -1, on_errors
= -1;
110 int show_sys_files
= -1, case_sensitive
= -1, disable_sparse
= -1;
111 struct nls_table
*nls_map
= NULL
, *old_nls
;
113 /* I am lazy... (-8 */
114 #define NTFS_GETOPT_WITH_DEFAULT(option, variable, default_value) \
115 if (!strcmp(p, option)) { \
117 variable = default_value; \
119 variable = simple_strtoul(ov = v, &v, 0); \
124 #define NTFS_GETOPT(option, variable) \
125 if (!strcmp(p, option)) { \
128 variable = simple_strtoul(ov = v, &v, 0); \
132 #define NTFS_GETOPT_UID(option, variable) \
133 if (!strcmp(p, option)) { \
137 uid_value = simple_strtoul(ov = v, &v, 0); \
140 variable = make_kuid(current_user_ns(), uid_value); \
141 if (!uid_valid(variable)) \
144 #define NTFS_GETOPT_GID(option, variable) \
145 if (!strcmp(p, option)) { \
149 gid_value = simple_strtoul(ov = v, &v, 0); \
152 variable = make_kgid(current_user_ns(), gid_value); \
153 if (!gid_valid(variable)) \
156 #define NTFS_GETOPT_OCTAL(option, variable) \
157 if (!strcmp(p, option)) { \
160 variable = simple_strtoul(ov = v, &v, 8); \
164 #define NTFS_GETOPT_BOOL(option, variable) \
165 if (!strcmp(p, option)) { \
167 if (!simple_getbool(v, &val)) \
171 #define NTFS_GETOPT_OPTIONS_ARRAY(option, variable, opt_array) \
172 if (!strcmp(p, option)) { \
177 if (variable == -1) \
179 for (_i = 0; opt_array[_i].str && *opt_array[_i].str; _i++) \
180 if (!strcmp(opt_array[_i].str, v)) { \
181 variable |= opt_array[_i].val; \
184 if (!opt_array[_i].str || !*opt_array[_i].str) \
188 goto no_mount_options
;
189 ntfs_debug("Entering with mount options string: %s", opt
);
190 while ((p
= strsep(&opt
, ","))) {
191 if ((v
= strchr(p
, '=')))
193 NTFS_GETOPT_UID("uid", uid
)
194 else NTFS_GETOPT_GID("gid", gid
)
195 else NTFS_GETOPT_OCTAL("umask", fmask
= dmask
)
196 else NTFS_GETOPT_OCTAL("fmask", fmask
)
197 else NTFS_GETOPT_OCTAL("dmask", dmask
)
198 else NTFS_GETOPT("mft_zone_multiplier", mft_zone_multiplier
)
199 else NTFS_GETOPT_WITH_DEFAULT("sloppy", sloppy
, true)
200 else NTFS_GETOPT_BOOL("show_sys_files", show_sys_files
)
201 else NTFS_GETOPT_BOOL("case_sensitive", case_sensitive
)
202 else NTFS_GETOPT_BOOL("disable_sparse", disable_sparse
)
203 else NTFS_GETOPT_OPTIONS_ARRAY("errors", on_errors
,
205 else if (!strcmp(p
, "posix") || !strcmp(p
, "show_inodes"))
206 ntfs_warning(vol
->sb
, "Ignoring obsolete option %s.",
208 else if (!strcmp(p
, "nls") || !strcmp(p
, "iocharset")) {
209 if (!strcmp(p
, "iocharset"))
210 ntfs_warning(vol
->sb
, "Option iocharset is "
211 "deprecated. Please use "
212 "option nls=<charsetname> in "
218 nls_map
= load_nls(v
);
221 ntfs_error(vol
->sb
, "NLS character set "
225 ntfs_error(vol
->sb
, "NLS character set %s not "
226 "found. Using previous one %s.",
227 v
, old_nls
->charset
);
229 } else /* nls_map */ {
232 } else if (!strcmp(p
, "utf8")) {
234 ntfs_warning(vol
->sb
, "Option utf8 is no longer "
235 "supported, using option nls=utf8. Please "
236 "use option nls=utf8 in the future and "
237 "make sure utf8 is compiled either as a "
238 "module or into the kernel.");
241 else if (!simple_getbool(v
, &val
))
248 ntfs_error(vol
->sb
, "Unrecognized mount option %s.", p
);
249 if (errors
< INT_MAX
)
252 #undef NTFS_GETOPT_OPTIONS_ARRAY
253 #undef NTFS_GETOPT_BOOL
255 #undef NTFS_GETOPT_WITH_DEFAULT
258 if (errors
&& !sloppy
)
261 ntfs_warning(vol
->sb
, "Sloppy option given. Ignoring "
262 "unrecognized mount option(s) and continuing.");
263 /* Keep this first! */
264 if (on_errors
!= -1) {
266 ntfs_error(vol
->sb
, "Invalid errors option argument "
267 "or bug in options parser.");
272 if (vol
->nls_map
&& vol
->nls_map
!= nls_map
) {
273 ntfs_error(vol
->sb
, "Cannot change NLS character set "
276 } /* else (!vol->nls_map) */
277 ntfs_debug("Using NLS character set %s.", nls_map
->charset
);
278 vol
->nls_map
= nls_map
;
279 } else /* (!nls_map) */ {
281 vol
->nls_map
= load_nls_default();
283 ntfs_error(vol
->sb
, "Failed to load default "
284 "NLS character set.");
287 ntfs_debug("Using default NLS character set (%s).",
288 vol
->nls_map
->charset
);
291 if (mft_zone_multiplier
!= -1) {
292 if (vol
->mft_zone_multiplier
&& vol
->mft_zone_multiplier
!=
293 mft_zone_multiplier
) {
294 ntfs_error(vol
->sb
, "Cannot change mft_zone_multiplier "
298 if (mft_zone_multiplier
< 1 || mft_zone_multiplier
> 4) {
299 ntfs_error(vol
->sb
, "Invalid mft_zone_multiplier. "
300 "Using default value, i.e. 1.");
301 mft_zone_multiplier
= 1;
303 vol
->mft_zone_multiplier
= mft_zone_multiplier
;
305 if (!vol
->mft_zone_multiplier
)
306 vol
->mft_zone_multiplier
= 1;
308 vol
->on_errors
= on_errors
;
309 if (!vol
->on_errors
|| vol
->on_errors
== ON_ERRORS_RECOVER
)
310 vol
->on_errors
|= ON_ERRORS_CONTINUE
;
315 if (fmask
!= (umode_t
)-1)
317 if (dmask
!= (umode_t
)-1)
319 if (show_sys_files
!= -1) {
321 NVolSetShowSystemFiles(vol
);
323 NVolClearShowSystemFiles(vol
);
325 if (case_sensitive
!= -1) {
327 NVolSetCaseSensitive(vol
);
329 NVolClearCaseSensitive(vol
);
331 if (disable_sparse
!= -1) {
333 NVolClearSparseEnabled(vol
);
335 if (!NVolSparseEnabled(vol
) &&
336 vol
->major_ver
&& vol
->major_ver
< 3)
337 ntfs_warning(vol
->sb
, "Not enabling sparse "
338 "support due to NTFS volume "
339 "version %i.%i (need at least "
340 "version 3.0).", vol
->major_ver
,
343 NVolSetSparseEnabled(vol
);
348 ntfs_error(vol
->sb
, "The %s option requires an argument.", p
);
351 ntfs_error(vol
->sb
, "The %s option requires a boolean argument.", p
);
354 ntfs_error(vol
->sb
, "Invalid %s option argument: %s", p
, ov
);
361 * ntfs_write_volume_flags - write new flags to the volume information flags
362 * @vol: ntfs volume on which to modify the flags
363 * @flags: new flags value for the volume information flags
365 * Internal function. You probably want to use ntfs_{set,clear}_volume_flags()
366 * instead (see below).
368 * Replace the volume information flags on the volume @vol with the value
369 * supplied in @flags. Note, this overwrites the volume information flags, so
370 * make sure to combine the flags you want to modify with the old flags and use
371 * the result when calling ntfs_write_volume_flags().
373 * Return 0 on success and -errno on error.
375 static int ntfs_write_volume_flags(ntfs_volume
*vol
, const VOLUME_FLAGS flags
)
377 ntfs_inode
*ni
= NTFS_I(vol
->vol_ino
);
379 VOLUME_INFORMATION
*vi
;
380 ntfs_attr_search_ctx
*ctx
;
383 ntfs_debug("Entering, old flags = 0x%x, new flags = 0x%x.",
384 le16_to_cpu(vol
->vol_flags
), le16_to_cpu(flags
));
385 if (vol
->vol_flags
== flags
)
388 m
= map_mft_record(ni
);
393 ctx
= ntfs_attr_get_search_ctx(ni
, m
);
396 goto put_unm_err_out
;
398 err
= ntfs_attr_lookup(AT_VOLUME_INFORMATION
, NULL
, 0, 0, 0, NULL
, 0,
401 goto put_unm_err_out
;
402 vi
= (VOLUME_INFORMATION
*)((u8
*)ctx
->attr
+
403 le16_to_cpu(ctx
->attr
->data
.resident
.value_offset
));
404 vol
->vol_flags
= vi
->flags
= flags
;
405 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
406 mark_mft_record_dirty(ctx
->ntfs_ino
);
407 ntfs_attr_put_search_ctx(ctx
);
408 unmap_mft_record(ni
);
414 ntfs_attr_put_search_ctx(ctx
);
415 unmap_mft_record(ni
);
417 ntfs_error(vol
->sb
, "Failed with error code %i.", -err
);
422 * ntfs_set_volume_flags - set bits in the volume information flags
423 * @vol: ntfs volume on which to modify the flags
424 * @flags: flags to set on the volume
426 * Set the bits in @flags in the volume information flags on the volume @vol.
428 * Return 0 on success and -errno on error.
430 static inline int ntfs_set_volume_flags(ntfs_volume
*vol
, VOLUME_FLAGS flags
)
432 flags
&= VOLUME_FLAGS_MASK
;
433 return ntfs_write_volume_flags(vol
, vol
->vol_flags
| flags
);
437 * ntfs_clear_volume_flags - clear bits in the volume information flags
438 * @vol: ntfs volume on which to modify the flags
439 * @flags: flags to clear on the volume
441 * Clear the bits in @flags in the volume information flags on the volume @vol.
443 * Return 0 on success and -errno on error.
445 static inline int ntfs_clear_volume_flags(ntfs_volume
*vol
, VOLUME_FLAGS flags
)
447 flags
&= VOLUME_FLAGS_MASK
;
448 flags
= vol
->vol_flags
& cpu_to_le16(~le16_to_cpu(flags
));
449 return ntfs_write_volume_flags(vol
, flags
);
455 * ntfs_remount - change the mount options of a mounted ntfs filesystem
456 * @sb: superblock of mounted ntfs filesystem
457 * @flags: remount flags
458 * @opt: remount options string
460 * Change the mount options of an already mounted ntfs filesystem.
462 * NOTE: The VFS sets the @sb->s_flags remount flags to @flags after
463 * ntfs_remount() returns successfully (i.e. returns 0). Otherwise,
464 * @sb->s_flags are not changed.
466 static int ntfs_remount(struct super_block
*sb
, int *flags
, char *opt
)
468 ntfs_volume
*vol
= NTFS_SB(sb
);
470 ntfs_debug("Entering with remount options string: %s", opt
);
475 /* For read-only compiled driver, enforce read-only flag. */
479 * For the read-write compiled driver, if we are remounting read-write,
480 * make sure there are no volume errors and that no unsupported volume
481 * flags are set. Also, empty the logfile journal as it would become
482 * stale as soon as something is written to the volume and mark the
483 * volume dirty so that chkdsk is run if the volume is not umounted
484 * cleanly. Finally, mark the quotas out of date so Windows rescans
485 * the volume on boot and updates them.
487 * When remounting read-only, mark the volume clean if no volume errors
490 if ((sb
->s_flags
& MS_RDONLY
) && !(*flags
& MS_RDONLY
)) {
491 static const char *es
= ". Cannot remount read-write.";
493 /* Remounting read-write. */
494 if (NVolErrors(vol
)) {
495 ntfs_error(sb
, "Volume has errors and is read-only%s",
499 if (vol
->vol_flags
& VOLUME_IS_DIRTY
) {
500 ntfs_error(sb
, "Volume is dirty and read-only%s", es
);
503 if (vol
->vol_flags
& VOLUME_MODIFIED_BY_CHKDSK
) {
504 ntfs_error(sb
, "Volume has been modified by chkdsk "
505 "and is read-only%s", es
);
508 if (vol
->vol_flags
& VOLUME_MUST_MOUNT_RO_MASK
) {
509 ntfs_error(sb
, "Volume has unsupported flags set "
510 "(0x%x) and is read-only%s",
511 (unsigned)le16_to_cpu(vol
->vol_flags
),
515 if (ntfs_set_volume_flags(vol
, VOLUME_IS_DIRTY
)) {
516 ntfs_error(sb
, "Failed to set dirty bit in volume "
517 "information flags%s", es
);
521 // TODO: Enable this code once we start modifying anything that
522 // is different between NTFS 1.2 and 3.x...
523 /* Set NT4 compatibility flag on newer NTFS version volumes. */
524 if ((vol
->major_ver
> 1)) {
525 if (ntfs_set_volume_flags(vol
, VOLUME_MOUNTED_ON_NT4
)) {
526 ntfs_error(sb
, "Failed to set NT4 "
527 "compatibility flag%s", es
);
533 if (!ntfs_empty_logfile(vol
->logfile_ino
)) {
534 ntfs_error(sb
, "Failed to empty journal $LogFile%s",
539 if (!ntfs_mark_quotas_out_of_date(vol
)) {
540 ntfs_error(sb
, "Failed to mark quotas out of date%s",
545 if (!ntfs_stamp_usnjrnl(vol
)) {
546 ntfs_error(sb
, "Failed to stamp transaction log "
551 } else if (!(sb
->s_flags
& MS_RDONLY
) && (*flags
& MS_RDONLY
)) {
552 /* Remounting read-only. */
553 if (!NVolErrors(vol
)) {
554 if (ntfs_clear_volume_flags(vol
, VOLUME_IS_DIRTY
))
555 ntfs_warning(sb
, "Failed to clear dirty bit "
556 "in volume information "
557 "flags. Run chkdsk.");
562 // TODO: Deal with *flags.
564 if (!parse_options(vol
, opt
))
572 * is_boot_sector_ntfs - check whether a boot sector is a valid NTFS boot sector
573 * @sb: Super block of the device to which @b belongs.
574 * @b: Boot sector of device @sb to check.
575 * @silent: If 'true', all output will be silenced.
577 * is_boot_sector_ntfs() checks whether the boot sector @b is a valid NTFS boot
578 * sector. Returns 'true' if it is valid and 'false' if not.
580 * @sb is only needed for warning/error output, i.e. it can be NULL when silent
583 static bool is_boot_sector_ntfs(const struct super_block
*sb
,
584 const NTFS_BOOT_SECTOR
*b
, const bool silent
)
587 * Check that checksum == sum of u32 values from b to the checksum
588 * field. If checksum is zero, no checking is done. We will work when
589 * the checksum test fails, since some utilities update the boot sector
590 * ignoring the checksum which leaves the checksum out-of-date. We
591 * report a warning if this is the case.
593 if ((void*)b
< (void*)&b
->checksum
&& b
->checksum
&& !silent
) {
597 for (i
= 0, u
= (le32
*)b
; u
< (le32
*)(&b
->checksum
); ++u
)
598 i
+= le32_to_cpup(u
);
599 if (le32_to_cpu(b
->checksum
) != i
)
600 ntfs_warning(sb
, "Invalid boot sector checksum.");
602 /* Check OEMidentifier is "NTFS " */
603 if (b
->oem_id
!= magicNTFS
)
605 /* Check bytes per sector value is between 256 and 4096. */
606 if (le16_to_cpu(b
->bpb
.bytes_per_sector
) < 0x100 ||
607 le16_to_cpu(b
->bpb
.bytes_per_sector
) > 0x1000)
609 /* Check sectors per cluster value is valid. */
610 switch (b
->bpb
.sectors_per_cluster
) {
611 case 1: case 2: case 4: case 8: case 16: case 32: case 64: case 128:
616 /* Check the cluster size is not above the maximum (64kiB). */
617 if ((u32
)le16_to_cpu(b
->bpb
.bytes_per_sector
) *
618 b
->bpb
.sectors_per_cluster
> NTFS_MAX_CLUSTER_SIZE
)
620 /* Check reserved/unused fields are really zero. */
621 if (le16_to_cpu(b
->bpb
.reserved_sectors
) ||
622 le16_to_cpu(b
->bpb
.root_entries
) ||
623 le16_to_cpu(b
->bpb
.sectors
) ||
624 le16_to_cpu(b
->bpb
.sectors_per_fat
) ||
625 le32_to_cpu(b
->bpb
.large_sectors
) || b
->bpb
.fats
)
627 /* Check clusters per file mft record value is valid. */
628 if ((u8
)b
->clusters_per_mft_record
< 0xe1 ||
629 (u8
)b
->clusters_per_mft_record
> 0xf7)
630 switch (b
->clusters_per_mft_record
) {
631 case 1: case 2: case 4: case 8: case 16: case 32: case 64:
636 /* Check clusters per index block value is valid. */
637 if ((u8
)b
->clusters_per_index_record
< 0xe1 ||
638 (u8
)b
->clusters_per_index_record
> 0xf7)
639 switch (b
->clusters_per_index_record
) {
640 case 1: case 2: case 4: case 8: case 16: case 32: case 64:
646 * Check for valid end of sector marker. We will work without it, but
647 * many BIOSes will refuse to boot from a bootsector if the magic is
648 * incorrect, so we emit a warning.
650 if (!silent
&& b
->end_of_sector_marker
!= cpu_to_le16(0xaa55))
651 ntfs_warning(sb
, "Invalid end of sector marker.");
658 * read_ntfs_boot_sector - read the NTFS boot sector of a device
659 * @sb: super block of device to read the boot sector from
660 * @silent: if true, suppress all output
662 * Reads the boot sector from the device and validates it. If that fails, tries
663 * to read the backup boot sector, first from the end of the device a-la NT4 and
664 * later and then from the middle of the device a-la NT3.51 and before.
666 * If a valid boot sector is found but it is not the primary boot sector, we
667 * repair the primary boot sector silently (unless the device is read-only or
668 * the primary boot sector is not accessible).
670 * NOTE: To call this function, @sb must have the fields s_dev, the ntfs super
671 * block (u.ntfs_sb), nr_blocks and the device flags (s_flags) initialized
672 * to their respective values.
674 * Return the unlocked buffer head containing the boot sector or NULL on error.
676 static struct buffer_head
*read_ntfs_boot_sector(struct super_block
*sb
,
679 const char *read_err_str
= "Unable to read %s boot sector.";
680 struct buffer_head
*bh_primary
, *bh_backup
;
681 sector_t nr_blocks
= NTFS_SB(sb
)->nr_blocks
;
683 /* Try to read primary boot sector. */
684 if ((bh_primary
= sb_bread(sb
, 0))) {
685 if (is_boot_sector_ntfs(sb
, (NTFS_BOOT_SECTOR
*)
686 bh_primary
->b_data
, silent
))
689 ntfs_error(sb
, "Primary boot sector is invalid.");
691 ntfs_error(sb
, read_err_str
, "primary");
692 if (!(NTFS_SB(sb
)->on_errors
& ON_ERRORS_RECOVER
)) {
696 ntfs_error(sb
, "Mount option errors=recover not used. "
697 "Aborting without trying to recover.");
700 /* Try to read NT4+ backup boot sector. */
701 if ((bh_backup
= sb_bread(sb
, nr_blocks
- 1))) {
702 if (is_boot_sector_ntfs(sb
, (NTFS_BOOT_SECTOR
*)
703 bh_backup
->b_data
, silent
))
704 goto hotfix_primary_boot_sector
;
707 ntfs_error(sb
, read_err_str
, "backup");
708 /* Try to read NT3.51- backup boot sector. */
709 if ((bh_backup
= sb_bread(sb
, nr_blocks
>> 1))) {
710 if (is_boot_sector_ntfs(sb
, (NTFS_BOOT_SECTOR
*)
711 bh_backup
->b_data
, silent
))
712 goto hotfix_primary_boot_sector
;
714 ntfs_error(sb
, "Could not find a valid backup boot "
718 ntfs_error(sb
, read_err_str
, "backup");
719 /* We failed. Cleanup and return. */
723 hotfix_primary_boot_sector
:
726 * If we managed to read sector zero and the volume is not
727 * read-only, copy the found, valid backup boot sector to the
728 * primary boot sector. Note we only copy the actual boot
729 * sector structure, not the actual whole device sector as that
730 * may be bigger and would potentially damage the $Boot system
731 * file (FIXME: Would be nice to know if the backup boot sector
732 * on a large sector device contains the whole boot loader or
733 * just the first 512 bytes).
735 if (!(sb
->s_flags
& MS_RDONLY
)) {
736 ntfs_warning(sb
, "Hot-fix: Recovering invalid primary "
737 "boot sector from backup copy.");
738 memcpy(bh_primary
->b_data
, bh_backup
->b_data
,
740 mark_buffer_dirty(bh_primary
);
741 sync_dirty_buffer(bh_primary
);
742 if (buffer_uptodate(bh_primary
)) {
746 ntfs_error(sb
, "Hot-fix: Device write error while "
747 "recovering primary boot sector.");
749 ntfs_warning(sb
, "Hot-fix: Recovery of primary boot "
750 "sector failed: Read-only mount.");
754 ntfs_warning(sb
, "Using backup boot sector.");
759 * parse_ntfs_boot_sector - parse the boot sector and store the data in @vol
760 * @vol: volume structure to initialise with data from boot sector
761 * @b: boot sector to parse
763 * Parse the ntfs boot sector @b and store all imporant information therein in
764 * the ntfs super block @vol. Return 'true' on success and 'false' on error.
766 static bool parse_ntfs_boot_sector(ntfs_volume
*vol
, const NTFS_BOOT_SECTOR
*b
)
768 unsigned int sectors_per_cluster_bits
, nr_hidden_sects
;
769 int clusters_per_mft_record
, clusters_per_index_record
;
772 vol
->sector_size
= le16_to_cpu(b
->bpb
.bytes_per_sector
);
773 vol
->sector_size_bits
= ffs(vol
->sector_size
) - 1;
774 ntfs_debug("vol->sector_size = %i (0x%x)", vol
->sector_size
,
776 ntfs_debug("vol->sector_size_bits = %i (0x%x)", vol
->sector_size_bits
,
777 vol
->sector_size_bits
);
778 if (vol
->sector_size
< vol
->sb
->s_blocksize
) {
779 ntfs_error(vol
->sb
, "Sector size (%i) is smaller than the "
780 "device block size (%lu). This is not "
781 "supported. Sorry.", vol
->sector_size
,
782 vol
->sb
->s_blocksize
);
785 ntfs_debug("sectors_per_cluster = 0x%x", b
->bpb
.sectors_per_cluster
);
786 sectors_per_cluster_bits
= ffs(b
->bpb
.sectors_per_cluster
) - 1;
787 ntfs_debug("sectors_per_cluster_bits = 0x%x",
788 sectors_per_cluster_bits
);
789 nr_hidden_sects
= le32_to_cpu(b
->bpb
.hidden_sectors
);
790 ntfs_debug("number of hidden sectors = 0x%x", nr_hidden_sects
);
791 vol
->cluster_size
= vol
->sector_size
<< sectors_per_cluster_bits
;
792 vol
->cluster_size_mask
= vol
->cluster_size
- 1;
793 vol
->cluster_size_bits
= ffs(vol
->cluster_size
) - 1;
794 ntfs_debug("vol->cluster_size = %i (0x%x)", vol
->cluster_size
,
796 ntfs_debug("vol->cluster_size_mask = 0x%x", vol
->cluster_size_mask
);
797 ntfs_debug("vol->cluster_size_bits = %i", vol
->cluster_size_bits
);
798 if (vol
->cluster_size
< vol
->sector_size
) {
799 ntfs_error(vol
->sb
, "Cluster size (%i) is smaller than the "
800 "sector size (%i). This is not supported. "
801 "Sorry.", vol
->cluster_size
, vol
->sector_size
);
804 clusters_per_mft_record
= b
->clusters_per_mft_record
;
805 ntfs_debug("clusters_per_mft_record = %i (0x%x)",
806 clusters_per_mft_record
, clusters_per_mft_record
);
807 if (clusters_per_mft_record
> 0)
808 vol
->mft_record_size
= vol
->cluster_size
<<
809 (ffs(clusters_per_mft_record
) - 1);
812 * When mft_record_size < cluster_size, clusters_per_mft_record
813 * = -log2(mft_record_size) bytes. mft_record_size normaly is
814 * 1024 bytes, which is encoded as 0xF6 (-10 in decimal).
816 vol
->mft_record_size
= 1 << -clusters_per_mft_record
;
817 vol
->mft_record_size_mask
= vol
->mft_record_size
- 1;
818 vol
->mft_record_size_bits
= ffs(vol
->mft_record_size
) - 1;
819 ntfs_debug("vol->mft_record_size = %i (0x%x)", vol
->mft_record_size
,
820 vol
->mft_record_size
);
821 ntfs_debug("vol->mft_record_size_mask = 0x%x",
822 vol
->mft_record_size_mask
);
823 ntfs_debug("vol->mft_record_size_bits = %i (0x%x)",
824 vol
->mft_record_size_bits
, vol
->mft_record_size_bits
);
826 * We cannot support mft record sizes above the PAGE_SIZE since
827 * we store $MFT/$DATA, the table of mft records in the page cache.
829 if (vol
->mft_record_size
> PAGE_SIZE
) {
830 ntfs_error(vol
->sb
, "Mft record size (%i) exceeds the "
831 "PAGE_SIZE on your system (%lu). "
832 "This is not supported. Sorry.",
833 vol
->mft_record_size
, PAGE_SIZE
);
836 /* We cannot support mft record sizes below the sector size. */
837 if (vol
->mft_record_size
< vol
->sector_size
) {
838 ntfs_error(vol
->sb
, "Mft record size (%i) is smaller than the "
839 "sector size (%i). This is not supported. "
840 "Sorry.", vol
->mft_record_size
,
844 clusters_per_index_record
= b
->clusters_per_index_record
;
845 ntfs_debug("clusters_per_index_record = %i (0x%x)",
846 clusters_per_index_record
, clusters_per_index_record
);
847 if (clusters_per_index_record
> 0)
848 vol
->index_record_size
= vol
->cluster_size
<<
849 (ffs(clusters_per_index_record
) - 1);
852 * When index_record_size < cluster_size,
853 * clusters_per_index_record = -log2(index_record_size) bytes.
854 * index_record_size normaly equals 4096 bytes, which is
855 * encoded as 0xF4 (-12 in decimal).
857 vol
->index_record_size
= 1 << -clusters_per_index_record
;
858 vol
->index_record_size_mask
= vol
->index_record_size
- 1;
859 vol
->index_record_size_bits
= ffs(vol
->index_record_size
) - 1;
860 ntfs_debug("vol->index_record_size = %i (0x%x)",
861 vol
->index_record_size
, vol
->index_record_size
);
862 ntfs_debug("vol->index_record_size_mask = 0x%x",
863 vol
->index_record_size_mask
);
864 ntfs_debug("vol->index_record_size_bits = %i (0x%x)",
865 vol
->index_record_size_bits
,
866 vol
->index_record_size_bits
);
867 /* We cannot support index record sizes below the sector size. */
868 if (vol
->index_record_size
< vol
->sector_size
) {
869 ntfs_error(vol
->sb
, "Index record size (%i) is smaller than "
870 "the sector size (%i). This is not "
871 "supported. Sorry.", vol
->index_record_size
,
876 * Get the size of the volume in clusters and check for 64-bit-ness.
877 * Windows currently only uses 32 bits to save the clusters so we do
878 * the same as it is much faster on 32-bit CPUs.
880 ll
= sle64_to_cpu(b
->number_of_sectors
) >> sectors_per_cluster_bits
;
881 if ((u64
)ll
>= 1ULL << 32) {
882 ntfs_error(vol
->sb
, "Cannot handle 64-bit clusters. Sorry.");
885 vol
->nr_clusters
= ll
;
886 ntfs_debug("vol->nr_clusters = 0x%llx", (long long)vol
->nr_clusters
);
888 * On an architecture where unsigned long is 32-bits, we restrict the
889 * volume size to 2TiB (2^41). On a 64-bit architecture, the compiler
890 * will hopefully optimize the whole check away.
892 if (sizeof(unsigned long) < 8) {
893 if ((ll
<< vol
->cluster_size_bits
) >= (1ULL << 41)) {
894 ntfs_error(vol
->sb
, "Volume size (%lluTiB) is too "
895 "large for this architecture. "
896 "Maximum supported is 2TiB. Sorry.",
897 (unsigned long long)ll
>> (40 -
898 vol
->cluster_size_bits
));
902 ll
= sle64_to_cpu(b
->mft_lcn
);
903 if (ll
>= vol
->nr_clusters
) {
904 ntfs_error(vol
->sb
, "MFT LCN (%lli, 0x%llx) is beyond end of "
905 "volume. Weird.", (unsigned long long)ll
,
906 (unsigned long long)ll
);
910 ntfs_debug("vol->mft_lcn = 0x%llx", (long long)vol
->mft_lcn
);
911 ll
= sle64_to_cpu(b
->mftmirr_lcn
);
912 if (ll
>= vol
->nr_clusters
) {
913 ntfs_error(vol
->sb
, "MFTMirr LCN (%lli, 0x%llx) is beyond end "
914 "of volume. Weird.", (unsigned long long)ll
,
915 (unsigned long long)ll
);
918 vol
->mftmirr_lcn
= ll
;
919 ntfs_debug("vol->mftmirr_lcn = 0x%llx", (long long)vol
->mftmirr_lcn
);
922 * Work out the size of the mft mirror in number of mft records. If the
923 * cluster size is less than or equal to the size taken by four mft
924 * records, the mft mirror stores the first four mft records. If the
925 * cluster size is bigger than the size taken by four mft records, the
926 * mft mirror contains as many mft records as will fit into one
929 if (vol
->cluster_size
<= (4 << vol
->mft_record_size_bits
))
930 vol
->mftmirr_size
= 4;
932 vol
->mftmirr_size
= vol
->cluster_size
>>
933 vol
->mft_record_size_bits
;
934 ntfs_debug("vol->mftmirr_size = %i", vol
->mftmirr_size
);
936 vol
->serial_no
= le64_to_cpu(b
->volume_serial_number
);
937 ntfs_debug("vol->serial_no = 0x%llx",
938 (unsigned long long)vol
->serial_no
);
943 * ntfs_setup_allocators - initialize the cluster and mft allocators
944 * @vol: volume structure for which to setup the allocators
946 * Setup the cluster (lcn) and mft allocators to the starting values.
948 static void ntfs_setup_allocators(ntfs_volume
*vol
)
951 LCN mft_zone_size
, mft_lcn
;
954 ntfs_debug("vol->mft_zone_multiplier = 0x%x",
955 vol
->mft_zone_multiplier
);
957 /* Determine the size of the MFT zone. */
958 mft_zone_size
= vol
->nr_clusters
;
959 switch (vol
->mft_zone_multiplier
) { /* % of volume size in clusters */
961 mft_zone_size
>>= 1; /* 50% */
964 mft_zone_size
= (mft_zone_size
+
965 (mft_zone_size
>> 1)) >> 2; /* 37.5% */
968 mft_zone_size
>>= 2; /* 25% */
972 mft_zone_size
>>= 3; /* 12.5% */
975 /* Setup the mft zone. */
976 vol
->mft_zone_start
= vol
->mft_zone_pos
= vol
->mft_lcn
;
977 ntfs_debug("vol->mft_zone_pos = 0x%llx",
978 (unsigned long long)vol
->mft_zone_pos
);
980 * Calculate the mft_lcn for an unmodified NTFS volume (see mkntfs
981 * source) and if the actual mft_lcn is in the expected place or even
982 * further to the front of the volume, extend the mft_zone to cover the
983 * beginning of the volume as well. This is in order to protect the
984 * area reserved for the mft bitmap as well within the mft_zone itself.
985 * On non-standard volumes we do not protect it as the overhead would
986 * be higher than the speed increase we would get by doing it.
988 mft_lcn
= (8192 + 2 * vol
->cluster_size
- 1) / vol
->cluster_size
;
989 if (mft_lcn
* vol
->cluster_size
< 16 * 1024)
990 mft_lcn
= (16 * 1024 + vol
->cluster_size
- 1) /
992 if (vol
->mft_zone_start
<= mft_lcn
)
993 vol
->mft_zone_start
= 0;
994 ntfs_debug("vol->mft_zone_start = 0x%llx",
995 (unsigned long long)vol
->mft_zone_start
);
997 * Need to cap the mft zone on non-standard volumes so that it does
998 * not point outside the boundaries of the volume. We do this by
999 * halving the zone size until we are inside the volume.
1001 vol
->mft_zone_end
= vol
->mft_lcn
+ mft_zone_size
;
1002 while (vol
->mft_zone_end
>= vol
->nr_clusters
) {
1003 mft_zone_size
>>= 1;
1004 vol
->mft_zone_end
= vol
->mft_lcn
+ mft_zone_size
;
1006 ntfs_debug("vol->mft_zone_end = 0x%llx",
1007 (unsigned long long)vol
->mft_zone_end
);
1009 * Set the current position within each data zone to the start of the
1012 vol
->data1_zone_pos
= vol
->mft_zone_end
;
1013 ntfs_debug("vol->data1_zone_pos = 0x%llx",
1014 (unsigned long long)vol
->data1_zone_pos
);
1015 vol
->data2_zone_pos
= 0;
1016 ntfs_debug("vol->data2_zone_pos = 0x%llx",
1017 (unsigned long long)vol
->data2_zone_pos
);
1019 /* Set the mft data allocation position to mft record 24. */
1020 vol
->mft_data_pos
= 24;
1021 ntfs_debug("vol->mft_data_pos = 0x%llx",
1022 (unsigned long long)vol
->mft_data_pos
);
1023 #endif /* NTFS_RW */
1029 * load_and_init_mft_mirror - load and setup the mft mirror inode for a volume
1030 * @vol: ntfs super block describing device whose mft mirror to load
1032 * Return 'true' on success or 'false' on error.
1034 static bool load_and_init_mft_mirror(ntfs_volume
*vol
)
1036 struct inode
*tmp_ino
;
1039 ntfs_debug("Entering.");
1040 /* Get mft mirror inode. */
1041 tmp_ino
= ntfs_iget(vol
->sb
, FILE_MFTMirr
);
1042 if (IS_ERR(tmp_ino
) || is_bad_inode(tmp_ino
)) {
1043 if (!IS_ERR(tmp_ino
))
1045 /* Caller will display error message. */
1049 * Re-initialize some specifics about $MFTMirr's inode as
1050 * ntfs_read_inode() will have set up the default ones.
1052 /* Set uid and gid to root. */
1053 tmp_ino
->i_uid
= GLOBAL_ROOT_UID
;
1054 tmp_ino
->i_gid
= GLOBAL_ROOT_GID
;
1055 /* Regular file. No access for anyone. */
1056 tmp_ino
->i_mode
= S_IFREG
;
1057 /* No VFS initiated operations allowed for $MFTMirr. */
1058 tmp_ino
->i_op
= &ntfs_empty_inode_ops
;
1059 tmp_ino
->i_fop
= &ntfs_empty_file_ops
;
1060 /* Put in our special address space operations. */
1061 tmp_ino
->i_mapping
->a_ops
= &ntfs_mst_aops
;
1062 tmp_ni
= NTFS_I(tmp_ino
);
1063 /* The $MFTMirr, like the $MFT is multi sector transfer protected. */
1064 NInoSetMstProtected(tmp_ni
);
1065 NInoSetSparseDisabled(tmp_ni
);
1067 * Set up our little cheat allowing us to reuse the async read io
1068 * completion handler for directories.
1070 tmp_ni
->itype
.index
.block_size
= vol
->mft_record_size
;
1071 tmp_ni
->itype
.index
.block_size_bits
= vol
->mft_record_size_bits
;
1072 vol
->mftmirr_ino
= tmp_ino
;
1073 ntfs_debug("Done.");
1078 * check_mft_mirror - compare contents of the mft mirror with the mft
1079 * @vol: ntfs super block describing device whose mft mirror to check
1081 * Return 'true' on success or 'false' on error.
1083 * Note, this function also results in the mft mirror runlist being completely
1084 * mapped into memory. The mft mirror write code requires this and will BUG()
1085 * should it find an unmapped runlist element.
1087 static bool check_mft_mirror(ntfs_volume
*vol
)
1089 struct super_block
*sb
= vol
->sb
;
1090 ntfs_inode
*mirr_ni
;
1091 struct page
*mft_page
, *mirr_page
;
1093 runlist_element
*rl
, rl2
[2];
1095 int mrecs_per_page
, i
;
1097 ntfs_debug("Entering.");
1098 /* Compare contents of $MFT and $MFTMirr. */
1099 mrecs_per_page
= PAGE_SIZE
/ vol
->mft_record_size
;
1100 BUG_ON(!mrecs_per_page
);
1101 BUG_ON(!vol
->mftmirr_size
);
1102 mft_page
= mirr_page
= NULL
;
1103 kmft
= kmirr
= NULL
;
1108 /* Switch pages if necessary. */
1109 if (!(i
% mrecs_per_page
)) {
1111 ntfs_unmap_page(mft_page
);
1112 ntfs_unmap_page(mirr_page
);
1114 /* Get the $MFT page. */
1115 mft_page
= ntfs_map_page(vol
->mft_ino
->i_mapping
,
1117 if (IS_ERR(mft_page
)) {
1118 ntfs_error(sb
, "Failed to read $MFT.");
1121 kmft
= page_address(mft_page
);
1122 /* Get the $MFTMirr page. */
1123 mirr_page
= ntfs_map_page(vol
->mftmirr_ino
->i_mapping
,
1125 if (IS_ERR(mirr_page
)) {
1126 ntfs_error(sb
, "Failed to read $MFTMirr.");
1129 kmirr
= page_address(mirr_page
);
1132 /* Do not check the record if it is not in use. */
1133 if (((MFT_RECORD
*)kmft
)->flags
& MFT_RECORD_IN_USE
) {
1134 /* Make sure the record is ok. */
1135 if (ntfs_is_baad_recordp((le32
*)kmft
)) {
1136 ntfs_error(sb
, "Incomplete multi sector "
1137 "transfer detected in mft "
1140 ntfs_unmap_page(mirr_page
);
1142 ntfs_unmap_page(mft_page
);
1146 /* Do not check the mirror record if it is not in use. */
1147 if (((MFT_RECORD
*)kmirr
)->flags
& MFT_RECORD_IN_USE
) {
1148 if (ntfs_is_baad_recordp((le32
*)kmirr
)) {
1149 ntfs_error(sb
, "Incomplete multi sector "
1150 "transfer detected in mft "
1151 "mirror record %i.", i
);
1155 /* Get the amount of data in the current record. */
1156 bytes
= le32_to_cpu(((MFT_RECORD
*)kmft
)->bytes_in_use
);
1157 if (bytes
< sizeof(MFT_RECORD_OLD
) ||
1158 bytes
> vol
->mft_record_size
||
1159 ntfs_is_baad_recordp((le32
*)kmft
)) {
1160 bytes
= le32_to_cpu(((MFT_RECORD
*)kmirr
)->bytes_in_use
);
1161 if (bytes
< sizeof(MFT_RECORD_OLD
) ||
1162 bytes
> vol
->mft_record_size
||
1163 ntfs_is_baad_recordp((le32
*)kmirr
))
1164 bytes
= vol
->mft_record_size
;
1166 /* Compare the two records. */
1167 if (memcmp(kmft
, kmirr
, bytes
)) {
1168 ntfs_error(sb
, "$MFT and $MFTMirr (record %i) do not "
1169 "match. Run ntfsfix or chkdsk.", i
);
1172 kmft
+= vol
->mft_record_size
;
1173 kmirr
+= vol
->mft_record_size
;
1174 } while (++i
< vol
->mftmirr_size
);
1175 /* Release the last pages. */
1176 ntfs_unmap_page(mft_page
);
1177 ntfs_unmap_page(mirr_page
);
1179 /* Construct the mft mirror runlist by hand. */
1181 rl2
[0].lcn
= vol
->mftmirr_lcn
;
1182 rl2
[0].length
= (vol
->mftmirr_size
* vol
->mft_record_size
+
1183 vol
->cluster_size
- 1) / vol
->cluster_size
;
1184 rl2
[1].vcn
= rl2
[0].length
;
1185 rl2
[1].lcn
= LCN_ENOENT
;
1188 * Because we have just read all of the mft mirror, we know we have
1189 * mapped the full runlist for it.
1191 mirr_ni
= NTFS_I(vol
->mftmirr_ino
);
1192 down_read(&mirr_ni
->runlist
.lock
);
1193 rl
= mirr_ni
->runlist
.rl
;
1194 /* Compare the two runlists. They must be identical. */
1197 if (rl2
[i
].vcn
!= rl
[i
].vcn
|| rl2
[i
].lcn
!= rl
[i
].lcn
||
1198 rl2
[i
].length
!= rl
[i
].length
) {
1199 ntfs_error(sb
, "$MFTMirr location mismatch. "
1201 up_read(&mirr_ni
->runlist
.lock
);
1204 } while (rl2
[i
++].length
);
1205 up_read(&mirr_ni
->runlist
.lock
);
1206 ntfs_debug("Done.");
1211 * load_and_check_logfile - load and check the logfile inode for a volume
1212 * @vol: ntfs super block describing device whose logfile to load
1214 * Return 'true' on success or 'false' on error.
1216 static bool load_and_check_logfile(ntfs_volume
*vol
,
1217 RESTART_PAGE_HEADER
**rp
)
1219 struct inode
*tmp_ino
;
1221 ntfs_debug("Entering.");
1222 tmp_ino
= ntfs_iget(vol
->sb
, FILE_LogFile
);
1223 if (IS_ERR(tmp_ino
) || is_bad_inode(tmp_ino
)) {
1224 if (!IS_ERR(tmp_ino
))
1226 /* Caller will display error message. */
1229 if (!ntfs_check_logfile(tmp_ino
, rp
)) {
1231 /* ntfs_check_logfile() will have displayed error output. */
1234 NInoSetSparseDisabled(NTFS_I(tmp_ino
));
1235 vol
->logfile_ino
= tmp_ino
;
1236 ntfs_debug("Done.");
1240 #define NTFS_HIBERFIL_HEADER_SIZE 4096
1243 * check_windows_hibernation_status - check if Windows is suspended on a volume
1244 * @vol: ntfs super block of device to check
1246 * Check if Windows is hibernated on the ntfs volume @vol. This is done by
1247 * looking for the file hiberfil.sys in the root directory of the volume. If
1248 * the file is not present Windows is definitely not suspended.
1250 * If hiberfil.sys exists and is less than 4kiB in size it means Windows is
1251 * definitely suspended (this volume is not the system volume). Caveat: on a
1252 * system with many volumes it is possible that the < 4kiB check is bogus but
1253 * for now this should do fine.
1255 * If hiberfil.sys exists and is larger than 4kiB in size, we need to read the
1256 * hiberfil header (which is the first 4kiB). If this begins with "hibr",
1257 * Windows is definitely suspended. If it is completely full of zeroes,
1258 * Windows is definitely not hibernated. Any other case is treated as if
1259 * Windows is suspended. This caters for the above mentioned caveat of a
1260 * system with many volumes where no "hibr" magic would be present and there is
1263 * Return 0 if Windows is not hibernated on the volume, >0 if Windows is
1264 * hibernated on the volume, and -errno on error.
1266 static int check_windows_hibernation_status(ntfs_volume
*vol
)
1272 ntfs_name
*name
= NULL
;
1274 static const ntfschar hiberfil
[13] = { cpu_to_le16('h'),
1275 cpu_to_le16('i'), cpu_to_le16('b'),
1276 cpu_to_le16('e'), cpu_to_le16('r'),
1277 cpu_to_le16('f'), cpu_to_le16('i'),
1278 cpu_to_le16('l'), cpu_to_le16('.'),
1279 cpu_to_le16('s'), cpu_to_le16('y'),
1280 cpu_to_le16('s'), 0 };
1282 ntfs_debug("Entering.");
1284 * Find the inode number for the hibernation file by looking up the
1285 * filename hiberfil.sys in the root directory.
1287 inode_lock(vol
->root_ino
);
1288 mref
= ntfs_lookup_inode_by_name(NTFS_I(vol
->root_ino
), hiberfil
, 12,
1290 inode_unlock(vol
->root_ino
);
1291 if (IS_ERR_MREF(mref
)) {
1292 ret
= MREF_ERR(mref
);
1293 /* If the file does not exist, Windows is not hibernated. */
1294 if (ret
== -ENOENT
) {
1295 ntfs_debug("hiberfil.sys not present. Windows is not "
1296 "hibernated on the volume.");
1299 /* A real error occurred. */
1300 ntfs_error(vol
->sb
, "Failed to find inode number for "
1304 /* We do not care for the type of match that was found. */
1306 /* Get the inode. */
1307 vi
= ntfs_iget(vol
->sb
, MREF(mref
));
1308 if (IS_ERR(vi
) || is_bad_inode(vi
)) {
1311 ntfs_error(vol
->sb
, "Failed to load hiberfil.sys.");
1312 return IS_ERR(vi
) ? PTR_ERR(vi
) : -EIO
;
1314 if (unlikely(i_size_read(vi
) < NTFS_HIBERFIL_HEADER_SIZE
)) {
1315 ntfs_debug("hiberfil.sys is smaller than 4kiB (0x%llx). "
1316 "Windows is hibernated on the volume. This "
1317 "is not the system volume.", i_size_read(vi
));
1320 page
= ntfs_map_page(vi
->i_mapping
, 0);
1322 ntfs_error(vol
->sb
, "Failed to read from hiberfil.sys.");
1323 ret
= PTR_ERR(page
);
1326 kaddr
= (u32
*)page_address(page
);
1327 if (*(le32
*)kaddr
== cpu_to_le32(0x72626968)/*'hibr'*/) {
1328 ntfs_debug("Magic \"hibr\" found in hiberfil.sys. Windows is "
1329 "hibernated on the volume. This is the "
1333 kend
= kaddr
+ NTFS_HIBERFIL_HEADER_SIZE
/sizeof(*kaddr
);
1335 if (unlikely(*kaddr
)) {
1336 ntfs_debug("hiberfil.sys is larger than 4kiB "
1337 "(0x%llx), does not contain the "
1338 "\"hibr\" magic, and does not have a "
1339 "zero header. Windows is hibernated "
1340 "on the volume. This is not the "
1341 "system volume.", i_size_read(vi
));
1344 } while (++kaddr
< kend
);
1345 ntfs_debug("hiberfil.sys contains a zero header. Windows is not "
1346 "hibernated on the volume. This is the system "
1350 ntfs_unmap_page(page
);
1357 * load_and_init_quota - load and setup the quota file for a volume if present
1358 * @vol: ntfs super block describing device whose quota file to load
1360 * Return 'true' on success or 'false' on error. If $Quota is not present, we
1361 * leave vol->quota_ino as NULL and return success.
1363 static bool load_and_init_quota(ntfs_volume
*vol
)
1366 struct inode
*tmp_ino
;
1367 ntfs_name
*name
= NULL
;
1368 static const ntfschar Quota
[7] = { cpu_to_le16('$'),
1369 cpu_to_le16('Q'), cpu_to_le16('u'),
1370 cpu_to_le16('o'), cpu_to_le16('t'),
1371 cpu_to_le16('a'), 0 };
1372 static ntfschar Q
[3] = { cpu_to_le16('$'),
1373 cpu_to_le16('Q'), 0 };
1375 ntfs_debug("Entering.");
1377 * Find the inode number for the quota file by looking up the filename
1378 * $Quota in the extended system files directory $Extend.
1380 inode_lock(vol
->extend_ino
);
1381 mref
= ntfs_lookup_inode_by_name(NTFS_I(vol
->extend_ino
), Quota
, 6,
1383 inode_unlock(vol
->extend_ino
);
1384 if (IS_ERR_MREF(mref
)) {
1386 * If the file does not exist, quotas are disabled and have
1387 * never been enabled on this volume, just return success.
1389 if (MREF_ERR(mref
) == -ENOENT
) {
1390 ntfs_debug("$Quota not present. Volume does not have "
1393 * No need to try to set quotas out of date if they are
1396 NVolSetQuotaOutOfDate(vol
);
1399 /* A real error occurred. */
1400 ntfs_error(vol
->sb
, "Failed to find inode number for $Quota.");
1403 /* We do not care for the type of match that was found. */
1405 /* Get the inode. */
1406 tmp_ino
= ntfs_iget(vol
->sb
, MREF(mref
));
1407 if (IS_ERR(tmp_ino
) || is_bad_inode(tmp_ino
)) {
1408 if (!IS_ERR(tmp_ino
))
1410 ntfs_error(vol
->sb
, "Failed to load $Quota.");
1413 vol
->quota_ino
= tmp_ino
;
1414 /* Get the $Q index allocation attribute. */
1415 tmp_ino
= ntfs_index_iget(vol
->quota_ino
, Q
, 2);
1416 if (IS_ERR(tmp_ino
)) {
1417 ntfs_error(vol
->sb
, "Failed to load $Quota/$Q index.");
1420 vol
->quota_q_ino
= tmp_ino
;
1421 ntfs_debug("Done.");
1426 * load_and_init_usnjrnl - load and setup the transaction log if present
1427 * @vol: ntfs super block describing device whose usnjrnl file to load
1429 * Return 'true' on success or 'false' on error.
1431 * If $UsnJrnl is not present or in the process of being disabled, we set
1432 * NVolUsnJrnlStamped() and return success.
1434 * If the $UsnJrnl $DATA/$J attribute has a size equal to the lowest valid usn,
1435 * i.e. transaction logging has only just been enabled or the journal has been
1436 * stamped and nothing has been logged since, we also set NVolUsnJrnlStamped()
1437 * and return success.
1439 static bool load_and_init_usnjrnl(ntfs_volume
*vol
)
1442 struct inode
*tmp_ino
;
1445 ntfs_name
*name
= NULL
;
1447 static const ntfschar UsnJrnl
[9] = { cpu_to_le16('$'),
1448 cpu_to_le16('U'), cpu_to_le16('s'),
1449 cpu_to_le16('n'), cpu_to_le16('J'),
1450 cpu_to_le16('r'), cpu_to_le16('n'),
1451 cpu_to_le16('l'), 0 };
1452 static ntfschar Max
[5] = { cpu_to_le16('$'),
1453 cpu_to_le16('M'), cpu_to_le16('a'),
1454 cpu_to_le16('x'), 0 };
1455 static ntfschar J
[3] = { cpu_to_le16('$'),
1456 cpu_to_le16('J'), 0 };
1458 ntfs_debug("Entering.");
1460 * Find the inode number for the transaction log file by looking up the
1461 * filename $UsnJrnl in the extended system files directory $Extend.
1463 inode_lock(vol
->extend_ino
);
1464 mref
= ntfs_lookup_inode_by_name(NTFS_I(vol
->extend_ino
), UsnJrnl
, 8,
1466 inode_unlock(vol
->extend_ino
);
1467 if (IS_ERR_MREF(mref
)) {
1469 * If the file does not exist, transaction logging is disabled,
1470 * just return success.
1472 if (MREF_ERR(mref
) == -ENOENT
) {
1473 ntfs_debug("$UsnJrnl not present. Volume does not "
1474 "have transaction logging enabled.");
1477 * No need to try to stamp the transaction log if
1478 * transaction logging is not enabled.
1480 NVolSetUsnJrnlStamped(vol
);
1483 /* A real error occurred. */
1484 ntfs_error(vol
->sb
, "Failed to find inode number for "
1488 /* We do not care for the type of match that was found. */
1490 /* Get the inode. */
1491 tmp_ino
= ntfs_iget(vol
->sb
, MREF(mref
));
1492 if (unlikely(IS_ERR(tmp_ino
) || is_bad_inode(tmp_ino
))) {
1493 if (!IS_ERR(tmp_ino
))
1495 ntfs_error(vol
->sb
, "Failed to load $UsnJrnl.");
1498 vol
->usnjrnl_ino
= tmp_ino
;
1500 * If the transaction log is in the process of being deleted, we can
1503 if (unlikely(vol
->vol_flags
& VOLUME_DELETE_USN_UNDERWAY
)) {
1504 ntfs_debug("$UsnJrnl in the process of being disabled. "
1505 "Volume does not have transaction logging "
1509 /* Get the $DATA/$Max attribute. */
1510 tmp_ino
= ntfs_attr_iget(vol
->usnjrnl_ino
, AT_DATA
, Max
, 4);
1511 if (IS_ERR(tmp_ino
)) {
1512 ntfs_error(vol
->sb
, "Failed to load $UsnJrnl/$DATA/$Max "
1516 vol
->usnjrnl_max_ino
= tmp_ino
;
1517 if (unlikely(i_size_read(tmp_ino
) < sizeof(USN_HEADER
))) {
1518 ntfs_error(vol
->sb
, "Found corrupt $UsnJrnl/$DATA/$Max "
1519 "attribute (size is 0x%llx but should be at "
1520 "least 0x%zx bytes).", i_size_read(tmp_ino
),
1521 sizeof(USN_HEADER
));
1524 /* Get the $DATA/$J attribute. */
1525 tmp_ino
= ntfs_attr_iget(vol
->usnjrnl_ino
, AT_DATA
, J
, 2);
1526 if (IS_ERR(tmp_ino
)) {
1527 ntfs_error(vol
->sb
, "Failed to load $UsnJrnl/$DATA/$J "
1531 vol
->usnjrnl_j_ino
= tmp_ino
;
1532 /* Verify $J is non-resident and sparse. */
1533 tmp_ni
= NTFS_I(vol
->usnjrnl_j_ino
);
1534 if (unlikely(!NInoNonResident(tmp_ni
) || !NInoSparse(tmp_ni
))) {
1535 ntfs_error(vol
->sb
, "$UsnJrnl/$DATA/$J attribute is resident "
1536 "and/or not sparse.");
1539 /* Read the USN_HEADER from $DATA/$Max. */
1540 page
= ntfs_map_page(vol
->usnjrnl_max_ino
->i_mapping
, 0);
1542 ntfs_error(vol
->sb
, "Failed to read from $UsnJrnl/$DATA/$Max "
1546 uh
= (USN_HEADER
*)page_address(page
);
1547 /* Sanity check the $Max. */
1548 if (unlikely(sle64_to_cpu(uh
->allocation_delta
) >
1549 sle64_to_cpu(uh
->maximum_size
))) {
1550 ntfs_error(vol
->sb
, "Allocation delta (0x%llx) exceeds "
1551 "maximum size (0x%llx). $UsnJrnl is corrupt.",
1552 (long long)sle64_to_cpu(uh
->allocation_delta
),
1553 (long long)sle64_to_cpu(uh
->maximum_size
));
1554 ntfs_unmap_page(page
);
1558 * If the transaction log has been stamped and nothing has been written
1559 * to it since, we do not need to stamp it.
1561 if (unlikely(sle64_to_cpu(uh
->lowest_valid_usn
) >=
1562 i_size_read(vol
->usnjrnl_j_ino
))) {
1563 if (likely(sle64_to_cpu(uh
->lowest_valid_usn
) ==
1564 i_size_read(vol
->usnjrnl_j_ino
))) {
1565 ntfs_unmap_page(page
);
1566 ntfs_debug("$UsnJrnl is enabled but nothing has been "
1567 "logged since it was last stamped. "
1568 "Treating this as if the volume does "
1569 "not have transaction logging "
1573 ntfs_error(vol
->sb
, "$UsnJrnl has lowest valid usn (0x%llx) "
1574 "which is out of bounds (0x%llx). $UsnJrnl "
1576 (long long)sle64_to_cpu(uh
->lowest_valid_usn
),
1577 i_size_read(vol
->usnjrnl_j_ino
));
1578 ntfs_unmap_page(page
);
1581 ntfs_unmap_page(page
);
1582 ntfs_debug("Done.");
1587 * load_and_init_attrdef - load the attribute definitions table for a volume
1588 * @vol: ntfs super block describing device whose attrdef to load
1590 * Return 'true' on success or 'false' on error.
1592 static bool load_and_init_attrdef(ntfs_volume
*vol
)
1595 struct super_block
*sb
= vol
->sb
;
1598 pgoff_t index
, max_index
;
1601 ntfs_debug("Entering.");
1602 /* Read attrdef table and setup vol->attrdef and vol->attrdef_size. */
1603 ino
= ntfs_iget(sb
, FILE_AttrDef
);
1604 if (IS_ERR(ino
) || is_bad_inode(ino
)) {
1609 NInoSetSparseDisabled(NTFS_I(ino
));
1610 /* The size of FILE_AttrDef must be above 0 and fit inside 31 bits. */
1611 i_size
= i_size_read(ino
);
1612 if (i_size
<= 0 || i_size
> 0x7fffffff)
1614 vol
->attrdef
= (ATTR_DEF
*)ntfs_malloc_nofs(i_size
);
1618 max_index
= i_size
>> PAGE_SHIFT
;
1620 while (index
< max_index
) {
1621 /* Read the attrdef table and copy it into the linear buffer. */
1622 read_partial_attrdef_page
:
1623 page
= ntfs_map_page(ino
->i_mapping
, index
);
1625 goto free_iput_failed
;
1626 memcpy((u8
*)vol
->attrdef
+ (index
++ << PAGE_SHIFT
),
1627 page_address(page
), size
);
1628 ntfs_unmap_page(page
);
1630 if (size
== PAGE_SIZE
) {
1631 size
= i_size
& ~PAGE_MASK
;
1633 goto read_partial_attrdef_page
;
1635 vol
->attrdef_size
= i_size
;
1636 ntfs_debug("Read %llu bytes from $AttrDef.", i_size
);
1640 ntfs_free(vol
->attrdef
);
1641 vol
->attrdef
= NULL
;
1645 ntfs_error(sb
, "Failed to initialize attribute definition table.");
1649 #endif /* NTFS_RW */
1652 * load_and_init_upcase - load the upcase table for an ntfs volume
1653 * @vol: ntfs super block describing device whose upcase to load
1655 * Return 'true' on success or 'false' on error.
1657 static bool load_and_init_upcase(ntfs_volume
*vol
)
1660 struct super_block
*sb
= vol
->sb
;
1663 pgoff_t index
, max_index
;
1667 ntfs_debug("Entering.");
1668 /* Read upcase table and setup vol->upcase and vol->upcase_len. */
1669 ino
= ntfs_iget(sb
, FILE_UpCase
);
1670 if (IS_ERR(ino
) || is_bad_inode(ino
)) {
1676 * The upcase size must not be above 64k Unicode characters, must not
1677 * be zero and must be a multiple of sizeof(ntfschar).
1679 i_size
= i_size_read(ino
);
1680 if (!i_size
|| i_size
& (sizeof(ntfschar
) - 1) ||
1681 i_size
> 64ULL * 1024 * sizeof(ntfschar
))
1682 goto iput_upcase_failed
;
1683 vol
->upcase
= (ntfschar
*)ntfs_malloc_nofs(i_size
);
1685 goto iput_upcase_failed
;
1687 max_index
= i_size
>> PAGE_SHIFT
;
1689 while (index
< max_index
) {
1690 /* Read the upcase table and copy it into the linear buffer. */
1691 read_partial_upcase_page
:
1692 page
= ntfs_map_page(ino
->i_mapping
, index
);
1694 goto iput_upcase_failed
;
1695 memcpy((char*)vol
->upcase
+ (index
++ << PAGE_SHIFT
),
1696 page_address(page
), size
);
1697 ntfs_unmap_page(page
);
1699 if (size
== PAGE_SIZE
) {
1700 size
= i_size
& ~PAGE_MASK
;
1702 goto read_partial_upcase_page
;
1704 vol
->upcase_len
= i_size
>> UCHAR_T_SIZE_BITS
;
1705 ntfs_debug("Read %llu bytes from $UpCase (expected %zu bytes).",
1706 i_size
, 64 * 1024 * sizeof(ntfschar
));
1708 mutex_lock(&ntfs_lock
);
1709 if (!default_upcase
) {
1710 ntfs_debug("Using volume specified $UpCase since default is "
1712 mutex_unlock(&ntfs_lock
);
1715 max
= default_upcase_len
;
1716 if (max
> vol
->upcase_len
)
1717 max
= vol
->upcase_len
;
1718 for (i
= 0; i
< max
; i
++)
1719 if (vol
->upcase
[i
] != default_upcase
[i
])
1722 ntfs_free(vol
->upcase
);
1723 vol
->upcase
= default_upcase
;
1724 vol
->upcase_len
= max
;
1725 ntfs_nr_upcase_users
++;
1726 mutex_unlock(&ntfs_lock
);
1727 ntfs_debug("Volume specified $UpCase matches default. Using "
1731 mutex_unlock(&ntfs_lock
);
1732 ntfs_debug("Using volume specified $UpCase since it does not match "
1737 ntfs_free(vol
->upcase
);
1740 mutex_lock(&ntfs_lock
);
1741 if (default_upcase
) {
1742 vol
->upcase
= default_upcase
;
1743 vol
->upcase_len
= default_upcase_len
;
1744 ntfs_nr_upcase_users
++;
1745 mutex_unlock(&ntfs_lock
);
1746 ntfs_error(sb
, "Failed to load $UpCase from the volume. Using "
1750 mutex_unlock(&ntfs_lock
);
1751 ntfs_error(sb
, "Failed to initialize upcase table.");
1756 * The lcn and mft bitmap inodes are NTFS-internal inodes with
1757 * their own special locking rules:
1759 static struct lock_class_key
1760 lcnbmp_runlist_lock_key
, lcnbmp_mrec_lock_key
,
1761 mftbmp_runlist_lock_key
, mftbmp_mrec_lock_key
;
1764 * load_system_files - open the system files using normal functions
1765 * @vol: ntfs super block describing device whose system files to load
1767 * Open the system files with normal access functions and complete setting up
1768 * the ntfs super block @vol.
1770 * Return 'true' on success or 'false' on error.
1772 static bool load_system_files(ntfs_volume
*vol
)
1774 struct super_block
*sb
= vol
->sb
;
1776 VOLUME_INFORMATION
*vi
;
1777 ntfs_attr_search_ctx
*ctx
;
1779 RESTART_PAGE_HEADER
*rp
;
1781 #endif /* NTFS_RW */
1783 ntfs_debug("Entering.");
1785 /* Get mft mirror inode compare the contents of $MFT and $MFTMirr. */
1786 if (!load_and_init_mft_mirror(vol
) || !check_mft_mirror(vol
)) {
1787 static const char *es1
= "Failed to load $MFTMirr";
1788 static const char *es2
= "$MFTMirr does not match $MFT";
1789 static const char *es3
= ". Run ntfsfix and/or chkdsk.";
1791 /* If a read-write mount, convert it to a read-only mount. */
1792 if (!(sb
->s_flags
& MS_RDONLY
)) {
1793 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
1794 ON_ERRORS_CONTINUE
))) {
1795 ntfs_error(sb
, "%s and neither on_errors="
1796 "continue nor on_errors="
1797 "remount-ro was specified%s",
1798 !vol
->mftmirr_ino
? es1
: es2
,
1800 goto iput_mirr_err_out
;
1802 sb
->s_flags
|= MS_RDONLY
;
1803 ntfs_error(sb
, "%s. Mounting read-only%s",
1804 !vol
->mftmirr_ino
? es1
: es2
, es3
);
1806 ntfs_warning(sb
, "%s. Will not be able to remount "
1808 !vol
->mftmirr_ino
? es1
: es2
, es3
);
1809 /* This will prevent a read-write remount. */
1812 #endif /* NTFS_RW */
1813 /* Get mft bitmap attribute inode. */
1814 vol
->mftbmp_ino
= ntfs_attr_iget(vol
->mft_ino
, AT_BITMAP
, NULL
, 0);
1815 if (IS_ERR(vol
->mftbmp_ino
)) {
1816 ntfs_error(sb
, "Failed to load $MFT/$BITMAP attribute.");
1817 goto iput_mirr_err_out
;
1819 lockdep_set_class(&NTFS_I(vol
->mftbmp_ino
)->runlist
.lock
,
1820 &mftbmp_runlist_lock_key
);
1821 lockdep_set_class(&NTFS_I(vol
->mftbmp_ino
)->mrec_lock
,
1822 &mftbmp_mrec_lock_key
);
1823 /* Read upcase table and setup @vol->upcase and @vol->upcase_len. */
1824 if (!load_and_init_upcase(vol
))
1825 goto iput_mftbmp_err_out
;
1828 * Read attribute definitions table and setup @vol->attrdef and
1829 * @vol->attrdef_size.
1831 if (!load_and_init_attrdef(vol
))
1832 goto iput_upcase_err_out
;
1833 #endif /* NTFS_RW */
1835 * Get the cluster allocation bitmap inode and verify the size, no
1836 * need for any locking at this stage as we are already running
1837 * exclusively as we are mount in progress task.
1839 vol
->lcnbmp_ino
= ntfs_iget(sb
, FILE_Bitmap
);
1840 if (IS_ERR(vol
->lcnbmp_ino
) || is_bad_inode(vol
->lcnbmp_ino
)) {
1841 if (!IS_ERR(vol
->lcnbmp_ino
))
1842 iput(vol
->lcnbmp_ino
);
1845 lockdep_set_class(&NTFS_I(vol
->lcnbmp_ino
)->runlist
.lock
,
1846 &lcnbmp_runlist_lock_key
);
1847 lockdep_set_class(&NTFS_I(vol
->lcnbmp_ino
)->mrec_lock
,
1848 &lcnbmp_mrec_lock_key
);
1850 NInoSetSparseDisabled(NTFS_I(vol
->lcnbmp_ino
));
1851 if ((vol
->nr_clusters
+ 7) >> 3 > i_size_read(vol
->lcnbmp_ino
)) {
1852 iput(vol
->lcnbmp_ino
);
1854 ntfs_error(sb
, "Failed to load $Bitmap.");
1855 goto iput_attrdef_err_out
;
1858 * Get the volume inode and setup our cache of the volume flags and
1861 vol
->vol_ino
= ntfs_iget(sb
, FILE_Volume
);
1862 if (IS_ERR(vol
->vol_ino
) || is_bad_inode(vol
->vol_ino
)) {
1863 if (!IS_ERR(vol
->vol_ino
))
1866 ntfs_error(sb
, "Failed to load $Volume.");
1867 goto iput_lcnbmp_err_out
;
1869 m
= map_mft_record(NTFS_I(vol
->vol_ino
));
1875 if (!(ctx
= ntfs_attr_get_search_ctx(NTFS_I(vol
->vol_ino
), m
))) {
1876 ntfs_error(sb
, "Failed to get attribute search context.");
1877 goto get_ctx_vol_failed
;
1879 if (ntfs_attr_lookup(AT_VOLUME_INFORMATION
, NULL
, 0, 0, 0, NULL
, 0,
1880 ctx
) || ctx
->attr
->non_resident
|| ctx
->attr
->flags
) {
1882 ntfs_attr_put_search_ctx(ctx
);
1884 unmap_mft_record(NTFS_I(vol
->vol_ino
));
1885 goto iput_volume_failed
;
1887 vi
= (VOLUME_INFORMATION
*)((char*)ctx
->attr
+
1888 le16_to_cpu(ctx
->attr
->data
.resident
.value_offset
));
1889 /* Some bounds checks. */
1890 if ((u8
*)vi
< (u8
*)ctx
->attr
|| (u8
*)vi
+
1891 le32_to_cpu(ctx
->attr
->data
.resident
.value_length
) >
1892 (u8
*)ctx
->attr
+ le32_to_cpu(ctx
->attr
->length
))
1894 /* Copy the volume flags and version to the ntfs_volume structure. */
1895 vol
->vol_flags
= vi
->flags
;
1896 vol
->major_ver
= vi
->major_ver
;
1897 vol
->minor_ver
= vi
->minor_ver
;
1898 ntfs_attr_put_search_ctx(ctx
);
1899 unmap_mft_record(NTFS_I(vol
->vol_ino
));
1900 pr_info("volume version %i.%i.\n", vol
->major_ver
,
1902 if (vol
->major_ver
< 3 && NVolSparseEnabled(vol
)) {
1903 ntfs_warning(vol
->sb
, "Disabling sparse support due to NTFS "
1904 "volume version %i.%i (need at least version "
1905 "3.0).", vol
->major_ver
, vol
->minor_ver
);
1906 NVolClearSparseEnabled(vol
);
1909 /* Make sure that no unsupported volume flags are set. */
1910 if (vol
->vol_flags
& VOLUME_MUST_MOUNT_RO_MASK
) {
1911 static const char *es1a
= "Volume is dirty";
1912 static const char *es1b
= "Volume has been modified by chkdsk";
1913 static const char *es1c
= "Volume has unsupported flags set";
1914 static const char *es2a
= ". Run chkdsk and mount in Windows.";
1915 static const char *es2b
= ". Mount in Windows.";
1916 const char *es1
, *es2
;
1919 if (vol
->vol_flags
& VOLUME_IS_DIRTY
)
1921 else if (vol
->vol_flags
& VOLUME_MODIFIED_BY_CHKDSK
) {
1926 ntfs_warning(sb
, "Unsupported volume flags 0x%x "
1928 (unsigned)le16_to_cpu(vol
->vol_flags
));
1930 /* If a read-write mount, convert it to a read-only mount. */
1931 if (!(sb
->s_flags
& MS_RDONLY
)) {
1932 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
1933 ON_ERRORS_CONTINUE
))) {
1934 ntfs_error(sb
, "%s and neither on_errors="
1935 "continue nor on_errors="
1936 "remount-ro was specified%s",
1938 goto iput_vol_err_out
;
1940 sb
->s_flags
|= MS_RDONLY
;
1941 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
1943 ntfs_warning(sb
, "%s. Will not be able to remount "
1944 "read-write%s", es1
, es2
);
1946 * Do not set NVolErrors() because ntfs_remount() re-checks the
1947 * flags which we need to do in case any flags have changed.
1951 * Get the inode for the logfile, check it and determine if the volume
1952 * was shutdown cleanly.
1955 if (!load_and_check_logfile(vol
, &rp
) ||
1956 !ntfs_is_logfile_clean(vol
->logfile_ino
, rp
)) {
1957 static const char *es1a
= "Failed to load $LogFile";
1958 static const char *es1b
= "$LogFile is not clean";
1959 static const char *es2
= ". Mount in Windows.";
1962 es1
= !vol
->logfile_ino
? es1a
: es1b
;
1963 /* If a read-write mount, convert it to a read-only mount. */
1964 if (!(sb
->s_flags
& MS_RDONLY
)) {
1965 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
1966 ON_ERRORS_CONTINUE
))) {
1967 ntfs_error(sb
, "%s and neither on_errors="
1968 "continue nor on_errors="
1969 "remount-ro was specified%s",
1971 if (vol
->logfile_ino
) {
1975 goto iput_logfile_err_out
;
1977 sb
->s_flags
|= MS_RDONLY
;
1978 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
1980 ntfs_warning(sb
, "%s. Will not be able to remount "
1981 "read-write%s", es1
, es2
);
1982 /* This will prevent a read-write remount. */
1986 #endif /* NTFS_RW */
1987 /* Get the root directory inode so we can do path lookups. */
1988 vol
->root_ino
= ntfs_iget(sb
, FILE_root
);
1989 if (IS_ERR(vol
->root_ino
) || is_bad_inode(vol
->root_ino
)) {
1990 if (!IS_ERR(vol
->root_ino
))
1991 iput(vol
->root_ino
);
1992 ntfs_error(sb
, "Failed to load root directory.");
1993 goto iput_logfile_err_out
;
1997 * Check if Windows is suspended to disk on the target volume. If it
1998 * is hibernated, we must not write *anything* to the disk so set
1999 * NVolErrors() without setting the dirty volume flag and mount
2000 * read-only. This will prevent read-write remounting and it will also
2001 * prevent all writes.
2003 err
= check_windows_hibernation_status(vol
);
2004 if (unlikely(err
)) {
2005 static const char *es1a
= "Failed to determine if Windows is "
2007 static const char *es1b
= "Windows is hibernated";
2008 static const char *es2
= ". Run chkdsk.";
2011 es1
= err
< 0 ? es1a
: es1b
;
2012 /* If a read-write mount, convert it to a read-only mount. */
2013 if (!(sb
->s_flags
& MS_RDONLY
)) {
2014 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
2015 ON_ERRORS_CONTINUE
))) {
2016 ntfs_error(sb
, "%s and neither on_errors="
2017 "continue nor on_errors="
2018 "remount-ro was specified%s",
2020 goto iput_root_err_out
;
2022 sb
->s_flags
|= MS_RDONLY
;
2023 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
2025 ntfs_warning(sb
, "%s. Will not be able to remount "
2026 "read-write%s", es1
, es2
);
2027 /* This will prevent a read-write remount. */
2030 /* If (still) a read-write mount, mark the volume dirty. */
2031 if (!(sb
->s_flags
& MS_RDONLY
) &&
2032 ntfs_set_volume_flags(vol
, VOLUME_IS_DIRTY
)) {
2033 static const char *es1
= "Failed to set dirty bit in volume "
2034 "information flags";
2035 static const char *es2
= ". Run chkdsk.";
2037 /* Convert to a read-only mount. */
2038 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
2039 ON_ERRORS_CONTINUE
))) {
2040 ntfs_error(sb
, "%s and neither on_errors=continue nor "
2041 "on_errors=remount-ro was specified%s",
2043 goto iput_root_err_out
;
2045 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
2046 sb
->s_flags
|= MS_RDONLY
;
2048 * Do not set NVolErrors() because ntfs_remount() might manage
2049 * to set the dirty flag in which case all would be well.
2053 // TODO: Enable this code once we start modifying anything that is
2054 // different between NTFS 1.2 and 3.x...
2056 * If (still) a read-write mount, set the NT4 compatibility flag on
2057 * newer NTFS version volumes.
2059 if (!(sb
->s_flags
& MS_RDONLY
) && (vol
->major_ver
> 1) &&
2060 ntfs_set_volume_flags(vol
, VOLUME_MOUNTED_ON_NT4
)) {
2061 static const char *es1
= "Failed to set NT4 compatibility flag";
2062 static const char *es2
= ". Run chkdsk.";
2064 /* Convert to a read-only mount. */
2065 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
2066 ON_ERRORS_CONTINUE
))) {
2067 ntfs_error(sb
, "%s and neither on_errors=continue nor "
2068 "on_errors=remount-ro was specified%s",
2070 goto iput_root_err_out
;
2072 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
2073 sb
->s_flags
|= MS_RDONLY
;
2077 /* If (still) a read-write mount, empty the logfile. */
2078 if (!(sb
->s_flags
& MS_RDONLY
) &&
2079 !ntfs_empty_logfile(vol
->logfile_ino
)) {
2080 static const char *es1
= "Failed to empty $LogFile";
2081 static const char *es2
= ". Mount in Windows.";
2083 /* Convert to a read-only mount. */
2084 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
2085 ON_ERRORS_CONTINUE
))) {
2086 ntfs_error(sb
, "%s and neither on_errors=continue nor "
2087 "on_errors=remount-ro was specified%s",
2089 goto iput_root_err_out
;
2091 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
2092 sb
->s_flags
|= MS_RDONLY
;
2095 #endif /* NTFS_RW */
2096 /* If on NTFS versions before 3.0, we are done. */
2097 if (unlikely(vol
->major_ver
< 3))
2099 /* NTFS 3.0+ specific initialization. */
2100 /* Get the security descriptors inode. */
2101 vol
->secure_ino
= ntfs_iget(sb
, FILE_Secure
);
2102 if (IS_ERR(vol
->secure_ino
) || is_bad_inode(vol
->secure_ino
)) {
2103 if (!IS_ERR(vol
->secure_ino
))
2104 iput(vol
->secure_ino
);
2105 ntfs_error(sb
, "Failed to load $Secure.");
2106 goto iput_root_err_out
;
2108 // TODO: Initialize security.
2109 /* Get the extended system files' directory inode. */
2110 vol
->extend_ino
= ntfs_iget(sb
, FILE_Extend
);
2111 if (IS_ERR(vol
->extend_ino
) || is_bad_inode(vol
->extend_ino
)) {
2112 if (!IS_ERR(vol
->extend_ino
))
2113 iput(vol
->extend_ino
);
2114 ntfs_error(sb
, "Failed to load $Extend.");
2115 goto iput_sec_err_out
;
2118 /* Find the quota file, load it if present, and set it up. */
2119 if (!load_and_init_quota(vol
)) {
2120 static const char *es1
= "Failed to load $Quota";
2121 static const char *es2
= ". Run chkdsk.";
2123 /* If a read-write mount, convert it to a read-only mount. */
2124 if (!(sb
->s_flags
& MS_RDONLY
)) {
2125 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
2126 ON_ERRORS_CONTINUE
))) {
2127 ntfs_error(sb
, "%s and neither on_errors="
2128 "continue nor on_errors="
2129 "remount-ro was specified%s",
2131 goto iput_quota_err_out
;
2133 sb
->s_flags
|= MS_RDONLY
;
2134 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
2136 ntfs_warning(sb
, "%s. Will not be able to remount "
2137 "read-write%s", es1
, es2
);
2138 /* This will prevent a read-write remount. */
2141 /* If (still) a read-write mount, mark the quotas out of date. */
2142 if (!(sb
->s_flags
& MS_RDONLY
) &&
2143 !ntfs_mark_quotas_out_of_date(vol
)) {
2144 static const char *es1
= "Failed to mark quotas out of date";
2145 static const char *es2
= ". Run chkdsk.";
2147 /* Convert to a read-only mount. */
2148 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
2149 ON_ERRORS_CONTINUE
))) {
2150 ntfs_error(sb
, "%s and neither on_errors=continue nor "
2151 "on_errors=remount-ro was specified%s",
2153 goto iput_quota_err_out
;
2155 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
2156 sb
->s_flags
|= MS_RDONLY
;
2160 * Find the transaction log file ($UsnJrnl), load it if present, check
2161 * it, and set it up.
2163 if (!load_and_init_usnjrnl(vol
)) {
2164 static const char *es1
= "Failed to load $UsnJrnl";
2165 static const char *es2
= ". Run chkdsk.";
2167 /* If a read-write mount, convert it to a read-only mount. */
2168 if (!(sb
->s_flags
& MS_RDONLY
)) {
2169 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
2170 ON_ERRORS_CONTINUE
))) {
2171 ntfs_error(sb
, "%s and neither on_errors="
2172 "continue nor on_errors="
2173 "remount-ro was specified%s",
2175 goto iput_usnjrnl_err_out
;
2177 sb
->s_flags
|= MS_RDONLY
;
2178 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
2180 ntfs_warning(sb
, "%s. Will not be able to remount "
2181 "read-write%s", es1
, es2
);
2182 /* This will prevent a read-write remount. */
2185 /* If (still) a read-write mount, stamp the transaction log. */
2186 if (!(sb
->s_flags
& MS_RDONLY
) && !ntfs_stamp_usnjrnl(vol
)) {
2187 static const char *es1
= "Failed to stamp transaction log "
2189 static const char *es2
= ". Run chkdsk.";
2191 /* Convert to a read-only mount. */
2192 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
2193 ON_ERRORS_CONTINUE
))) {
2194 ntfs_error(sb
, "%s and neither on_errors=continue nor "
2195 "on_errors=remount-ro was specified%s",
2197 goto iput_usnjrnl_err_out
;
2199 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
2200 sb
->s_flags
|= MS_RDONLY
;
2203 #endif /* NTFS_RW */
2206 iput_usnjrnl_err_out
:
2207 iput(vol
->usnjrnl_j_ino
);
2208 iput(vol
->usnjrnl_max_ino
);
2209 iput(vol
->usnjrnl_ino
);
2211 iput(vol
->quota_q_ino
);
2212 iput(vol
->quota_ino
);
2213 iput(vol
->extend_ino
);
2214 #endif /* NTFS_RW */
2216 iput(vol
->secure_ino
);
2218 iput(vol
->root_ino
);
2219 iput_logfile_err_out
:
2221 iput(vol
->logfile_ino
);
2223 #endif /* NTFS_RW */
2225 iput_lcnbmp_err_out
:
2226 iput(vol
->lcnbmp_ino
);
2227 iput_attrdef_err_out
:
2228 vol
->attrdef_size
= 0;
2230 ntfs_free(vol
->attrdef
);
2231 vol
->attrdef
= NULL
;
2234 iput_upcase_err_out
:
2235 #endif /* NTFS_RW */
2236 vol
->upcase_len
= 0;
2237 mutex_lock(&ntfs_lock
);
2238 if (vol
->upcase
== default_upcase
) {
2239 ntfs_nr_upcase_users
--;
2242 mutex_unlock(&ntfs_lock
);
2244 ntfs_free(vol
->upcase
);
2247 iput_mftbmp_err_out
:
2248 iput(vol
->mftbmp_ino
);
2251 iput(vol
->mftmirr_ino
);
2252 #endif /* NTFS_RW */
2257 * ntfs_put_super - called by the vfs to unmount a volume
2258 * @sb: vfs superblock of volume to unmount
2260 * ntfs_put_super() is called by the VFS (from fs/super.c::do_umount()) when
2261 * the volume is being unmounted (umount system call has been invoked) and it
2262 * releases all inodes and memory belonging to the NTFS specific part of the
2265 static void ntfs_put_super(struct super_block
*sb
)
2267 ntfs_volume
*vol
= NTFS_SB(sb
);
2269 ntfs_debug("Entering.");
2273 * Commit all inodes while they are still open in case some of them
2274 * cause others to be dirtied.
2276 ntfs_commit_inode(vol
->vol_ino
);
2278 /* NTFS 3.0+ specific. */
2279 if (vol
->major_ver
>= 3) {
2280 if (vol
->usnjrnl_j_ino
)
2281 ntfs_commit_inode(vol
->usnjrnl_j_ino
);
2282 if (vol
->usnjrnl_max_ino
)
2283 ntfs_commit_inode(vol
->usnjrnl_max_ino
);
2284 if (vol
->usnjrnl_ino
)
2285 ntfs_commit_inode(vol
->usnjrnl_ino
);
2286 if (vol
->quota_q_ino
)
2287 ntfs_commit_inode(vol
->quota_q_ino
);
2289 ntfs_commit_inode(vol
->quota_ino
);
2290 if (vol
->extend_ino
)
2291 ntfs_commit_inode(vol
->extend_ino
);
2292 if (vol
->secure_ino
)
2293 ntfs_commit_inode(vol
->secure_ino
);
2296 ntfs_commit_inode(vol
->root_ino
);
2298 down_write(&vol
->lcnbmp_lock
);
2299 ntfs_commit_inode(vol
->lcnbmp_ino
);
2300 up_write(&vol
->lcnbmp_lock
);
2302 down_write(&vol
->mftbmp_lock
);
2303 ntfs_commit_inode(vol
->mftbmp_ino
);
2304 up_write(&vol
->mftbmp_lock
);
2306 if (vol
->logfile_ino
)
2307 ntfs_commit_inode(vol
->logfile_ino
);
2309 if (vol
->mftmirr_ino
)
2310 ntfs_commit_inode(vol
->mftmirr_ino
);
2311 ntfs_commit_inode(vol
->mft_ino
);
2314 * If a read-write mount and no volume errors have occurred, mark the
2315 * volume clean. Also, re-commit all affected inodes.
2317 if (!(sb
->s_flags
& MS_RDONLY
)) {
2318 if (!NVolErrors(vol
)) {
2319 if (ntfs_clear_volume_flags(vol
, VOLUME_IS_DIRTY
))
2320 ntfs_warning(sb
, "Failed to clear dirty bit "
2321 "in volume information "
2322 "flags. Run chkdsk.");
2323 ntfs_commit_inode(vol
->vol_ino
);
2324 ntfs_commit_inode(vol
->root_ino
);
2325 if (vol
->mftmirr_ino
)
2326 ntfs_commit_inode(vol
->mftmirr_ino
);
2327 ntfs_commit_inode(vol
->mft_ino
);
2329 ntfs_warning(sb
, "Volume has errors. Leaving volume "
2330 "marked dirty. Run chkdsk.");
2333 #endif /* NTFS_RW */
2336 vol
->vol_ino
= NULL
;
2338 /* NTFS 3.0+ specific clean up. */
2339 if (vol
->major_ver
>= 3) {
2341 if (vol
->usnjrnl_j_ino
) {
2342 iput(vol
->usnjrnl_j_ino
);
2343 vol
->usnjrnl_j_ino
= NULL
;
2345 if (vol
->usnjrnl_max_ino
) {
2346 iput(vol
->usnjrnl_max_ino
);
2347 vol
->usnjrnl_max_ino
= NULL
;
2349 if (vol
->usnjrnl_ino
) {
2350 iput(vol
->usnjrnl_ino
);
2351 vol
->usnjrnl_ino
= NULL
;
2353 if (vol
->quota_q_ino
) {
2354 iput(vol
->quota_q_ino
);
2355 vol
->quota_q_ino
= NULL
;
2357 if (vol
->quota_ino
) {
2358 iput(vol
->quota_ino
);
2359 vol
->quota_ino
= NULL
;
2361 #endif /* NTFS_RW */
2362 if (vol
->extend_ino
) {
2363 iput(vol
->extend_ino
);
2364 vol
->extend_ino
= NULL
;
2366 if (vol
->secure_ino
) {
2367 iput(vol
->secure_ino
);
2368 vol
->secure_ino
= NULL
;
2372 iput(vol
->root_ino
);
2373 vol
->root_ino
= NULL
;
2375 down_write(&vol
->lcnbmp_lock
);
2376 iput(vol
->lcnbmp_ino
);
2377 vol
->lcnbmp_ino
= NULL
;
2378 up_write(&vol
->lcnbmp_lock
);
2380 down_write(&vol
->mftbmp_lock
);
2381 iput(vol
->mftbmp_ino
);
2382 vol
->mftbmp_ino
= NULL
;
2383 up_write(&vol
->mftbmp_lock
);
2386 if (vol
->logfile_ino
) {
2387 iput(vol
->logfile_ino
);
2388 vol
->logfile_ino
= NULL
;
2390 if (vol
->mftmirr_ino
) {
2391 /* Re-commit the mft mirror and mft just in case. */
2392 ntfs_commit_inode(vol
->mftmirr_ino
);
2393 ntfs_commit_inode(vol
->mft_ino
);
2394 iput(vol
->mftmirr_ino
);
2395 vol
->mftmirr_ino
= NULL
;
2398 * We should have no dirty inodes left, due to
2399 * mft.c::ntfs_mft_writepage() cleaning all the dirty pages as
2400 * the underlying mft records are written out and cleaned.
2402 ntfs_commit_inode(vol
->mft_ino
);
2403 write_inode_now(vol
->mft_ino
, 1);
2404 #endif /* NTFS_RW */
2407 vol
->mft_ino
= NULL
;
2409 /* Throw away the table of attribute definitions. */
2410 vol
->attrdef_size
= 0;
2412 ntfs_free(vol
->attrdef
);
2413 vol
->attrdef
= NULL
;
2415 vol
->upcase_len
= 0;
2417 * Destroy the global default upcase table if necessary. Also decrease
2418 * the number of upcase users if we are a user.
2420 mutex_lock(&ntfs_lock
);
2421 if (vol
->upcase
== default_upcase
) {
2422 ntfs_nr_upcase_users
--;
2425 if (!ntfs_nr_upcase_users
&& default_upcase
) {
2426 ntfs_free(default_upcase
);
2427 default_upcase
= NULL
;
2429 if (vol
->cluster_size
<= 4096 && !--ntfs_nr_compression_users
)
2430 free_compression_buffers();
2431 mutex_unlock(&ntfs_lock
);
2433 ntfs_free(vol
->upcase
);
2437 unload_nls(vol
->nls_map
);
2439 sb
->s_fs_info
= NULL
;
2444 * get_nr_free_clusters - return the number of free clusters on a volume
2445 * @vol: ntfs volume for which to obtain free cluster count
2447 * Calculate the number of free clusters on the mounted NTFS volume @vol. We
2448 * actually calculate the number of clusters in use instead because this
2449 * allows us to not care about partial pages as these will be just zero filled
2450 * and hence not be counted as allocated clusters.
2452 * The only particularity is that clusters beyond the end of the logical ntfs
2453 * volume will be marked as allocated to prevent errors which means we have to
2454 * discount those at the end. This is important as the cluster bitmap always
2455 * has a size in multiples of 8 bytes, i.e. up to 63 clusters could be outside
2456 * the logical volume and marked in use when they are not as they do not exist.
2458 * If any pages cannot be read we assume all clusters in the erroring pages are
2459 * in use. This means we return an underestimate on errors which is better than
2462 static s64
get_nr_free_clusters(ntfs_volume
*vol
)
2464 s64 nr_free
= vol
->nr_clusters
;
2465 struct address_space
*mapping
= vol
->lcnbmp_ino
->i_mapping
;
2467 pgoff_t index
, max_index
;
2469 ntfs_debug("Entering.");
2470 /* Serialize accesses to the cluster bitmap. */
2471 down_read(&vol
->lcnbmp_lock
);
2473 * Convert the number of bits into bytes rounded up, then convert into
2474 * multiples of PAGE_SIZE, rounding up so that if we have one
2475 * full and one partial page max_index = 2.
2477 max_index
= (((vol
->nr_clusters
+ 7) >> 3) + PAGE_SIZE
- 1) >>
2479 /* Use multiples of 4 bytes, thus max_size is PAGE_SIZE / 4. */
2480 ntfs_debug("Reading $Bitmap, max_index = 0x%lx, max_size = 0x%lx.",
2481 max_index
, PAGE_SIZE
/ 4);
2482 for (index
= 0; index
< max_index
; index
++) {
2483 unsigned long *kaddr
;
2486 * Read the page from page cache, getting it from backing store
2487 * if necessary, and increment the use count.
2489 page
= read_mapping_page(mapping
, index
, NULL
);
2490 /* Ignore pages which errored synchronously. */
2492 ntfs_debug("read_mapping_page() error. Skipping "
2493 "page (index 0x%lx).", index
);
2494 nr_free
-= PAGE_SIZE
* 8;
2497 kaddr
= kmap_atomic(page
);
2499 * Subtract the number of set bits. If this
2500 * is the last page and it is partial we don't really care as
2501 * it just means we do a little extra work but it won't affect
2502 * the result as all out of range bytes are set to zero by
2505 nr_free
-= bitmap_weight(kaddr
,
2506 PAGE_SIZE
* BITS_PER_BYTE
);
2507 kunmap_atomic(kaddr
);
2510 ntfs_debug("Finished reading $Bitmap, last index = 0x%lx.", index
- 1);
2512 * Fixup for eventual bits outside logical ntfs volume (see function
2513 * description above).
2515 if (vol
->nr_clusters
& 63)
2516 nr_free
+= 64 - (vol
->nr_clusters
& 63);
2517 up_read(&vol
->lcnbmp_lock
);
2518 /* If errors occurred we may well have gone below zero, fix this. */
2521 ntfs_debug("Exiting.");
2526 * __get_nr_free_mft_records - return the number of free inodes on a volume
2527 * @vol: ntfs volume for which to obtain free inode count
2528 * @nr_free: number of mft records in filesystem
2529 * @max_index: maximum number of pages containing set bits
2531 * Calculate the number of free mft records (inodes) on the mounted NTFS
2532 * volume @vol. We actually calculate the number of mft records in use instead
2533 * because this allows us to not care about partial pages as these will be just
2534 * zero filled and hence not be counted as allocated mft record.
2536 * If any pages cannot be read we assume all mft records in the erroring pages
2537 * are in use. This means we return an underestimate on errors which is better
2538 * than an overestimate.
2540 * NOTE: Caller must hold mftbmp_lock rw_semaphore for reading or writing.
2542 static unsigned long __get_nr_free_mft_records(ntfs_volume
*vol
,
2543 s64 nr_free
, const pgoff_t max_index
)
2545 struct address_space
*mapping
= vol
->mftbmp_ino
->i_mapping
;
2549 ntfs_debug("Entering.");
2550 /* Use multiples of 4 bytes, thus max_size is PAGE_SIZE / 4. */
2551 ntfs_debug("Reading $MFT/$BITMAP, max_index = 0x%lx, max_size = "
2552 "0x%lx.", max_index
, PAGE_SIZE
/ 4);
2553 for (index
= 0; index
< max_index
; index
++) {
2554 unsigned long *kaddr
;
2557 * Read the page from page cache, getting it from backing store
2558 * if necessary, and increment the use count.
2560 page
= read_mapping_page(mapping
, index
, NULL
);
2561 /* Ignore pages which errored synchronously. */
2563 ntfs_debug("read_mapping_page() error. Skipping "
2564 "page (index 0x%lx).", index
);
2565 nr_free
-= PAGE_SIZE
* 8;
2568 kaddr
= kmap_atomic(page
);
2570 * Subtract the number of set bits. If this
2571 * is the last page and it is partial we don't really care as
2572 * it just means we do a little extra work but it won't affect
2573 * the result as all out of range bytes are set to zero by
2576 nr_free
-= bitmap_weight(kaddr
,
2577 PAGE_SIZE
* BITS_PER_BYTE
);
2578 kunmap_atomic(kaddr
);
2581 ntfs_debug("Finished reading $MFT/$BITMAP, last index = 0x%lx.",
2583 /* If errors occurred we may well have gone below zero, fix this. */
2586 ntfs_debug("Exiting.");
2591 * ntfs_statfs - return information about mounted NTFS volume
2592 * @dentry: dentry from mounted volume
2593 * @sfs: statfs structure in which to return the information
2595 * Return information about the mounted NTFS volume @dentry in the statfs structure
2596 * pointed to by @sfs (this is initialized with zeros before ntfs_statfs is
2597 * called). We interpret the values to be correct of the moment in time at
2598 * which we are called. Most values are variable otherwise and this isn't just
2599 * the free values but the totals as well. For example we can increase the
2600 * total number of file nodes if we run out and we can keep doing this until
2601 * there is no more space on the volume left at all.
2603 * Called from vfs_statfs which is used to handle the statfs, fstatfs, and
2604 * ustat system calls.
2606 * Return 0 on success or -errno on error.
2608 static int ntfs_statfs(struct dentry
*dentry
, struct kstatfs
*sfs
)
2610 struct super_block
*sb
= dentry
->d_sb
;
2612 ntfs_volume
*vol
= NTFS_SB(sb
);
2613 ntfs_inode
*mft_ni
= NTFS_I(vol
->mft_ino
);
2615 unsigned long flags
;
2617 ntfs_debug("Entering.");
2618 /* Type of filesystem. */
2619 sfs
->f_type
= NTFS_SB_MAGIC
;
2620 /* Optimal transfer block size. */
2621 sfs
->f_bsize
= PAGE_SIZE
;
2623 * Total data blocks in filesystem in units of f_bsize and since
2624 * inodes are also stored in data blocs ($MFT is a file) this is just
2625 * the total clusters.
2627 sfs
->f_blocks
= vol
->nr_clusters
<< vol
->cluster_size_bits
>>
2629 /* Free data blocks in filesystem in units of f_bsize. */
2630 size
= get_nr_free_clusters(vol
) << vol
->cluster_size_bits
>>
2634 /* Free blocks avail to non-superuser, same as above on NTFS. */
2635 sfs
->f_bavail
= sfs
->f_bfree
= size
;
2636 /* Serialize accesses to the inode bitmap. */
2637 down_read(&vol
->mftbmp_lock
);
2638 read_lock_irqsave(&mft_ni
->size_lock
, flags
);
2639 size
= i_size_read(vol
->mft_ino
) >> vol
->mft_record_size_bits
;
2641 * Convert the maximum number of set bits into bytes rounded up, then
2642 * convert into multiples of PAGE_SIZE, rounding up so that if we
2643 * have one full and one partial page max_index = 2.
2645 max_index
= ((((mft_ni
->initialized_size
>> vol
->mft_record_size_bits
)
2646 + 7) >> 3) + PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2647 read_unlock_irqrestore(&mft_ni
->size_lock
, flags
);
2648 /* Number of inodes in filesystem (at this point in time). */
2649 sfs
->f_files
= size
;
2650 /* Free inodes in fs (based on current total count). */
2651 sfs
->f_ffree
= __get_nr_free_mft_records(vol
, size
, max_index
);
2652 up_read(&vol
->mftbmp_lock
);
2654 * File system id. This is extremely *nix flavour dependent and even
2655 * within Linux itself all fs do their own thing. I interpret this to
2656 * mean a unique id associated with the mounted fs and not the id
2657 * associated with the filesystem driver, the latter is already given
2658 * by the filesystem type in sfs->f_type. Thus we use the 64-bit
2659 * volume serial number splitting it into two 32-bit parts. We enter
2660 * the least significant 32-bits in f_fsid[0] and the most significant
2661 * 32-bits in f_fsid[1].
2663 sfs
->f_fsid
.val
[0] = vol
->serial_no
& 0xffffffff;
2664 sfs
->f_fsid
.val
[1] = (vol
->serial_no
>> 32) & 0xffffffff;
2665 /* Maximum length of filenames. */
2666 sfs
->f_namelen
= NTFS_MAX_NAME_LEN
;
2671 static int ntfs_write_inode(struct inode
*vi
, struct writeback_control
*wbc
)
2673 return __ntfs_write_inode(vi
, wbc
->sync_mode
== WB_SYNC_ALL
);
2678 * The complete super operations.
2680 static const struct super_operations ntfs_sops
= {
2681 .alloc_inode
= ntfs_alloc_big_inode
, /* VFS: Allocate new inode. */
2682 .destroy_inode
= ntfs_destroy_big_inode
, /* VFS: Deallocate inode. */
2684 .write_inode
= ntfs_write_inode
, /* VFS: Write dirty inode to
2686 #endif /* NTFS_RW */
2687 .put_super
= ntfs_put_super
, /* Syscall: umount. */
2688 .statfs
= ntfs_statfs
, /* Syscall: statfs */
2689 .remount_fs
= ntfs_remount
, /* Syscall: mount -o remount. */
2690 .evict_inode
= ntfs_evict_big_inode
, /* VFS: Called when an inode is
2691 removed from memory. */
2692 .show_options
= ntfs_show_options
, /* Show mount options in
2697 * ntfs_fill_super - mount an ntfs filesystem
2698 * @sb: super block of ntfs filesystem to mount
2699 * @opt: string containing the mount options
2700 * @silent: silence error output
2702 * ntfs_fill_super() is called by the VFS to mount the device described by @sb
2703 * with the mount otions in @data with the NTFS filesystem.
2705 * If @silent is true, remain silent even if errors are detected. This is used
2706 * during bootup, when the kernel tries to mount the root filesystem with all
2707 * registered filesystems one after the other until one succeeds. This implies
2708 * that all filesystems except the correct one will quite correctly and
2709 * expectedly return an error, but nobody wants to see error messages when in
2710 * fact this is what is supposed to happen.
2712 * NOTE: @sb->s_flags contains the mount options flags.
2714 static int ntfs_fill_super(struct super_block
*sb
, void *opt
, const int silent
)
2717 struct buffer_head
*bh
;
2718 struct inode
*tmp_ino
;
2719 int blocksize
, result
;
2722 * We do a pretty difficult piece of bootstrap by reading the
2723 * MFT (and other metadata) from disk into memory. We'll only
2724 * release this metadata during umount, so the locking patterns
2725 * observed during bootstrap do not count. So turn off the
2726 * observation of locking patterns (strictly for this context
2727 * only) while mounting NTFS. [The validator is still active
2728 * otherwise, even for this context: it will for example record
2729 * lock class registrations.]
2732 ntfs_debug("Entering.");
2734 sb
->s_flags
|= MS_RDONLY
;
2735 #endif /* ! NTFS_RW */
2736 /* Allocate a new ntfs_volume and place it in sb->s_fs_info. */
2737 sb
->s_fs_info
= kmalloc(sizeof(ntfs_volume
), GFP_NOFS
);
2741 ntfs_error(sb
, "Allocation of NTFS volume structure "
2742 "failed. Aborting mount...");
2746 /* Initialize ntfs_volume structure. */
2747 *vol
= (ntfs_volume
) {
2750 * Default is group and other don't have any access to files or
2751 * directories while owner has full access. Further, files by
2752 * default are not executable but directories are of course
2758 init_rwsem(&vol
->mftbmp_lock
);
2759 init_rwsem(&vol
->lcnbmp_lock
);
2761 /* By default, enable sparse support. */
2762 NVolSetSparseEnabled(vol
);
2764 /* Important to get the mount options dealt with now. */
2765 if (!parse_options(vol
, (char*)opt
))
2768 /* We support sector sizes up to the PAGE_SIZE. */
2769 if (bdev_logical_block_size(sb
->s_bdev
) > PAGE_SIZE
) {
2771 ntfs_error(sb
, "Device has unsupported sector size "
2772 "(%i). The maximum supported sector "
2773 "size on this architecture is %lu "
2775 bdev_logical_block_size(sb
->s_bdev
),
2780 * Setup the device access block size to NTFS_BLOCK_SIZE or the hard
2781 * sector size, whichever is bigger.
2783 blocksize
= sb_min_blocksize(sb
, NTFS_BLOCK_SIZE
);
2784 if (blocksize
< NTFS_BLOCK_SIZE
) {
2786 ntfs_error(sb
, "Unable to set device block size.");
2789 BUG_ON(blocksize
!= sb
->s_blocksize
);
2790 ntfs_debug("Set device block size to %i bytes (block size bits %i).",
2791 blocksize
, sb
->s_blocksize_bits
);
2792 /* Determine the size of the device in units of block_size bytes. */
2793 if (!i_size_read(sb
->s_bdev
->bd_inode
)) {
2795 ntfs_error(sb
, "Unable to determine device size.");
2798 vol
->nr_blocks
= i_size_read(sb
->s_bdev
->bd_inode
) >>
2799 sb
->s_blocksize_bits
;
2800 /* Read the boot sector and return unlocked buffer head to it. */
2801 if (!(bh
= read_ntfs_boot_sector(sb
, silent
))) {
2803 ntfs_error(sb
, "Not an NTFS volume.");
2807 * Extract the data from the boot sector and setup the ntfs volume
2810 result
= parse_ntfs_boot_sector(vol
, (NTFS_BOOT_SECTOR
*)bh
->b_data
);
2814 ntfs_error(sb
, "Unsupported NTFS filesystem.");
2818 * If the boot sector indicates a sector size bigger than the current
2819 * device block size, switch the device block size to the sector size.
2820 * TODO: It may be possible to support this case even when the set
2821 * below fails, we would just be breaking up the i/o for each sector
2822 * into multiple blocks for i/o purposes but otherwise it should just
2823 * work. However it is safer to leave disabled until someone hits this
2824 * error message and then we can get them to try it without the setting
2825 * so we know for sure that it works.
2827 if (vol
->sector_size
> blocksize
) {
2828 blocksize
= sb_set_blocksize(sb
, vol
->sector_size
);
2829 if (blocksize
!= vol
->sector_size
) {
2831 ntfs_error(sb
, "Unable to set device block "
2832 "size to sector size (%i).",
2836 BUG_ON(blocksize
!= sb
->s_blocksize
);
2837 vol
->nr_blocks
= i_size_read(sb
->s_bdev
->bd_inode
) >>
2838 sb
->s_blocksize_bits
;
2839 ntfs_debug("Changed device block size to %i bytes (block size "
2840 "bits %i) to match volume sector size.",
2841 blocksize
, sb
->s_blocksize_bits
);
2843 /* Initialize the cluster and mft allocators. */
2844 ntfs_setup_allocators(vol
);
2845 /* Setup remaining fields in the super block. */
2846 sb
->s_magic
= NTFS_SB_MAGIC
;
2848 * Ntfs allows 63 bits for the file size, i.e. correct would be:
2849 * sb->s_maxbytes = ~0ULL >> 1;
2850 * But the kernel uses a long as the page cache page index which on
2851 * 32-bit architectures is only 32-bits. MAX_LFS_FILESIZE is kernel
2852 * defined to the maximum the page cache page index can cope with
2853 * without overflowing the index or to 2^63 - 1, whichever is smaller.
2855 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
2856 /* Ntfs measures time in 100ns intervals. */
2857 sb
->s_time_gran
= 100;
2859 * Now load the metadata required for the page cache and our address
2860 * space operations to function. We do this by setting up a specialised
2861 * read_inode method and then just calling the normal iget() to obtain
2862 * the inode for $MFT which is sufficient to allow our normal inode
2863 * operations and associated address space operations to function.
2865 sb
->s_op
= &ntfs_sops
;
2866 tmp_ino
= new_inode(sb
);
2869 ntfs_error(sb
, "Failed to load essential metadata.");
2872 tmp_ino
->i_ino
= FILE_MFT
;
2873 insert_inode_hash(tmp_ino
);
2874 if (ntfs_read_inode_mount(tmp_ino
) < 0) {
2876 ntfs_error(sb
, "Failed to load essential metadata.");
2877 goto iput_tmp_ino_err_out_now
;
2879 mutex_lock(&ntfs_lock
);
2881 * The current mount is a compression user if the cluster size is
2882 * less than or equal 4kiB.
2884 if (vol
->cluster_size
<= 4096 && !ntfs_nr_compression_users
++) {
2885 result
= allocate_compression_buffers();
2887 ntfs_error(NULL
, "Failed to allocate buffers "
2888 "for compression engine.");
2889 ntfs_nr_compression_users
--;
2890 mutex_unlock(&ntfs_lock
);
2891 goto iput_tmp_ino_err_out_now
;
2895 * Generate the global default upcase table if necessary. Also
2896 * temporarily increment the number of upcase users to avoid race
2897 * conditions with concurrent (u)mounts.
2899 if (!default_upcase
)
2900 default_upcase
= generate_default_upcase();
2901 ntfs_nr_upcase_users
++;
2902 mutex_unlock(&ntfs_lock
);
2904 * From now on, ignore @silent parameter. If we fail below this line,
2905 * it will be due to a corrupt fs or a system error, so we report it.
2908 * Open the system files with normal access functions and complete
2909 * setting up the ntfs super block.
2911 if (!load_system_files(vol
)) {
2912 ntfs_error(sb
, "Failed to load system files.");
2913 goto unl_upcase_iput_tmp_ino_err_out_now
;
2916 /* We grab a reference, simulating an ntfs_iget(). */
2917 ihold(vol
->root_ino
);
2918 if ((sb
->s_root
= d_make_root(vol
->root_ino
))) {
2919 ntfs_debug("Exiting, status successful.");
2920 /* Release the default upcase if it has no users. */
2921 mutex_lock(&ntfs_lock
);
2922 if (!--ntfs_nr_upcase_users
&& default_upcase
) {
2923 ntfs_free(default_upcase
);
2924 default_upcase
= NULL
;
2926 mutex_unlock(&ntfs_lock
);
2927 sb
->s_export_op
= &ntfs_export_ops
;
2931 ntfs_error(sb
, "Failed to allocate root directory.");
2932 /* Clean up after the successful load_system_files() call from above. */
2933 // TODO: Use ntfs_put_super() instead of repeating all this code...
2934 // FIXME: Should mark the volume clean as the error is most likely
2937 vol
->vol_ino
= NULL
;
2938 /* NTFS 3.0+ specific clean up. */
2939 if (vol
->major_ver
>= 3) {
2941 if (vol
->usnjrnl_j_ino
) {
2942 iput(vol
->usnjrnl_j_ino
);
2943 vol
->usnjrnl_j_ino
= NULL
;
2945 if (vol
->usnjrnl_max_ino
) {
2946 iput(vol
->usnjrnl_max_ino
);
2947 vol
->usnjrnl_max_ino
= NULL
;
2949 if (vol
->usnjrnl_ino
) {
2950 iput(vol
->usnjrnl_ino
);
2951 vol
->usnjrnl_ino
= NULL
;
2953 if (vol
->quota_q_ino
) {
2954 iput(vol
->quota_q_ino
);
2955 vol
->quota_q_ino
= NULL
;
2957 if (vol
->quota_ino
) {
2958 iput(vol
->quota_ino
);
2959 vol
->quota_ino
= NULL
;
2961 #endif /* NTFS_RW */
2962 if (vol
->extend_ino
) {
2963 iput(vol
->extend_ino
);
2964 vol
->extend_ino
= NULL
;
2966 if (vol
->secure_ino
) {
2967 iput(vol
->secure_ino
);
2968 vol
->secure_ino
= NULL
;
2971 iput(vol
->root_ino
);
2972 vol
->root_ino
= NULL
;
2973 iput(vol
->lcnbmp_ino
);
2974 vol
->lcnbmp_ino
= NULL
;
2975 iput(vol
->mftbmp_ino
);
2976 vol
->mftbmp_ino
= NULL
;
2978 if (vol
->logfile_ino
) {
2979 iput(vol
->logfile_ino
);
2980 vol
->logfile_ino
= NULL
;
2982 if (vol
->mftmirr_ino
) {
2983 iput(vol
->mftmirr_ino
);
2984 vol
->mftmirr_ino
= NULL
;
2986 #endif /* NTFS_RW */
2987 /* Throw away the table of attribute definitions. */
2988 vol
->attrdef_size
= 0;
2990 ntfs_free(vol
->attrdef
);
2991 vol
->attrdef
= NULL
;
2993 vol
->upcase_len
= 0;
2994 mutex_lock(&ntfs_lock
);
2995 if (vol
->upcase
== default_upcase
) {
2996 ntfs_nr_upcase_users
--;
2999 mutex_unlock(&ntfs_lock
);
3001 ntfs_free(vol
->upcase
);
3005 unload_nls(vol
->nls_map
);
3006 vol
->nls_map
= NULL
;
3008 /* Error exit code path. */
3009 unl_upcase_iput_tmp_ino_err_out_now
:
3011 * Decrease the number of upcase users and destroy the global default
3012 * upcase table if necessary.
3014 mutex_lock(&ntfs_lock
);
3015 if (!--ntfs_nr_upcase_users
&& default_upcase
) {
3016 ntfs_free(default_upcase
);
3017 default_upcase
= NULL
;
3019 if (vol
->cluster_size
<= 4096 && !--ntfs_nr_compression_users
)
3020 free_compression_buffers();
3021 mutex_unlock(&ntfs_lock
);
3022 iput_tmp_ino_err_out_now
:
3024 if (vol
->mft_ino
&& vol
->mft_ino
!= tmp_ino
)
3026 vol
->mft_ino
= NULL
;
3027 /* Errors at this stage are irrelevant. */
3029 sb
->s_fs_info
= NULL
;
3031 ntfs_debug("Failed, returning -EINVAL.");
3037 * This is a slab cache to optimize allocations and deallocations of Unicode
3038 * strings of the maximum length allowed by NTFS, which is NTFS_MAX_NAME_LEN
3039 * (255) Unicode characters + a terminating NULL Unicode character.
3041 struct kmem_cache
*ntfs_name_cache
;
3043 /* Slab caches for efficient allocation/deallocation of inodes. */
3044 struct kmem_cache
*ntfs_inode_cache
;
3045 struct kmem_cache
*ntfs_big_inode_cache
;
3047 /* Init once constructor for the inode slab cache. */
3048 static void ntfs_big_inode_init_once(void *foo
)
3050 ntfs_inode
*ni
= (ntfs_inode
*)foo
;
3052 inode_init_once(VFS_I(ni
));
3056 * Slab caches to optimize allocations and deallocations of attribute search
3057 * contexts and index contexts, respectively.
3059 struct kmem_cache
*ntfs_attr_ctx_cache
;
3060 struct kmem_cache
*ntfs_index_ctx_cache
;
3062 /* Driver wide mutex. */
3063 DEFINE_MUTEX(ntfs_lock
);
3065 static struct dentry
*ntfs_mount(struct file_system_type
*fs_type
,
3066 int flags
, const char *dev_name
, void *data
)
3068 return mount_bdev(fs_type
, flags
, dev_name
, data
, ntfs_fill_super
);
3071 static struct file_system_type ntfs_fs_type
= {
3072 .owner
= THIS_MODULE
,
3074 .mount
= ntfs_mount
,
3075 .kill_sb
= kill_block_super
,
3076 .fs_flags
= FS_REQUIRES_DEV
,
3078 MODULE_ALIAS_FS("ntfs");
3080 /* Stable names for the slab caches. */
3081 static const char ntfs_index_ctx_cache_name
[] = "ntfs_index_ctx_cache";
3082 static const char ntfs_attr_ctx_cache_name
[] = "ntfs_attr_ctx_cache";
3083 static const char ntfs_name_cache_name
[] = "ntfs_name_cache";
3084 static const char ntfs_inode_cache_name
[] = "ntfs_inode_cache";
3085 static const char ntfs_big_inode_cache_name
[] = "ntfs_big_inode_cache";
3087 static int __init
init_ntfs_fs(void)
3091 /* This may be ugly but it results in pretty output so who cares. (-8 */
3092 pr_info("driver " NTFS_VERSION
" [Flags: R/"
3106 ntfs_debug("Debug messages are enabled.");
3108 ntfs_index_ctx_cache
= kmem_cache_create(ntfs_index_ctx_cache_name
,
3109 sizeof(ntfs_index_context
), 0 /* offset */,
3110 SLAB_HWCACHE_ALIGN
, NULL
/* ctor */);
3111 if (!ntfs_index_ctx_cache
) {
3112 pr_crit("Failed to create %s!\n", ntfs_index_ctx_cache_name
);
3115 ntfs_attr_ctx_cache
= kmem_cache_create(ntfs_attr_ctx_cache_name
,
3116 sizeof(ntfs_attr_search_ctx
), 0 /* offset */,
3117 SLAB_HWCACHE_ALIGN
, NULL
/* ctor */);
3118 if (!ntfs_attr_ctx_cache
) {
3119 pr_crit("NTFS: Failed to create %s!\n",
3120 ntfs_attr_ctx_cache_name
);
3124 ntfs_name_cache
= kmem_cache_create(ntfs_name_cache_name
,
3125 (NTFS_MAX_NAME_LEN
+1) * sizeof(ntfschar
), 0,
3126 SLAB_HWCACHE_ALIGN
, NULL
);
3127 if (!ntfs_name_cache
) {
3128 pr_crit("Failed to create %s!\n", ntfs_name_cache_name
);
3132 ntfs_inode_cache
= kmem_cache_create(ntfs_inode_cache_name
,
3133 sizeof(ntfs_inode
), 0,
3134 SLAB_RECLAIM_ACCOUNT
|SLAB_MEM_SPREAD
, NULL
);
3135 if (!ntfs_inode_cache
) {
3136 pr_crit("Failed to create %s!\n", ntfs_inode_cache_name
);
3140 ntfs_big_inode_cache
= kmem_cache_create(ntfs_big_inode_cache_name
,
3141 sizeof(big_ntfs_inode
), 0,
3142 SLAB_HWCACHE_ALIGN
|SLAB_RECLAIM_ACCOUNT
|SLAB_MEM_SPREAD
|
3143 SLAB_ACCOUNT
, ntfs_big_inode_init_once
);
3144 if (!ntfs_big_inode_cache
) {
3145 pr_crit("Failed to create %s!\n", ntfs_big_inode_cache_name
);
3146 goto big_inode_err_out
;
3149 /* Register the ntfs sysctls. */
3150 err
= ntfs_sysctl(1);
3152 pr_crit("Failed to register NTFS sysctls!\n");
3153 goto sysctl_err_out
;
3156 err
= register_filesystem(&ntfs_fs_type
);
3158 ntfs_debug("NTFS driver registered successfully.");
3159 return 0; /* Success! */
3161 pr_crit("Failed to register NTFS filesystem driver!\n");
3163 /* Unregister the ntfs sysctls. */
3166 kmem_cache_destroy(ntfs_big_inode_cache
);
3168 kmem_cache_destroy(ntfs_inode_cache
);
3170 kmem_cache_destroy(ntfs_name_cache
);
3172 kmem_cache_destroy(ntfs_attr_ctx_cache
);
3174 kmem_cache_destroy(ntfs_index_ctx_cache
);
3177 pr_crit("Aborting NTFS filesystem driver registration...\n");
3183 static void __exit
exit_ntfs_fs(void)
3185 ntfs_debug("Unregistering NTFS driver.");
3187 unregister_filesystem(&ntfs_fs_type
);
3190 * Make sure all delayed rcu free inodes are flushed before we
3194 kmem_cache_destroy(ntfs_big_inode_cache
);
3195 kmem_cache_destroy(ntfs_inode_cache
);
3196 kmem_cache_destroy(ntfs_name_cache
);
3197 kmem_cache_destroy(ntfs_attr_ctx_cache
);
3198 kmem_cache_destroy(ntfs_index_ctx_cache
);
3199 /* Unregister the ntfs sysctls. */
3203 MODULE_AUTHOR("Anton Altaparmakov <anton@tuxera.com>");
3204 MODULE_DESCRIPTION("NTFS 1.2/3.x driver - Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc.");
3205 MODULE_VERSION(NTFS_VERSION
);
3206 MODULE_LICENSE("GPL");
3208 module_param(debug_msgs
, bint
, 0);
3209 MODULE_PARM_DESC(debug_msgs
, "Enable debug messages.");
3212 module_init(init_ntfs_fs
)
3213 module_exit(exit_ntfs_fs
)