2 * Kernel Probes (KProbes)
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright (C) IBM Corporation, 2002, 2004
20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21 * Probes initial implementation ( includes contributions from
23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24 * interface to access function arguments.
25 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
26 * <prasanna@in.ibm.com> adapted for x86_64 from i386.
27 * 2005-Mar Roland McGrath <roland@redhat.com>
28 * Fixed to handle %rip-relative addressing mode correctly.
29 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
30 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
31 * <prasanna@in.ibm.com> added function-return probes.
32 * 2005-May Rusty Lynch <rusty.lynch@intel.com>
33 * Added function return probes functionality
34 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
35 * kprobe-booster and kretprobe-booster for i386.
36 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
37 * and kretprobe-booster for x86-64
38 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
39 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
40 * unified x86 kprobes code.
42 #include <linux/kprobes.h>
43 #include <linux/ptrace.h>
44 #include <linux/string.h>
45 #include <linux/slab.h>
46 #include <linux/hardirq.h>
47 #include <linux/preempt.h>
48 #include <linux/sched/debug.h>
49 #include <linux/extable.h>
50 #include <linux/kdebug.h>
51 #include <linux/kallsyms.h>
52 #include <linux/ftrace.h>
53 #include <linux/frame.h>
54 #include <linux/kasan.h>
56 #include <asm/text-patching.h>
57 #include <asm/cacheflush.h>
59 #include <asm/pgtable.h>
60 #include <linux/uaccess.h>
61 #include <asm/alternative.h>
63 #include <asm/debugreg.h>
67 void jprobe_return_end(void);
69 DEFINE_PER_CPU(struct kprobe
*, current_kprobe
) = NULL
;
70 DEFINE_PER_CPU(struct kprobe_ctlblk
, kprobe_ctlblk
);
72 #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
74 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
75 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
76 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
77 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
78 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
81 * Undefined/reserved opcodes, conditional jump, Opcode Extension
82 * Groups, and some special opcodes can not boost.
83 * This is non-const and volatile to keep gcc from statically
84 * optimizing it out, as variable_test_bit makes gcc think only
85 * *(unsigned long*) is used.
87 static volatile u32 twobyte_is_boostable
[256 / 32] = {
88 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
89 /* ---------------------------------------------- */
90 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
91 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
92 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
93 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
94 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
95 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
96 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
97 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
98 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
99 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
100 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
101 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
102 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
103 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
104 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
105 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */
106 /* ----------------------------------------------- */
107 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
111 struct kretprobe_blackpoint kretprobe_blacklist
[] = {
112 {"__switch_to", }, /* This function switches only current task, but
113 doesn't switch kernel stack.*/
114 {NULL
, NULL
} /* Terminator */
117 const int kretprobe_blacklist_size
= ARRAY_SIZE(kretprobe_blacklist
);
119 static nokprobe_inline
void
120 __synthesize_relative_insn(void *from
, void *to
, u8 op
)
122 struct __arch_relative_insn
{
127 insn
= (struct __arch_relative_insn
*)from
;
128 insn
->raddr
= (s32
)((long)(to
) - ((long)(from
) + 5));
132 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
133 void synthesize_reljump(void *from
, void *to
)
135 __synthesize_relative_insn(from
, to
, RELATIVEJUMP_OPCODE
);
137 NOKPROBE_SYMBOL(synthesize_reljump
);
139 /* Insert a call instruction at address 'from', which calls address 'to'.*/
140 void synthesize_relcall(void *from
, void *to
)
142 __synthesize_relative_insn(from
, to
, RELATIVECALL_OPCODE
);
144 NOKPROBE_SYMBOL(synthesize_relcall
);
147 * Skip the prefixes of the instruction.
149 static kprobe_opcode_t
*skip_prefixes(kprobe_opcode_t
*insn
)
153 attr
= inat_get_opcode_attribute((insn_byte_t
)*insn
);
154 while (inat_is_legacy_prefix(attr
)) {
156 attr
= inat_get_opcode_attribute((insn_byte_t
)*insn
);
159 if (inat_is_rex_prefix(attr
))
164 NOKPROBE_SYMBOL(skip_prefixes
);
167 * Returns non-zero if opcode is boostable.
168 * RIP relative instructions are adjusted at copying time in 64 bits mode
170 int can_boost(kprobe_opcode_t
*opcodes
, void *addr
)
173 kprobe_opcode_t opcode
;
175 if (search_exception_tables((unsigned long)addr
))
176 return 0; /* Page fault may occur on this address. */
178 kernel_insn_init(&insn
, (void *)opcodes
, MAX_INSN_SIZE
);
179 insn_get_opcode(&insn
);
181 /* 2nd-byte opcode */
182 if (insn
.opcode
.nbytes
== 2)
183 return test_bit(insn
.opcode
.bytes
[1],
184 (unsigned long *)twobyte_is_boostable
);
186 if (insn
.opcode
.nbytes
!= 1)
189 /* Can't boost Address-size override prefix */
190 if (unlikely(inat_is_address_size_prefix(insn
.attr
)))
193 opcode
= insn
.opcode
.bytes
[0];
195 switch (opcode
& 0xf0) {
197 /* can't boost "bound" */
198 return (opcode
!= 0x62);
200 return 0; /* can't boost conditional jump */
202 return opcode
!= 0x9a; /* can't boost call far */
204 /* can't boost software-interruptions */
205 return (0xc1 < opcode
&& opcode
< 0xcc) || opcode
== 0xcf;
207 /* can boost AA* and XLAT */
208 return (opcode
== 0xd4 || opcode
== 0xd5 || opcode
== 0xd7);
210 /* can boost in/out and absolute jmps */
211 return ((opcode
& 0x04) || opcode
== 0xea);
213 /* clear and set flags are boostable */
214 return (opcode
== 0xf5 || (0xf7 < opcode
&& opcode
< 0xfe));
216 /* CS override prefix and call are not boostable */
217 return (opcode
!= 0x2e && opcode
!= 0x9a);
222 __recover_probed_insn(kprobe_opcode_t
*buf
, unsigned long addr
)
227 kp
= get_kprobe((void *)addr
);
228 faddr
= ftrace_location(addr
);
230 * Addresses inside the ftrace location are refused by
231 * arch_check_ftrace_location(). Something went terribly wrong
232 * if such an address is checked here.
234 if (WARN_ON(faddr
&& faddr
!= addr
))
237 * Use the current code if it is not modified by Kprobe
238 * and it cannot be modified by ftrace.
244 * Basically, kp->ainsn.insn has an original instruction.
245 * However, RIP-relative instruction can not do single-stepping
246 * at different place, __copy_instruction() tweaks the displacement of
247 * that instruction. In that case, we can't recover the instruction
248 * from the kp->ainsn.insn.
250 * On the other hand, in case on normal Kprobe, kp->opcode has a copy
251 * of the first byte of the probed instruction, which is overwritten
252 * by int3. And the instruction at kp->addr is not modified by kprobes
253 * except for the first byte, we can recover the original instruction
254 * from it and kp->opcode.
256 * In case of Kprobes using ftrace, we do not have a copy of
257 * the original instruction. In fact, the ftrace location might
258 * be modified at anytime and even could be in an inconsistent state.
259 * Fortunately, we know that the original code is the ideal 5-byte
262 if (probe_kernel_read(buf
, (void *)addr
,
263 MAX_INSN_SIZE
* sizeof(kprobe_opcode_t
)))
267 memcpy(buf
, ideal_nops
[NOP_ATOMIC5
], 5);
270 return (unsigned long)buf
;
274 * Recover the probed instruction at addr for further analysis.
275 * Caller must lock kprobes by kprobe_mutex, or disable preemption
276 * for preventing to release referencing kprobes.
277 * Returns zero if the instruction can not get recovered (or access failed).
279 unsigned long recover_probed_instruction(kprobe_opcode_t
*buf
, unsigned long addr
)
281 unsigned long __addr
;
283 __addr
= __recover_optprobed_insn(buf
, addr
);
287 return __recover_probed_insn(buf
, addr
);
290 /* Check if paddr is at an instruction boundary */
291 static int can_probe(unsigned long paddr
)
293 unsigned long addr
, __addr
, offset
= 0;
295 kprobe_opcode_t buf
[MAX_INSN_SIZE
];
297 if (!kallsyms_lookup_size_offset(paddr
, NULL
, &offset
))
300 /* Decode instructions */
301 addr
= paddr
- offset
;
302 while (addr
< paddr
) {
304 * Check if the instruction has been modified by another
305 * kprobe, in which case we replace the breakpoint by the
306 * original instruction in our buffer.
307 * Also, jump optimization will change the breakpoint to
308 * relative-jump. Since the relative-jump itself is
309 * normally used, we just go through if there is no kprobe.
311 __addr
= recover_probed_instruction(buf
, addr
);
314 kernel_insn_init(&insn
, (void *)__addr
, MAX_INSN_SIZE
);
315 insn_get_length(&insn
);
318 * Another debugging subsystem might insert this breakpoint.
319 * In that case, we can't recover it.
321 if (insn
.opcode
.bytes
[0] == BREAKPOINT_INSTRUCTION
)
326 return (addr
== paddr
);
330 * Returns non-zero if opcode modifies the interrupt flag.
332 static int is_IF_modifier(kprobe_opcode_t
*insn
)
335 insn
= skip_prefixes(insn
);
340 case 0xcf: /* iret/iretd */
341 case 0x9d: /* popf/popfd */
349 * Copy an instruction with recovering modified instruction by kprobes
350 * and adjust the displacement if the instruction uses the %rip-relative
352 * This returns the length of copied instruction, or 0 if it has an error.
354 int __copy_instruction(u8
*dest
, u8
*src
)
357 kprobe_opcode_t buf
[MAX_INSN_SIZE
];
359 unsigned long recovered_insn
=
360 recover_probed_instruction(buf
, (unsigned long)src
);
364 kernel_insn_init(&insn
, (void *)recovered_insn
, MAX_INSN_SIZE
);
365 insn_get_length(&insn
);
366 length
= insn
.length
;
368 /* Another subsystem puts a breakpoint, failed to recover */
369 if (insn
.opcode
.bytes
[0] == BREAKPOINT_INSTRUCTION
)
372 /* This can access kernel text if given address is not recovered */
373 if (kernel_probe_read(dest
, insn
.kaddr
, length
))
377 /* Only x86_64 has RIP relative instructions */
378 if (insn_rip_relative(&insn
)) {
381 kernel_insn_init(&insn
, dest
, length
);
382 insn_get_displacement(&insn
);
384 * The copied instruction uses the %rip-relative addressing
385 * mode. Adjust the displacement for the difference between
386 * the original location of this instruction and the location
387 * of the copy that will actually be run. The tricky bit here
388 * is making sure that the sign extension happens correctly in
389 * this calculation, since we need a signed 32-bit result to
390 * be sign-extended to 64 bits when it's added to the %rip
391 * value and yield the same 64-bit result that the sign-
392 * extension of the original signed 32-bit displacement would
395 newdisp
= (u8
*) src
+ (s64
) insn
.displacement
.value
- (u8
*) dest
;
396 if ((s64
) (s32
) newdisp
!= newdisp
) {
397 pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp
);
398 pr_err("\tSrc: %p, Dest: %p, old disp: %x\n", src
, dest
, insn
.displacement
.value
);
401 disp
= (u8
*) dest
+ insn_offset_displacement(&insn
);
402 *(s32
*) disp
= (s32
) newdisp
;
408 /* Prepare reljump right after instruction to boost */
409 static void prepare_boost(struct kprobe
*p
, int length
)
411 if (can_boost(p
->ainsn
.insn
, p
->addr
) &&
412 MAX_INSN_SIZE
- length
>= RELATIVEJUMP_SIZE
) {
414 * These instructions can be executed directly if it
415 * jumps back to correct address.
417 synthesize_reljump(p
->ainsn
.insn
+ length
, p
->addr
+ length
);
418 p
->ainsn
.boostable
= true;
420 p
->ainsn
.boostable
= false;
424 static int arch_copy_kprobe(struct kprobe
*p
)
428 set_memory_rw((unsigned long)p
->ainsn
.insn
& PAGE_MASK
, 1);
430 /* Copy an instruction with recovering if other optprobe modifies it.*/
431 len
= __copy_instruction(p
->ainsn
.insn
, p
->addr
);
436 * __copy_instruction can modify the displacement of the instruction,
437 * but it doesn't affect boostable check.
439 prepare_boost(p
, len
);
441 set_memory_ro((unsigned long)p
->ainsn
.insn
& PAGE_MASK
, 1);
443 /* Check whether the instruction modifies Interrupt Flag or not */
444 p
->ainsn
.if_modifier
= is_IF_modifier(p
->ainsn
.insn
);
446 /* Also, displacement change doesn't affect the first byte */
447 p
->opcode
= p
->ainsn
.insn
[0];
452 int arch_prepare_kprobe(struct kprobe
*p
)
454 if (alternatives_text_reserved(p
->addr
, p
->addr
))
457 if (!can_probe((unsigned long)p
->addr
))
459 /* insn: must be on special executable page on x86. */
460 p
->ainsn
.insn
= get_insn_slot();
464 return arch_copy_kprobe(p
);
467 void arch_arm_kprobe(struct kprobe
*p
)
469 text_poke(p
->addr
, ((unsigned char []){BREAKPOINT_INSTRUCTION
}), 1);
472 void arch_disarm_kprobe(struct kprobe
*p
)
474 text_poke(p
->addr
, &p
->opcode
, 1);
477 void arch_remove_kprobe(struct kprobe
*p
)
480 free_insn_slot(p
->ainsn
.insn
, p
->ainsn
.boostable
);
481 p
->ainsn
.insn
= NULL
;
485 static nokprobe_inline
void
486 save_previous_kprobe(struct kprobe_ctlblk
*kcb
)
488 kcb
->prev_kprobe
.kp
= kprobe_running();
489 kcb
->prev_kprobe
.status
= kcb
->kprobe_status
;
490 kcb
->prev_kprobe
.old_flags
= kcb
->kprobe_old_flags
;
491 kcb
->prev_kprobe
.saved_flags
= kcb
->kprobe_saved_flags
;
494 static nokprobe_inline
void
495 restore_previous_kprobe(struct kprobe_ctlblk
*kcb
)
497 __this_cpu_write(current_kprobe
, kcb
->prev_kprobe
.kp
);
498 kcb
->kprobe_status
= kcb
->prev_kprobe
.status
;
499 kcb
->kprobe_old_flags
= kcb
->prev_kprobe
.old_flags
;
500 kcb
->kprobe_saved_flags
= kcb
->prev_kprobe
.saved_flags
;
503 static nokprobe_inline
void
504 set_current_kprobe(struct kprobe
*p
, struct pt_regs
*regs
,
505 struct kprobe_ctlblk
*kcb
)
507 __this_cpu_write(current_kprobe
, p
);
508 kcb
->kprobe_saved_flags
= kcb
->kprobe_old_flags
509 = (regs
->flags
& (X86_EFLAGS_TF
| X86_EFLAGS_IF
));
510 if (p
->ainsn
.if_modifier
)
511 kcb
->kprobe_saved_flags
&= ~X86_EFLAGS_IF
;
514 static nokprobe_inline
void clear_btf(void)
516 if (test_thread_flag(TIF_BLOCKSTEP
)) {
517 unsigned long debugctl
= get_debugctlmsr();
519 debugctl
&= ~DEBUGCTLMSR_BTF
;
520 update_debugctlmsr(debugctl
);
524 static nokprobe_inline
void restore_btf(void)
526 if (test_thread_flag(TIF_BLOCKSTEP
)) {
527 unsigned long debugctl
= get_debugctlmsr();
529 debugctl
|= DEBUGCTLMSR_BTF
;
530 update_debugctlmsr(debugctl
);
534 void arch_prepare_kretprobe(struct kretprobe_instance
*ri
, struct pt_regs
*regs
)
536 unsigned long *sara
= stack_addr(regs
);
538 ri
->ret_addr
= (kprobe_opcode_t
*) *sara
;
540 /* Replace the return addr with trampoline addr */
541 *sara
= (unsigned long) &kretprobe_trampoline
;
543 NOKPROBE_SYMBOL(arch_prepare_kretprobe
);
545 static void setup_singlestep(struct kprobe
*p
, struct pt_regs
*regs
,
546 struct kprobe_ctlblk
*kcb
, int reenter
)
548 if (setup_detour_execution(p
, regs
, reenter
))
551 #if !defined(CONFIG_PREEMPT)
552 if (p
->ainsn
.boostable
&& !p
->post_handler
) {
553 /* Boost up -- we can execute copied instructions directly */
555 reset_current_kprobe();
557 * Reentering boosted probe doesn't reset current_kprobe,
558 * nor set current_kprobe, because it doesn't use single
561 regs
->ip
= (unsigned long)p
->ainsn
.insn
;
562 preempt_enable_no_resched();
567 save_previous_kprobe(kcb
);
568 set_current_kprobe(p
, regs
, kcb
);
569 kcb
->kprobe_status
= KPROBE_REENTER
;
571 kcb
->kprobe_status
= KPROBE_HIT_SS
;
572 /* Prepare real single stepping */
574 regs
->flags
|= X86_EFLAGS_TF
;
575 regs
->flags
&= ~X86_EFLAGS_IF
;
576 /* single step inline if the instruction is an int3 */
577 if (p
->opcode
== BREAKPOINT_INSTRUCTION
)
578 regs
->ip
= (unsigned long)p
->addr
;
580 regs
->ip
= (unsigned long)p
->ainsn
.insn
;
582 NOKPROBE_SYMBOL(setup_singlestep
);
585 * We have reentered the kprobe_handler(), since another probe was hit while
586 * within the handler. We save the original kprobes variables and just single
587 * step on the instruction of the new probe without calling any user handlers.
589 static int reenter_kprobe(struct kprobe
*p
, struct pt_regs
*regs
,
590 struct kprobe_ctlblk
*kcb
)
592 switch (kcb
->kprobe_status
) {
593 case KPROBE_HIT_SSDONE
:
594 case KPROBE_HIT_ACTIVE
:
596 kprobes_inc_nmissed_count(p
);
597 setup_singlestep(p
, regs
, kcb
, 1);
600 /* A probe has been hit in the codepath leading up to, or just
601 * after, single-stepping of a probed instruction. This entire
602 * codepath should strictly reside in .kprobes.text section.
603 * Raise a BUG or we'll continue in an endless reentering loop
604 * and eventually a stack overflow.
606 printk(KERN_WARNING
"Unrecoverable kprobe detected at %p.\n",
611 /* impossible cases */
618 NOKPROBE_SYMBOL(reenter_kprobe
);
621 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
622 * remain disabled throughout this function.
624 int kprobe_int3_handler(struct pt_regs
*regs
)
626 kprobe_opcode_t
*addr
;
628 struct kprobe_ctlblk
*kcb
;
633 addr
= (kprobe_opcode_t
*)(regs
->ip
- sizeof(kprobe_opcode_t
));
635 * We don't want to be preempted for the entire
636 * duration of kprobe processing. We conditionally
637 * re-enable preemption at the end of this function,
638 * and also in reenter_kprobe() and setup_singlestep().
642 kcb
= get_kprobe_ctlblk();
643 p
= get_kprobe(addr
);
646 if (kprobe_running()) {
647 if (reenter_kprobe(p
, regs
, kcb
))
650 set_current_kprobe(p
, regs
, kcb
);
651 kcb
->kprobe_status
= KPROBE_HIT_ACTIVE
;
654 * If we have no pre-handler or it returned 0, we
655 * continue with normal processing. If we have a
656 * pre-handler and it returned non-zero, it prepped
657 * for calling the break_handler below on re-entry
658 * for jprobe processing, so get out doing nothing
661 if (!p
->pre_handler
|| !p
->pre_handler(p
, regs
))
662 setup_singlestep(p
, regs
, kcb
, 0);
665 } else if (*addr
!= BREAKPOINT_INSTRUCTION
) {
667 * The breakpoint instruction was removed right
668 * after we hit it. Another cpu has removed
669 * either a probepoint or a debugger breakpoint
670 * at this address. In either case, no further
671 * handling of this interrupt is appropriate.
672 * Back up over the (now missing) int3 and run
673 * the original instruction.
675 regs
->ip
= (unsigned long)addr
;
676 preempt_enable_no_resched();
678 } else if (kprobe_running()) {
679 p
= __this_cpu_read(current_kprobe
);
680 if (p
->break_handler
&& p
->break_handler(p
, regs
)) {
681 if (!skip_singlestep(p
, regs
, kcb
))
682 setup_singlestep(p
, regs
, kcb
, 0);
685 } /* else: not a kprobe fault; let the kernel handle it */
687 preempt_enable_no_resched();
690 NOKPROBE_SYMBOL(kprobe_int3_handler
);
693 * When a retprobed function returns, this code saves registers and
694 * calls trampoline_handler() runs, which calls the kretprobe's handler.
697 ".global kretprobe_trampoline\n"
698 ".type kretprobe_trampoline, @function\n"
699 "kretprobe_trampoline:\n"
701 /* We don't bother saving the ss register */
706 " call trampoline_handler\n"
707 /* Replace saved sp with true return address. */
708 " movq %rax, 152(%rsp)\n"
715 " call trampoline_handler\n"
716 /* Move flags to cs */
717 " movl 56(%esp), %edx\n"
718 " movl %edx, 52(%esp)\n"
719 /* Replace saved flags with true return address. */
720 " movl %eax, 56(%esp)\n"
725 ".size kretprobe_trampoline, .-kretprobe_trampoline\n"
727 NOKPROBE_SYMBOL(kretprobe_trampoline
);
728 STACK_FRAME_NON_STANDARD(kretprobe_trampoline
);
731 * Called from kretprobe_trampoline
733 __visible __used
void *trampoline_handler(struct pt_regs
*regs
)
735 struct kretprobe_instance
*ri
= NULL
;
736 struct hlist_head
*head
, empty_rp
;
737 struct hlist_node
*tmp
;
738 unsigned long flags
, orig_ret_address
= 0;
739 unsigned long trampoline_address
= (unsigned long)&kretprobe_trampoline
;
740 kprobe_opcode_t
*correct_ret_addr
= NULL
;
742 INIT_HLIST_HEAD(&empty_rp
);
743 kretprobe_hash_lock(current
, &head
, &flags
);
744 /* fixup registers */
746 regs
->cs
= __KERNEL_CS
;
748 regs
->cs
= __KERNEL_CS
| get_kernel_rpl();
751 regs
->ip
= trampoline_address
;
752 regs
->orig_ax
= ~0UL;
755 * It is possible to have multiple instances associated with a given
756 * task either because multiple functions in the call path have
757 * return probes installed on them, and/or more than one
758 * return probe was registered for a target function.
760 * We can handle this because:
761 * - instances are always pushed into the head of the list
762 * - when multiple return probes are registered for the same
763 * function, the (chronologically) first instance's ret_addr
764 * will be the real return address, and all the rest will
765 * point to kretprobe_trampoline.
767 hlist_for_each_entry(ri
, head
, hlist
) {
768 if (ri
->task
!= current
)
769 /* another task is sharing our hash bucket */
772 orig_ret_address
= (unsigned long)ri
->ret_addr
;
774 if (orig_ret_address
!= trampoline_address
)
776 * This is the real return address. Any other
777 * instances associated with this task are for
778 * other calls deeper on the call stack
783 kretprobe_assert(ri
, orig_ret_address
, trampoline_address
);
785 correct_ret_addr
= ri
->ret_addr
;
786 hlist_for_each_entry_safe(ri
, tmp
, head
, hlist
) {
787 if (ri
->task
!= current
)
788 /* another task is sharing our hash bucket */
791 orig_ret_address
= (unsigned long)ri
->ret_addr
;
792 if (ri
->rp
&& ri
->rp
->handler
) {
793 __this_cpu_write(current_kprobe
, &ri
->rp
->kp
);
794 get_kprobe_ctlblk()->kprobe_status
= KPROBE_HIT_ACTIVE
;
795 ri
->ret_addr
= correct_ret_addr
;
796 ri
->rp
->handler(ri
, regs
);
797 __this_cpu_write(current_kprobe
, NULL
);
800 recycle_rp_inst(ri
, &empty_rp
);
802 if (orig_ret_address
!= trampoline_address
)
804 * This is the real return address. Any other
805 * instances associated with this task are for
806 * other calls deeper on the call stack
811 kretprobe_hash_unlock(current
, &flags
);
813 hlist_for_each_entry_safe(ri
, tmp
, &empty_rp
, hlist
) {
814 hlist_del(&ri
->hlist
);
817 return (void *)orig_ret_address
;
819 NOKPROBE_SYMBOL(trampoline_handler
);
822 * Called after single-stepping. p->addr is the address of the
823 * instruction whose first byte has been replaced by the "int 3"
824 * instruction. To avoid the SMP problems that can occur when we
825 * temporarily put back the original opcode to single-step, we
826 * single-stepped a copy of the instruction. The address of this
827 * copy is p->ainsn.insn.
829 * This function prepares to return from the post-single-step
830 * interrupt. We have to fix up the stack as follows:
832 * 0) Except in the case of absolute or indirect jump or call instructions,
833 * the new ip is relative to the copied instruction. We need to make
834 * it relative to the original instruction.
836 * 1) If the single-stepped instruction was pushfl, then the TF and IF
837 * flags are set in the just-pushed flags, and may need to be cleared.
839 * 2) If the single-stepped instruction was a call, the return address
840 * that is atop the stack is the address following the copied instruction.
841 * We need to make it the address following the original instruction.
843 * If this is the first time we've single-stepped the instruction at
844 * this probepoint, and the instruction is boostable, boost it: add a
845 * jump instruction after the copied instruction, that jumps to the next
846 * instruction after the probepoint.
848 static void resume_execution(struct kprobe
*p
, struct pt_regs
*regs
,
849 struct kprobe_ctlblk
*kcb
)
851 unsigned long *tos
= stack_addr(regs
);
852 unsigned long copy_ip
= (unsigned long)p
->ainsn
.insn
;
853 unsigned long orig_ip
= (unsigned long)p
->addr
;
854 kprobe_opcode_t
*insn
= p
->ainsn
.insn
;
857 insn
= skip_prefixes(insn
);
859 regs
->flags
&= ~X86_EFLAGS_TF
;
861 case 0x9c: /* pushfl */
862 *tos
&= ~(X86_EFLAGS_TF
| X86_EFLAGS_IF
);
863 *tos
|= kcb
->kprobe_old_flags
;
865 case 0xc2: /* iret/ret/lret */
870 case 0xea: /* jmp absolute -- ip is correct */
871 /* ip is already adjusted, no more changes required */
872 p
->ainsn
.boostable
= true;
874 case 0xe8: /* call relative - Fix return addr */
875 *tos
= orig_ip
+ (*tos
- copy_ip
);
878 case 0x9a: /* call absolute -- same as call absolute, indirect */
879 *tos
= orig_ip
+ (*tos
- copy_ip
);
883 if ((insn
[1] & 0x30) == 0x10) {
885 * call absolute, indirect
886 * Fix return addr; ip is correct.
887 * But this is not boostable
889 *tos
= orig_ip
+ (*tos
- copy_ip
);
891 } else if (((insn
[1] & 0x31) == 0x20) ||
892 ((insn
[1] & 0x31) == 0x21)) {
894 * jmp near and far, absolute indirect
895 * ip is correct. And this is boostable
897 p
->ainsn
.boostable
= true;
904 regs
->ip
+= orig_ip
- copy_ip
;
909 NOKPROBE_SYMBOL(resume_execution
);
912 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
913 * remain disabled throughout this function.
915 int kprobe_debug_handler(struct pt_regs
*regs
)
917 struct kprobe
*cur
= kprobe_running();
918 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
923 resume_execution(cur
, regs
, kcb
);
924 regs
->flags
|= kcb
->kprobe_saved_flags
;
926 if ((kcb
->kprobe_status
!= KPROBE_REENTER
) && cur
->post_handler
) {
927 kcb
->kprobe_status
= KPROBE_HIT_SSDONE
;
928 cur
->post_handler(cur
, regs
, 0);
931 /* Restore back the original saved kprobes variables and continue. */
932 if (kcb
->kprobe_status
== KPROBE_REENTER
) {
933 restore_previous_kprobe(kcb
);
936 reset_current_kprobe();
938 preempt_enable_no_resched();
941 * if somebody else is singlestepping across a probe point, flags
942 * will have TF set, in which case, continue the remaining processing
943 * of do_debug, as if this is not a probe hit.
945 if (regs
->flags
& X86_EFLAGS_TF
)
950 NOKPROBE_SYMBOL(kprobe_debug_handler
);
952 int kprobe_fault_handler(struct pt_regs
*regs
, int trapnr
)
954 struct kprobe
*cur
= kprobe_running();
955 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
957 if (unlikely(regs
->ip
== (unsigned long)cur
->ainsn
.insn
)) {
958 /* This must happen on single-stepping */
959 WARN_ON(kcb
->kprobe_status
!= KPROBE_HIT_SS
&&
960 kcb
->kprobe_status
!= KPROBE_REENTER
);
962 * We are here because the instruction being single
963 * stepped caused a page fault. We reset the current
964 * kprobe and the ip points back to the probe address
965 * and allow the page fault handler to continue as a
968 regs
->ip
= (unsigned long)cur
->addr
;
970 * Trap flag (TF) has been set here because this fault
971 * happened where the single stepping will be done.
972 * So clear it by resetting the current kprobe:
974 regs
->flags
&= ~X86_EFLAGS_TF
;
977 * If the TF flag was set before the kprobe hit,
980 regs
->flags
|= kcb
->kprobe_old_flags
;
982 if (kcb
->kprobe_status
== KPROBE_REENTER
)
983 restore_previous_kprobe(kcb
);
985 reset_current_kprobe();
986 preempt_enable_no_resched();
987 } else if (kcb
->kprobe_status
== KPROBE_HIT_ACTIVE
||
988 kcb
->kprobe_status
== KPROBE_HIT_SSDONE
) {
990 * We increment the nmissed count for accounting,
991 * we can also use npre/npostfault count for accounting
992 * these specific fault cases.
994 kprobes_inc_nmissed_count(cur
);
997 * We come here because instructions in the pre/post
998 * handler caused the page_fault, this could happen
999 * if handler tries to access user space by
1000 * copy_from_user(), get_user() etc. Let the
1001 * user-specified handler try to fix it first.
1003 if (cur
->fault_handler
&& cur
->fault_handler(cur
, regs
, trapnr
))
1007 * In case the user-specified fault handler returned
1008 * zero, try to fix up.
1010 if (fixup_exception(regs
, trapnr
))
1014 * fixup routine could not handle it,
1015 * Let do_page_fault() fix it.
1021 NOKPROBE_SYMBOL(kprobe_fault_handler
);
1024 * Wrapper routine for handling exceptions.
1026 int kprobe_exceptions_notify(struct notifier_block
*self
, unsigned long val
,
1029 struct die_args
*args
= data
;
1030 int ret
= NOTIFY_DONE
;
1032 if (args
->regs
&& user_mode(args
->regs
))
1035 if (val
== DIE_GPF
) {
1037 * To be potentially processing a kprobe fault and to
1038 * trust the result from kprobe_running(), we have
1039 * be non-preemptible.
1041 if (!preemptible() && kprobe_running() &&
1042 kprobe_fault_handler(args
->regs
, args
->trapnr
))
1047 NOKPROBE_SYMBOL(kprobe_exceptions_notify
);
1049 int setjmp_pre_handler(struct kprobe
*p
, struct pt_regs
*regs
)
1051 struct jprobe
*jp
= container_of(p
, struct jprobe
, kp
);
1053 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
1055 kcb
->jprobe_saved_regs
= *regs
;
1056 kcb
->jprobe_saved_sp
= stack_addr(regs
);
1057 addr
= (unsigned long)(kcb
->jprobe_saved_sp
);
1060 * As Linus pointed out, gcc assumes that the callee
1061 * owns the argument space and could overwrite it, e.g.
1062 * tailcall optimization. So, to be absolutely safe
1063 * we also save and restore enough stack bytes to cover
1064 * the argument area.
1065 * Use __memcpy() to avoid KASAN stack out-of-bounds reports as we copy
1066 * raw stack chunk with redzones:
1068 __memcpy(kcb
->jprobes_stack
, (kprobe_opcode_t
*)addr
, MIN_STACK_SIZE(addr
));
1069 regs
->flags
&= ~X86_EFLAGS_IF
;
1070 trace_hardirqs_off();
1071 regs
->ip
= (unsigned long)(jp
->entry
);
1074 * jprobes use jprobe_return() which skips the normal return
1075 * path of the function, and this messes up the accounting of the
1076 * function graph tracer to get messed up.
1078 * Pause function graph tracing while performing the jprobe function.
1080 pause_graph_tracing();
1083 NOKPROBE_SYMBOL(setjmp_pre_handler
);
1085 void jprobe_return(void)
1087 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
1089 /* Unpoison stack redzones in the frames we are going to jump over. */
1090 kasan_unpoison_stack_above_sp_to(kcb
->jprobe_saved_sp
);
1093 #ifdef CONFIG_X86_64
1094 " xchg %%rbx,%%rsp \n"
1096 " xchgl %%ebx,%%esp \n"
1099 " .globl jprobe_return_end\n"
1100 " jprobe_return_end: \n"
1102 (kcb
->jprobe_saved_sp
):"memory");
1104 NOKPROBE_SYMBOL(jprobe_return
);
1105 NOKPROBE_SYMBOL(jprobe_return_end
);
1107 int longjmp_break_handler(struct kprobe
*p
, struct pt_regs
*regs
)
1109 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
1110 u8
*addr
= (u8
*) (regs
->ip
- 1);
1111 struct jprobe
*jp
= container_of(p
, struct jprobe
, kp
);
1112 void *saved_sp
= kcb
->jprobe_saved_sp
;
1114 if ((addr
> (u8
*) jprobe_return
) &&
1115 (addr
< (u8
*) jprobe_return_end
)) {
1116 if (stack_addr(regs
) != saved_sp
) {
1117 struct pt_regs
*saved_regs
= &kcb
->jprobe_saved_regs
;
1119 "current sp %p does not match saved sp %p\n",
1120 stack_addr(regs
), saved_sp
);
1121 printk(KERN_ERR
"Saved registers for jprobe %p\n", jp
);
1122 show_regs(saved_regs
);
1123 printk(KERN_ERR
"Current registers\n");
1127 /* It's OK to start function graph tracing again */
1128 unpause_graph_tracing();
1129 *regs
= kcb
->jprobe_saved_regs
;
1130 __memcpy(saved_sp
, kcb
->jprobes_stack
, MIN_STACK_SIZE(saved_sp
));
1131 preempt_enable_no_resched();
1136 NOKPROBE_SYMBOL(longjmp_break_handler
);
1138 bool arch_within_kprobe_blacklist(unsigned long addr
)
1140 return (addr
>= (unsigned long)__kprobes_text_start
&&
1141 addr
< (unsigned long)__kprobes_text_end
) ||
1142 (addr
>= (unsigned long)__entry_text_start
&&
1143 addr
< (unsigned long)__entry_text_end
);
1146 int __init
arch_init_kprobes(void)
1151 int arch_trampoline_kprobe(struct kprobe
*p
)