1 #include <linux/slab.h>
2 #include <linux/file.h>
3 #include <linux/fdtable.h>
5 #include <linux/stat.h>
6 #include <linux/fcntl.h>
7 #include <linux/swap.h>
8 #include <linux/string.h>
9 #include <linux/init.h>
10 #include <linux/pagemap.h>
11 #include <linux/perf_event.h>
12 #include <linux/highmem.h>
13 #include <linux/spinlock.h>
14 #include <linux/key.h>
15 #include <linux/personality.h>
16 #include <linux/binfmts.h>
17 #include <linux/coredump.h>
18 #include <linux/utsname.h>
19 #include <linux/pid_namespace.h>
20 #include <linux/module.h>
21 #include <linux/namei.h>
22 #include <linux/mount.h>
23 #include <linux/security.h>
24 #include <linux/syscalls.h>
25 #include <linux/tsacct_kern.h>
26 #include <linux/cn_proc.h>
27 #include <linux/audit.h>
28 #include <linux/tracehook.h>
29 #include <linux/kmod.h>
30 #include <linux/fsnotify.h>
31 #include <linux/fs_struct.h>
32 #include <linux/pipe_fs_i.h>
33 #include <linux/oom.h>
34 #include <linux/compat.h>
35 #include <linux/timekeeping.h>
37 #include <asm/uaccess.h>
38 #include <asm/mmu_context.h>
42 #include <trace/events/task.h>
45 #include <trace/events/sched.h>
48 unsigned int core_pipe_limit
;
49 char core_pattern
[CORENAME_MAX_SIZE
] = "core";
50 static int core_name_size
= CORENAME_MAX_SIZE
;
57 /* The maximal length of core_pattern is also specified in sysctl.c */
59 static int expand_corename(struct core_name
*cn
, int size
)
61 char *corename
= krealloc(cn
->corename
, size
, GFP_KERNEL
);
66 if (size
> core_name_size
) /* racy but harmless */
67 core_name_size
= size
;
69 cn
->size
= ksize(corename
);
70 cn
->corename
= corename
;
74 static __printf(2, 0) int cn_vprintf(struct core_name
*cn
, const char *fmt
,
81 free
= cn
->size
- cn
->used
;
83 va_copy(arg_copy
, arg
);
84 need
= vsnprintf(cn
->corename
+ cn
->used
, free
, fmt
, arg_copy
);
92 if (!expand_corename(cn
, cn
->size
+ need
- free
+ 1))
98 static __printf(2, 3) int cn_printf(struct core_name
*cn
, const char *fmt
, ...)
104 ret
= cn_vprintf(cn
, fmt
, arg
);
110 static __printf(2, 3)
111 int cn_esc_printf(struct core_name
*cn
, const char *fmt
, ...)
118 ret
= cn_vprintf(cn
, fmt
, arg
);
123 * Ensure that this coredump name component can't cause the
124 * resulting corefile path to consist of a ".." or ".".
126 if ((cn
->used
- cur
== 1 && cn
->corename
[cur
] == '.') ||
127 (cn
->used
- cur
== 2 && cn
->corename
[cur
] == '.'
128 && cn
->corename
[cur
+1] == '.'))
129 cn
->corename
[cur
] = '!';
132 * Empty names are fishy and could be used to create a "//" in a
133 * corefile name, causing the coredump to happen one directory
134 * level too high. Enforce that all components of the core
135 * pattern are at least one character long.
138 ret
= cn_printf(cn
, "!");
141 for (; cur
< cn
->used
; ++cur
) {
142 if (cn
->corename
[cur
] == '/')
143 cn
->corename
[cur
] = '!';
148 static int cn_print_exe_file(struct core_name
*cn
)
150 struct file
*exe_file
;
151 char *pathbuf
, *path
;
154 exe_file
= get_mm_exe_file(current
->mm
);
156 return cn_esc_printf(cn
, "%s (path unknown)", current
->comm
);
158 pathbuf
= kmalloc(PATH_MAX
, GFP_TEMPORARY
);
164 path
= file_path(exe_file
, pathbuf
, PATH_MAX
);
170 ret
= cn_esc_printf(cn
, "%s", path
);
179 /* format_corename will inspect the pattern parameter, and output a
180 * name into corename, which must have space for at least
181 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
183 static int format_corename(struct core_name
*cn
, struct coredump_params
*cprm
)
185 const struct cred
*cred
= current_cred();
186 const char *pat_ptr
= core_pattern
;
187 int ispipe
= (*pat_ptr
== '|');
188 int pid_in_pattern
= 0;
193 if (expand_corename(cn
, core_name_size
))
195 cn
->corename
[0] = '\0';
200 /* Repeat as long as we have more pattern to process and more output
203 if (*pat_ptr
!= '%') {
204 err
= cn_printf(cn
, "%c", *pat_ptr
++);
206 switch (*++pat_ptr
) {
207 /* single % at the end, drop that */
210 /* Double percent, output one percent */
212 err
= cn_printf(cn
, "%c", '%');
217 err
= cn_printf(cn
, "%d",
218 task_tgid_vnr(current
));
222 err
= cn_printf(cn
, "%d",
223 task_tgid_nr(current
));
226 err
= cn_printf(cn
, "%d",
227 task_pid_vnr(current
));
230 err
= cn_printf(cn
, "%d",
231 task_pid_nr(current
));
235 err
= cn_printf(cn
, "%u",
236 from_kuid(&init_user_ns
,
241 err
= cn_printf(cn
, "%u",
242 from_kgid(&init_user_ns
,
246 err
= cn_printf(cn
, "%d",
247 __get_dumpable(cprm
->mm_flags
));
249 /* signal that caused the coredump */
251 err
= cn_printf(cn
, "%d",
252 cprm
->siginfo
->si_signo
);
254 /* UNIX time of coredump */
258 time
= ktime_get_real_seconds();
259 err
= cn_printf(cn
, "%lld", time
);
265 err
= cn_esc_printf(cn
, "%s",
266 utsname()->nodename
);
271 err
= cn_esc_printf(cn
, "%s", current
->comm
);
274 err
= cn_print_exe_file(cn
);
276 /* core limit size */
278 err
= cn_printf(cn
, "%lu",
279 rlimit(RLIMIT_CORE
));
292 /* Backward compatibility with core_uses_pid:
294 * If core_pattern does not include a %p (as is the default)
295 * and core_uses_pid is set, then .%pid will be appended to
296 * the filename. Do not do this for piped commands. */
297 if (!ispipe
&& !pid_in_pattern
&& core_uses_pid
) {
298 err
= cn_printf(cn
, ".%d", task_tgid_vnr(current
));
305 static int zap_process(struct task_struct
*start
, int exit_code
, int flags
)
307 struct task_struct
*t
;
310 /* ignore all signals except SIGKILL, see prepare_signal() */
311 start
->signal
->flags
= SIGNAL_GROUP_COREDUMP
| flags
;
312 start
->signal
->group_exit_code
= exit_code
;
313 start
->signal
->group_stop_count
= 0;
315 for_each_thread(start
, t
) {
316 task_clear_jobctl_pending(t
, JOBCTL_PENDING_MASK
);
317 if (t
!= current
&& t
->mm
) {
318 sigaddset(&t
->pending
.signal
, SIGKILL
);
319 signal_wake_up(t
, 1);
327 static int zap_threads(struct task_struct
*tsk
, struct mm_struct
*mm
,
328 struct core_state
*core_state
, int exit_code
)
330 struct task_struct
*g
, *p
;
334 spin_lock_irq(&tsk
->sighand
->siglock
);
335 if (!signal_group_exit(tsk
->signal
)) {
336 mm
->core_state
= core_state
;
337 tsk
->signal
->group_exit_task
= tsk
;
338 nr
= zap_process(tsk
, exit_code
, 0);
339 clear_tsk_thread_flag(tsk
, TIF_SIGPENDING
);
341 spin_unlock_irq(&tsk
->sighand
->siglock
);
342 if (unlikely(nr
< 0))
345 tsk
->flags
|= PF_DUMPCORE
;
346 if (atomic_read(&mm
->mm_users
) == nr
+ 1)
349 * We should find and kill all tasks which use this mm, and we should
350 * count them correctly into ->nr_threads. We don't take tasklist
351 * lock, but this is safe wrt:
354 * None of sub-threads can fork after zap_process(leader). All
355 * processes which were created before this point should be
356 * visible to zap_threads() because copy_process() adds the new
357 * process to the tail of init_task.tasks list, and lock/unlock
358 * of ->siglock provides a memory barrier.
361 * The caller holds mm->mmap_sem. This means that the task which
362 * uses this mm can't pass exit_mm(), so it can't exit or clear
366 * It does list_replace_rcu(&leader->tasks, ¤t->tasks),
367 * we must see either old or new leader, this does not matter.
368 * However, it can change p->sighand, so lock_task_sighand(p)
369 * must be used. Since p->mm != NULL and we hold ->mmap_sem
372 * Note also that "g" can be the old leader with ->mm == NULL
373 * and already unhashed and thus removed from ->thread_group.
374 * This is OK, __unhash_process()->list_del_rcu() does not
375 * clear the ->next pointer, we will find the new leader via
379 for_each_process(g
) {
380 if (g
== tsk
->group_leader
)
382 if (g
->flags
& PF_KTHREAD
)
385 for_each_thread(g
, p
) {
386 if (unlikely(!p
->mm
))
388 if (unlikely(p
->mm
== mm
)) {
389 lock_task_sighand(p
, &flags
);
390 nr
+= zap_process(p
, exit_code
,
392 unlock_task_sighand(p
, &flags
);
399 atomic_set(&core_state
->nr_threads
, nr
);
403 static int coredump_wait(int exit_code
, struct core_state
*core_state
)
405 struct task_struct
*tsk
= current
;
406 struct mm_struct
*mm
= tsk
->mm
;
407 int core_waiters
= -EBUSY
;
409 init_completion(&core_state
->startup
);
410 core_state
->dumper
.task
= tsk
;
411 core_state
->dumper
.next
= NULL
;
413 down_write(&mm
->mmap_sem
);
415 core_waiters
= zap_threads(tsk
, mm
, core_state
, exit_code
);
416 up_write(&mm
->mmap_sem
);
418 if (core_waiters
> 0) {
419 struct core_thread
*ptr
;
421 wait_for_completion(&core_state
->startup
);
423 * Wait for all the threads to become inactive, so that
424 * all the thread context (extended register state, like
425 * fpu etc) gets copied to the memory.
427 ptr
= core_state
->dumper
.next
;
428 while (ptr
!= NULL
) {
429 wait_task_inactive(ptr
->task
, 0);
437 static void coredump_finish(struct mm_struct
*mm
, bool core_dumped
)
439 struct core_thread
*curr
, *next
;
440 struct task_struct
*task
;
442 spin_lock_irq(¤t
->sighand
->siglock
);
443 if (core_dumped
&& !__fatal_signal_pending(current
))
444 current
->signal
->group_exit_code
|= 0x80;
445 current
->signal
->group_exit_task
= NULL
;
446 current
->signal
->flags
= SIGNAL_GROUP_EXIT
;
447 spin_unlock_irq(¤t
->sighand
->siglock
);
449 next
= mm
->core_state
->dumper
.next
;
450 while ((curr
= next
) != NULL
) {
454 * see exit_mm(), curr->task must not see
455 * ->task == NULL before we read ->next.
459 wake_up_process(task
);
462 mm
->core_state
= NULL
;
465 static bool dump_interrupted(void)
468 * SIGKILL or freezing() interrupt the coredumping. Perhaps we
469 * can do try_to_freeze() and check __fatal_signal_pending(),
470 * but then we need to teach dump_write() to restart and clear
473 return signal_pending(current
);
476 static void wait_for_dump_helpers(struct file
*file
)
478 struct pipe_inode_info
*pipe
= file
->private_data
;
483 wake_up_interruptible_sync(&pipe
->wait
);
484 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
488 * We actually want wait_event_freezable() but then we need
489 * to clear TIF_SIGPENDING and improve dump_interrupted().
491 wait_event_interruptible(pipe
->wait
, pipe
->readers
== 1);
501 * helper function to customize the process used
502 * to collect the core in userspace. Specifically
503 * it sets up a pipe and installs it as fd 0 (stdin)
504 * for the process. Returns 0 on success, or
505 * PTR_ERR on failure.
506 * Note that it also sets the core limit to 1. This
507 * is a special value that we use to trap recursive
510 static int umh_pipe_setup(struct subprocess_info
*info
, struct cred
*new)
512 struct file
*files
[2];
513 struct coredump_params
*cp
= (struct coredump_params
*)info
->data
;
514 int err
= create_pipe_files(files
, 0);
520 err
= replace_fd(0, files
[0], 0);
522 /* and disallow core files too */
523 current
->signal
->rlim
[RLIMIT_CORE
] = (struct rlimit
){1, 1};
528 void do_coredump(const siginfo_t
*siginfo
)
530 struct core_state core_state
;
532 struct mm_struct
*mm
= current
->mm
;
533 struct linux_binfmt
* binfmt
;
534 const struct cred
*old_cred
;
538 struct files_struct
*displaced
;
539 /* require nonrelative corefile path and be extra careful */
540 bool need_suid_safe
= false;
541 bool core_dumped
= false;
542 static atomic_t core_dump_count
= ATOMIC_INIT(0);
543 struct coredump_params cprm
= {
545 .regs
= signal_pt_regs(),
546 .limit
= rlimit(RLIMIT_CORE
),
548 * We must use the same mm->flags while dumping core to avoid
549 * inconsistency of bit flags, since this flag is not protected
552 .mm_flags
= mm
->flags
,
555 audit_core_dumps(siginfo
->si_signo
);
558 if (!binfmt
|| !binfmt
->core_dump
)
560 if (!__get_dumpable(cprm
.mm_flags
))
563 cred
= prepare_creds();
567 * We cannot trust fsuid as being the "true" uid of the process
568 * nor do we know its entire history. We only know it was tainted
569 * so we dump it as root in mode 2, and only into a controlled
570 * environment (pipe handler or fully qualified path).
572 if (__get_dumpable(cprm
.mm_flags
) == SUID_DUMP_ROOT
) {
573 /* Setuid core dump mode */
574 cred
->fsuid
= GLOBAL_ROOT_UID
; /* Dump root private */
575 need_suid_safe
= true;
578 retval
= coredump_wait(siginfo
->si_signo
, &core_state
);
582 old_cred
= override_creds(cred
);
584 ispipe
= format_corename(&cn
, &cprm
);
589 struct subprocess_info
*sub_info
;
592 printk(KERN_WARNING
"format_corename failed\n");
593 printk(KERN_WARNING
"Aborting core\n");
597 if (cprm
.limit
== 1) {
598 /* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
600 * Normally core limits are irrelevant to pipes, since
601 * we're not writing to the file system, but we use
602 * cprm.limit of 1 here as a special value, this is a
603 * consistent way to catch recursive crashes.
604 * We can still crash if the core_pattern binary sets
605 * RLIM_CORE = !1, but it runs as root, and can do
606 * lots of stupid things.
608 * Note that we use task_tgid_vnr here to grab the pid
609 * of the process group leader. That way we get the
610 * right pid if a thread in a multi-threaded
611 * core_pattern process dies.
614 "Process %d(%s) has RLIMIT_CORE set to 1\n",
615 task_tgid_vnr(current
), current
->comm
);
616 printk(KERN_WARNING
"Aborting core\n");
619 cprm
.limit
= RLIM_INFINITY
;
621 dump_count
= atomic_inc_return(&core_dump_count
);
622 if (core_pipe_limit
&& (core_pipe_limit
< dump_count
)) {
623 printk(KERN_WARNING
"Pid %d(%s) over core_pipe_limit\n",
624 task_tgid_vnr(current
), current
->comm
);
625 printk(KERN_WARNING
"Skipping core dump\n");
629 helper_argv
= argv_split(GFP_KERNEL
, cn
.corename
, NULL
);
631 printk(KERN_WARNING
"%s failed to allocate memory\n",
637 sub_info
= call_usermodehelper_setup(helper_argv
[0],
638 helper_argv
, NULL
, GFP_KERNEL
,
639 umh_pipe_setup
, NULL
, &cprm
);
641 retval
= call_usermodehelper_exec(sub_info
,
644 argv_free(helper_argv
);
646 printk(KERN_INFO
"Core dump to |%s pipe failed\n",
653 if (cprm
.limit
< binfmt
->min_coredump
)
656 if (need_suid_safe
&& cn
.corename
[0] != '/') {
657 printk(KERN_WARNING
"Pid %d(%s) can only dump core "\
658 "to fully qualified path!\n",
659 task_tgid_vnr(current
), current
->comm
);
660 printk(KERN_WARNING
"Skipping core dump\n");
665 * Unlink the file if it exists unless this is a SUID
666 * binary - in that case, we're running around with root
667 * privs and don't want to unlink another user's coredump.
669 if (!need_suid_safe
) {
675 * If it doesn't exist, that's fine. If there's some
676 * other problem, we'll catch it at the filp_open().
678 (void) sys_unlink((const char __user
*)cn
.corename
);
683 * There is a race between unlinking and creating the
684 * file, but if that causes an EEXIST here, that's
685 * fine - another process raced with us while creating
686 * the corefile, and the other process won. To userspace,
687 * what matters is that at least one of the two processes
688 * writes its coredump successfully, not which one.
690 cprm
.file
= filp_open(cn
.corename
,
691 O_CREAT
| 2 | O_NOFOLLOW
|
692 O_LARGEFILE
| O_EXCL
,
694 if (IS_ERR(cprm
.file
))
697 inode
= file_inode(cprm
.file
);
698 if (inode
->i_nlink
> 1)
700 if (d_unhashed(cprm
.file
->f_path
.dentry
))
703 * AK: actually i see no reason to not allow this for named
704 * pipes etc, but keep the previous behaviour for now.
706 if (!S_ISREG(inode
->i_mode
))
709 * Don't dump core if the filesystem changed owner or mode
710 * of the file during file creation. This is an issue when
711 * a process dumps core while its cwd is e.g. on a vfat
714 if (!uid_eq(inode
->i_uid
, current_fsuid()))
716 if ((inode
->i_mode
& 0677) != 0600)
718 if (!(cprm
.file
->f_mode
& FMODE_CAN_WRITE
))
720 if (do_truncate(cprm
.file
->f_path
.dentry
, 0, 0, cprm
.file
))
724 /* get us an unshared descriptor table; almost always a no-op */
725 retval
= unshare_files(&displaced
);
729 put_files_struct(displaced
);
730 if (!dump_interrupted()) {
731 file_start_write(cprm
.file
);
732 core_dumped
= binfmt
->core_dump(&cprm
);
733 file_end_write(cprm
.file
);
735 if (ispipe
&& core_pipe_limit
)
736 wait_for_dump_helpers(cprm
.file
);
739 filp_close(cprm
.file
, NULL
);
742 atomic_dec(&core_dump_count
);
745 coredump_finish(mm
, core_dumped
);
746 revert_creds(old_cred
);
754 * Core dumping helper functions. These are the only things you should
755 * do on a core-file: use only these functions to write out all the
758 int dump_emit(struct coredump_params
*cprm
, const void *addr
, int nr
)
760 struct file
*file
= cprm
->file
;
761 loff_t pos
= file
->f_pos
;
763 if (cprm
->written
+ nr
> cprm
->limit
)
766 if (dump_interrupted())
768 n
= __kernel_write(file
, addr
, nr
, &pos
);
777 EXPORT_SYMBOL(dump_emit
);
779 int dump_skip(struct coredump_params
*cprm
, size_t nr
)
781 static char zeroes
[PAGE_SIZE
];
782 struct file
*file
= cprm
->file
;
783 if (file
->f_op
->llseek
&& file
->f_op
->llseek
!= no_llseek
) {
784 if (cprm
->written
+ nr
> cprm
->limit
)
786 if (dump_interrupted() ||
787 file
->f_op
->llseek(file
, nr
, SEEK_CUR
) < 0)
792 while (nr
> PAGE_SIZE
) {
793 if (!dump_emit(cprm
, zeroes
, PAGE_SIZE
))
797 return dump_emit(cprm
, zeroes
, nr
);
800 EXPORT_SYMBOL(dump_skip
);
802 int dump_align(struct coredump_params
*cprm
, int align
)
804 unsigned mod
= cprm
->written
& (align
- 1);
805 if (align
& (align
- 1))
807 return mod
? dump_skip(cprm
, align
- mod
) : 1;
809 EXPORT_SYMBOL(dump_align
);