toshiba_acpi: Fix whitespace
[linux/fpc-iii.git] / mm / nommu.c
bloba554e5a451cdb4622d32ce1a5b6cacf1773f848f
1 /*
2 * linux/mm/nommu.c
4 * Replacement code for mm functions to support CPU's that don't
5 * have any form of memory management unit (thus no virtual memory).
7 * See Documentation/nommu-mmap.txt
9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
13 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
16 #include <linux/export.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/blkdev.h>
26 #include <linux/backing-dev.h>
27 #include <linux/mount.h>
28 #include <linux/personality.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/audit.h>
32 #include <linux/sched/sysctl.h>
34 #include <asm/uaccess.h>
35 #include <asm/tlb.h>
36 #include <asm/tlbflush.h>
37 #include <asm/mmu_context.h>
38 #include "internal.h"
40 #if 0
41 #define kenter(FMT, ...) \
42 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
43 #define kleave(FMT, ...) \
44 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
45 #define kdebug(FMT, ...) \
46 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
47 #else
48 #define kenter(FMT, ...) \
49 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
50 #define kleave(FMT, ...) \
51 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
52 #define kdebug(FMT, ...) \
53 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
54 #endif
56 void *high_memory;
57 struct page *mem_map;
58 unsigned long max_mapnr;
59 unsigned long highest_memmap_pfn;
60 struct percpu_counter vm_committed_as;
61 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
62 int sysctl_overcommit_ratio = 50; /* default is 50% */
63 unsigned long sysctl_overcommit_kbytes __read_mostly;
64 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
65 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
66 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
67 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
68 int heap_stack_gap = 0;
70 atomic_long_t mmap_pages_allocated;
73 * The global memory commitment made in the system can be a metric
74 * that can be used to drive ballooning decisions when Linux is hosted
75 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
76 * balancing memory across competing virtual machines that are hosted.
77 * Several metrics drive this policy engine including the guest reported
78 * memory commitment.
80 unsigned long vm_memory_committed(void)
82 return percpu_counter_read_positive(&vm_committed_as);
85 EXPORT_SYMBOL_GPL(vm_memory_committed);
87 EXPORT_SYMBOL(mem_map);
89 /* list of mapped, potentially shareable regions */
90 static struct kmem_cache *vm_region_jar;
91 struct rb_root nommu_region_tree = RB_ROOT;
92 DECLARE_RWSEM(nommu_region_sem);
94 const struct vm_operations_struct generic_file_vm_ops = {
98 * Return the total memory allocated for this pointer, not
99 * just what the caller asked for.
101 * Doesn't have to be accurate, i.e. may have races.
103 unsigned int kobjsize(const void *objp)
105 struct page *page;
108 * If the object we have should not have ksize performed on it,
109 * return size of 0
111 if (!objp || !virt_addr_valid(objp))
112 return 0;
114 page = virt_to_head_page(objp);
117 * If the allocator sets PageSlab, we know the pointer came from
118 * kmalloc().
120 if (PageSlab(page))
121 return ksize(objp);
124 * If it's not a compound page, see if we have a matching VMA
125 * region. This test is intentionally done in reverse order,
126 * so if there's no VMA, we still fall through and hand back
127 * PAGE_SIZE for 0-order pages.
129 if (!PageCompound(page)) {
130 struct vm_area_struct *vma;
132 vma = find_vma(current->mm, (unsigned long)objp);
133 if (vma)
134 return vma->vm_end - vma->vm_start;
138 * The ksize() function is only guaranteed to work for pointers
139 * returned by kmalloc(). So handle arbitrary pointers here.
141 return PAGE_SIZE << compound_order(page);
144 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
145 unsigned long start, unsigned long nr_pages,
146 unsigned int foll_flags, struct page **pages,
147 struct vm_area_struct **vmas, int *nonblocking)
149 struct vm_area_struct *vma;
150 unsigned long vm_flags;
151 int i;
153 /* calculate required read or write permissions.
154 * If FOLL_FORCE is set, we only require the "MAY" flags.
156 vm_flags = (foll_flags & FOLL_WRITE) ?
157 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
158 vm_flags &= (foll_flags & FOLL_FORCE) ?
159 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
161 for (i = 0; i < nr_pages; i++) {
162 vma = find_vma(mm, start);
163 if (!vma)
164 goto finish_or_fault;
166 /* protect what we can, including chardevs */
167 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
168 !(vm_flags & vma->vm_flags))
169 goto finish_or_fault;
171 if (pages) {
172 pages[i] = virt_to_page(start);
173 if (pages[i])
174 page_cache_get(pages[i]);
176 if (vmas)
177 vmas[i] = vma;
178 start = (start + PAGE_SIZE) & PAGE_MASK;
181 return i;
183 finish_or_fault:
184 return i ? : -EFAULT;
188 * get a list of pages in an address range belonging to the specified process
189 * and indicate the VMA that covers each page
190 * - this is potentially dodgy as we may end incrementing the page count of a
191 * slab page or a secondary page from a compound page
192 * - don't permit access to VMAs that don't support it, such as I/O mappings
194 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
195 unsigned long start, unsigned long nr_pages,
196 int write, int force, struct page **pages,
197 struct vm_area_struct **vmas)
199 int flags = 0;
201 if (write)
202 flags |= FOLL_WRITE;
203 if (force)
204 flags |= FOLL_FORCE;
206 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
207 NULL);
209 EXPORT_SYMBOL(get_user_pages);
212 * follow_pfn - look up PFN at a user virtual address
213 * @vma: memory mapping
214 * @address: user virtual address
215 * @pfn: location to store found PFN
217 * Only IO mappings and raw PFN mappings are allowed.
219 * Returns zero and the pfn at @pfn on success, -ve otherwise.
221 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
222 unsigned long *pfn)
224 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
225 return -EINVAL;
227 *pfn = address >> PAGE_SHIFT;
228 return 0;
230 EXPORT_SYMBOL(follow_pfn);
232 LIST_HEAD(vmap_area_list);
234 void vfree(const void *addr)
236 kfree(addr);
238 EXPORT_SYMBOL(vfree);
240 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
243 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
244 * returns only a logical address.
246 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
248 EXPORT_SYMBOL(__vmalloc);
250 void *vmalloc_user(unsigned long size)
252 void *ret;
254 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
255 PAGE_KERNEL);
256 if (ret) {
257 struct vm_area_struct *vma;
259 down_write(&current->mm->mmap_sem);
260 vma = find_vma(current->mm, (unsigned long)ret);
261 if (vma)
262 vma->vm_flags |= VM_USERMAP;
263 up_write(&current->mm->mmap_sem);
266 return ret;
268 EXPORT_SYMBOL(vmalloc_user);
270 struct page *vmalloc_to_page(const void *addr)
272 return virt_to_page(addr);
274 EXPORT_SYMBOL(vmalloc_to_page);
276 unsigned long vmalloc_to_pfn(const void *addr)
278 return page_to_pfn(virt_to_page(addr));
280 EXPORT_SYMBOL(vmalloc_to_pfn);
282 long vread(char *buf, char *addr, unsigned long count)
284 /* Don't allow overflow */
285 if ((unsigned long) buf + count < count)
286 count = -(unsigned long) buf;
288 memcpy(buf, addr, count);
289 return count;
292 long vwrite(char *buf, char *addr, unsigned long count)
294 /* Don't allow overflow */
295 if ((unsigned long) addr + count < count)
296 count = -(unsigned long) addr;
298 memcpy(addr, buf, count);
299 return(count);
303 * vmalloc - allocate virtually continguos memory
305 * @size: allocation size
307 * Allocate enough pages to cover @size from the page level
308 * allocator and map them into continguos kernel virtual space.
310 * For tight control over page level allocator and protection flags
311 * use __vmalloc() instead.
313 void *vmalloc(unsigned long size)
315 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
317 EXPORT_SYMBOL(vmalloc);
320 * vzalloc - allocate virtually continguos memory with zero fill
322 * @size: allocation size
324 * Allocate enough pages to cover @size from the page level
325 * allocator and map them into continguos kernel virtual space.
326 * The memory allocated is set to zero.
328 * For tight control over page level allocator and protection flags
329 * use __vmalloc() instead.
331 void *vzalloc(unsigned long size)
333 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
334 PAGE_KERNEL);
336 EXPORT_SYMBOL(vzalloc);
339 * vmalloc_node - allocate memory on a specific node
340 * @size: allocation size
341 * @node: numa node
343 * Allocate enough pages to cover @size from the page level
344 * allocator and map them into contiguous kernel virtual space.
346 * For tight control over page level allocator and protection flags
347 * use __vmalloc() instead.
349 void *vmalloc_node(unsigned long size, int node)
351 return vmalloc(size);
353 EXPORT_SYMBOL(vmalloc_node);
356 * vzalloc_node - allocate memory on a specific node with zero fill
357 * @size: allocation size
358 * @node: numa node
360 * Allocate enough pages to cover @size from the page level
361 * allocator and map them into contiguous kernel virtual space.
362 * The memory allocated is set to zero.
364 * For tight control over page level allocator and protection flags
365 * use __vmalloc() instead.
367 void *vzalloc_node(unsigned long size, int node)
369 return vzalloc(size);
371 EXPORT_SYMBOL(vzalloc_node);
373 #ifndef PAGE_KERNEL_EXEC
374 # define PAGE_KERNEL_EXEC PAGE_KERNEL
375 #endif
378 * vmalloc_exec - allocate virtually contiguous, executable memory
379 * @size: allocation size
381 * Kernel-internal function to allocate enough pages to cover @size
382 * the page level allocator and map them into contiguous and
383 * executable kernel virtual space.
385 * For tight control over page level allocator and protection flags
386 * use __vmalloc() instead.
389 void *vmalloc_exec(unsigned long size)
391 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
395 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
396 * @size: allocation size
398 * Allocate enough 32bit PA addressable pages to cover @size from the
399 * page level allocator and map them into continguos kernel virtual space.
401 void *vmalloc_32(unsigned long size)
403 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
405 EXPORT_SYMBOL(vmalloc_32);
408 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
409 * @size: allocation size
411 * The resulting memory area is 32bit addressable and zeroed so it can be
412 * mapped to userspace without leaking data.
414 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
415 * remap_vmalloc_range() are permissible.
417 void *vmalloc_32_user(unsigned long size)
420 * We'll have to sort out the ZONE_DMA bits for 64-bit,
421 * but for now this can simply use vmalloc_user() directly.
423 return vmalloc_user(size);
425 EXPORT_SYMBOL(vmalloc_32_user);
427 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
429 BUG();
430 return NULL;
432 EXPORT_SYMBOL(vmap);
434 void vunmap(const void *addr)
436 BUG();
438 EXPORT_SYMBOL(vunmap);
440 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
442 BUG();
443 return NULL;
445 EXPORT_SYMBOL(vm_map_ram);
447 void vm_unmap_ram(const void *mem, unsigned int count)
449 BUG();
451 EXPORT_SYMBOL(vm_unmap_ram);
453 void vm_unmap_aliases(void)
456 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
459 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
460 * have one.
462 void __attribute__((weak)) vmalloc_sync_all(void)
467 * alloc_vm_area - allocate a range of kernel address space
468 * @size: size of the area
470 * Returns: NULL on failure, vm_struct on success
472 * This function reserves a range of kernel address space, and
473 * allocates pagetables to map that range. No actual mappings
474 * are created. If the kernel address space is not shared
475 * between processes, it syncs the pagetable across all
476 * processes.
478 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
480 BUG();
481 return NULL;
483 EXPORT_SYMBOL_GPL(alloc_vm_area);
485 void free_vm_area(struct vm_struct *area)
487 BUG();
489 EXPORT_SYMBOL_GPL(free_vm_area);
491 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
492 struct page *page)
494 return -EINVAL;
496 EXPORT_SYMBOL(vm_insert_page);
499 * sys_brk() for the most part doesn't need the global kernel
500 * lock, except when an application is doing something nasty
501 * like trying to un-brk an area that has already been mapped
502 * to a regular file. in this case, the unmapping will need
503 * to invoke file system routines that need the global lock.
505 SYSCALL_DEFINE1(brk, unsigned long, brk)
507 struct mm_struct *mm = current->mm;
509 if (brk < mm->start_brk || brk > mm->context.end_brk)
510 return mm->brk;
512 if (mm->brk == brk)
513 return mm->brk;
516 * Always allow shrinking brk
518 if (brk <= mm->brk) {
519 mm->brk = brk;
520 return brk;
524 * Ok, looks good - let it rip.
526 flush_icache_range(mm->brk, brk);
527 return mm->brk = brk;
531 * initialise the VMA and region record slabs
533 void __init mmap_init(void)
535 int ret;
537 ret = percpu_counter_init(&vm_committed_as, 0);
538 VM_BUG_ON(ret);
539 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
543 * validate the region tree
544 * - the caller must hold the region lock
546 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
547 static noinline void validate_nommu_regions(void)
549 struct vm_region *region, *last;
550 struct rb_node *p, *lastp;
552 lastp = rb_first(&nommu_region_tree);
553 if (!lastp)
554 return;
556 last = rb_entry(lastp, struct vm_region, vm_rb);
557 BUG_ON(unlikely(last->vm_end <= last->vm_start));
558 BUG_ON(unlikely(last->vm_top < last->vm_end));
560 while ((p = rb_next(lastp))) {
561 region = rb_entry(p, struct vm_region, vm_rb);
562 last = rb_entry(lastp, struct vm_region, vm_rb);
564 BUG_ON(unlikely(region->vm_end <= region->vm_start));
565 BUG_ON(unlikely(region->vm_top < region->vm_end));
566 BUG_ON(unlikely(region->vm_start < last->vm_top));
568 lastp = p;
571 #else
572 static void validate_nommu_regions(void)
575 #endif
578 * add a region into the global tree
580 static void add_nommu_region(struct vm_region *region)
582 struct vm_region *pregion;
583 struct rb_node **p, *parent;
585 validate_nommu_regions();
587 parent = NULL;
588 p = &nommu_region_tree.rb_node;
589 while (*p) {
590 parent = *p;
591 pregion = rb_entry(parent, struct vm_region, vm_rb);
592 if (region->vm_start < pregion->vm_start)
593 p = &(*p)->rb_left;
594 else if (region->vm_start > pregion->vm_start)
595 p = &(*p)->rb_right;
596 else if (pregion == region)
597 return;
598 else
599 BUG();
602 rb_link_node(&region->vm_rb, parent, p);
603 rb_insert_color(&region->vm_rb, &nommu_region_tree);
605 validate_nommu_regions();
609 * delete a region from the global tree
611 static void delete_nommu_region(struct vm_region *region)
613 BUG_ON(!nommu_region_tree.rb_node);
615 validate_nommu_regions();
616 rb_erase(&region->vm_rb, &nommu_region_tree);
617 validate_nommu_regions();
621 * free a contiguous series of pages
623 static void free_page_series(unsigned long from, unsigned long to)
625 for (; from < to; from += PAGE_SIZE) {
626 struct page *page = virt_to_page(from);
628 kdebug("- free %lx", from);
629 atomic_long_dec(&mmap_pages_allocated);
630 if (page_count(page) != 1)
631 kdebug("free page %p: refcount not one: %d",
632 page, page_count(page));
633 put_page(page);
638 * release a reference to a region
639 * - the caller must hold the region semaphore for writing, which this releases
640 * - the region may not have been added to the tree yet, in which case vm_top
641 * will equal vm_start
643 static void __put_nommu_region(struct vm_region *region)
644 __releases(nommu_region_sem)
646 kenter("%p{%d}", region, region->vm_usage);
648 BUG_ON(!nommu_region_tree.rb_node);
650 if (--region->vm_usage == 0) {
651 if (region->vm_top > region->vm_start)
652 delete_nommu_region(region);
653 up_write(&nommu_region_sem);
655 if (region->vm_file)
656 fput(region->vm_file);
658 /* IO memory and memory shared directly out of the pagecache
659 * from ramfs/tmpfs mustn't be released here */
660 if (region->vm_flags & VM_MAPPED_COPY) {
661 kdebug("free series");
662 free_page_series(region->vm_start, region->vm_top);
664 kmem_cache_free(vm_region_jar, region);
665 } else {
666 up_write(&nommu_region_sem);
671 * release a reference to a region
673 static void put_nommu_region(struct vm_region *region)
675 down_write(&nommu_region_sem);
676 __put_nommu_region(region);
680 * update protection on a vma
682 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
684 #ifdef CONFIG_MPU
685 struct mm_struct *mm = vma->vm_mm;
686 long start = vma->vm_start & PAGE_MASK;
687 while (start < vma->vm_end) {
688 protect_page(mm, start, flags);
689 start += PAGE_SIZE;
691 update_protections(mm);
692 #endif
696 * add a VMA into a process's mm_struct in the appropriate place in the list
697 * and tree and add to the address space's page tree also if not an anonymous
698 * page
699 * - should be called with mm->mmap_sem held writelocked
701 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
703 struct vm_area_struct *pvma, *prev;
704 struct address_space *mapping;
705 struct rb_node **p, *parent, *rb_prev;
707 kenter(",%p", vma);
709 BUG_ON(!vma->vm_region);
711 mm->map_count++;
712 vma->vm_mm = mm;
714 protect_vma(vma, vma->vm_flags);
716 /* add the VMA to the mapping */
717 if (vma->vm_file) {
718 mapping = vma->vm_file->f_mapping;
720 mutex_lock(&mapping->i_mmap_mutex);
721 flush_dcache_mmap_lock(mapping);
722 vma_interval_tree_insert(vma, &mapping->i_mmap);
723 flush_dcache_mmap_unlock(mapping);
724 mutex_unlock(&mapping->i_mmap_mutex);
727 /* add the VMA to the tree */
728 parent = rb_prev = NULL;
729 p = &mm->mm_rb.rb_node;
730 while (*p) {
731 parent = *p;
732 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
734 /* sort by: start addr, end addr, VMA struct addr in that order
735 * (the latter is necessary as we may get identical VMAs) */
736 if (vma->vm_start < pvma->vm_start)
737 p = &(*p)->rb_left;
738 else if (vma->vm_start > pvma->vm_start) {
739 rb_prev = parent;
740 p = &(*p)->rb_right;
741 } else if (vma->vm_end < pvma->vm_end)
742 p = &(*p)->rb_left;
743 else if (vma->vm_end > pvma->vm_end) {
744 rb_prev = parent;
745 p = &(*p)->rb_right;
746 } else if (vma < pvma)
747 p = &(*p)->rb_left;
748 else if (vma > pvma) {
749 rb_prev = parent;
750 p = &(*p)->rb_right;
751 } else
752 BUG();
755 rb_link_node(&vma->vm_rb, parent, p);
756 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
758 /* add VMA to the VMA list also */
759 prev = NULL;
760 if (rb_prev)
761 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
763 __vma_link_list(mm, vma, prev, parent);
767 * delete a VMA from its owning mm_struct and address space
769 static void delete_vma_from_mm(struct vm_area_struct *vma)
771 struct address_space *mapping;
772 struct mm_struct *mm = vma->vm_mm;
774 kenter("%p", vma);
776 protect_vma(vma, 0);
778 mm->map_count--;
779 if (mm->mmap_cache == vma)
780 mm->mmap_cache = NULL;
782 /* remove the VMA from the mapping */
783 if (vma->vm_file) {
784 mapping = vma->vm_file->f_mapping;
786 mutex_lock(&mapping->i_mmap_mutex);
787 flush_dcache_mmap_lock(mapping);
788 vma_interval_tree_remove(vma, &mapping->i_mmap);
789 flush_dcache_mmap_unlock(mapping);
790 mutex_unlock(&mapping->i_mmap_mutex);
793 /* remove from the MM's tree and list */
794 rb_erase(&vma->vm_rb, &mm->mm_rb);
796 if (vma->vm_prev)
797 vma->vm_prev->vm_next = vma->vm_next;
798 else
799 mm->mmap = vma->vm_next;
801 if (vma->vm_next)
802 vma->vm_next->vm_prev = vma->vm_prev;
806 * destroy a VMA record
808 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
810 kenter("%p", vma);
811 if (vma->vm_ops && vma->vm_ops->close)
812 vma->vm_ops->close(vma);
813 if (vma->vm_file)
814 fput(vma->vm_file);
815 put_nommu_region(vma->vm_region);
816 kmem_cache_free(vm_area_cachep, vma);
820 * look up the first VMA in which addr resides, NULL if none
821 * - should be called with mm->mmap_sem at least held readlocked
823 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
825 struct vm_area_struct *vma;
827 /* check the cache first */
828 vma = ACCESS_ONCE(mm->mmap_cache);
829 if (vma && vma->vm_start <= addr && vma->vm_end > addr)
830 return vma;
832 /* trawl the list (there may be multiple mappings in which addr
833 * resides) */
834 for (vma = mm->mmap; vma; vma = vma->vm_next) {
835 if (vma->vm_start > addr)
836 return NULL;
837 if (vma->vm_end > addr) {
838 mm->mmap_cache = vma;
839 return vma;
843 return NULL;
845 EXPORT_SYMBOL(find_vma);
848 * find a VMA
849 * - we don't extend stack VMAs under NOMMU conditions
851 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
853 return find_vma(mm, addr);
857 * expand a stack to a given address
858 * - not supported under NOMMU conditions
860 int expand_stack(struct vm_area_struct *vma, unsigned long address)
862 return -ENOMEM;
866 * look up the first VMA exactly that exactly matches addr
867 * - should be called with mm->mmap_sem at least held readlocked
869 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
870 unsigned long addr,
871 unsigned long len)
873 struct vm_area_struct *vma;
874 unsigned long end = addr + len;
876 /* check the cache first */
877 vma = mm->mmap_cache;
878 if (vma && vma->vm_start == addr && vma->vm_end == end)
879 return vma;
881 /* trawl the list (there may be multiple mappings in which addr
882 * resides) */
883 for (vma = mm->mmap; vma; vma = vma->vm_next) {
884 if (vma->vm_start < addr)
885 continue;
886 if (vma->vm_start > addr)
887 return NULL;
888 if (vma->vm_end == end) {
889 mm->mmap_cache = vma;
890 return vma;
894 return NULL;
898 * determine whether a mapping should be permitted and, if so, what sort of
899 * mapping we're capable of supporting
901 static int validate_mmap_request(struct file *file,
902 unsigned long addr,
903 unsigned long len,
904 unsigned long prot,
905 unsigned long flags,
906 unsigned long pgoff,
907 unsigned long *_capabilities)
909 unsigned long capabilities, rlen;
910 int ret;
912 /* do the simple checks first */
913 if (flags & MAP_FIXED) {
914 printk(KERN_DEBUG
915 "%d: Can't do fixed-address/overlay mmap of RAM\n",
916 current->pid);
917 return -EINVAL;
920 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
921 (flags & MAP_TYPE) != MAP_SHARED)
922 return -EINVAL;
924 if (!len)
925 return -EINVAL;
927 /* Careful about overflows.. */
928 rlen = PAGE_ALIGN(len);
929 if (!rlen || rlen > TASK_SIZE)
930 return -ENOMEM;
932 /* offset overflow? */
933 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
934 return -EOVERFLOW;
936 if (file) {
937 /* validate file mapping requests */
938 struct address_space *mapping;
940 /* files must support mmap */
941 if (!file->f_op->mmap)
942 return -ENODEV;
944 /* work out if what we've got could possibly be shared
945 * - we support chardevs that provide their own "memory"
946 * - we support files/blockdevs that are memory backed
948 mapping = file->f_mapping;
949 if (!mapping)
950 mapping = file_inode(file)->i_mapping;
952 capabilities = 0;
953 if (mapping && mapping->backing_dev_info)
954 capabilities = mapping->backing_dev_info->capabilities;
956 if (!capabilities) {
957 /* no explicit capabilities set, so assume some
958 * defaults */
959 switch (file_inode(file)->i_mode & S_IFMT) {
960 case S_IFREG:
961 case S_IFBLK:
962 capabilities = BDI_CAP_MAP_COPY;
963 break;
965 case S_IFCHR:
966 capabilities =
967 BDI_CAP_MAP_DIRECT |
968 BDI_CAP_READ_MAP |
969 BDI_CAP_WRITE_MAP;
970 break;
972 default:
973 return -EINVAL;
977 /* eliminate any capabilities that we can't support on this
978 * device */
979 if (!file->f_op->get_unmapped_area)
980 capabilities &= ~BDI_CAP_MAP_DIRECT;
981 if (!file->f_op->read)
982 capabilities &= ~BDI_CAP_MAP_COPY;
984 /* The file shall have been opened with read permission. */
985 if (!(file->f_mode & FMODE_READ))
986 return -EACCES;
988 if (flags & MAP_SHARED) {
989 /* do checks for writing, appending and locking */
990 if ((prot & PROT_WRITE) &&
991 !(file->f_mode & FMODE_WRITE))
992 return -EACCES;
994 if (IS_APPEND(file_inode(file)) &&
995 (file->f_mode & FMODE_WRITE))
996 return -EACCES;
998 if (locks_verify_locked(file))
999 return -EAGAIN;
1001 if (!(capabilities & BDI_CAP_MAP_DIRECT))
1002 return -ENODEV;
1004 /* we mustn't privatise shared mappings */
1005 capabilities &= ~BDI_CAP_MAP_COPY;
1007 else {
1008 /* we're going to read the file into private memory we
1009 * allocate */
1010 if (!(capabilities & BDI_CAP_MAP_COPY))
1011 return -ENODEV;
1013 /* we don't permit a private writable mapping to be
1014 * shared with the backing device */
1015 if (prot & PROT_WRITE)
1016 capabilities &= ~BDI_CAP_MAP_DIRECT;
1019 if (capabilities & BDI_CAP_MAP_DIRECT) {
1020 if (((prot & PROT_READ) && !(capabilities & BDI_CAP_READ_MAP)) ||
1021 ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
1022 ((prot & PROT_EXEC) && !(capabilities & BDI_CAP_EXEC_MAP))
1024 capabilities &= ~BDI_CAP_MAP_DIRECT;
1025 if (flags & MAP_SHARED) {
1026 printk(KERN_WARNING
1027 "MAP_SHARED not completely supported on !MMU\n");
1028 return -EINVAL;
1033 /* handle executable mappings and implied executable
1034 * mappings */
1035 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1036 if (prot & PROT_EXEC)
1037 return -EPERM;
1039 else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1040 /* handle implication of PROT_EXEC by PROT_READ */
1041 if (current->personality & READ_IMPLIES_EXEC) {
1042 if (capabilities & BDI_CAP_EXEC_MAP)
1043 prot |= PROT_EXEC;
1046 else if ((prot & PROT_READ) &&
1047 (prot & PROT_EXEC) &&
1048 !(capabilities & BDI_CAP_EXEC_MAP)
1050 /* backing file is not executable, try to copy */
1051 capabilities &= ~BDI_CAP_MAP_DIRECT;
1054 else {
1055 /* anonymous mappings are always memory backed and can be
1056 * privately mapped
1058 capabilities = BDI_CAP_MAP_COPY;
1060 /* handle PROT_EXEC implication by PROT_READ */
1061 if ((prot & PROT_READ) &&
1062 (current->personality & READ_IMPLIES_EXEC))
1063 prot |= PROT_EXEC;
1066 /* allow the security API to have its say */
1067 ret = security_mmap_addr(addr);
1068 if (ret < 0)
1069 return ret;
1071 /* looks okay */
1072 *_capabilities = capabilities;
1073 return 0;
1077 * we've determined that we can make the mapping, now translate what we
1078 * now know into VMA flags
1080 static unsigned long determine_vm_flags(struct file *file,
1081 unsigned long prot,
1082 unsigned long flags,
1083 unsigned long capabilities)
1085 unsigned long vm_flags;
1087 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1088 /* vm_flags |= mm->def_flags; */
1090 if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1091 /* attempt to share read-only copies of mapped file chunks */
1092 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1093 if (file && !(prot & PROT_WRITE))
1094 vm_flags |= VM_MAYSHARE;
1095 } else {
1096 /* overlay a shareable mapping on the backing device or inode
1097 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1098 * romfs/cramfs */
1099 vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS);
1100 if (flags & MAP_SHARED)
1101 vm_flags |= VM_SHARED;
1104 /* refuse to let anyone share private mappings with this process if
1105 * it's being traced - otherwise breakpoints set in it may interfere
1106 * with another untraced process
1108 if ((flags & MAP_PRIVATE) && current->ptrace)
1109 vm_flags &= ~VM_MAYSHARE;
1111 return vm_flags;
1115 * set up a shared mapping on a file (the driver or filesystem provides and
1116 * pins the storage)
1118 static int do_mmap_shared_file(struct vm_area_struct *vma)
1120 int ret;
1122 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1123 if (ret == 0) {
1124 vma->vm_region->vm_top = vma->vm_region->vm_end;
1125 return 0;
1127 if (ret != -ENOSYS)
1128 return ret;
1130 /* getting -ENOSYS indicates that direct mmap isn't possible (as
1131 * opposed to tried but failed) so we can only give a suitable error as
1132 * it's not possible to make a private copy if MAP_SHARED was given */
1133 return -ENODEV;
1137 * set up a private mapping or an anonymous shared mapping
1139 static int do_mmap_private(struct vm_area_struct *vma,
1140 struct vm_region *region,
1141 unsigned long len,
1142 unsigned long capabilities)
1144 struct page *pages;
1145 unsigned long total, point, n;
1146 void *base;
1147 int ret, order;
1149 /* invoke the file's mapping function so that it can keep track of
1150 * shared mappings on devices or memory
1151 * - VM_MAYSHARE will be set if it may attempt to share
1153 if (capabilities & BDI_CAP_MAP_DIRECT) {
1154 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1155 if (ret == 0) {
1156 /* shouldn't return success if we're not sharing */
1157 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1158 vma->vm_region->vm_top = vma->vm_region->vm_end;
1159 return 0;
1161 if (ret != -ENOSYS)
1162 return ret;
1164 /* getting an ENOSYS error indicates that direct mmap isn't
1165 * possible (as opposed to tried but failed) so we'll try to
1166 * make a private copy of the data and map that instead */
1170 /* allocate some memory to hold the mapping
1171 * - note that this may not return a page-aligned address if the object
1172 * we're allocating is smaller than a page
1174 order = get_order(len);
1175 kdebug("alloc order %d for %lx", order, len);
1177 pages = alloc_pages(GFP_KERNEL, order);
1178 if (!pages)
1179 goto enomem;
1181 total = 1 << order;
1182 atomic_long_add(total, &mmap_pages_allocated);
1184 point = len >> PAGE_SHIFT;
1186 /* we allocated a power-of-2 sized page set, so we may want to trim off
1187 * the excess */
1188 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1189 while (total > point) {
1190 order = ilog2(total - point);
1191 n = 1 << order;
1192 kdebug("shave %lu/%lu @%lu", n, total - point, total);
1193 atomic_long_sub(n, &mmap_pages_allocated);
1194 total -= n;
1195 set_page_refcounted(pages + total);
1196 __free_pages(pages + total, order);
1200 for (point = 1; point < total; point++)
1201 set_page_refcounted(&pages[point]);
1203 base = page_address(pages);
1204 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1205 region->vm_start = (unsigned long) base;
1206 region->vm_end = region->vm_start + len;
1207 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
1209 vma->vm_start = region->vm_start;
1210 vma->vm_end = region->vm_start + len;
1212 if (vma->vm_file) {
1213 /* read the contents of a file into the copy */
1214 mm_segment_t old_fs;
1215 loff_t fpos;
1217 fpos = vma->vm_pgoff;
1218 fpos <<= PAGE_SHIFT;
1220 old_fs = get_fs();
1221 set_fs(KERNEL_DS);
1222 ret = vma->vm_file->f_op->read(vma->vm_file, base, len, &fpos);
1223 set_fs(old_fs);
1225 if (ret < 0)
1226 goto error_free;
1228 /* clear the last little bit */
1229 if (ret < len)
1230 memset(base + ret, 0, len - ret);
1234 return 0;
1236 error_free:
1237 free_page_series(region->vm_start, region->vm_top);
1238 region->vm_start = vma->vm_start = 0;
1239 region->vm_end = vma->vm_end = 0;
1240 region->vm_top = 0;
1241 return ret;
1243 enomem:
1244 printk("Allocation of length %lu from process %d (%s) failed\n",
1245 len, current->pid, current->comm);
1246 show_free_areas(0);
1247 return -ENOMEM;
1251 * handle mapping creation for uClinux
1253 unsigned long do_mmap_pgoff(struct file *file,
1254 unsigned long addr,
1255 unsigned long len,
1256 unsigned long prot,
1257 unsigned long flags,
1258 unsigned long pgoff,
1259 unsigned long *populate)
1261 struct vm_area_struct *vma;
1262 struct vm_region *region;
1263 struct rb_node *rb;
1264 unsigned long capabilities, vm_flags, result;
1265 int ret;
1267 kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1269 *populate = 0;
1271 /* decide whether we should attempt the mapping, and if so what sort of
1272 * mapping */
1273 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1274 &capabilities);
1275 if (ret < 0) {
1276 kleave(" = %d [val]", ret);
1277 return ret;
1280 /* we ignore the address hint */
1281 addr = 0;
1282 len = PAGE_ALIGN(len);
1284 /* we've determined that we can make the mapping, now translate what we
1285 * now know into VMA flags */
1286 vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1288 /* we're going to need to record the mapping */
1289 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1290 if (!region)
1291 goto error_getting_region;
1293 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1294 if (!vma)
1295 goto error_getting_vma;
1297 region->vm_usage = 1;
1298 region->vm_flags = vm_flags;
1299 region->vm_pgoff = pgoff;
1301 INIT_LIST_HEAD(&vma->anon_vma_chain);
1302 vma->vm_flags = vm_flags;
1303 vma->vm_pgoff = pgoff;
1305 if (file) {
1306 region->vm_file = get_file(file);
1307 vma->vm_file = get_file(file);
1310 down_write(&nommu_region_sem);
1312 /* if we want to share, we need to check for regions created by other
1313 * mmap() calls that overlap with our proposed mapping
1314 * - we can only share with a superset match on most regular files
1315 * - shared mappings on character devices and memory backed files are
1316 * permitted to overlap inexactly as far as we are concerned for in
1317 * these cases, sharing is handled in the driver or filesystem rather
1318 * than here
1320 if (vm_flags & VM_MAYSHARE) {
1321 struct vm_region *pregion;
1322 unsigned long pglen, rpglen, pgend, rpgend, start;
1324 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1325 pgend = pgoff + pglen;
1327 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1328 pregion = rb_entry(rb, struct vm_region, vm_rb);
1330 if (!(pregion->vm_flags & VM_MAYSHARE))
1331 continue;
1333 /* search for overlapping mappings on the same file */
1334 if (file_inode(pregion->vm_file) !=
1335 file_inode(file))
1336 continue;
1338 if (pregion->vm_pgoff >= pgend)
1339 continue;
1341 rpglen = pregion->vm_end - pregion->vm_start;
1342 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1343 rpgend = pregion->vm_pgoff + rpglen;
1344 if (pgoff >= rpgend)
1345 continue;
1347 /* handle inexactly overlapping matches between
1348 * mappings */
1349 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1350 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1351 /* new mapping is not a subset of the region */
1352 if (!(capabilities & BDI_CAP_MAP_DIRECT))
1353 goto sharing_violation;
1354 continue;
1357 /* we've found a region we can share */
1358 pregion->vm_usage++;
1359 vma->vm_region = pregion;
1360 start = pregion->vm_start;
1361 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1362 vma->vm_start = start;
1363 vma->vm_end = start + len;
1365 if (pregion->vm_flags & VM_MAPPED_COPY) {
1366 kdebug("share copy");
1367 vma->vm_flags |= VM_MAPPED_COPY;
1368 } else {
1369 kdebug("share mmap");
1370 ret = do_mmap_shared_file(vma);
1371 if (ret < 0) {
1372 vma->vm_region = NULL;
1373 vma->vm_start = 0;
1374 vma->vm_end = 0;
1375 pregion->vm_usage--;
1376 pregion = NULL;
1377 goto error_just_free;
1380 fput(region->vm_file);
1381 kmem_cache_free(vm_region_jar, region);
1382 region = pregion;
1383 result = start;
1384 goto share;
1387 /* obtain the address at which to make a shared mapping
1388 * - this is the hook for quasi-memory character devices to
1389 * tell us the location of a shared mapping
1391 if (capabilities & BDI_CAP_MAP_DIRECT) {
1392 addr = file->f_op->get_unmapped_area(file, addr, len,
1393 pgoff, flags);
1394 if (IS_ERR_VALUE(addr)) {
1395 ret = addr;
1396 if (ret != -ENOSYS)
1397 goto error_just_free;
1399 /* the driver refused to tell us where to site
1400 * the mapping so we'll have to attempt to copy
1401 * it */
1402 ret = -ENODEV;
1403 if (!(capabilities & BDI_CAP_MAP_COPY))
1404 goto error_just_free;
1406 capabilities &= ~BDI_CAP_MAP_DIRECT;
1407 } else {
1408 vma->vm_start = region->vm_start = addr;
1409 vma->vm_end = region->vm_end = addr + len;
1414 vma->vm_region = region;
1416 /* set up the mapping
1417 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1419 if (file && vma->vm_flags & VM_SHARED)
1420 ret = do_mmap_shared_file(vma);
1421 else
1422 ret = do_mmap_private(vma, region, len, capabilities);
1423 if (ret < 0)
1424 goto error_just_free;
1425 add_nommu_region(region);
1427 /* clear anonymous mappings that don't ask for uninitialized data */
1428 if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1429 memset((void *)region->vm_start, 0,
1430 region->vm_end - region->vm_start);
1432 /* okay... we have a mapping; now we have to register it */
1433 result = vma->vm_start;
1435 current->mm->total_vm += len >> PAGE_SHIFT;
1437 share:
1438 add_vma_to_mm(current->mm, vma);
1440 /* we flush the region from the icache only when the first executable
1441 * mapping of it is made */
1442 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1443 flush_icache_range(region->vm_start, region->vm_end);
1444 region->vm_icache_flushed = true;
1447 up_write(&nommu_region_sem);
1449 kleave(" = %lx", result);
1450 return result;
1452 error_just_free:
1453 up_write(&nommu_region_sem);
1454 error:
1455 if (region->vm_file)
1456 fput(region->vm_file);
1457 kmem_cache_free(vm_region_jar, region);
1458 if (vma->vm_file)
1459 fput(vma->vm_file);
1460 kmem_cache_free(vm_area_cachep, vma);
1461 kleave(" = %d", ret);
1462 return ret;
1464 sharing_violation:
1465 up_write(&nommu_region_sem);
1466 printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1467 ret = -EINVAL;
1468 goto error;
1470 error_getting_vma:
1471 kmem_cache_free(vm_region_jar, region);
1472 printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1473 " from process %d failed\n",
1474 len, current->pid);
1475 show_free_areas(0);
1476 return -ENOMEM;
1478 error_getting_region:
1479 printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1480 " from process %d failed\n",
1481 len, current->pid);
1482 show_free_areas(0);
1483 return -ENOMEM;
1486 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1487 unsigned long, prot, unsigned long, flags,
1488 unsigned long, fd, unsigned long, pgoff)
1490 struct file *file = NULL;
1491 unsigned long retval = -EBADF;
1493 audit_mmap_fd(fd, flags);
1494 if (!(flags & MAP_ANONYMOUS)) {
1495 file = fget(fd);
1496 if (!file)
1497 goto out;
1500 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1502 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1504 if (file)
1505 fput(file);
1506 out:
1507 return retval;
1510 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1511 struct mmap_arg_struct {
1512 unsigned long addr;
1513 unsigned long len;
1514 unsigned long prot;
1515 unsigned long flags;
1516 unsigned long fd;
1517 unsigned long offset;
1520 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1522 struct mmap_arg_struct a;
1524 if (copy_from_user(&a, arg, sizeof(a)))
1525 return -EFAULT;
1526 if (a.offset & ~PAGE_MASK)
1527 return -EINVAL;
1529 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1530 a.offset >> PAGE_SHIFT);
1532 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1535 * split a vma into two pieces at address 'addr', a new vma is allocated either
1536 * for the first part or the tail.
1538 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1539 unsigned long addr, int new_below)
1541 struct vm_area_struct *new;
1542 struct vm_region *region;
1543 unsigned long npages;
1545 kenter("");
1547 /* we're only permitted to split anonymous regions (these should have
1548 * only a single usage on the region) */
1549 if (vma->vm_file)
1550 return -ENOMEM;
1552 if (mm->map_count >= sysctl_max_map_count)
1553 return -ENOMEM;
1555 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1556 if (!region)
1557 return -ENOMEM;
1559 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1560 if (!new) {
1561 kmem_cache_free(vm_region_jar, region);
1562 return -ENOMEM;
1565 /* most fields are the same, copy all, and then fixup */
1566 *new = *vma;
1567 *region = *vma->vm_region;
1568 new->vm_region = region;
1570 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1572 if (new_below) {
1573 region->vm_top = region->vm_end = new->vm_end = addr;
1574 } else {
1575 region->vm_start = new->vm_start = addr;
1576 region->vm_pgoff = new->vm_pgoff += npages;
1579 if (new->vm_ops && new->vm_ops->open)
1580 new->vm_ops->open(new);
1582 delete_vma_from_mm(vma);
1583 down_write(&nommu_region_sem);
1584 delete_nommu_region(vma->vm_region);
1585 if (new_below) {
1586 vma->vm_region->vm_start = vma->vm_start = addr;
1587 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1588 } else {
1589 vma->vm_region->vm_end = vma->vm_end = addr;
1590 vma->vm_region->vm_top = addr;
1592 add_nommu_region(vma->vm_region);
1593 add_nommu_region(new->vm_region);
1594 up_write(&nommu_region_sem);
1595 add_vma_to_mm(mm, vma);
1596 add_vma_to_mm(mm, new);
1597 return 0;
1601 * shrink a VMA by removing the specified chunk from either the beginning or
1602 * the end
1604 static int shrink_vma(struct mm_struct *mm,
1605 struct vm_area_struct *vma,
1606 unsigned long from, unsigned long to)
1608 struct vm_region *region;
1610 kenter("");
1612 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1613 * and list */
1614 delete_vma_from_mm(vma);
1615 if (from > vma->vm_start)
1616 vma->vm_end = from;
1617 else
1618 vma->vm_start = to;
1619 add_vma_to_mm(mm, vma);
1621 /* cut the backing region down to size */
1622 region = vma->vm_region;
1623 BUG_ON(region->vm_usage != 1);
1625 down_write(&nommu_region_sem);
1626 delete_nommu_region(region);
1627 if (from > region->vm_start) {
1628 to = region->vm_top;
1629 region->vm_top = region->vm_end = from;
1630 } else {
1631 region->vm_start = to;
1633 add_nommu_region(region);
1634 up_write(&nommu_region_sem);
1636 free_page_series(from, to);
1637 return 0;
1641 * release a mapping
1642 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1643 * VMA, though it need not cover the whole VMA
1645 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1647 struct vm_area_struct *vma;
1648 unsigned long end;
1649 int ret;
1651 kenter(",%lx,%zx", start, len);
1653 len = PAGE_ALIGN(len);
1654 if (len == 0)
1655 return -EINVAL;
1657 end = start + len;
1659 /* find the first potentially overlapping VMA */
1660 vma = find_vma(mm, start);
1661 if (!vma) {
1662 static int limit = 0;
1663 if (limit < 5) {
1664 printk(KERN_WARNING
1665 "munmap of memory not mmapped by process %d"
1666 " (%s): 0x%lx-0x%lx\n",
1667 current->pid, current->comm,
1668 start, start + len - 1);
1669 limit++;
1671 return -EINVAL;
1674 /* we're allowed to split an anonymous VMA but not a file-backed one */
1675 if (vma->vm_file) {
1676 do {
1677 if (start > vma->vm_start) {
1678 kleave(" = -EINVAL [miss]");
1679 return -EINVAL;
1681 if (end == vma->vm_end)
1682 goto erase_whole_vma;
1683 vma = vma->vm_next;
1684 } while (vma);
1685 kleave(" = -EINVAL [split file]");
1686 return -EINVAL;
1687 } else {
1688 /* the chunk must be a subset of the VMA found */
1689 if (start == vma->vm_start && end == vma->vm_end)
1690 goto erase_whole_vma;
1691 if (start < vma->vm_start || end > vma->vm_end) {
1692 kleave(" = -EINVAL [superset]");
1693 return -EINVAL;
1695 if (start & ~PAGE_MASK) {
1696 kleave(" = -EINVAL [unaligned start]");
1697 return -EINVAL;
1699 if (end != vma->vm_end && end & ~PAGE_MASK) {
1700 kleave(" = -EINVAL [unaligned split]");
1701 return -EINVAL;
1703 if (start != vma->vm_start && end != vma->vm_end) {
1704 ret = split_vma(mm, vma, start, 1);
1705 if (ret < 0) {
1706 kleave(" = %d [split]", ret);
1707 return ret;
1710 return shrink_vma(mm, vma, start, end);
1713 erase_whole_vma:
1714 delete_vma_from_mm(vma);
1715 delete_vma(mm, vma);
1716 kleave(" = 0");
1717 return 0;
1719 EXPORT_SYMBOL(do_munmap);
1721 int vm_munmap(unsigned long addr, size_t len)
1723 struct mm_struct *mm = current->mm;
1724 int ret;
1726 down_write(&mm->mmap_sem);
1727 ret = do_munmap(mm, addr, len);
1728 up_write(&mm->mmap_sem);
1729 return ret;
1731 EXPORT_SYMBOL(vm_munmap);
1733 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1735 return vm_munmap(addr, len);
1739 * release all the mappings made in a process's VM space
1741 void exit_mmap(struct mm_struct *mm)
1743 struct vm_area_struct *vma;
1745 if (!mm)
1746 return;
1748 kenter("");
1750 mm->total_vm = 0;
1752 while ((vma = mm->mmap)) {
1753 mm->mmap = vma->vm_next;
1754 delete_vma_from_mm(vma);
1755 delete_vma(mm, vma);
1756 cond_resched();
1759 kleave("");
1762 unsigned long vm_brk(unsigned long addr, unsigned long len)
1764 return -ENOMEM;
1768 * expand (or shrink) an existing mapping, potentially moving it at the same
1769 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1771 * under NOMMU conditions, we only permit changing a mapping's size, and only
1772 * as long as it stays within the region allocated by do_mmap_private() and the
1773 * block is not shareable
1775 * MREMAP_FIXED is not supported under NOMMU conditions
1777 static unsigned long do_mremap(unsigned long addr,
1778 unsigned long old_len, unsigned long new_len,
1779 unsigned long flags, unsigned long new_addr)
1781 struct vm_area_struct *vma;
1783 /* insanity checks first */
1784 old_len = PAGE_ALIGN(old_len);
1785 new_len = PAGE_ALIGN(new_len);
1786 if (old_len == 0 || new_len == 0)
1787 return (unsigned long) -EINVAL;
1789 if (addr & ~PAGE_MASK)
1790 return -EINVAL;
1792 if (flags & MREMAP_FIXED && new_addr != addr)
1793 return (unsigned long) -EINVAL;
1795 vma = find_vma_exact(current->mm, addr, old_len);
1796 if (!vma)
1797 return (unsigned long) -EINVAL;
1799 if (vma->vm_end != vma->vm_start + old_len)
1800 return (unsigned long) -EFAULT;
1802 if (vma->vm_flags & VM_MAYSHARE)
1803 return (unsigned long) -EPERM;
1805 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1806 return (unsigned long) -ENOMEM;
1808 /* all checks complete - do it */
1809 vma->vm_end = vma->vm_start + new_len;
1810 return vma->vm_start;
1813 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1814 unsigned long, new_len, unsigned long, flags,
1815 unsigned long, new_addr)
1817 unsigned long ret;
1819 down_write(&current->mm->mmap_sem);
1820 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1821 up_write(&current->mm->mmap_sem);
1822 return ret;
1825 struct page *follow_page_mask(struct vm_area_struct *vma,
1826 unsigned long address, unsigned int flags,
1827 unsigned int *page_mask)
1829 *page_mask = 0;
1830 return NULL;
1833 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1834 unsigned long pfn, unsigned long size, pgprot_t prot)
1836 if (addr != (pfn << PAGE_SHIFT))
1837 return -EINVAL;
1839 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1840 return 0;
1842 EXPORT_SYMBOL(remap_pfn_range);
1844 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1846 unsigned long pfn = start >> PAGE_SHIFT;
1847 unsigned long vm_len = vma->vm_end - vma->vm_start;
1849 pfn += vma->vm_pgoff;
1850 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1852 EXPORT_SYMBOL(vm_iomap_memory);
1854 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1855 unsigned long pgoff)
1857 unsigned int size = vma->vm_end - vma->vm_start;
1859 if (!(vma->vm_flags & VM_USERMAP))
1860 return -EINVAL;
1862 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1863 vma->vm_end = vma->vm_start + size;
1865 return 0;
1867 EXPORT_SYMBOL(remap_vmalloc_range);
1869 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1870 unsigned long len, unsigned long pgoff, unsigned long flags)
1872 return -ENOMEM;
1875 void unmap_mapping_range(struct address_space *mapping,
1876 loff_t const holebegin, loff_t const holelen,
1877 int even_cows)
1880 EXPORT_SYMBOL(unmap_mapping_range);
1883 * Check that a process has enough memory to allocate a new virtual
1884 * mapping. 0 means there is enough memory for the allocation to
1885 * succeed and -ENOMEM implies there is not.
1887 * We currently support three overcommit policies, which are set via the
1888 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
1890 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1891 * Additional code 2002 Jul 20 by Robert Love.
1893 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1895 * Note this is a helper function intended to be used by LSMs which
1896 * wish to use this logic.
1898 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1900 unsigned long free, allowed, reserve;
1902 vm_acct_memory(pages);
1905 * Sometimes we want to use more memory than we have
1907 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1908 return 0;
1910 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1911 free = global_page_state(NR_FREE_PAGES);
1912 free += global_page_state(NR_FILE_PAGES);
1915 * shmem pages shouldn't be counted as free in this
1916 * case, they can't be purged, only swapped out, and
1917 * that won't affect the overall amount of available
1918 * memory in the system.
1920 free -= global_page_state(NR_SHMEM);
1922 free += get_nr_swap_pages();
1925 * Any slabs which are created with the
1926 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1927 * which are reclaimable, under pressure. The dentry
1928 * cache and most inode caches should fall into this
1930 free += global_page_state(NR_SLAB_RECLAIMABLE);
1933 * Leave reserved pages. The pages are not for anonymous pages.
1935 if (free <= totalreserve_pages)
1936 goto error;
1937 else
1938 free -= totalreserve_pages;
1941 * Reserve some for root
1943 if (!cap_sys_admin)
1944 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1946 if (free > pages)
1947 return 0;
1949 goto error;
1952 allowed = vm_commit_limit();
1954 * Reserve some 3% for root
1956 if (!cap_sys_admin)
1957 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1960 * Don't let a single process grow so big a user can't recover
1962 if (mm) {
1963 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
1964 allowed -= min(mm->total_vm / 32, reserve);
1967 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1968 return 0;
1970 error:
1971 vm_unacct_memory(pages);
1973 return -ENOMEM;
1976 int in_gate_area_no_mm(unsigned long addr)
1978 return 0;
1981 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1983 BUG();
1984 return 0;
1986 EXPORT_SYMBOL(filemap_fault);
1988 int generic_file_remap_pages(struct vm_area_struct *vma, unsigned long addr,
1989 unsigned long size, pgoff_t pgoff)
1991 BUG();
1992 return 0;
1994 EXPORT_SYMBOL(generic_file_remap_pages);
1996 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1997 unsigned long addr, void *buf, int len, int write)
1999 struct vm_area_struct *vma;
2001 down_read(&mm->mmap_sem);
2003 /* the access must start within one of the target process's mappings */
2004 vma = find_vma(mm, addr);
2005 if (vma) {
2006 /* don't overrun this mapping */
2007 if (addr + len >= vma->vm_end)
2008 len = vma->vm_end - addr;
2010 /* only read or write mappings where it is permitted */
2011 if (write && vma->vm_flags & VM_MAYWRITE)
2012 copy_to_user_page(vma, NULL, addr,
2013 (void *) addr, buf, len);
2014 else if (!write && vma->vm_flags & VM_MAYREAD)
2015 copy_from_user_page(vma, NULL, addr,
2016 buf, (void *) addr, len);
2017 else
2018 len = 0;
2019 } else {
2020 len = 0;
2023 up_read(&mm->mmap_sem);
2025 return len;
2029 * @access_remote_vm - access another process' address space
2030 * @mm: the mm_struct of the target address space
2031 * @addr: start address to access
2032 * @buf: source or destination buffer
2033 * @len: number of bytes to transfer
2034 * @write: whether the access is a write
2036 * The caller must hold a reference on @mm.
2038 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2039 void *buf, int len, int write)
2041 return __access_remote_vm(NULL, mm, addr, buf, len, write);
2045 * Access another process' address space.
2046 * - source/target buffer must be kernel space
2048 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2050 struct mm_struct *mm;
2052 if (addr + len < addr)
2053 return 0;
2055 mm = get_task_mm(tsk);
2056 if (!mm)
2057 return 0;
2059 len = __access_remote_vm(tsk, mm, addr, buf, len, write);
2061 mmput(mm);
2062 return len;
2066 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2067 * @inode: The inode to check
2068 * @size: The current filesize of the inode
2069 * @newsize: The proposed filesize of the inode
2071 * Check the shared mappings on an inode on behalf of a shrinking truncate to
2072 * make sure that that any outstanding VMAs aren't broken and then shrink the
2073 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2074 * automatically grant mappings that are too large.
2076 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2077 size_t newsize)
2079 struct vm_area_struct *vma;
2080 struct vm_region *region;
2081 pgoff_t low, high;
2082 size_t r_size, r_top;
2084 low = newsize >> PAGE_SHIFT;
2085 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2087 down_write(&nommu_region_sem);
2088 mutex_lock(&inode->i_mapping->i_mmap_mutex);
2090 /* search for VMAs that fall within the dead zone */
2091 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
2092 /* found one - only interested if it's shared out of the page
2093 * cache */
2094 if (vma->vm_flags & VM_SHARED) {
2095 mutex_unlock(&inode->i_mapping->i_mmap_mutex);
2096 up_write(&nommu_region_sem);
2097 return -ETXTBSY; /* not quite true, but near enough */
2101 /* reduce any regions that overlap the dead zone - if in existence,
2102 * these will be pointed to by VMAs that don't overlap the dead zone
2104 * we don't check for any regions that start beyond the EOF as there
2105 * shouldn't be any
2107 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap,
2108 0, ULONG_MAX) {
2109 if (!(vma->vm_flags & VM_SHARED))
2110 continue;
2112 region = vma->vm_region;
2113 r_size = region->vm_top - region->vm_start;
2114 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2116 if (r_top > newsize) {
2117 region->vm_top -= r_top - newsize;
2118 if (region->vm_end > region->vm_top)
2119 region->vm_end = region->vm_top;
2123 mutex_unlock(&inode->i_mapping->i_mmap_mutex);
2124 up_write(&nommu_region_sem);
2125 return 0;
2129 * Initialise sysctl_user_reserve_kbytes.
2131 * This is intended to prevent a user from starting a single memory hogging
2132 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
2133 * mode.
2135 * The default value is min(3% of free memory, 128MB)
2136 * 128MB is enough to recover with sshd/login, bash, and top/kill.
2138 static int __meminit init_user_reserve(void)
2140 unsigned long free_kbytes;
2142 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2144 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
2145 return 0;
2147 module_init(init_user_reserve)
2150 * Initialise sysctl_admin_reserve_kbytes.
2152 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
2153 * to log in and kill a memory hogging process.
2155 * Systems with more than 256MB will reserve 8MB, enough to recover
2156 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
2157 * only reserve 3% of free pages by default.
2159 static int __meminit init_admin_reserve(void)
2161 unsigned long free_kbytes;
2163 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2165 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
2166 return 0;
2168 module_init(init_admin_reserve)