PM / Domains: Remove pm_genpd_poweron() API
[linux/fpc-iii.git] / kernel / cgroup.c
blob2cf0f79f1fc9014cffce5ed79969bbcdaa3b9f90
1 /*
2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include <linux/cgroup.h>
32 #include <linux/cred.h>
33 #include <linux/ctype.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/list.h>
38 #include <linux/magic.h>
39 #include <linux/mm.h>
40 #include <linux/mutex.h>
41 #include <linux/mount.h>
42 #include <linux/pagemap.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rcupdate.h>
45 #include <linux/sched.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/rwsem.h>
49 #include <linux/percpu-rwsem.h>
50 #include <linux/string.h>
51 #include <linux/sort.h>
52 #include <linux/kmod.h>
53 #include <linux/delayacct.h>
54 #include <linux/cgroupstats.h>
55 #include <linux/hashtable.h>
56 #include <linux/pid_namespace.h>
57 #include <linux/idr.h>
58 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
59 #include <linux/kthread.h>
60 #include <linux/delay.h>
62 #include <linux/atomic.h>
65 * pidlists linger the following amount before being destroyed. The goal
66 * is avoiding frequent destruction in the middle of consecutive read calls
67 * Expiring in the middle is a performance problem not a correctness one.
68 * 1 sec should be enough.
70 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
72 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
73 MAX_CFTYPE_NAME + 2)
76 * cgroup_mutex is the master lock. Any modification to cgroup or its
77 * hierarchy must be performed while holding it.
79 * css_set_rwsem protects task->cgroups pointer, the list of css_set
80 * objects, and the chain of tasks off each css_set.
82 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
83 * cgroup.h can use them for lockdep annotations.
85 #ifdef CONFIG_PROVE_RCU
86 DEFINE_MUTEX(cgroup_mutex);
87 DECLARE_RWSEM(css_set_rwsem);
88 EXPORT_SYMBOL_GPL(cgroup_mutex);
89 EXPORT_SYMBOL_GPL(css_set_rwsem);
90 #else
91 static DEFINE_MUTEX(cgroup_mutex);
92 static DECLARE_RWSEM(css_set_rwsem);
93 #endif
96 * Protects cgroup_idr and css_idr so that IDs can be released without
97 * grabbing cgroup_mutex.
99 static DEFINE_SPINLOCK(cgroup_idr_lock);
102 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
103 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
105 static DEFINE_SPINLOCK(release_agent_path_lock);
107 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
109 #define cgroup_assert_mutex_or_rcu_locked() \
110 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
111 !lockdep_is_held(&cgroup_mutex), \
112 "cgroup_mutex or RCU read lock required");
115 * cgroup destruction makes heavy use of work items and there can be a lot
116 * of concurrent destructions. Use a separate workqueue so that cgroup
117 * destruction work items don't end up filling up max_active of system_wq
118 * which may lead to deadlock.
120 static struct workqueue_struct *cgroup_destroy_wq;
123 * pidlist destructions need to be flushed on cgroup destruction. Use a
124 * separate workqueue as flush domain.
126 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
128 /* generate an array of cgroup subsystem pointers */
129 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
130 static struct cgroup_subsys *cgroup_subsys[] = {
131 #include <linux/cgroup_subsys.h>
133 #undef SUBSYS
135 /* array of cgroup subsystem names */
136 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
137 static const char *cgroup_subsys_name[] = {
138 #include <linux/cgroup_subsys.h>
140 #undef SUBSYS
143 * The default hierarchy, reserved for the subsystems that are otherwise
144 * unattached - it never has more than a single cgroup, and all tasks are
145 * part of that cgroup.
147 struct cgroup_root cgrp_dfl_root;
148 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
151 * The default hierarchy always exists but is hidden until mounted for the
152 * first time. This is for backward compatibility.
154 static bool cgrp_dfl_root_visible;
157 * Set by the boot param of the same name and makes subsystems with NULL
158 * ->dfl_files to use ->legacy_files on the default hierarchy.
160 static bool cgroup_legacy_files_on_dfl;
162 /* some controllers are not supported in the default hierarchy */
163 static unsigned long cgrp_dfl_root_inhibit_ss_mask;
165 /* The list of hierarchy roots */
167 static LIST_HEAD(cgroup_roots);
168 static int cgroup_root_count;
170 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
171 static DEFINE_IDR(cgroup_hierarchy_idr);
174 * Assign a monotonically increasing serial number to csses. It guarantees
175 * cgroups with bigger numbers are newer than those with smaller numbers.
176 * Also, as csses are always appended to the parent's ->children list, it
177 * guarantees that sibling csses are always sorted in the ascending serial
178 * number order on the list. Protected by cgroup_mutex.
180 static u64 css_serial_nr_next = 1;
183 * These bitmask flags indicate whether tasks in the fork and exit paths have
184 * fork/exit handlers to call. This avoids us having to do extra work in the
185 * fork/exit path to check which subsystems have fork/exit callbacks.
187 static unsigned long have_fork_callback __read_mostly;
188 static unsigned long have_exit_callback __read_mostly;
190 /* Ditto for the can_fork callback. */
191 static unsigned long have_canfork_callback __read_mostly;
193 static struct cftype cgroup_dfl_base_files[];
194 static struct cftype cgroup_legacy_base_files[];
196 static int rebind_subsystems(struct cgroup_root *dst_root,
197 unsigned long ss_mask);
198 static int cgroup_destroy_locked(struct cgroup *cgrp);
199 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
200 bool visible);
201 static void css_release(struct percpu_ref *ref);
202 static void kill_css(struct cgroup_subsys_state *css);
203 static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
204 bool is_add);
206 /* IDR wrappers which synchronize using cgroup_idr_lock */
207 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
208 gfp_t gfp_mask)
210 int ret;
212 idr_preload(gfp_mask);
213 spin_lock_bh(&cgroup_idr_lock);
214 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_WAIT);
215 spin_unlock_bh(&cgroup_idr_lock);
216 idr_preload_end();
217 return ret;
220 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
222 void *ret;
224 spin_lock_bh(&cgroup_idr_lock);
225 ret = idr_replace(idr, ptr, id);
226 spin_unlock_bh(&cgroup_idr_lock);
227 return ret;
230 static void cgroup_idr_remove(struct idr *idr, int id)
232 spin_lock_bh(&cgroup_idr_lock);
233 idr_remove(idr, id);
234 spin_unlock_bh(&cgroup_idr_lock);
237 static struct cgroup *cgroup_parent(struct cgroup *cgrp)
239 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
241 if (parent_css)
242 return container_of(parent_css, struct cgroup, self);
243 return NULL;
247 * cgroup_css - obtain a cgroup's css for the specified subsystem
248 * @cgrp: the cgroup of interest
249 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
251 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
252 * function must be called either under cgroup_mutex or rcu_read_lock() and
253 * the caller is responsible for pinning the returned css if it wants to
254 * keep accessing it outside the said locks. This function may return
255 * %NULL if @cgrp doesn't have @subsys_id enabled.
257 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
258 struct cgroup_subsys *ss)
260 if (ss)
261 return rcu_dereference_check(cgrp->subsys[ss->id],
262 lockdep_is_held(&cgroup_mutex));
263 else
264 return &cgrp->self;
268 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
269 * @cgrp: the cgroup of interest
270 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
272 * Similar to cgroup_css() but returns the effective css, which is defined
273 * as the matching css of the nearest ancestor including self which has @ss
274 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
275 * function is guaranteed to return non-NULL css.
277 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
278 struct cgroup_subsys *ss)
280 lockdep_assert_held(&cgroup_mutex);
282 if (!ss)
283 return &cgrp->self;
285 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
286 return NULL;
289 * This function is used while updating css associations and thus
290 * can't test the csses directly. Use ->child_subsys_mask.
292 while (cgroup_parent(cgrp) &&
293 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
294 cgrp = cgroup_parent(cgrp);
296 return cgroup_css(cgrp, ss);
300 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
301 * @cgrp: the cgroup of interest
302 * @ss: the subsystem of interest
304 * Find and get the effective css of @cgrp for @ss. The effective css is
305 * defined as the matching css of the nearest ancestor including self which
306 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
307 * the root css is returned, so this function always returns a valid css.
308 * The returned css must be put using css_put().
310 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
311 struct cgroup_subsys *ss)
313 struct cgroup_subsys_state *css;
315 rcu_read_lock();
317 do {
318 css = cgroup_css(cgrp, ss);
320 if (css && css_tryget_online(css))
321 goto out_unlock;
322 cgrp = cgroup_parent(cgrp);
323 } while (cgrp);
325 css = init_css_set.subsys[ss->id];
326 css_get(css);
327 out_unlock:
328 rcu_read_unlock();
329 return css;
332 /* convenient tests for these bits */
333 static inline bool cgroup_is_dead(const struct cgroup *cgrp)
335 return !(cgrp->self.flags & CSS_ONLINE);
338 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
340 struct cgroup *cgrp = of->kn->parent->priv;
341 struct cftype *cft = of_cft(of);
344 * This is open and unprotected implementation of cgroup_css().
345 * seq_css() is only called from a kernfs file operation which has
346 * an active reference on the file. Because all the subsystem
347 * files are drained before a css is disassociated with a cgroup,
348 * the matching css from the cgroup's subsys table is guaranteed to
349 * be and stay valid until the enclosing operation is complete.
351 if (cft->ss)
352 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
353 else
354 return &cgrp->self;
356 EXPORT_SYMBOL_GPL(of_css);
359 * cgroup_is_descendant - test ancestry
360 * @cgrp: the cgroup to be tested
361 * @ancestor: possible ancestor of @cgrp
363 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
364 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
365 * and @ancestor are accessible.
367 bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
369 while (cgrp) {
370 if (cgrp == ancestor)
371 return true;
372 cgrp = cgroup_parent(cgrp);
374 return false;
377 static int notify_on_release(const struct cgroup *cgrp)
379 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
383 * for_each_css - iterate all css's of a cgroup
384 * @css: the iteration cursor
385 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
386 * @cgrp: the target cgroup to iterate css's of
388 * Should be called under cgroup_[tree_]mutex.
390 #define for_each_css(css, ssid, cgrp) \
391 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
392 if (!((css) = rcu_dereference_check( \
393 (cgrp)->subsys[(ssid)], \
394 lockdep_is_held(&cgroup_mutex)))) { } \
395 else
398 * for_each_e_css - iterate all effective css's of a cgroup
399 * @css: the iteration cursor
400 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
401 * @cgrp: the target cgroup to iterate css's of
403 * Should be called under cgroup_[tree_]mutex.
405 #define for_each_e_css(css, ssid, cgrp) \
406 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
407 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
409 else
412 * for_each_subsys - iterate all enabled cgroup subsystems
413 * @ss: the iteration cursor
414 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
416 #define for_each_subsys(ss, ssid) \
417 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
418 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
421 * for_each_subsys_which - filter for_each_subsys with a bitmask
422 * @ss: the iteration cursor
423 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
424 * @ss_maskp: a pointer to the bitmask
426 * The block will only run for cases where the ssid-th bit (1 << ssid) of
427 * mask is set to 1.
429 #define for_each_subsys_which(ss, ssid, ss_maskp) \
430 if (!CGROUP_SUBSYS_COUNT) /* to avoid spurious gcc warning */ \
431 (ssid) = 0; \
432 else \
433 for_each_set_bit(ssid, ss_maskp, CGROUP_SUBSYS_COUNT) \
434 if (((ss) = cgroup_subsys[ssid]) && false) \
435 break; \
436 else
438 /* iterate across the hierarchies */
439 #define for_each_root(root) \
440 list_for_each_entry((root), &cgroup_roots, root_list)
442 /* iterate over child cgrps, lock should be held throughout iteration */
443 #define cgroup_for_each_live_child(child, cgrp) \
444 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
445 if (({ lockdep_assert_held(&cgroup_mutex); \
446 cgroup_is_dead(child); })) \
448 else
450 static void cgroup_release_agent(struct work_struct *work);
451 static void check_for_release(struct cgroup *cgrp);
454 * A cgroup can be associated with multiple css_sets as different tasks may
455 * belong to different cgroups on different hierarchies. In the other
456 * direction, a css_set is naturally associated with multiple cgroups.
457 * This M:N relationship is represented by the following link structure
458 * which exists for each association and allows traversing the associations
459 * from both sides.
461 struct cgrp_cset_link {
462 /* the cgroup and css_set this link associates */
463 struct cgroup *cgrp;
464 struct css_set *cset;
466 /* list of cgrp_cset_links anchored at cgrp->cset_links */
467 struct list_head cset_link;
469 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
470 struct list_head cgrp_link;
474 * The default css_set - used by init and its children prior to any
475 * hierarchies being mounted. It contains a pointer to the root state
476 * for each subsystem. Also used to anchor the list of css_sets. Not
477 * reference-counted, to improve performance when child cgroups
478 * haven't been created.
480 struct css_set init_css_set = {
481 .refcount = ATOMIC_INIT(1),
482 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
483 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
484 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
485 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
486 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
489 static int css_set_count = 1; /* 1 for init_css_set */
492 * cgroup_update_populated - updated populated count of a cgroup
493 * @cgrp: the target cgroup
494 * @populated: inc or dec populated count
496 * @cgrp is either getting the first task (css_set) or losing the last.
497 * Update @cgrp->populated_cnt accordingly. The count is propagated
498 * towards root so that a given cgroup's populated_cnt is zero iff the
499 * cgroup and all its descendants are empty.
501 * @cgrp's interface file "cgroup.populated" is zero if
502 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
503 * changes from or to zero, userland is notified that the content of the
504 * interface file has changed. This can be used to detect when @cgrp and
505 * its descendants become populated or empty.
507 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
509 lockdep_assert_held(&css_set_rwsem);
511 do {
512 bool trigger;
514 if (populated)
515 trigger = !cgrp->populated_cnt++;
516 else
517 trigger = !--cgrp->populated_cnt;
519 if (!trigger)
520 break;
522 if (cgrp->populated_kn)
523 kernfs_notify(cgrp->populated_kn);
524 cgrp = cgroup_parent(cgrp);
525 } while (cgrp);
529 * hash table for cgroup groups. This improves the performance to find
530 * an existing css_set. This hash doesn't (currently) take into
531 * account cgroups in empty hierarchies.
533 #define CSS_SET_HASH_BITS 7
534 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
536 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
538 unsigned long key = 0UL;
539 struct cgroup_subsys *ss;
540 int i;
542 for_each_subsys(ss, i)
543 key += (unsigned long)css[i];
544 key = (key >> 16) ^ key;
546 return key;
549 static void put_css_set_locked(struct css_set *cset)
551 struct cgrp_cset_link *link, *tmp_link;
552 struct cgroup_subsys *ss;
553 int ssid;
555 lockdep_assert_held(&css_set_rwsem);
557 if (!atomic_dec_and_test(&cset->refcount))
558 return;
560 /* This css_set is dead. unlink it and release cgroup refcounts */
561 for_each_subsys(ss, ssid)
562 list_del(&cset->e_cset_node[ssid]);
563 hash_del(&cset->hlist);
564 css_set_count--;
566 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
567 struct cgroup *cgrp = link->cgrp;
569 list_del(&link->cset_link);
570 list_del(&link->cgrp_link);
572 /* @cgrp can't go away while we're holding css_set_rwsem */
573 if (list_empty(&cgrp->cset_links)) {
574 cgroup_update_populated(cgrp, false);
575 check_for_release(cgrp);
578 kfree(link);
581 kfree_rcu(cset, rcu_head);
584 static void put_css_set(struct css_set *cset)
587 * Ensure that the refcount doesn't hit zero while any readers
588 * can see it. Similar to atomic_dec_and_lock(), but for an
589 * rwlock
591 if (atomic_add_unless(&cset->refcount, -1, 1))
592 return;
594 down_write(&css_set_rwsem);
595 put_css_set_locked(cset);
596 up_write(&css_set_rwsem);
600 * refcounted get/put for css_set objects
602 static inline void get_css_set(struct css_set *cset)
604 atomic_inc(&cset->refcount);
608 * compare_css_sets - helper function for find_existing_css_set().
609 * @cset: candidate css_set being tested
610 * @old_cset: existing css_set for a task
611 * @new_cgrp: cgroup that's being entered by the task
612 * @template: desired set of css pointers in css_set (pre-calculated)
614 * Returns true if "cset" matches "old_cset" except for the hierarchy
615 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
617 static bool compare_css_sets(struct css_set *cset,
618 struct css_set *old_cset,
619 struct cgroup *new_cgrp,
620 struct cgroup_subsys_state *template[])
622 struct list_head *l1, *l2;
625 * On the default hierarchy, there can be csets which are
626 * associated with the same set of cgroups but different csses.
627 * Let's first ensure that csses match.
629 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
630 return false;
633 * Compare cgroup pointers in order to distinguish between
634 * different cgroups in hierarchies. As different cgroups may
635 * share the same effective css, this comparison is always
636 * necessary.
638 l1 = &cset->cgrp_links;
639 l2 = &old_cset->cgrp_links;
640 while (1) {
641 struct cgrp_cset_link *link1, *link2;
642 struct cgroup *cgrp1, *cgrp2;
644 l1 = l1->next;
645 l2 = l2->next;
646 /* See if we reached the end - both lists are equal length. */
647 if (l1 == &cset->cgrp_links) {
648 BUG_ON(l2 != &old_cset->cgrp_links);
649 break;
650 } else {
651 BUG_ON(l2 == &old_cset->cgrp_links);
653 /* Locate the cgroups associated with these links. */
654 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
655 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
656 cgrp1 = link1->cgrp;
657 cgrp2 = link2->cgrp;
658 /* Hierarchies should be linked in the same order. */
659 BUG_ON(cgrp1->root != cgrp2->root);
662 * If this hierarchy is the hierarchy of the cgroup
663 * that's changing, then we need to check that this
664 * css_set points to the new cgroup; if it's any other
665 * hierarchy, then this css_set should point to the
666 * same cgroup as the old css_set.
668 if (cgrp1->root == new_cgrp->root) {
669 if (cgrp1 != new_cgrp)
670 return false;
671 } else {
672 if (cgrp1 != cgrp2)
673 return false;
676 return true;
680 * find_existing_css_set - init css array and find the matching css_set
681 * @old_cset: the css_set that we're using before the cgroup transition
682 * @cgrp: the cgroup that we're moving into
683 * @template: out param for the new set of csses, should be clear on entry
685 static struct css_set *find_existing_css_set(struct css_set *old_cset,
686 struct cgroup *cgrp,
687 struct cgroup_subsys_state *template[])
689 struct cgroup_root *root = cgrp->root;
690 struct cgroup_subsys *ss;
691 struct css_set *cset;
692 unsigned long key;
693 int i;
696 * Build the set of subsystem state objects that we want to see in the
697 * new css_set. while subsystems can change globally, the entries here
698 * won't change, so no need for locking.
700 for_each_subsys(ss, i) {
701 if (root->subsys_mask & (1UL << i)) {
703 * @ss is in this hierarchy, so we want the
704 * effective css from @cgrp.
706 template[i] = cgroup_e_css(cgrp, ss);
707 } else {
709 * @ss is not in this hierarchy, so we don't want
710 * to change the css.
712 template[i] = old_cset->subsys[i];
716 key = css_set_hash(template);
717 hash_for_each_possible(css_set_table, cset, hlist, key) {
718 if (!compare_css_sets(cset, old_cset, cgrp, template))
719 continue;
721 /* This css_set matches what we need */
722 return cset;
725 /* No existing cgroup group matched */
726 return NULL;
729 static void free_cgrp_cset_links(struct list_head *links_to_free)
731 struct cgrp_cset_link *link, *tmp_link;
733 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
734 list_del(&link->cset_link);
735 kfree(link);
740 * allocate_cgrp_cset_links - allocate cgrp_cset_links
741 * @count: the number of links to allocate
742 * @tmp_links: list_head the allocated links are put on
744 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
745 * through ->cset_link. Returns 0 on success or -errno.
747 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
749 struct cgrp_cset_link *link;
750 int i;
752 INIT_LIST_HEAD(tmp_links);
754 for (i = 0; i < count; i++) {
755 link = kzalloc(sizeof(*link), GFP_KERNEL);
756 if (!link) {
757 free_cgrp_cset_links(tmp_links);
758 return -ENOMEM;
760 list_add(&link->cset_link, tmp_links);
762 return 0;
766 * link_css_set - a helper function to link a css_set to a cgroup
767 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
768 * @cset: the css_set to be linked
769 * @cgrp: the destination cgroup
771 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
772 struct cgroup *cgrp)
774 struct cgrp_cset_link *link;
776 BUG_ON(list_empty(tmp_links));
778 if (cgroup_on_dfl(cgrp))
779 cset->dfl_cgrp = cgrp;
781 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
782 link->cset = cset;
783 link->cgrp = cgrp;
785 if (list_empty(&cgrp->cset_links))
786 cgroup_update_populated(cgrp, true);
787 list_move(&link->cset_link, &cgrp->cset_links);
790 * Always add links to the tail of the list so that the list
791 * is sorted by order of hierarchy creation
793 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
797 * find_css_set - return a new css_set with one cgroup updated
798 * @old_cset: the baseline css_set
799 * @cgrp: the cgroup to be updated
801 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
802 * substituted into the appropriate hierarchy.
804 static struct css_set *find_css_set(struct css_set *old_cset,
805 struct cgroup *cgrp)
807 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
808 struct css_set *cset;
809 struct list_head tmp_links;
810 struct cgrp_cset_link *link;
811 struct cgroup_subsys *ss;
812 unsigned long key;
813 int ssid;
815 lockdep_assert_held(&cgroup_mutex);
817 /* First see if we already have a cgroup group that matches
818 * the desired set */
819 down_read(&css_set_rwsem);
820 cset = find_existing_css_set(old_cset, cgrp, template);
821 if (cset)
822 get_css_set(cset);
823 up_read(&css_set_rwsem);
825 if (cset)
826 return cset;
828 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
829 if (!cset)
830 return NULL;
832 /* Allocate all the cgrp_cset_link objects that we'll need */
833 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
834 kfree(cset);
835 return NULL;
838 atomic_set(&cset->refcount, 1);
839 INIT_LIST_HEAD(&cset->cgrp_links);
840 INIT_LIST_HEAD(&cset->tasks);
841 INIT_LIST_HEAD(&cset->mg_tasks);
842 INIT_LIST_HEAD(&cset->mg_preload_node);
843 INIT_LIST_HEAD(&cset->mg_node);
844 INIT_HLIST_NODE(&cset->hlist);
846 /* Copy the set of subsystem state objects generated in
847 * find_existing_css_set() */
848 memcpy(cset->subsys, template, sizeof(cset->subsys));
850 down_write(&css_set_rwsem);
851 /* Add reference counts and links from the new css_set. */
852 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
853 struct cgroup *c = link->cgrp;
855 if (c->root == cgrp->root)
856 c = cgrp;
857 link_css_set(&tmp_links, cset, c);
860 BUG_ON(!list_empty(&tmp_links));
862 css_set_count++;
864 /* Add @cset to the hash table */
865 key = css_set_hash(cset->subsys);
866 hash_add(css_set_table, &cset->hlist, key);
868 for_each_subsys(ss, ssid)
869 list_add_tail(&cset->e_cset_node[ssid],
870 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
872 up_write(&css_set_rwsem);
874 return cset;
877 static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
879 struct cgroup *root_cgrp = kf_root->kn->priv;
881 return root_cgrp->root;
884 static int cgroup_init_root_id(struct cgroup_root *root)
886 int id;
888 lockdep_assert_held(&cgroup_mutex);
890 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
891 if (id < 0)
892 return id;
894 root->hierarchy_id = id;
895 return 0;
898 static void cgroup_exit_root_id(struct cgroup_root *root)
900 lockdep_assert_held(&cgroup_mutex);
902 if (root->hierarchy_id) {
903 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
904 root->hierarchy_id = 0;
908 static void cgroup_free_root(struct cgroup_root *root)
910 if (root) {
911 /* hierarchy ID should already have been released */
912 WARN_ON_ONCE(root->hierarchy_id);
914 idr_destroy(&root->cgroup_idr);
915 kfree(root);
919 static void cgroup_destroy_root(struct cgroup_root *root)
921 struct cgroup *cgrp = &root->cgrp;
922 struct cgrp_cset_link *link, *tmp_link;
924 mutex_lock(&cgroup_mutex);
926 BUG_ON(atomic_read(&root->nr_cgrps));
927 BUG_ON(!list_empty(&cgrp->self.children));
929 /* Rebind all subsystems back to the default hierarchy */
930 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
933 * Release all the links from cset_links to this hierarchy's
934 * root cgroup
936 down_write(&css_set_rwsem);
938 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
939 list_del(&link->cset_link);
940 list_del(&link->cgrp_link);
941 kfree(link);
943 up_write(&css_set_rwsem);
945 if (!list_empty(&root->root_list)) {
946 list_del(&root->root_list);
947 cgroup_root_count--;
950 cgroup_exit_root_id(root);
952 mutex_unlock(&cgroup_mutex);
954 kernfs_destroy_root(root->kf_root);
955 cgroup_free_root(root);
958 /* look up cgroup associated with given css_set on the specified hierarchy */
959 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
960 struct cgroup_root *root)
962 struct cgroup *res = NULL;
964 lockdep_assert_held(&cgroup_mutex);
965 lockdep_assert_held(&css_set_rwsem);
967 if (cset == &init_css_set) {
968 res = &root->cgrp;
969 } else {
970 struct cgrp_cset_link *link;
972 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
973 struct cgroup *c = link->cgrp;
975 if (c->root == root) {
976 res = c;
977 break;
982 BUG_ON(!res);
983 return res;
987 * Return the cgroup for "task" from the given hierarchy. Must be
988 * called with cgroup_mutex and css_set_rwsem held.
990 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
991 struct cgroup_root *root)
994 * No need to lock the task - since we hold cgroup_mutex the
995 * task can't change groups, so the only thing that can happen
996 * is that it exits and its css is set back to init_css_set.
998 return cset_cgroup_from_root(task_css_set(task), root);
1002 * A task must hold cgroup_mutex to modify cgroups.
1004 * Any task can increment and decrement the count field without lock.
1005 * So in general, code holding cgroup_mutex can't rely on the count
1006 * field not changing. However, if the count goes to zero, then only
1007 * cgroup_attach_task() can increment it again. Because a count of zero
1008 * means that no tasks are currently attached, therefore there is no
1009 * way a task attached to that cgroup can fork (the other way to
1010 * increment the count). So code holding cgroup_mutex can safely
1011 * assume that if the count is zero, it will stay zero. Similarly, if
1012 * a task holds cgroup_mutex on a cgroup with zero count, it
1013 * knows that the cgroup won't be removed, as cgroup_rmdir()
1014 * needs that mutex.
1016 * A cgroup can only be deleted if both its 'count' of using tasks
1017 * is zero, and its list of 'children' cgroups is empty. Since all
1018 * tasks in the system use _some_ cgroup, and since there is always at
1019 * least one task in the system (init, pid == 1), therefore, root cgroup
1020 * always has either children cgroups and/or using tasks. So we don't
1021 * need a special hack to ensure that root cgroup cannot be deleted.
1023 * P.S. One more locking exception. RCU is used to guard the
1024 * update of a tasks cgroup pointer by cgroup_attach_task()
1027 static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
1028 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1029 static const struct file_operations proc_cgroupstats_operations;
1031 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1032 char *buf)
1034 struct cgroup_subsys *ss = cft->ss;
1036 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1037 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1038 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1039 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1040 cft->name);
1041 else
1042 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1043 return buf;
1047 * cgroup_file_mode - deduce file mode of a control file
1048 * @cft: the control file in question
1050 * returns cft->mode if ->mode is not 0
1051 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
1052 * returns S_IRUGO if it has only a read handler
1053 * returns S_IWUSR if it has only a write hander
1055 static umode_t cgroup_file_mode(const struct cftype *cft)
1057 umode_t mode = 0;
1059 if (cft->mode)
1060 return cft->mode;
1062 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1063 mode |= S_IRUGO;
1065 if (cft->write_u64 || cft->write_s64 || cft->write)
1066 mode |= S_IWUSR;
1068 return mode;
1071 static void cgroup_get(struct cgroup *cgrp)
1073 WARN_ON_ONCE(cgroup_is_dead(cgrp));
1074 css_get(&cgrp->self);
1077 static bool cgroup_tryget(struct cgroup *cgrp)
1079 return css_tryget(&cgrp->self);
1082 static void cgroup_put(struct cgroup *cgrp)
1084 css_put(&cgrp->self);
1088 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask
1089 * @cgrp: the target cgroup
1090 * @subtree_control: the new subtree_control mask to consider
1092 * On the default hierarchy, a subsystem may request other subsystems to be
1093 * enabled together through its ->depends_on mask. In such cases, more
1094 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1096 * This function calculates which subsystems need to be enabled if
1097 * @subtree_control is to be applied to @cgrp. The returned mask is always
1098 * a superset of @subtree_control and follows the usual hierarchy rules.
1100 static unsigned long cgroup_calc_child_subsys_mask(struct cgroup *cgrp,
1101 unsigned long subtree_control)
1103 struct cgroup *parent = cgroup_parent(cgrp);
1104 unsigned long cur_ss_mask = subtree_control;
1105 struct cgroup_subsys *ss;
1106 int ssid;
1108 lockdep_assert_held(&cgroup_mutex);
1110 if (!cgroup_on_dfl(cgrp))
1111 return cur_ss_mask;
1113 while (true) {
1114 unsigned long new_ss_mask = cur_ss_mask;
1116 for_each_subsys_which(ss, ssid, &cur_ss_mask)
1117 new_ss_mask |= ss->depends_on;
1120 * Mask out subsystems which aren't available. This can
1121 * happen only if some depended-upon subsystems were bound
1122 * to non-default hierarchies.
1124 if (parent)
1125 new_ss_mask &= parent->child_subsys_mask;
1126 else
1127 new_ss_mask &= cgrp->root->subsys_mask;
1129 if (new_ss_mask == cur_ss_mask)
1130 break;
1131 cur_ss_mask = new_ss_mask;
1134 return cur_ss_mask;
1138 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1139 * @cgrp: the target cgroup
1141 * Update @cgrp->child_subsys_mask according to the current
1142 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask().
1144 static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1146 cgrp->child_subsys_mask =
1147 cgroup_calc_child_subsys_mask(cgrp, cgrp->subtree_control);
1151 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1152 * @kn: the kernfs_node being serviced
1154 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1155 * the method finishes if locking succeeded. Note that once this function
1156 * returns the cgroup returned by cgroup_kn_lock_live() may become
1157 * inaccessible any time. If the caller intends to continue to access the
1158 * cgroup, it should pin it before invoking this function.
1160 static void cgroup_kn_unlock(struct kernfs_node *kn)
1162 struct cgroup *cgrp;
1164 if (kernfs_type(kn) == KERNFS_DIR)
1165 cgrp = kn->priv;
1166 else
1167 cgrp = kn->parent->priv;
1169 mutex_unlock(&cgroup_mutex);
1171 kernfs_unbreak_active_protection(kn);
1172 cgroup_put(cgrp);
1176 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1177 * @kn: the kernfs_node being serviced
1179 * This helper is to be used by a cgroup kernfs method currently servicing
1180 * @kn. It breaks the active protection, performs cgroup locking and
1181 * verifies that the associated cgroup is alive. Returns the cgroup if
1182 * alive; otherwise, %NULL. A successful return should be undone by a
1183 * matching cgroup_kn_unlock() invocation.
1185 * Any cgroup kernfs method implementation which requires locking the
1186 * associated cgroup should use this helper. It avoids nesting cgroup
1187 * locking under kernfs active protection and allows all kernfs operations
1188 * including self-removal.
1190 static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
1192 struct cgroup *cgrp;
1194 if (kernfs_type(kn) == KERNFS_DIR)
1195 cgrp = kn->priv;
1196 else
1197 cgrp = kn->parent->priv;
1200 * We're gonna grab cgroup_mutex which nests outside kernfs
1201 * active_ref. cgroup liveliness check alone provides enough
1202 * protection against removal. Ensure @cgrp stays accessible and
1203 * break the active_ref protection.
1205 if (!cgroup_tryget(cgrp))
1206 return NULL;
1207 kernfs_break_active_protection(kn);
1209 mutex_lock(&cgroup_mutex);
1211 if (!cgroup_is_dead(cgrp))
1212 return cgrp;
1214 cgroup_kn_unlock(kn);
1215 return NULL;
1218 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1220 char name[CGROUP_FILE_NAME_MAX];
1222 lockdep_assert_held(&cgroup_mutex);
1223 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1227 * cgroup_clear_dir - remove subsys files in a cgroup directory
1228 * @cgrp: target cgroup
1229 * @subsys_mask: mask of the subsystem ids whose files should be removed
1231 static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
1233 struct cgroup_subsys *ss;
1234 int i;
1236 for_each_subsys(ss, i) {
1237 struct cftype *cfts;
1239 if (!(subsys_mask & (1 << i)))
1240 continue;
1241 list_for_each_entry(cfts, &ss->cfts, node)
1242 cgroup_addrm_files(cgrp, cfts, false);
1246 static int rebind_subsystems(struct cgroup_root *dst_root,
1247 unsigned long ss_mask)
1249 struct cgroup_subsys *ss;
1250 unsigned long tmp_ss_mask;
1251 int ssid, i, ret;
1253 lockdep_assert_held(&cgroup_mutex);
1255 for_each_subsys_which(ss, ssid, &ss_mask) {
1256 /* if @ss has non-root csses attached to it, can't move */
1257 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
1258 return -EBUSY;
1260 /* can't move between two non-dummy roots either */
1261 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1262 return -EBUSY;
1265 /* skip creating root files on dfl_root for inhibited subsystems */
1266 tmp_ss_mask = ss_mask;
1267 if (dst_root == &cgrp_dfl_root)
1268 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1270 ret = cgroup_populate_dir(&dst_root->cgrp, tmp_ss_mask);
1271 if (ret) {
1272 if (dst_root != &cgrp_dfl_root)
1273 return ret;
1276 * Rebinding back to the default root is not allowed to
1277 * fail. Using both default and non-default roots should
1278 * be rare. Moving subsystems back and forth even more so.
1279 * Just warn about it and continue.
1281 if (cgrp_dfl_root_visible) {
1282 pr_warn("failed to create files (%d) while rebinding 0x%lx to default root\n",
1283 ret, ss_mask);
1284 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1289 * Nothing can fail from this point on. Remove files for the
1290 * removed subsystems and rebind each subsystem.
1292 for_each_subsys_which(ss, ssid, &ss_mask)
1293 cgroup_clear_dir(&ss->root->cgrp, 1 << ssid);
1295 for_each_subsys_which(ss, ssid, &ss_mask) {
1296 struct cgroup_root *src_root;
1297 struct cgroup_subsys_state *css;
1298 struct css_set *cset;
1300 src_root = ss->root;
1301 css = cgroup_css(&src_root->cgrp, ss);
1303 WARN_ON(!css || cgroup_css(&dst_root->cgrp, ss));
1305 RCU_INIT_POINTER(src_root->cgrp.subsys[ssid], NULL);
1306 rcu_assign_pointer(dst_root->cgrp.subsys[ssid], css);
1307 ss->root = dst_root;
1308 css->cgroup = &dst_root->cgrp;
1310 down_write(&css_set_rwsem);
1311 hash_for_each(css_set_table, i, cset, hlist)
1312 list_move_tail(&cset->e_cset_node[ss->id],
1313 &dst_root->cgrp.e_csets[ss->id]);
1314 up_write(&css_set_rwsem);
1316 src_root->subsys_mask &= ~(1 << ssid);
1317 src_root->cgrp.subtree_control &= ~(1 << ssid);
1318 cgroup_refresh_child_subsys_mask(&src_root->cgrp);
1320 /* default hierarchy doesn't enable controllers by default */
1321 dst_root->subsys_mask |= 1 << ssid;
1322 if (dst_root != &cgrp_dfl_root) {
1323 dst_root->cgrp.subtree_control |= 1 << ssid;
1324 cgroup_refresh_child_subsys_mask(&dst_root->cgrp);
1327 if (ss->bind)
1328 ss->bind(css);
1331 kernfs_activate(dst_root->cgrp.kn);
1332 return 0;
1335 static int cgroup_show_options(struct seq_file *seq,
1336 struct kernfs_root *kf_root)
1338 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1339 struct cgroup_subsys *ss;
1340 int ssid;
1342 if (root != &cgrp_dfl_root)
1343 for_each_subsys(ss, ssid)
1344 if (root->subsys_mask & (1 << ssid))
1345 seq_show_option(seq, ss->legacy_name, NULL);
1346 if (root->flags & CGRP_ROOT_NOPREFIX)
1347 seq_puts(seq, ",noprefix");
1348 if (root->flags & CGRP_ROOT_XATTR)
1349 seq_puts(seq, ",xattr");
1351 spin_lock(&release_agent_path_lock);
1352 if (strlen(root->release_agent_path))
1353 seq_show_option(seq, "release_agent",
1354 root->release_agent_path);
1355 spin_unlock(&release_agent_path_lock);
1357 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
1358 seq_puts(seq, ",clone_children");
1359 if (strlen(root->name))
1360 seq_show_option(seq, "name", root->name);
1361 return 0;
1364 struct cgroup_sb_opts {
1365 unsigned long subsys_mask;
1366 unsigned int flags;
1367 char *release_agent;
1368 bool cpuset_clone_children;
1369 char *name;
1370 /* User explicitly requested empty subsystem */
1371 bool none;
1374 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1376 char *token, *o = data;
1377 bool all_ss = false, one_ss = false;
1378 unsigned long mask = -1UL;
1379 struct cgroup_subsys *ss;
1380 int nr_opts = 0;
1381 int i;
1383 #ifdef CONFIG_CPUSETS
1384 mask = ~(1U << cpuset_cgrp_id);
1385 #endif
1387 memset(opts, 0, sizeof(*opts));
1389 while ((token = strsep(&o, ",")) != NULL) {
1390 nr_opts++;
1392 if (!*token)
1393 return -EINVAL;
1394 if (!strcmp(token, "none")) {
1395 /* Explicitly have no subsystems */
1396 opts->none = true;
1397 continue;
1399 if (!strcmp(token, "all")) {
1400 /* Mutually exclusive option 'all' + subsystem name */
1401 if (one_ss)
1402 return -EINVAL;
1403 all_ss = true;
1404 continue;
1406 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1407 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1408 continue;
1410 if (!strcmp(token, "noprefix")) {
1411 opts->flags |= CGRP_ROOT_NOPREFIX;
1412 continue;
1414 if (!strcmp(token, "clone_children")) {
1415 opts->cpuset_clone_children = true;
1416 continue;
1418 if (!strcmp(token, "xattr")) {
1419 opts->flags |= CGRP_ROOT_XATTR;
1420 continue;
1422 if (!strncmp(token, "release_agent=", 14)) {
1423 /* Specifying two release agents is forbidden */
1424 if (opts->release_agent)
1425 return -EINVAL;
1426 opts->release_agent =
1427 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1428 if (!opts->release_agent)
1429 return -ENOMEM;
1430 continue;
1432 if (!strncmp(token, "name=", 5)) {
1433 const char *name = token + 5;
1434 /* Can't specify an empty name */
1435 if (!strlen(name))
1436 return -EINVAL;
1437 /* Must match [\w.-]+ */
1438 for (i = 0; i < strlen(name); i++) {
1439 char c = name[i];
1440 if (isalnum(c))
1441 continue;
1442 if ((c == '.') || (c == '-') || (c == '_'))
1443 continue;
1444 return -EINVAL;
1446 /* Specifying two names is forbidden */
1447 if (opts->name)
1448 return -EINVAL;
1449 opts->name = kstrndup(name,
1450 MAX_CGROUP_ROOT_NAMELEN - 1,
1451 GFP_KERNEL);
1452 if (!opts->name)
1453 return -ENOMEM;
1455 continue;
1458 for_each_subsys(ss, i) {
1459 if (strcmp(token, ss->legacy_name))
1460 continue;
1461 if (ss->disabled)
1462 continue;
1464 /* Mutually exclusive option 'all' + subsystem name */
1465 if (all_ss)
1466 return -EINVAL;
1467 opts->subsys_mask |= (1 << i);
1468 one_ss = true;
1470 break;
1472 if (i == CGROUP_SUBSYS_COUNT)
1473 return -ENOENT;
1476 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1477 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1478 if (nr_opts != 1) {
1479 pr_err("sane_behavior: no other mount options allowed\n");
1480 return -EINVAL;
1482 return 0;
1486 * If the 'all' option was specified select all the subsystems,
1487 * otherwise if 'none', 'name=' and a subsystem name options were
1488 * not specified, let's default to 'all'
1490 if (all_ss || (!one_ss && !opts->none && !opts->name))
1491 for_each_subsys(ss, i)
1492 if (!ss->disabled)
1493 opts->subsys_mask |= (1 << i);
1496 * We either have to specify by name or by subsystems. (So all
1497 * empty hierarchies must have a name).
1499 if (!opts->subsys_mask && !opts->name)
1500 return -EINVAL;
1503 * Option noprefix was introduced just for backward compatibility
1504 * with the old cpuset, so we allow noprefix only if mounting just
1505 * the cpuset subsystem.
1507 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1508 return -EINVAL;
1510 /* Can't specify "none" and some subsystems */
1511 if (opts->subsys_mask && opts->none)
1512 return -EINVAL;
1514 return 0;
1517 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1519 int ret = 0;
1520 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1521 struct cgroup_sb_opts opts;
1522 unsigned long added_mask, removed_mask;
1524 if (root == &cgrp_dfl_root) {
1525 pr_err("remount is not allowed\n");
1526 return -EINVAL;
1529 mutex_lock(&cgroup_mutex);
1531 /* See what subsystems are wanted */
1532 ret = parse_cgroupfs_options(data, &opts);
1533 if (ret)
1534 goto out_unlock;
1536 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1537 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1538 task_tgid_nr(current), current->comm);
1540 added_mask = opts.subsys_mask & ~root->subsys_mask;
1541 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1543 /* Don't allow flags or name to change at remount */
1544 if ((opts.flags ^ root->flags) ||
1545 (opts.name && strcmp(opts.name, root->name))) {
1546 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1547 opts.flags, opts.name ?: "", root->flags, root->name);
1548 ret = -EINVAL;
1549 goto out_unlock;
1552 /* remounting is not allowed for populated hierarchies */
1553 if (!list_empty(&root->cgrp.self.children)) {
1554 ret = -EBUSY;
1555 goto out_unlock;
1558 ret = rebind_subsystems(root, added_mask);
1559 if (ret)
1560 goto out_unlock;
1562 rebind_subsystems(&cgrp_dfl_root, removed_mask);
1564 if (opts.release_agent) {
1565 spin_lock(&release_agent_path_lock);
1566 strcpy(root->release_agent_path, opts.release_agent);
1567 spin_unlock(&release_agent_path_lock);
1569 out_unlock:
1570 kfree(opts.release_agent);
1571 kfree(opts.name);
1572 mutex_unlock(&cgroup_mutex);
1573 return ret;
1577 * To reduce the fork() overhead for systems that are not actually using
1578 * their cgroups capability, we don't maintain the lists running through
1579 * each css_set to its tasks until we see the list actually used - in other
1580 * words after the first mount.
1582 static bool use_task_css_set_links __read_mostly;
1584 static void cgroup_enable_task_cg_lists(void)
1586 struct task_struct *p, *g;
1588 down_write(&css_set_rwsem);
1590 if (use_task_css_set_links)
1591 goto out_unlock;
1593 use_task_css_set_links = true;
1596 * We need tasklist_lock because RCU is not safe against
1597 * while_each_thread(). Besides, a forking task that has passed
1598 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1599 * is not guaranteed to have its child immediately visible in the
1600 * tasklist if we walk through it with RCU.
1602 read_lock(&tasklist_lock);
1603 do_each_thread(g, p) {
1604 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1605 task_css_set(p) != &init_css_set);
1608 * We should check if the process is exiting, otherwise
1609 * it will race with cgroup_exit() in that the list
1610 * entry won't be deleted though the process has exited.
1611 * Do it while holding siglock so that we don't end up
1612 * racing against cgroup_exit().
1614 spin_lock_irq(&p->sighand->siglock);
1615 if (!(p->flags & PF_EXITING)) {
1616 struct css_set *cset = task_css_set(p);
1618 list_add(&p->cg_list, &cset->tasks);
1619 get_css_set(cset);
1621 spin_unlock_irq(&p->sighand->siglock);
1622 } while_each_thread(g, p);
1623 read_unlock(&tasklist_lock);
1624 out_unlock:
1625 up_write(&css_set_rwsem);
1628 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1630 struct cgroup_subsys *ss;
1631 int ssid;
1633 INIT_LIST_HEAD(&cgrp->self.sibling);
1634 INIT_LIST_HEAD(&cgrp->self.children);
1635 INIT_LIST_HEAD(&cgrp->cset_links);
1636 INIT_LIST_HEAD(&cgrp->pidlists);
1637 mutex_init(&cgrp->pidlist_mutex);
1638 cgrp->self.cgroup = cgrp;
1639 cgrp->self.flags |= CSS_ONLINE;
1641 for_each_subsys(ss, ssid)
1642 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1644 init_waitqueue_head(&cgrp->offline_waitq);
1645 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
1648 static void init_cgroup_root(struct cgroup_root *root,
1649 struct cgroup_sb_opts *opts)
1651 struct cgroup *cgrp = &root->cgrp;
1653 INIT_LIST_HEAD(&root->root_list);
1654 atomic_set(&root->nr_cgrps, 1);
1655 cgrp->root = root;
1656 init_cgroup_housekeeping(cgrp);
1657 idr_init(&root->cgroup_idr);
1659 root->flags = opts->flags;
1660 if (opts->release_agent)
1661 strcpy(root->release_agent_path, opts->release_agent);
1662 if (opts->name)
1663 strcpy(root->name, opts->name);
1664 if (opts->cpuset_clone_children)
1665 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1668 static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask)
1670 LIST_HEAD(tmp_links);
1671 struct cgroup *root_cgrp = &root->cgrp;
1672 struct cftype *base_files;
1673 struct css_set *cset;
1674 int i, ret;
1676 lockdep_assert_held(&cgroup_mutex);
1678 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1679 if (ret < 0)
1680 goto out;
1681 root_cgrp->id = ret;
1683 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1684 GFP_KERNEL);
1685 if (ret)
1686 goto out;
1689 * We're accessing css_set_count without locking css_set_rwsem here,
1690 * but that's OK - it can only be increased by someone holding
1691 * cgroup_lock, and that's us. The worst that can happen is that we
1692 * have some link structures left over
1694 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1695 if (ret)
1696 goto cancel_ref;
1698 ret = cgroup_init_root_id(root);
1699 if (ret)
1700 goto cancel_ref;
1702 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1703 KERNFS_ROOT_CREATE_DEACTIVATED,
1704 root_cgrp);
1705 if (IS_ERR(root->kf_root)) {
1706 ret = PTR_ERR(root->kf_root);
1707 goto exit_root_id;
1709 root_cgrp->kn = root->kf_root->kn;
1711 if (root == &cgrp_dfl_root)
1712 base_files = cgroup_dfl_base_files;
1713 else
1714 base_files = cgroup_legacy_base_files;
1716 ret = cgroup_addrm_files(root_cgrp, base_files, true);
1717 if (ret)
1718 goto destroy_root;
1720 ret = rebind_subsystems(root, ss_mask);
1721 if (ret)
1722 goto destroy_root;
1725 * There must be no failure case after here, since rebinding takes
1726 * care of subsystems' refcounts, which are explicitly dropped in
1727 * the failure exit path.
1729 list_add(&root->root_list, &cgroup_roots);
1730 cgroup_root_count++;
1733 * Link the root cgroup in this hierarchy into all the css_set
1734 * objects.
1736 down_write(&css_set_rwsem);
1737 hash_for_each(css_set_table, i, cset, hlist)
1738 link_css_set(&tmp_links, cset, root_cgrp);
1739 up_write(&css_set_rwsem);
1741 BUG_ON(!list_empty(&root_cgrp->self.children));
1742 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1744 kernfs_activate(root_cgrp->kn);
1745 ret = 0;
1746 goto out;
1748 destroy_root:
1749 kernfs_destroy_root(root->kf_root);
1750 root->kf_root = NULL;
1751 exit_root_id:
1752 cgroup_exit_root_id(root);
1753 cancel_ref:
1754 percpu_ref_exit(&root_cgrp->self.refcnt);
1755 out:
1756 free_cgrp_cset_links(&tmp_links);
1757 return ret;
1760 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1761 int flags, const char *unused_dev_name,
1762 void *data)
1764 struct super_block *pinned_sb = NULL;
1765 struct cgroup_subsys *ss;
1766 struct cgroup_root *root;
1767 struct cgroup_sb_opts opts;
1768 struct dentry *dentry;
1769 int ret;
1770 int i;
1771 bool new_sb;
1774 * The first time anyone tries to mount a cgroup, enable the list
1775 * linking each css_set to its tasks and fix up all existing tasks.
1777 if (!use_task_css_set_links)
1778 cgroup_enable_task_cg_lists();
1780 mutex_lock(&cgroup_mutex);
1782 /* First find the desired set of subsystems */
1783 ret = parse_cgroupfs_options(data, &opts);
1784 if (ret)
1785 goto out_unlock;
1787 /* look for a matching existing root */
1788 if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) {
1789 cgrp_dfl_root_visible = true;
1790 root = &cgrp_dfl_root;
1791 cgroup_get(&root->cgrp);
1792 ret = 0;
1793 goto out_unlock;
1797 * Destruction of cgroup root is asynchronous, so subsystems may
1798 * still be dying after the previous unmount. Let's drain the
1799 * dying subsystems. We just need to ensure that the ones
1800 * unmounted previously finish dying and don't care about new ones
1801 * starting. Testing ref liveliness is good enough.
1803 for_each_subsys(ss, i) {
1804 if (!(opts.subsys_mask & (1 << i)) ||
1805 ss->root == &cgrp_dfl_root)
1806 continue;
1808 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
1809 mutex_unlock(&cgroup_mutex);
1810 msleep(10);
1811 ret = restart_syscall();
1812 goto out_free;
1814 cgroup_put(&ss->root->cgrp);
1817 for_each_root(root) {
1818 bool name_match = false;
1820 if (root == &cgrp_dfl_root)
1821 continue;
1824 * If we asked for a name then it must match. Also, if
1825 * name matches but sybsys_mask doesn't, we should fail.
1826 * Remember whether name matched.
1828 if (opts.name) {
1829 if (strcmp(opts.name, root->name))
1830 continue;
1831 name_match = true;
1835 * If we asked for subsystems (or explicitly for no
1836 * subsystems) then they must match.
1838 if ((opts.subsys_mask || opts.none) &&
1839 (opts.subsys_mask != root->subsys_mask)) {
1840 if (!name_match)
1841 continue;
1842 ret = -EBUSY;
1843 goto out_unlock;
1846 if (root->flags ^ opts.flags)
1847 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1850 * We want to reuse @root whose lifetime is governed by its
1851 * ->cgrp. Let's check whether @root is alive and keep it
1852 * that way. As cgroup_kill_sb() can happen anytime, we
1853 * want to block it by pinning the sb so that @root doesn't
1854 * get killed before mount is complete.
1856 * With the sb pinned, tryget_live can reliably indicate
1857 * whether @root can be reused. If it's being killed,
1858 * drain it. We can use wait_queue for the wait but this
1859 * path is super cold. Let's just sleep a bit and retry.
1861 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
1862 if (IS_ERR(pinned_sb) ||
1863 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
1864 mutex_unlock(&cgroup_mutex);
1865 if (!IS_ERR_OR_NULL(pinned_sb))
1866 deactivate_super(pinned_sb);
1867 msleep(10);
1868 ret = restart_syscall();
1869 goto out_free;
1872 ret = 0;
1873 goto out_unlock;
1877 * No such thing, create a new one. name= matching without subsys
1878 * specification is allowed for already existing hierarchies but we
1879 * can't create new one without subsys specification.
1881 if (!opts.subsys_mask && !opts.none) {
1882 ret = -EINVAL;
1883 goto out_unlock;
1886 root = kzalloc(sizeof(*root), GFP_KERNEL);
1887 if (!root) {
1888 ret = -ENOMEM;
1889 goto out_unlock;
1892 init_cgroup_root(root, &opts);
1894 ret = cgroup_setup_root(root, opts.subsys_mask);
1895 if (ret)
1896 cgroup_free_root(root);
1898 out_unlock:
1899 mutex_unlock(&cgroup_mutex);
1900 out_free:
1901 kfree(opts.release_agent);
1902 kfree(opts.name);
1904 if (ret)
1905 return ERR_PTR(ret);
1907 dentry = kernfs_mount(fs_type, flags, root->kf_root,
1908 CGROUP_SUPER_MAGIC, &new_sb);
1909 if (IS_ERR(dentry) || !new_sb)
1910 cgroup_put(&root->cgrp);
1913 * If @pinned_sb, we're reusing an existing root and holding an
1914 * extra ref on its sb. Mount is complete. Put the extra ref.
1916 if (pinned_sb) {
1917 WARN_ON(new_sb);
1918 deactivate_super(pinned_sb);
1921 return dentry;
1924 static void cgroup_kill_sb(struct super_block *sb)
1926 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
1927 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1930 * If @root doesn't have any mounts or children, start killing it.
1931 * This prevents new mounts by disabling percpu_ref_tryget_live().
1932 * cgroup_mount() may wait for @root's release.
1934 * And don't kill the default root.
1936 if (!list_empty(&root->cgrp.self.children) ||
1937 root == &cgrp_dfl_root)
1938 cgroup_put(&root->cgrp);
1939 else
1940 percpu_ref_kill(&root->cgrp.self.refcnt);
1942 kernfs_kill_sb(sb);
1945 static struct file_system_type cgroup_fs_type = {
1946 .name = "cgroup",
1947 .mount = cgroup_mount,
1948 .kill_sb = cgroup_kill_sb,
1952 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
1953 * @task: target task
1954 * @buf: the buffer to write the path into
1955 * @buflen: the length of the buffer
1957 * Determine @task's cgroup on the first (the one with the lowest non-zero
1958 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1959 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1960 * cgroup controller callbacks.
1962 * Return value is the same as kernfs_path().
1964 char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
1966 struct cgroup_root *root;
1967 struct cgroup *cgrp;
1968 int hierarchy_id = 1;
1969 char *path = NULL;
1971 mutex_lock(&cgroup_mutex);
1972 down_read(&css_set_rwsem);
1974 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1976 if (root) {
1977 cgrp = task_cgroup_from_root(task, root);
1978 path = cgroup_path(cgrp, buf, buflen);
1979 } else {
1980 /* if no hierarchy exists, everyone is in "/" */
1981 if (strlcpy(buf, "/", buflen) < buflen)
1982 path = buf;
1985 up_read(&css_set_rwsem);
1986 mutex_unlock(&cgroup_mutex);
1987 return path;
1989 EXPORT_SYMBOL_GPL(task_cgroup_path);
1991 /* used to track tasks and other necessary states during migration */
1992 struct cgroup_taskset {
1993 /* the src and dst cset list running through cset->mg_node */
1994 struct list_head src_csets;
1995 struct list_head dst_csets;
1998 * Fields for cgroup_taskset_*() iteration.
2000 * Before migration is committed, the target migration tasks are on
2001 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2002 * the csets on ->dst_csets. ->csets point to either ->src_csets
2003 * or ->dst_csets depending on whether migration is committed.
2005 * ->cur_csets and ->cur_task point to the current task position
2006 * during iteration.
2008 struct list_head *csets;
2009 struct css_set *cur_cset;
2010 struct task_struct *cur_task;
2014 * cgroup_taskset_first - reset taskset and return the first task
2015 * @tset: taskset of interest
2017 * @tset iteration is initialized and the first task is returned.
2019 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
2021 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2022 tset->cur_task = NULL;
2024 return cgroup_taskset_next(tset);
2028 * cgroup_taskset_next - iterate to the next task in taskset
2029 * @tset: taskset of interest
2031 * Return the next task in @tset. Iteration must have been initialized
2032 * with cgroup_taskset_first().
2034 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
2036 struct css_set *cset = tset->cur_cset;
2037 struct task_struct *task = tset->cur_task;
2039 while (&cset->mg_node != tset->csets) {
2040 if (!task)
2041 task = list_first_entry(&cset->mg_tasks,
2042 struct task_struct, cg_list);
2043 else
2044 task = list_next_entry(task, cg_list);
2046 if (&task->cg_list != &cset->mg_tasks) {
2047 tset->cur_cset = cset;
2048 tset->cur_task = task;
2049 return task;
2052 cset = list_next_entry(cset, mg_node);
2053 task = NULL;
2056 return NULL;
2060 * cgroup_task_migrate - move a task from one cgroup to another.
2061 * @old_cgrp: the cgroup @tsk is being migrated from
2062 * @tsk: the task being migrated
2063 * @new_cset: the new css_set @tsk is being attached to
2065 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
2067 static void cgroup_task_migrate(struct cgroup *old_cgrp,
2068 struct task_struct *tsk,
2069 struct css_set *new_cset)
2071 struct css_set *old_cset;
2073 lockdep_assert_held(&cgroup_mutex);
2074 lockdep_assert_held(&css_set_rwsem);
2077 * We are synchronized through cgroup_threadgroup_rwsem against
2078 * PF_EXITING setting such that we can't race against cgroup_exit()
2079 * changing the css_set to init_css_set and dropping the old one.
2081 WARN_ON_ONCE(tsk->flags & PF_EXITING);
2082 old_cset = task_css_set(tsk);
2084 get_css_set(new_cset);
2085 rcu_assign_pointer(tsk->cgroups, new_cset);
2088 * Use move_tail so that cgroup_taskset_first() still returns the
2089 * leader after migration. This works because cgroup_migrate()
2090 * ensures that the dst_cset of the leader is the first on the
2091 * tset's dst_csets list.
2093 list_move_tail(&tsk->cg_list, &new_cset->mg_tasks);
2096 * We just gained a reference on old_cset by taking it from the
2097 * task. As trading it for new_cset is protected by cgroup_mutex,
2098 * we're safe to drop it here; it will be freed under RCU.
2100 put_css_set_locked(old_cset);
2104 * cgroup_migrate_finish - cleanup after attach
2105 * @preloaded_csets: list of preloaded css_sets
2107 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2108 * those functions for details.
2110 static void cgroup_migrate_finish(struct list_head *preloaded_csets)
2112 struct css_set *cset, *tmp_cset;
2114 lockdep_assert_held(&cgroup_mutex);
2116 down_write(&css_set_rwsem);
2117 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2118 cset->mg_src_cgrp = NULL;
2119 cset->mg_dst_cset = NULL;
2120 list_del_init(&cset->mg_preload_node);
2121 put_css_set_locked(cset);
2123 up_write(&css_set_rwsem);
2127 * cgroup_migrate_add_src - add a migration source css_set
2128 * @src_cset: the source css_set to add
2129 * @dst_cgrp: the destination cgroup
2130 * @preloaded_csets: list of preloaded css_sets
2132 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2133 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2134 * up by cgroup_migrate_finish().
2136 * This function may be called without holding cgroup_threadgroup_rwsem
2137 * even if the target is a process. Threads may be created and destroyed
2138 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2139 * into play and the preloaded css_sets are guaranteed to cover all
2140 * migrations.
2142 static void cgroup_migrate_add_src(struct css_set *src_cset,
2143 struct cgroup *dst_cgrp,
2144 struct list_head *preloaded_csets)
2146 struct cgroup *src_cgrp;
2148 lockdep_assert_held(&cgroup_mutex);
2149 lockdep_assert_held(&css_set_rwsem);
2151 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2153 if (!list_empty(&src_cset->mg_preload_node))
2154 return;
2156 WARN_ON(src_cset->mg_src_cgrp);
2157 WARN_ON(!list_empty(&src_cset->mg_tasks));
2158 WARN_ON(!list_empty(&src_cset->mg_node));
2160 src_cset->mg_src_cgrp = src_cgrp;
2161 get_css_set(src_cset);
2162 list_add(&src_cset->mg_preload_node, preloaded_csets);
2166 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2167 * @dst_cgrp: the destination cgroup (may be %NULL)
2168 * @preloaded_csets: list of preloaded source css_sets
2170 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2171 * have been preloaded to @preloaded_csets. This function looks up and
2172 * pins all destination css_sets, links each to its source, and append them
2173 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2174 * source css_set is assumed to be its cgroup on the default hierarchy.
2176 * This function must be called after cgroup_migrate_add_src() has been
2177 * called on each migration source css_set. After migration is performed
2178 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2179 * @preloaded_csets.
2181 static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2182 struct list_head *preloaded_csets)
2184 LIST_HEAD(csets);
2185 struct css_set *src_cset, *tmp_cset;
2187 lockdep_assert_held(&cgroup_mutex);
2190 * Except for the root, child_subsys_mask must be zero for a cgroup
2191 * with tasks so that child cgroups don't compete against tasks.
2193 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
2194 dst_cgrp->child_subsys_mask)
2195 return -EBUSY;
2197 /* look up the dst cset for each src cset and link it to src */
2198 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
2199 struct css_set *dst_cset;
2201 dst_cset = find_css_set(src_cset,
2202 dst_cgrp ?: src_cset->dfl_cgrp);
2203 if (!dst_cset)
2204 goto err;
2206 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2209 * If src cset equals dst, it's noop. Drop the src.
2210 * cgroup_migrate() will skip the cset too. Note that we
2211 * can't handle src == dst as some nodes are used by both.
2213 if (src_cset == dst_cset) {
2214 src_cset->mg_src_cgrp = NULL;
2215 list_del_init(&src_cset->mg_preload_node);
2216 put_css_set(src_cset);
2217 put_css_set(dst_cset);
2218 continue;
2221 src_cset->mg_dst_cset = dst_cset;
2223 if (list_empty(&dst_cset->mg_preload_node))
2224 list_add(&dst_cset->mg_preload_node, &csets);
2225 else
2226 put_css_set(dst_cset);
2229 list_splice_tail(&csets, preloaded_csets);
2230 return 0;
2231 err:
2232 cgroup_migrate_finish(&csets);
2233 return -ENOMEM;
2237 * cgroup_migrate - migrate a process or task to a cgroup
2238 * @cgrp: the destination cgroup
2239 * @leader: the leader of the process or the task to migrate
2240 * @threadgroup: whether @leader points to the whole process or a single task
2242 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
2243 * process, the caller must be holding cgroup_threadgroup_rwsem. The
2244 * caller is also responsible for invoking cgroup_migrate_add_src() and
2245 * cgroup_migrate_prepare_dst() on the targets before invoking this
2246 * function and following up with cgroup_migrate_finish().
2248 * As long as a controller's ->can_attach() doesn't fail, this function is
2249 * guaranteed to succeed. This means that, excluding ->can_attach()
2250 * failure, when migrating multiple targets, the success or failure can be
2251 * decided for all targets by invoking group_migrate_prepare_dst() before
2252 * actually starting migrating.
2254 static int cgroup_migrate(struct cgroup *cgrp, struct task_struct *leader,
2255 bool threadgroup)
2257 struct cgroup_taskset tset = {
2258 .src_csets = LIST_HEAD_INIT(tset.src_csets),
2259 .dst_csets = LIST_HEAD_INIT(tset.dst_csets),
2260 .csets = &tset.src_csets,
2262 struct cgroup_subsys_state *css, *failed_css = NULL;
2263 struct css_set *cset, *tmp_cset;
2264 struct task_struct *task, *tmp_task;
2265 int i, ret;
2268 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2269 * already PF_EXITING could be freed from underneath us unless we
2270 * take an rcu_read_lock.
2272 down_write(&css_set_rwsem);
2273 rcu_read_lock();
2274 task = leader;
2275 do {
2276 /* @task either already exited or can't exit until the end */
2277 if (task->flags & PF_EXITING)
2278 goto next;
2280 /* leave @task alone if post_fork() hasn't linked it yet */
2281 if (list_empty(&task->cg_list))
2282 goto next;
2284 cset = task_css_set(task);
2285 if (!cset->mg_src_cgrp)
2286 goto next;
2289 * cgroup_taskset_first() must always return the leader.
2290 * Take care to avoid disturbing the ordering.
2292 list_move_tail(&task->cg_list, &cset->mg_tasks);
2293 if (list_empty(&cset->mg_node))
2294 list_add_tail(&cset->mg_node, &tset.src_csets);
2295 if (list_empty(&cset->mg_dst_cset->mg_node))
2296 list_move_tail(&cset->mg_dst_cset->mg_node,
2297 &tset.dst_csets);
2298 next:
2299 if (!threadgroup)
2300 break;
2301 } while_each_thread(leader, task);
2302 rcu_read_unlock();
2303 up_write(&css_set_rwsem);
2305 /* methods shouldn't be called if no task is actually migrating */
2306 if (list_empty(&tset.src_csets))
2307 return 0;
2309 /* check that we can legitimately attach to the cgroup */
2310 for_each_e_css(css, i, cgrp) {
2311 if (css->ss->can_attach) {
2312 ret = css->ss->can_attach(css, &tset);
2313 if (ret) {
2314 failed_css = css;
2315 goto out_cancel_attach;
2321 * Now that we're guaranteed success, proceed to move all tasks to
2322 * the new cgroup. There are no failure cases after here, so this
2323 * is the commit point.
2325 down_write(&css_set_rwsem);
2326 list_for_each_entry(cset, &tset.src_csets, mg_node) {
2327 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
2328 cgroup_task_migrate(cset->mg_src_cgrp, task,
2329 cset->mg_dst_cset);
2331 up_write(&css_set_rwsem);
2334 * Migration is committed, all target tasks are now on dst_csets.
2335 * Nothing is sensitive to fork() after this point. Notify
2336 * controllers that migration is complete.
2338 tset.csets = &tset.dst_csets;
2340 for_each_e_css(css, i, cgrp)
2341 if (css->ss->attach)
2342 css->ss->attach(css, &tset);
2344 ret = 0;
2345 goto out_release_tset;
2347 out_cancel_attach:
2348 for_each_e_css(css, i, cgrp) {
2349 if (css == failed_css)
2350 break;
2351 if (css->ss->cancel_attach)
2352 css->ss->cancel_attach(css, &tset);
2354 out_release_tset:
2355 down_write(&css_set_rwsem);
2356 list_splice_init(&tset.dst_csets, &tset.src_csets);
2357 list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) {
2358 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2359 list_del_init(&cset->mg_node);
2361 up_write(&css_set_rwsem);
2362 return ret;
2366 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2367 * @dst_cgrp: the cgroup to attach to
2368 * @leader: the task or the leader of the threadgroup to be attached
2369 * @threadgroup: attach the whole threadgroup?
2371 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2373 static int cgroup_attach_task(struct cgroup *dst_cgrp,
2374 struct task_struct *leader, bool threadgroup)
2376 LIST_HEAD(preloaded_csets);
2377 struct task_struct *task;
2378 int ret;
2380 /* look up all src csets */
2381 down_read(&css_set_rwsem);
2382 rcu_read_lock();
2383 task = leader;
2384 do {
2385 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2386 &preloaded_csets);
2387 if (!threadgroup)
2388 break;
2389 } while_each_thread(leader, task);
2390 rcu_read_unlock();
2391 up_read(&css_set_rwsem);
2393 /* prepare dst csets and commit */
2394 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2395 if (!ret)
2396 ret = cgroup_migrate(dst_cgrp, leader, threadgroup);
2398 cgroup_migrate_finish(&preloaded_csets);
2399 return ret;
2402 static int cgroup_procs_write_permission(struct task_struct *task,
2403 struct cgroup *dst_cgrp,
2404 struct kernfs_open_file *of)
2406 const struct cred *cred = current_cred();
2407 const struct cred *tcred = get_task_cred(task);
2408 int ret = 0;
2411 * even if we're attaching all tasks in the thread group, we only
2412 * need to check permissions on one of them.
2414 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2415 !uid_eq(cred->euid, tcred->uid) &&
2416 !uid_eq(cred->euid, tcred->suid))
2417 ret = -EACCES;
2419 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2420 struct super_block *sb = of->file->f_path.dentry->d_sb;
2421 struct cgroup *cgrp;
2422 struct inode *inode;
2424 down_read(&css_set_rwsem);
2425 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
2426 up_read(&css_set_rwsem);
2428 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2429 cgrp = cgroup_parent(cgrp);
2431 ret = -ENOMEM;
2432 inode = kernfs_get_inode(sb, cgrp->procs_kn);
2433 if (inode) {
2434 ret = inode_permission(inode, MAY_WRITE);
2435 iput(inode);
2439 put_cred(tcred);
2440 return ret;
2444 * Find the task_struct of the task to attach by vpid and pass it along to the
2445 * function to attach either it or all tasks in its threadgroup. Will lock
2446 * cgroup_mutex and threadgroup.
2448 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2449 size_t nbytes, loff_t off, bool threadgroup)
2451 struct task_struct *tsk;
2452 struct cgroup *cgrp;
2453 pid_t pid;
2454 int ret;
2456 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2457 return -EINVAL;
2459 cgrp = cgroup_kn_lock_live(of->kn);
2460 if (!cgrp)
2461 return -ENODEV;
2463 percpu_down_write(&cgroup_threadgroup_rwsem);
2464 rcu_read_lock();
2465 if (pid) {
2466 tsk = find_task_by_vpid(pid);
2467 if (!tsk) {
2468 ret = -ESRCH;
2469 goto out_unlock_rcu;
2471 } else {
2472 tsk = current;
2475 if (threadgroup)
2476 tsk = tsk->group_leader;
2479 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2480 * trapped in a cpuset, or RT worker may be born in a cgroup
2481 * with no rt_runtime allocated. Just say no.
2483 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2484 ret = -EINVAL;
2485 goto out_unlock_rcu;
2488 get_task_struct(tsk);
2489 rcu_read_unlock();
2491 ret = cgroup_procs_write_permission(tsk, cgrp, of);
2492 if (!ret)
2493 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2495 put_task_struct(tsk);
2496 goto out_unlock_threadgroup;
2498 out_unlock_rcu:
2499 rcu_read_unlock();
2500 out_unlock_threadgroup:
2501 percpu_up_write(&cgroup_threadgroup_rwsem);
2502 cgroup_kn_unlock(of->kn);
2503 return ret ?: nbytes;
2507 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2508 * @from: attach to all cgroups of a given task
2509 * @tsk: the task to be attached
2511 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2513 struct cgroup_root *root;
2514 int retval = 0;
2516 mutex_lock(&cgroup_mutex);
2517 for_each_root(root) {
2518 struct cgroup *from_cgrp;
2520 if (root == &cgrp_dfl_root)
2521 continue;
2523 down_read(&css_set_rwsem);
2524 from_cgrp = task_cgroup_from_root(from, root);
2525 up_read(&css_set_rwsem);
2527 retval = cgroup_attach_task(from_cgrp, tsk, false);
2528 if (retval)
2529 break;
2531 mutex_unlock(&cgroup_mutex);
2533 return retval;
2535 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2537 static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2538 char *buf, size_t nbytes, loff_t off)
2540 return __cgroup_procs_write(of, buf, nbytes, off, false);
2543 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2544 char *buf, size_t nbytes, loff_t off)
2546 return __cgroup_procs_write(of, buf, nbytes, off, true);
2549 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2550 char *buf, size_t nbytes, loff_t off)
2552 struct cgroup *cgrp;
2554 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2556 cgrp = cgroup_kn_lock_live(of->kn);
2557 if (!cgrp)
2558 return -ENODEV;
2559 spin_lock(&release_agent_path_lock);
2560 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2561 sizeof(cgrp->root->release_agent_path));
2562 spin_unlock(&release_agent_path_lock);
2563 cgroup_kn_unlock(of->kn);
2564 return nbytes;
2567 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
2569 struct cgroup *cgrp = seq_css(seq)->cgroup;
2571 spin_lock(&release_agent_path_lock);
2572 seq_puts(seq, cgrp->root->release_agent_path);
2573 spin_unlock(&release_agent_path_lock);
2574 seq_putc(seq, '\n');
2575 return 0;
2578 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
2580 seq_puts(seq, "0\n");
2581 return 0;
2584 static void cgroup_print_ss_mask(struct seq_file *seq, unsigned long ss_mask)
2586 struct cgroup_subsys *ss;
2587 bool printed = false;
2588 int ssid;
2590 for_each_subsys_which(ss, ssid, &ss_mask) {
2591 if (printed)
2592 seq_putc(seq, ' ');
2593 seq_printf(seq, "%s", ss->name);
2594 printed = true;
2596 if (printed)
2597 seq_putc(seq, '\n');
2600 /* show controllers which are currently attached to the default hierarchy */
2601 static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
2603 struct cgroup *cgrp = seq_css(seq)->cgroup;
2605 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2606 ~cgrp_dfl_root_inhibit_ss_mask);
2607 return 0;
2610 /* show controllers which are enabled from the parent */
2611 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2613 struct cgroup *cgrp = seq_css(seq)->cgroup;
2615 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
2616 return 0;
2619 /* show controllers which are enabled for a given cgroup's children */
2620 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2622 struct cgroup *cgrp = seq_css(seq)->cgroup;
2624 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2625 return 0;
2629 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2630 * @cgrp: root of the subtree to update csses for
2632 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2633 * css associations need to be updated accordingly. This function looks up
2634 * all css_sets which are attached to the subtree, creates the matching
2635 * updated css_sets and migrates the tasks to the new ones.
2637 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2639 LIST_HEAD(preloaded_csets);
2640 struct cgroup_subsys_state *css;
2641 struct css_set *src_cset;
2642 int ret;
2644 lockdep_assert_held(&cgroup_mutex);
2646 percpu_down_write(&cgroup_threadgroup_rwsem);
2648 /* look up all csses currently attached to @cgrp's subtree */
2649 down_read(&css_set_rwsem);
2650 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2651 struct cgrp_cset_link *link;
2653 /* self is not affected by child_subsys_mask change */
2654 if (css->cgroup == cgrp)
2655 continue;
2657 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2658 cgroup_migrate_add_src(link->cset, cgrp,
2659 &preloaded_csets);
2661 up_read(&css_set_rwsem);
2663 /* NULL dst indicates self on default hierarchy */
2664 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2665 if (ret)
2666 goto out_finish;
2668 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
2669 struct task_struct *last_task = NULL, *task;
2671 /* src_csets precede dst_csets, break on the first dst_cset */
2672 if (!src_cset->mg_src_cgrp)
2673 break;
2676 * All tasks in src_cset need to be migrated to the
2677 * matching dst_cset. Empty it process by process. We
2678 * walk tasks but migrate processes. The leader might even
2679 * belong to a different cset but such src_cset would also
2680 * be among the target src_csets because the default
2681 * hierarchy enforces per-process membership.
2683 while (true) {
2684 down_read(&css_set_rwsem);
2685 task = list_first_entry_or_null(&src_cset->tasks,
2686 struct task_struct, cg_list);
2687 if (task) {
2688 task = task->group_leader;
2689 WARN_ON_ONCE(!task_css_set(task)->mg_src_cgrp);
2690 get_task_struct(task);
2692 up_read(&css_set_rwsem);
2694 if (!task)
2695 break;
2697 /* guard against possible infinite loop */
2698 if (WARN(last_task == task,
2699 "cgroup: update_dfl_csses failed to make progress, aborting in inconsistent state\n"))
2700 goto out_finish;
2701 last_task = task;
2703 ret = cgroup_migrate(src_cset->dfl_cgrp, task, true);
2705 put_task_struct(task);
2707 if (WARN(ret, "cgroup: failed to update controllers for the default hierarchy (%d), further operations may crash or hang\n", ret))
2708 goto out_finish;
2712 out_finish:
2713 cgroup_migrate_finish(&preloaded_csets);
2714 percpu_up_write(&cgroup_threadgroup_rwsem);
2715 return ret;
2718 /* change the enabled child controllers for a cgroup in the default hierarchy */
2719 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2720 char *buf, size_t nbytes,
2721 loff_t off)
2723 unsigned long enable = 0, disable = 0;
2724 unsigned long css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
2725 struct cgroup *cgrp, *child;
2726 struct cgroup_subsys *ss;
2727 char *tok;
2728 int ssid, ret;
2731 * Parse input - space separated list of subsystem names prefixed
2732 * with either + or -.
2734 buf = strstrip(buf);
2735 while ((tok = strsep(&buf, " "))) {
2736 unsigned long tmp_ss_mask = ~cgrp_dfl_root_inhibit_ss_mask;
2738 if (tok[0] == '\0')
2739 continue;
2740 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
2741 if (ss->disabled || strcmp(tok + 1, ss->name))
2742 continue;
2744 if (*tok == '+') {
2745 enable |= 1 << ssid;
2746 disable &= ~(1 << ssid);
2747 } else if (*tok == '-') {
2748 disable |= 1 << ssid;
2749 enable &= ~(1 << ssid);
2750 } else {
2751 return -EINVAL;
2753 break;
2755 if (ssid == CGROUP_SUBSYS_COUNT)
2756 return -EINVAL;
2759 cgrp = cgroup_kn_lock_live(of->kn);
2760 if (!cgrp)
2761 return -ENODEV;
2763 for_each_subsys(ss, ssid) {
2764 if (enable & (1 << ssid)) {
2765 if (cgrp->subtree_control & (1 << ssid)) {
2766 enable &= ~(1 << ssid);
2767 continue;
2770 /* unavailable or not enabled on the parent? */
2771 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2772 (cgroup_parent(cgrp) &&
2773 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
2774 ret = -ENOENT;
2775 goto out_unlock;
2777 } else if (disable & (1 << ssid)) {
2778 if (!(cgrp->subtree_control & (1 << ssid))) {
2779 disable &= ~(1 << ssid);
2780 continue;
2783 /* a child has it enabled? */
2784 cgroup_for_each_live_child(child, cgrp) {
2785 if (child->subtree_control & (1 << ssid)) {
2786 ret = -EBUSY;
2787 goto out_unlock;
2793 if (!enable && !disable) {
2794 ret = 0;
2795 goto out_unlock;
2799 * Except for the root, subtree_control must be zero for a cgroup
2800 * with tasks so that child cgroups don't compete against tasks.
2802 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
2803 ret = -EBUSY;
2804 goto out_unlock;
2808 * Update subsys masks and calculate what needs to be done. More
2809 * subsystems than specified may need to be enabled or disabled
2810 * depending on subsystem dependencies.
2812 old_sc = cgrp->subtree_control;
2813 old_ss = cgrp->child_subsys_mask;
2814 new_sc = (old_sc | enable) & ~disable;
2815 new_ss = cgroup_calc_child_subsys_mask(cgrp, new_sc);
2817 css_enable = ~old_ss & new_ss;
2818 css_disable = old_ss & ~new_ss;
2819 enable |= css_enable;
2820 disable |= css_disable;
2823 * Because css offlining is asynchronous, userland might try to
2824 * re-enable the same controller while the previous instance is
2825 * still around. In such cases, wait till it's gone using
2826 * offline_waitq.
2828 for_each_subsys_which(ss, ssid, &css_enable) {
2829 cgroup_for_each_live_child(child, cgrp) {
2830 DEFINE_WAIT(wait);
2832 if (!cgroup_css(child, ss))
2833 continue;
2835 cgroup_get(child);
2836 prepare_to_wait(&child->offline_waitq, &wait,
2837 TASK_UNINTERRUPTIBLE);
2838 cgroup_kn_unlock(of->kn);
2839 schedule();
2840 finish_wait(&child->offline_waitq, &wait);
2841 cgroup_put(child);
2843 return restart_syscall();
2847 cgrp->subtree_control = new_sc;
2848 cgrp->child_subsys_mask = new_ss;
2851 * Create new csses or make the existing ones visible. A css is
2852 * created invisible if it's being implicitly enabled through
2853 * dependency. An invisible css is made visible when the userland
2854 * explicitly enables it.
2856 for_each_subsys(ss, ssid) {
2857 if (!(enable & (1 << ssid)))
2858 continue;
2860 cgroup_for_each_live_child(child, cgrp) {
2861 if (css_enable & (1 << ssid))
2862 ret = create_css(child, ss,
2863 cgrp->subtree_control & (1 << ssid));
2864 else
2865 ret = cgroup_populate_dir(child, 1 << ssid);
2866 if (ret)
2867 goto err_undo_css;
2872 * At this point, cgroup_e_css() results reflect the new csses
2873 * making the following cgroup_update_dfl_csses() properly update
2874 * css associations of all tasks in the subtree.
2876 ret = cgroup_update_dfl_csses(cgrp);
2877 if (ret)
2878 goto err_undo_css;
2881 * All tasks are migrated out of disabled csses. Kill or hide
2882 * them. A css is hidden when the userland requests it to be
2883 * disabled while other subsystems are still depending on it. The
2884 * css must not actively control resources and be in the vanilla
2885 * state if it's made visible again later. Controllers which may
2886 * be depended upon should provide ->css_reset() for this purpose.
2888 for_each_subsys(ss, ssid) {
2889 if (!(disable & (1 << ssid)))
2890 continue;
2892 cgroup_for_each_live_child(child, cgrp) {
2893 struct cgroup_subsys_state *css = cgroup_css(child, ss);
2895 if (css_disable & (1 << ssid)) {
2896 kill_css(css);
2897 } else {
2898 cgroup_clear_dir(child, 1 << ssid);
2899 if (ss->css_reset)
2900 ss->css_reset(css);
2906 * The effective csses of all the descendants (excluding @cgrp) may
2907 * have changed. Subsystems can optionally subscribe to this event
2908 * by implementing ->css_e_css_changed() which is invoked if any of
2909 * the effective csses seen from the css's cgroup may have changed.
2911 for_each_subsys(ss, ssid) {
2912 struct cgroup_subsys_state *this_css = cgroup_css(cgrp, ss);
2913 struct cgroup_subsys_state *css;
2915 if (!ss->css_e_css_changed || !this_css)
2916 continue;
2918 css_for_each_descendant_pre(css, this_css)
2919 if (css != this_css)
2920 ss->css_e_css_changed(css);
2923 kernfs_activate(cgrp->kn);
2924 ret = 0;
2925 out_unlock:
2926 cgroup_kn_unlock(of->kn);
2927 return ret ?: nbytes;
2929 err_undo_css:
2930 cgrp->subtree_control = old_sc;
2931 cgrp->child_subsys_mask = old_ss;
2933 for_each_subsys(ss, ssid) {
2934 if (!(enable & (1 << ssid)))
2935 continue;
2937 cgroup_for_each_live_child(child, cgrp) {
2938 struct cgroup_subsys_state *css = cgroup_css(child, ss);
2940 if (!css)
2941 continue;
2943 if (css_enable & (1 << ssid))
2944 kill_css(css);
2945 else
2946 cgroup_clear_dir(child, 1 << ssid);
2949 goto out_unlock;
2952 static int cgroup_populated_show(struct seq_file *seq, void *v)
2954 seq_printf(seq, "%d\n", (bool)seq_css(seq)->cgroup->populated_cnt);
2955 return 0;
2958 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2959 size_t nbytes, loff_t off)
2961 struct cgroup *cgrp = of->kn->parent->priv;
2962 struct cftype *cft = of->kn->priv;
2963 struct cgroup_subsys_state *css;
2964 int ret;
2966 if (cft->write)
2967 return cft->write(of, buf, nbytes, off);
2970 * kernfs guarantees that a file isn't deleted with operations in
2971 * flight, which means that the matching css is and stays alive and
2972 * doesn't need to be pinned. The RCU locking is not necessary
2973 * either. It's just for the convenience of using cgroup_css().
2975 rcu_read_lock();
2976 css = cgroup_css(cgrp, cft->ss);
2977 rcu_read_unlock();
2979 if (cft->write_u64) {
2980 unsigned long long v;
2981 ret = kstrtoull(buf, 0, &v);
2982 if (!ret)
2983 ret = cft->write_u64(css, cft, v);
2984 } else if (cft->write_s64) {
2985 long long v;
2986 ret = kstrtoll(buf, 0, &v);
2987 if (!ret)
2988 ret = cft->write_s64(css, cft, v);
2989 } else {
2990 ret = -EINVAL;
2993 return ret ?: nbytes;
2996 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
2998 return seq_cft(seq)->seq_start(seq, ppos);
3001 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3003 return seq_cft(seq)->seq_next(seq, v, ppos);
3006 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3008 seq_cft(seq)->seq_stop(seq, v);
3011 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3013 struct cftype *cft = seq_cft(m);
3014 struct cgroup_subsys_state *css = seq_css(m);
3016 if (cft->seq_show)
3017 return cft->seq_show(m, arg);
3019 if (cft->read_u64)
3020 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3021 else if (cft->read_s64)
3022 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3023 else
3024 return -EINVAL;
3025 return 0;
3028 static struct kernfs_ops cgroup_kf_single_ops = {
3029 .atomic_write_len = PAGE_SIZE,
3030 .write = cgroup_file_write,
3031 .seq_show = cgroup_seqfile_show,
3034 static struct kernfs_ops cgroup_kf_ops = {
3035 .atomic_write_len = PAGE_SIZE,
3036 .write = cgroup_file_write,
3037 .seq_start = cgroup_seqfile_start,
3038 .seq_next = cgroup_seqfile_next,
3039 .seq_stop = cgroup_seqfile_stop,
3040 .seq_show = cgroup_seqfile_show,
3044 * cgroup_rename - Only allow simple rename of directories in place.
3046 static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3047 const char *new_name_str)
3049 struct cgroup *cgrp = kn->priv;
3050 int ret;
3052 if (kernfs_type(kn) != KERNFS_DIR)
3053 return -ENOTDIR;
3054 if (kn->parent != new_parent)
3055 return -EIO;
3058 * This isn't a proper migration and its usefulness is very
3059 * limited. Disallow on the default hierarchy.
3061 if (cgroup_on_dfl(cgrp))
3062 return -EPERM;
3065 * We're gonna grab cgroup_mutex which nests outside kernfs
3066 * active_ref. kernfs_rename() doesn't require active_ref
3067 * protection. Break them before grabbing cgroup_mutex.
3069 kernfs_break_active_protection(new_parent);
3070 kernfs_break_active_protection(kn);
3072 mutex_lock(&cgroup_mutex);
3074 ret = kernfs_rename(kn, new_parent, new_name_str);
3076 mutex_unlock(&cgroup_mutex);
3078 kernfs_unbreak_active_protection(kn);
3079 kernfs_unbreak_active_protection(new_parent);
3080 return ret;
3083 /* set uid and gid of cgroup dirs and files to that of the creator */
3084 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3086 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3087 .ia_uid = current_fsuid(),
3088 .ia_gid = current_fsgid(), };
3090 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3091 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3092 return 0;
3094 return kernfs_setattr(kn, &iattr);
3097 static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
3099 char name[CGROUP_FILE_NAME_MAX];
3100 struct kernfs_node *kn;
3101 struct lock_class_key *key = NULL;
3102 int ret;
3104 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3105 key = &cft->lockdep_key;
3106 #endif
3107 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3108 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
3109 NULL, key);
3110 if (IS_ERR(kn))
3111 return PTR_ERR(kn);
3113 ret = cgroup_kn_set_ugid(kn);
3114 if (ret) {
3115 kernfs_remove(kn);
3116 return ret;
3119 if (cft->write == cgroup_procs_write)
3120 cgrp->procs_kn = kn;
3121 else if (cft->seq_show == cgroup_populated_show)
3122 cgrp->populated_kn = kn;
3123 return 0;
3127 * cgroup_addrm_files - add or remove files to a cgroup directory
3128 * @cgrp: the target cgroup
3129 * @cfts: array of cftypes to be added
3130 * @is_add: whether to add or remove
3132 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3133 * For removals, this function never fails. If addition fails, this
3134 * function doesn't remove files already added. The caller is responsible
3135 * for cleaning up.
3137 static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
3138 bool is_add)
3140 struct cftype *cft;
3141 int ret;
3143 lockdep_assert_held(&cgroup_mutex);
3145 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3146 /* does cft->flags tell us to skip this file on @cgrp? */
3147 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3148 continue;
3149 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3150 continue;
3151 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3152 continue;
3153 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3154 continue;
3156 if (is_add) {
3157 ret = cgroup_add_file(cgrp, cft);
3158 if (ret) {
3159 pr_warn("%s: failed to add %s, err=%d\n",
3160 __func__, cft->name, ret);
3161 return ret;
3163 } else {
3164 cgroup_rm_file(cgrp, cft);
3167 return 0;
3170 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3172 LIST_HEAD(pending);
3173 struct cgroup_subsys *ss = cfts[0].ss;
3174 struct cgroup *root = &ss->root->cgrp;
3175 struct cgroup_subsys_state *css;
3176 int ret = 0;
3178 lockdep_assert_held(&cgroup_mutex);
3180 /* add/rm files for all cgroups created before */
3181 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3182 struct cgroup *cgrp = css->cgroup;
3184 if (cgroup_is_dead(cgrp))
3185 continue;
3187 ret = cgroup_addrm_files(cgrp, cfts, is_add);
3188 if (ret)
3189 break;
3192 if (is_add && !ret)
3193 kernfs_activate(root->kn);
3194 return ret;
3197 static void cgroup_exit_cftypes(struct cftype *cfts)
3199 struct cftype *cft;
3201 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3202 /* free copy for custom atomic_write_len, see init_cftypes() */
3203 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3204 kfree(cft->kf_ops);
3205 cft->kf_ops = NULL;
3206 cft->ss = NULL;
3208 /* revert flags set by cgroup core while adding @cfts */
3209 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3213 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3215 struct cftype *cft;
3217 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3218 struct kernfs_ops *kf_ops;
3220 WARN_ON(cft->ss || cft->kf_ops);
3222 if (cft->seq_start)
3223 kf_ops = &cgroup_kf_ops;
3224 else
3225 kf_ops = &cgroup_kf_single_ops;
3228 * Ugh... if @cft wants a custom max_write_len, we need to
3229 * make a copy of kf_ops to set its atomic_write_len.
3231 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3232 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3233 if (!kf_ops) {
3234 cgroup_exit_cftypes(cfts);
3235 return -ENOMEM;
3237 kf_ops->atomic_write_len = cft->max_write_len;
3240 cft->kf_ops = kf_ops;
3241 cft->ss = ss;
3244 return 0;
3247 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3249 lockdep_assert_held(&cgroup_mutex);
3251 if (!cfts || !cfts[0].ss)
3252 return -ENOENT;
3254 list_del(&cfts->node);
3255 cgroup_apply_cftypes(cfts, false);
3256 cgroup_exit_cftypes(cfts);
3257 return 0;
3261 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3262 * @cfts: zero-length name terminated array of cftypes
3264 * Unregister @cfts. Files described by @cfts are removed from all
3265 * existing cgroups and all future cgroups won't have them either. This
3266 * function can be called anytime whether @cfts' subsys is attached or not.
3268 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3269 * registered.
3271 int cgroup_rm_cftypes(struct cftype *cfts)
3273 int ret;
3275 mutex_lock(&cgroup_mutex);
3276 ret = cgroup_rm_cftypes_locked(cfts);
3277 mutex_unlock(&cgroup_mutex);
3278 return ret;
3282 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3283 * @ss: target cgroup subsystem
3284 * @cfts: zero-length name terminated array of cftypes
3286 * Register @cfts to @ss. Files described by @cfts are created for all
3287 * existing cgroups to which @ss is attached and all future cgroups will
3288 * have them too. This function can be called anytime whether @ss is
3289 * attached or not.
3291 * Returns 0 on successful registration, -errno on failure. Note that this
3292 * function currently returns 0 as long as @cfts registration is successful
3293 * even if some file creation attempts on existing cgroups fail.
3295 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3297 int ret;
3299 if (ss->disabled)
3300 return 0;
3302 if (!cfts || cfts[0].name[0] == '\0')
3303 return 0;
3305 ret = cgroup_init_cftypes(ss, cfts);
3306 if (ret)
3307 return ret;
3309 mutex_lock(&cgroup_mutex);
3311 list_add_tail(&cfts->node, &ss->cfts);
3312 ret = cgroup_apply_cftypes(cfts, true);
3313 if (ret)
3314 cgroup_rm_cftypes_locked(cfts);
3316 mutex_unlock(&cgroup_mutex);
3317 return ret;
3321 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3322 * @ss: target cgroup subsystem
3323 * @cfts: zero-length name terminated array of cftypes
3325 * Similar to cgroup_add_cftypes() but the added files are only used for
3326 * the default hierarchy.
3328 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3330 struct cftype *cft;
3332 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3333 cft->flags |= __CFTYPE_ONLY_ON_DFL;
3334 return cgroup_add_cftypes(ss, cfts);
3338 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3339 * @ss: target cgroup subsystem
3340 * @cfts: zero-length name terminated array of cftypes
3342 * Similar to cgroup_add_cftypes() but the added files are only used for
3343 * the legacy hierarchies.
3345 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3347 struct cftype *cft;
3350 * If legacy_flies_on_dfl, we want to show the legacy files on the
3351 * dfl hierarchy but iff the target subsystem hasn't been updated
3352 * for the dfl hierarchy yet.
3354 if (!cgroup_legacy_files_on_dfl ||
3355 ss->dfl_cftypes != ss->legacy_cftypes) {
3356 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3357 cft->flags |= __CFTYPE_NOT_ON_DFL;
3360 return cgroup_add_cftypes(ss, cfts);
3364 * cgroup_task_count - count the number of tasks in a cgroup.
3365 * @cgrp: the cgroup in question
3367 * Return the number of tasks in the cgroup.
3369 static int cgroup_task_count(const struct cgroup *cgrp)
3371 int count = 0;
3372 struct cgrp_cset_link *link;
3374 down_read(&css_set_rwsem);
3375 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3376 count += atomic_read(&link->cset->refcount);
3377 up_read(&css_set_rwsem);
3378 return count;
3382 * css_next_child - find the next child of a given css
3383 * @pos: the current position (%NULL to initiate traversal)
3384 * @parent: css whose children to walk
3386 * This function returns the next child of @parent and should be called
3387 * under either cgroup_mutex or RCU read lock. The only requirement is
3388 * that @parent and @pos are accessible. The next sibling is guaranteed to
3389 * be returned regardless of their states.
3391 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3392 * css which finished ->css_online() is guaranteed to be visible in the
3393 * future iterations and will stay visible until the last reference is put.
3394 * A css which hasn't finished ->css_online() or already finished
3395 * ->css_offline() may show up during traversal. It's each subsystem's
3396 * responsibility to synchronize against on/offlining.
3398 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3399 struct cgroup_subsys_state *parent)
3401 struct cgroup_subsys_state *next;
3403 cgroup_assert_mutex_or_rcu_locked();
3406 * @pos could already have been unlinked from the sibling list.
3407 * Once a cgroup is removed, its ->sibling.next is no longer
3408 * updated when its next sibling changes. CSS_RELEASED is set when
3409 * @pos is taken off list, at which time its next pointer is valid,
3410 * and, as releases are serialized, the one pointed to by the next
3411 * pointer is guaranteed to not have started release yet. This
3412 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3413 * critical section, the one pointed to by its next pointer is
3414 * guaranteed to not have finished its RCU grace period even if we
3415 * have dropped rcu_read_lock() inbetween iterations.
3417 * If @pos has CSS_RELEASED set, its next pointer can't be
3418 * dereferenced; however, as each css is given a monotonically
3419 * increasing unique serial number and always appended to the
3420 * sibling list, the next one can be found by walking the parent's
3421 * children until the first css with higher serial number than
3422 * @pos's. While this path can be slower, it happens iff iteration
3423 * races against release and the race window is very small.
3425 if (!pos) {
3426 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3427 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3428 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3429 } else {
3430 list_for_each_entry_rcu(next, &parent->children, sibling)
3431 if (next->serial_nr > pos->serial_nr)
3432 break;
3436 * @next, if not pointing to the head, can be dereferenced and is
3437 * the next sibling.
3439 if (&next->sibling != &parent->children)
3440 return next;
3441 return NULL;
3445 * css_next_descendant_pre - find the next descendant for pre-order walk
3446 * @pos: the current position (%NULL to initiate traversal)
3447 * @root: css whose descendants to walk
3449 * To be used by css_for_each_descendant_pre(). Find the next descendant
3450 * to visit for pre-order traversal of @root's descendants. @root is
3451 * included in the iteration and the first node to be visited.
3453 * While this function requires cgroup_mutex or RCU read locking, it
3454 * doesn't require the whole traversal to be contained in a single critical
3455 * section. This function will return the correct next descendant as long
3456 * as both @pos and @root are accessible and @pos is a descendant of @root.
3458 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3459 * css which finished ->css_online() is guaranteed to be visible in the
3460 * future iterations and will stay visible until the last reference is put.
3461 * A css which hasn't finished ->css_online() or already finished
3462 * ->css_offline() may show up during traversal. It's each subsystem's
3463 * responsibility to synchronize against on/offlining.
3465 struct cgroup_subsys_state *
3466 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3467 struct cgroup_subsys_state *root)
3469 struct cgroup_subsys_state *next;
3471 cgroup_assert_mutex_or_rcu_locked();
3473 /* if first iteration, visit @root */
3474 if (!pos)
3475 return root;
3477 /* visit the first child if exists */
3478 next = css_next_child(NULL, pos);
3479 if (next)
3480 return next;
3482 /* no child, visit my or the closest ancestor's next sibling */
3483 while (pos != root) {
3484 next = css_next_child(pos, pos->parent);
3485 if (next)
3486 return next;
3487 pos = pos->parent;
3490 return NULL;
3494 * css_rightmost_descendant - return the rightmost descendant of a css
3495 * @pos: css of interest
3497 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3498 * is returned. This can be used during pre-order traversal to skip
3499 * subtree of @pos.
3501 * While this function requires cgroup_mutex or RCU read locking, it
3502 * doesn't require the whole traversal to be contained in a single critical
3503 * section. This function will return the correct rightmost descendant as
3504 * long as @pos is accessible.
3506 struct cgroup_subsys_state *
3507 css_rightmost_descendant(struct cgroup_subsys_state *pos)
3509 struct cgroup_subsys_state *last, *tmp;
3511 cgroup_assert_mutex_or_rcu_locked();
3513 do {
3514 last = pos;
3515 /* ->prev isn't RCU safe, walk ->next till the end */
3516 pos = NULL;
3517 css_for_each_child(tmp, last)
3518 pos = tmp;
3519 } while (pos);
3521 return last;
3524 static struct cgroup_subsys_state *
3525 css_leftmost_descendant(struct cgroup_subsys_state *pos)
3527 struct cgroup_subsys_state *last;
3529 do {
3530 last = pos;
3531 pos = css_next_child(NULL, pos);
3532 } while (pos);
3534 return last;
3538 * css_next_descendant_post - find the next descendant for post-order walk
3539 * @pos: the current position (%NULL to initiate traversal)
3540 * @root: css whose descendants to walk
3542 * To be used by css_for_each_descendant_post(). Find the next descendant
3543 * to visit for post-order traversal of @root's descendants. @root is
3544 * included in the iteration and the last node to be visited.
3546 * While this function requires cgroup_mutex or RCU read locking, it
3547 * doesn't require the whole traversal to be contained in a single critical
3548 * section. This function will return the correct next descendant as long
3549 * as both @pos and @cgroup are accessible and @pos is a descendant of
3550 * @cgroup.
3552 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3553 * css which finished ->css_online() is guaranteed to be visible in the
3554 * future iterations and will stay visible until the last reference is put.
3555 * A css which hasn't finished ->css_online() or already finished
3556 * ->css_offline() may show up during traversal. It's each subsystem's
3557 * responsibility to synchronize against on/offlining.
3559 struct cgroup_subsys_state *
3560 css_next_descendant_post(struct cgroup_subsys_state *pos,
3561 struct cgroup_subsys_state *root)
3563 struct cgroup_subsys_state *next;
3565 cgroup_assert_mutex_or_rcu_locked();
3567 /* if first iteration, visit leftmost descendant which may be @root */
3568 if (!pos)
3569 return css_leftmost_descendant(root);
3571 /* if we visited @root, we're done */
3572 if (pos == root)
3573 return NULL;
3575 /* if there's an unvisited sibling, visit its leftmost descendant */
3576 next = css_next_child(pos, pos->parent);
3577 if (next)
3578 return css_leftmost_descendant(next);
3580 /* no sibling left, visit parent */
3581 return pos->parent;
3585 * css_has_online_children - does a css have online children
3586 * @css: the target css
3588 * Returns %true if @css has any online children; otherwise, %false. This
3589 * function can be called from any context but the caller is responsible
3590 * for synchronizing against on/offlining as necessary.
3592 bool css_has_online_children(struct cgroup_subsys_state *css)
3594 struct cgroup_subsys_state *child;
3595 bool ret = false;
3597 rcu_read_lock();
3598 css_for_each_child(child, css) {
3599 if (child->flags & CSS_ONLINE) {
3600 ret = true;
3601 break;
3604 rcu_read_unlock();
3605 return ret;
3609 * css_advance_task_iter - advance a task itererator to the next css_set
3610 * @it: the iterator to advance
3612 * Advance @it to the next css_set to walk.
3614 static void css_advance_task_iter(struct css_task_iter *it)
3616 struct list_head *l = it->cset_pos;
3617 struct cgrp_cset_link *link;
3618 struct css_set *cset;
3620 /* Advance to the next non-empty css_set */
3621 do {
3622 l = l->next;
3623 if (l == it->cset_head) {
3624 it->cset_pos = NULL;
3625 return;
3628 if (it->ss) {
3629 cset = container_of(l, struct css_set,
3630 e_cset_node[it->ss->id]);
3631 } else {
3632 link = list_entry(l, struct cgrp_cset_link, cset_link);
3633 cset = link->cset;
3635 } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks));
3637 it->cset_pos = l;
3639 if (!list_empty(&cset->tasks))
3640 it->task_pos = cset->tasks.next;
3641 else
3642 it->task_pos = cset->mg_tasks.next;
3644 it->tasks_head = &cset->tasks;
3645 it->mg_tasks_head = &cset->mg_tasks;
3649 * css_task_iter_start - initiate task iteration
3650 * @css: the css to walk tasks of
3651 * @it: the task iterator to use
3653 * Initiate iteration through the tasks of @css. The caller can call
3654 * css_task_iter_next() to walk through the tasks until the function
3655 * returns NULL. On completion of iteration, css_task_iter_end() must be
3656 * called.
3658 * Note that this function acquires a lock which is released when the
3659 * iteration finishes. The caller can't sleep while iteration is in
3660 * progress.
3662 void css_task_iter_start(struct cgroup_subsys_state *css,
3663 struct css_task_iter *it)
3664 __acquires(css_set_rwsem)
3666 /* no one should try to iterate before mounting cgroups */
3667 WARN_ON_ONCE(!use_task_css_set_links);
3669 down_read(&css_set_rwsem);
3671 it->ss = css->ss;
3673 if (it->ss)
3674 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3675 else
3676 it->cset_pos = &css->cgroup->cset_links;
3678 it->cset_head = it->cset_pos;
3680 css_advance_task_iter(it);
3684 * css_task_iter_next - return the next task for the iterator
3685 * @it: the task iterator being iterated
3687 * The "next" function for task iteration. @it should have been
3688 * initialized via css_task_iter_start(). Returns NULL when the iteration
3689 * reaches the end.
3691 struct task_struct *css_task_iter_next(struct css_task_iter *it)
3693 struct task_struct *res;
3694 struct list_head *l = it->task_pos;
3696 /* If the iterator cg is NULL, we have no tasks */
3697 if (!it->cset_pos)
3698 return NULL;
3699 res = list_entry(l, struct task_struct, cg_list);
3702 * Advance iterator to find next entry. cset->tasks is consumed
3703 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3704 * next cset.
3706 l = l->next;
3708 if (l == it->tasks_head)
3709 l = it->mg_tasks_head->next;
3711 if (l == it->mg_tasks_head)
3712 css_advance_task_iter(it);
3713 else
3714 it->task_pos = l;
3716 return res;
3720 * css_task_iter_end - finish task iteration
3721 * @it: the task iterator to finish
3723 * Finish task iteration started by css_task_iter_start().
3725 void css_task_iter_end(struct css_task_iter *it)
3726 __releases(css_set_rwsem)
3728 up_read(&css_set_rwsem);
3732 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3733 * @to: cgroup to which the tasks will be moved
3734 * @from: cgroup in which the tasks currently reside
3736 * Locking rules between cgroup_post_fork() and the migration path
3737 * guarantee that, if a task is forking while being migrated, the new child
3738 * is guaranteed to be either visible in the source cgroup after the
3739 * parent's migration is complete or put into the target cgroup. No task
3740 * can slip out of migration through forking.
3742 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3744 LIST_HEAD(preloaded_csets);
3745 struct cgrp_cset_link *link;
3746 struct css_task_iter it;
3747 struct task_struct *task;
3748 int ret;
3750 mutex_lock(&cgroup_mutex);
3752 /* all tasks in @from are being moved, all csets are source */
3753 down_read(&css_set_rwsem);
3754 list_for_each_entry(link, &from->cset_links, cset_link)
3755 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
3756 up_read(&css_set_rwsem);
3758 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
3759 if (ret)
3760 goto out_err;
3763 * Migrate tasks one-by-one until @form is empty. This fails iff
3764 * ->can_attach() fails.
3766 do {
3767 css_task_iter_start(&from->self, &it);
3768 task = css_task_iter_next(&it);
3769 if (task)
3770 get_task_struct(task);
3771 css_task_iter_end(&it);
3773 if (task) {
3774 ret = cgroup_migrate(to, task, false);
3775 put_task_struct(task);
3777 } while (task && !ret);
3778 out_err:
3779 cgroup_migrate_finish(&preloaded_csets);
3780 mutex_unlock(&cgroup_mutex);
3781 return ret;
3785 * Stuff for reading the 'tasks'/'procs' files.
3787 * Reading this file can return large amounts of data if a cgroup has
3788 * *lots* of attached tasks. So it may need several calls to read(),
3789 * but we cannot guarantee that the information we produce is correct
3790 * unless we produce it entirely atomically.
3794 /* which pidlist file are we talking about? */
3795 enum cgroup_filetype {
3796 CGROUP_FILE_PROCS,
3797 CGROUP_FILE_TASKS,
3801 * A pidlist is a list of pids that virtually represents the contents of one
3802 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3803 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3804 * to the cgroup.
3806 struct cgroup_pidlist {
3808 * used to find which pidlist is wanted. doesn't change as long as
3809 * this particular list stays in the list.
3811 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3812 /* array of xids */
3813 pid_t *list;
3814 /* how many elements the above list has */
3815 int length;
3816 /* each of these stored in a list by its cgroup */
3817 struct list_head links;
3818 /* pointer to the cgroup we belong to, for list removal purposes */
3819 struct cgroup *owner;
3820 /* for delayed destruction */
3821 struct delayed_work destroy_dwork;
3825 * The following two functions "fix" the issue where there are more pids
3826 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3827 * TODO: replace with a kernel-wide solution to this problem
3829 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3830 static void *pidlist_allocate(int count)
3832 if (PIDLIST_TOO_LARGE(count))
3833 return vmalloc(count * sizeof(pid_t));
3834 else
3835 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3838 static void pidlist_free(void *p)
3840 kvfree(p);
3844 * Used to destroy all pidlists lingering waiting for destroy timer. None
3845 * should be left afterwards.
3847 static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
3849 struct cgroup_pidlist *l, *tmp_l;
3851 mutex_lock(&cgrp->pidlist_mutex);
3852 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
3853 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
3854 mutex_unlock(&cgrp->pidlist_mutex);
3856 flush_workqueue(cgroup_pidlist_destroy_wq);
3857 BUG_ON(!list_empty(&cgrp->pidlists));
3860 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
3862 struct delayed_work *dwork = to_delayed_work(work);
3863 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
3864 destroy_dwork);
3865 struct cgroup_pidlist *tofree = NULL;
3867 mutex_lock(&l->owner->pidlist_mutex);
3870 * Destroy iff we didn't get queued again. The state won't change
3871 * as destroy_dwork can only be queued while locked.
3873 if (!delayed_work_pending(dwork)) {
3874 list_del(&l->links);
3875 pidlist_free(l->list);
3876 put_pid_ns(l->key.ns);
3877 tofree = l;
3880 mutex_unlock(&l->owner->pidlist_mutex);
3881 kfree(tofree);
3885 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3886 * Returns the number of unique elements.
3888 static int pidlist_uniq(pid_t *list, int length)
3890 int src, dest = 1;
3893 * we presume the 0th element is unique, so i starts at 1. trivial
3894 * edge cases first; no work needs to be done for either
3896 if (length == 0 || length == 1)
3897 return length;
3898 /* src and dest walk down the list; dest counts unique elements */
3899 for (src = 1; src < length; src++) {
3900 /* find next unique element */
3901 while (list[src] == list[src-1]) {
3902 src++;
3903 if (src == length)
3904 goto after;
3906 /* dest always points to where the next unique element goes */
3907 list[dest] = list[src];
3908 dest++;
3910 after:
3911 return dest;
3915 * The two pid files - task and cgroup.procs - guaranteed that the result
3916 * is sorted, which forced this whole pidlist fiasco. As pid order is
3917 * different per namespace, each namespace needs differently sorted list,
3918 * making it impossible to use, for example, single rbtree of member tasks
3919 * sorted by task pointer. As pidlists can be fairly large, allocating one
3920 * per open file is dangerous, so cgroup had to implement shared pool of
3921 * pidlists keyed by cgroup and namespace.
3923 * All this extra complexity was caused by the original implementation
3924 * committing to an entirely unnecessary property. In the long term, we
3925 * want to do away with it. Explicitly scramble sort order if on the
3926 * default hierarchy so that no such expectation exists in the new
3927 * interface.
3929 * Scrambling is done by swapping every two consecutive bits, which is
3930 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3932 static pid_t pid_fry(pid_t pid)
3934 unsigned a = pid & 0x55555555;
3935 unsigned b = pid & 0xAAAAAAAA;
3937 return (a << 1) | (b >> 1);
3940 static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
3942 if (cgroup_on_dfl(cgrp))
3943 return pid_fry(pid);
3944 else
3945 return pid;
3948 static int cmppid(const void *a, const void *b)
3950 return *(pid_t *)a - *(pid_t *)b;
3953 static int fried_cmppid(const void *a, const void *b)
3955 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
3958 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3959 enum cgroup_filetype type)
3961 struct cgroup_pidlist *l;
3962 /* don't need task_nsproxy() if we're looking at ourself */
3963 struct pid_namespace *ns = task_active_pid_ns(current);
3965 lockdep_assert_held(&cgrp->pidlist_mutex);
3967 list_for_each_entry(l, &cgrp->pidlists, links)
3968 if (l->key.type == type && l->key.ns == ns)
3969 return l;
3970 return NULL;
3974 * find the appropriate pidlist for our purpose (given procs vs tasks)
3975 * returns with the lock on that pidlist already held, and takes care
3976 * of the use count, or returns NULL with no locks held if we're out of
3977 * memory.
3979 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
3980 enum cgroup_filetype type)
3982 struct cgroup_pidlist *l;
3984 lockdep_assert_held(&cgrp->pidlist_mutex);
3986 l = cgroup_pidlist_find(cgrp, type);
3987 if (l)
3988 return l;
3990 /* entry not found; create a new one */
3991 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3992 if (!l)
3993 return l;
3995 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
3996 l->key.type = type;
3997 /* don't need task_nsproxy() if we're looking at ourself */
3998 l->key.ns = get_pid_ns(task_active_pid_ns(current));
3999 l->owner = cgrp;
4000 list_add(&l->links, &cgrp->pidlists);
4001 return l;
4005 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4007 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4008 struct cgroup_pidlist **lp)
4010 pid_t *array;
4011 int length;
4012 int pid, n = 0; /* used for populating the array */
4013 struct css_task_iter it;
4014 struct task_struct *tsk;
4015 struct cgroup_pidlist *l;
4017 lockdep_assert_held(&cgrp->pidlist_mutex);
4020 * If cgroup gets more users after we read count, we won't have
4021 * enough space - tough. This race is indistinguishable to the
4022 * caller from the case that the additional cgroup users didn't
4023 * show up until sometime later on.
4025 length = cgroup_task_count(cgrp);
4026 array = pidlist_allocate(length);
4027 if (!array)
4028 return -ENOMEM;
4029 /* now, populate the array */
4030 css_task_iter_start(&cgrp->self, &it);
4031 while ((tsk = css_task_iter_next(&it))) {
4032 if (unlikely(n == length))
4033 break;
4034 /* get tgid or pid for procs or tasks file respectively */
4035 if (type == CGROUP_FILE_PROCS)
4036 pid = task_tgid_vnr(tsk);
4037 else
4038 pid = task_pid_vnr(tsk);
4039 if (pid > 0) /* make sure to only use valid results */
4040 array[n++] = pid;
4042 css_task_iter_end(&it);
4043 length = n;
4044 /* now sort & (if procs) strip out duplicates */
4045 if (cgroup_on_dfl(cgrp))
4046 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4047 else
4048 sort(array, length, sizeof(pid_t), cmppid, NULL);
4049 if (type == CGROUP_FILE_PROCS)
4050 length = pidlist_uniq(array, length);
4052 l = cgroup_pidlist_find_create(cgrp, type);
4053 if (!l) {
4054 pidlist_free(array);
4055 return -ENOMEM;
4058 /* store array, freeing old if necessary */
4059 pidlist_free(l->list);
4060 l->list = array;
4061 l->length = length;
4062 *lp = l;
4063 return 0;
4067 * cgroupstats_build - build and fill cgroupstats
4068 * @stats: cgroupstats to fill information into
4069 * @dentry: A dentry entry belonging to the cgroup for which stats have
4070 * been requested.
4072 * Build and fill cgroupstats so that taskstats can export it to user
4073 * space.
4075 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4077 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4078 struct cgroup *cgrp;
4079 struct css_task_iter it;
4080 struct task_struct *tsk;
4082 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4083 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4084 kernfs_type(kn) != KERNFS_DIR)
4085 return -EINVAL;
4087 mutex_lock(&cgroup_mutex);
4090 * We aren't being called from kernfs and there's no guarantee on
4091 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
4092 * @kn->priv is RCU safe. Let's do the RCU dancing.
4094 rcu_read_lock();
4095 cgrp = rcu_dereference(kn->priv);
4096 if (!cgrp || cgroup_is_dead(cgrp)) {
4097 rcu_read_unlock();
4098 mutex_unlock(&cgroup_mutex);
4099 return -ENOENT;
4101 rcu_read_unlock();
4103 css_task_iter_start(&cgrp->self, &it);
4104 while ((tsk = css_task_iter_next(&it))) {
4105 switch (tsk->state) {
4106 case TASK_RUNNING:
4107 stats->nr_running++;
4108 break;
4109 case TASK_INTERRUPTIBLE:
4110 stats->nr_sleeping++;
4111 break;
4112 case TASK_UNINTERRUPTIBLE:
4113 stats->nr_uninterruptible++;
4114 break;
4115 case TASK_STOPPED:
4116 stats->nr_stopped++;
4117 break;
4118 default:
4119 if (delayacct_is_task_waiting_on_io(tsk))
4120 stats->nr_io_wait++;
4121 break;
4124 css_task_iter_end(&it);
4126 mutex_unlock(&cgroup_mutex);
4127 return 0;
4132 * seq_file methods for the tasks/procs files. The seq_file position is the
4133 * next pid to display; the seq_file iterator is a pointer to the pid
4134 * in the cgroup->l->list array.
4137 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
4140 * Initially we receive a position value that corresponds to
4141 * one more than the last pid shown (or 0 on the first call or
4142 * after a seek to the start). Use a binary-search to find the
4143 * next pid to display, if any
4145 struct kernfs_open_file *of = s->private;
4146 struct cgroup *cgrp = seq_css(s)->cgroup;
4147 struct cgroup_pidlist *l;
4148 enum cgroup_filetype type = seq_cft(s)->private;
4149 int index = 0, pid = *pos;
4150 int *iter, ret;
4152 mutex_lock(&cgrp->pidlist_mutex);
4155 * !NULL @of->priv indicates that this isn't the first start()
4156 * after open. If the matching pidlist is around, we can use that.
4157 * Look for it. Note that @of->priv can't be used directly. It
4158 * could already have been destroyed.
4160 if (of->priv)
4161 of->priv = cgroup_pidlist_find(cgrp, type);
4164 * Either this is the first start() after open or the matching
4165 * pidlist has been destroyed inbetween. Create a new one.
4167 if (!of->priv) {
4168 ret = pidlist_array_load(cgrp, type,
4169 (struct cgroup_pidlist **)&of->priv);
4170 if (ret)
4171 return ERR_PTR(ret);
4173 l = of->priv;
4175 if (pid) {
4176 int end = l->length;
4178 while (index < end) {
4179 int mid = (index + end) / 2;
4180 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
4181 index = mid;
4182 break;
4183 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
4184 index = mid + 1;
4185 else
4186 end = mid;
4189 /* If we're off the end of the array, we're done */
4190 if (index >= l->length)
4191 return NULL;
4192 /* Update the abstract position to be the actual pid that we found */
4193 iter = l->list + index;
4194 *pos = cgroup_pid_fry(cgrp, *iter);
4195 return iter;
4198 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
4200 struct kernfs_open_file *of = s->private;
4201 struct cgroup_pidlist *l = of->priv;
4203 if (l)
4204 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
4205 CGROUP_PIDLIST_DESTROY_DELAY);
4206 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
4209 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
4211 struct kernfs_open_file *of = s->private;
4212 struct cgroup_pidlist *l = of->priv;
4213 pid_t *p = v;
4214 pid_t *end = l->list + l->length;
4216 * Advance to the next pid in the array. If this goes off the
4217 * end, we're done
4219 p++;
4220 if (p >= end) {
4221 return NULL;
4222 } else {
4223 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
4224 return p;
4228 static int cgroup_pidlist_show(struct seq_file *s, void *v)
4230 seq_printf(s, "%d\n", *(int *)v);
4232 return 0;
4235 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4236 struct cftype *cft)
4238 return notify_on_release(css->cgroup);
4241 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4242 struct cftype *cft, u64 val)
4244 if (val)
4245 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4246 else
4247 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4248 return 0;
4251 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4252 struct cftype *cft)
4254 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4257 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4258 struct cftype *cft, u64 val)
4260 if (val)
4261 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4262 else
4263 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4264 return 0;
4267 /* cgroup core interface files for the default hierarchy */
4268 static struct cftype cgroup_dfl_base_files[] = {
4270 .name = "cgroup.procs",
4271 .seq_start = cgroup_pidlist_start,
4272 .seq_next = cgroup_pidlist_next,
4273 .seq_stop = cgroup_pidlist_stop,
4274 .seq_show = cgroup_pidlist_show,
4275 .private = CGROUP_FILE_PROCS,
4276 .write = cgroup_procs_write,
4277 .mode = S_IRUGO | S_IWUSR,
4280 .name = "cgroup.controllers",
4281 .flags = CFTYPE_ONLY_ON_ROOT,
4282 .seq_show = cgroup_root_controllers_show,
4285 .name = "cgroup.controllers",
4286 .flags = CFTYPE_NOT_ON_ROOT,
4287 .seq_show = cgroup_controllers_show,
4290 .name = "cgroup.subtree_control",
4291 .seq_show = cgroup_subtree_control_show,
4292 .write = cgroup_subtree_control_write,
4295 .name = "cgroup.populated",
4296 .flags = CFTYPE_NOT_ON_ROOT,
4297 .seq_show = cgroup_populated_show,
4299 { } /* terminate */
4302 /* cgroup core interface files for the legacy hierarchies */
4303 static struct cftype cgroup_legacy_base_files[] = {
4305 .name = "cgroup.procs",
4306 .seq_start = cgroup_pidlist_start,
4307 .seq_next = cgroup_pidlist_next,
4308 .seq_stop = cgroup_pidlist_stop,
4309 .seq_show = cgroup_pidlist_show,
4310 .private = CGROUP_FILE_PROCS,
4311 .write = cgroup_procs_write,
4312 .mode = S_IRUGO | S_IWUSR,
4315 .name = "cgroup.clone_children",
4316 .read_u64 = cgroup_clone_children_read,
4317 .write_u64 = cgroup_clone_children_write,
4320 .name = "cgroup.sane_behavior",
4321 .flags = CFTYPE_ONLY_ON_ROOT,
4322 .seq_show = cgroup_sane_behavior_show,
4325 .name = "tasks",
4326 .seq_start = cgroup_pidlist_start,
4327 .seq_next = cgroup_pidlist_next,
4328 .seq_stop = cgroup_pidlist_stop,
4329 .seq_show = cgroup_pidlist_show,
4330 .private = CGROUP_FILE_TASKS,
4331 .write = cgroup_tasks_write,
4332 .mode = S_IRUGO | S_IWUSR,
4335 .name = "notify_on_release",
4336 .read_u64 = cgroup_read_notify_on_release,
4337 .write_u64 = cgroup_write_notify_on_release,
4340 .name = "release_agent",
4341 .flags = CFTYPE_ONLY_ON_ROOT,
4342 .seq_show = cgroup_release_agent_show,
4343 .write = cgroup_release_agent_write,
4344 .max_write_len = PATH_MAX - 1,
4346 { } /* terminate */
4350 * cgroup_populate_dir - create subsys files in a cgroup directory
4351 * @cgrp: target cgroup
4352 * @subsys_mask: mask of the subsystem ids whose files should be added
4354 * On failure, no file is added.
4356 static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
4358 struct cgroup_subsys *ss;
4359 int i, ret = 0;
4361 /* process cftsets of each subsystem */
4362 for_each_subsys(ss, i) {
4363 struct cftype *cfts;
4365 if (!(subsys_mask & (1 << i)))
4366 continue;
4368 list_for_each_entry(cfts, &ss->cfts, node) {
4369 ret = cgroup_addrm_files(cgrp, cfts, true);
4370 if (ret < 0)
4371 goto err;
4374 return 0;
4375 err:
4376 cgroup_clear_dir(cgrp, subsys_mask);
4377 return ret;
4381 * css destruction is four-stage process.
4383 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4384 * Implemented in kill_css().
4386 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4387 * and thus css_tryget_online() is guaranteed to fail, the css can be
4388 * offlined by invoking offline_css(). After offlining, the base ref is
4389 * put. Implemented in css_killed_work_fn().
4391 * 3. When the percpu_ref reaches zero, the only possible remaining
4392 * accessors are inside RCU read sections. css_release() schedules the
4393 * RCU callback.
4395 * 4. After the grace period, the css can be freed. Implemented in
4396 * css_free_work_fn().
4398 * It is actually hairier because both step 2 and 4 require process context
4399 * and thus involve punting to css->destroy_work adding two additional
4400 * steps to the already complex sequence.
4402 static void css_free_work_fn(struct work_struct *work)
4404 struct cgroup_subsys_state *css =
4405 container_of(work, struct cgroup_subsys_state, destroy_work);
4406 struct cgroup_subsys *ss = css->ss;
4407 struct cgroup *cgrp = css->cgroup;
4409 percpu_ref_exit(&css->refcnt);
4411 if (ss) {
4412 /* css free path */
4413 int id = css->id;
4415 if (css->parent)
4416 css_put(css->parent);
4418 ss->css_free(css);
4419 cgroup_idr_remove(&ss->css_idr, id);
4420 cgroup_put(cgrp);
4421 } else {
4422 /* cgroup free path */
4423 atomic_dec(&cgrp->root->nr_cgrps);
4424 cgroup_pidlist_destroy_all(cgrp);
4425 cancel_work_sync(&cgrp->release_agent_work);
4427 if (cgroup_parent(cgrp)) {
4429 * We get a ref to the parent, and put the ref when
4430 * this cgroup is being freed, so it's guaranteed
4431 * that the parent won't be destroyed before its
4432 * children.
4434 cgroup_put(cgroup_parent(cgrp));
4435 kernfs_put(cgrp->kn);
4436 kfree(cgrp);
4437 } else {
4439 * This is root cgroup's refcnt reaching zero,
4440 * which indicates that the root should be
4441 * released.
4443 cgroup_destroy_root(cgrp->root);
4448 static void css_free_rcu_fn(struct rcu_head *rcu_head)
4450 struct cgroup_subsys_state *css =
4451 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
4453 INIT_WORK(&css->destroy_work, css_free_work_fn);
4454 queue_work(cgroup_destroy_wq, &css->destroy_work);
4457 static void css_release_work_fn(struct work_struct *work)
4459 struct cgroup_subsys_state *css =
4460 container_of(work, struct cgroup_subsys_state, destroy_work);
4461 struct cgroup_subsys *ss = css->ss;
4462 struct cgroup *cgrp = css->cgroup;
4464 mutex_lock(&cgroup_mutex);
4466 css->flags |= CSS_RELEASED;
4467 list_del_rcu(&css->sibling);
4469 if (ss) {
4470 /* css release path */
4471 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4472 if (ss->css_released)
4473 ss->css_released(css);
4474 } else {
4475 /* cgroup release path */
4476 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4477 cgrp->id = -1;
4480 * There are two control paths which try to determine
4481 * cgroup from dentry without going through kernfs -
4482 * cgroupstats_build() and css_tryget_online_from_dir().
4483 * Those are supported by RCU protecting clearing of
4484 * cgrp->kn->priv backpointer.
4486 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
4489 mutex_unlock(&cgroup_mutex);
4491 call_rcu(&css->rcu_head, css_free_rcu_fn);
4494 static void css_release(struct percpu_ref *ref)
4496 struct cgroup_subsys_state *css =
4497 container_of(ref, struct cgroup_subsys_state, refcnt);
4499 INIT_WORK(&css->destroy_work, css_release_work_fn);
4500 queue_work(cgroup_destroy_wq, &css->destroy_work);
4503 static void init_and_link_css(struct cgroup_subsys_state *css,
4504 struct cgroup_subsys *ss, struct cgroup *cgrp)
4506 lockdep_assert_held(&cgroup_mutex);
4508 cgroup_get(cgrp);
4510 memset(css, 0, sizeof(*css));
4511 css->cgroup = cgrp;
4512 css->ss = ss;
4513 INIT_LIST_HEAD(&css->sibling);
4514 INIT_LIST_HEAD(&css->children);
4515 css->serial_nr = css_serial_nr_next++;
4517 if (cgroup_parent(cgrp)) {
4518 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4519 css_get(css->parent);
4522 BUG_ON(cgroup_css(cgrp, ss));
4525 /* invoke ->css_online() on a new CSS and mark it online if successful */
4526 static int online_css(struct cgroup_subsys_state *css)
4528 struct cgroup_subsys *ss = css->ss;
4529 int ret = 0;
4531 lockdep_assert_held(&cgroup_mutex);
4533 if (ss->css_online)
4534 ret = ss->css_online(css);
4535 if (!ret) {
4536 css->flags |= CSS_ONLINE;
4537 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4539 return ret;
4542 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4543 static void offline_css(struct cgroup_subsys_state *css)
4545 struct cgroup_subsys *ss = css->ss;
4547 lockdep_assert_held(&cgroup_mutex);
4549 if (!(css->flags & CSS_ONLINE))
4550 return;
4552 if (ss->css_offline)
4553 ss->css_offline(css);
4555 css->flags &= ~CSS_ONLINE;
4556 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4558 wake_up_all(&css->cgroup->offline_waitq);
4562 * create_css - create a cgroup_subsys_state
4563 * @cgrp: the cgroup new css will be associated with
4564 * @ss: the subsys of new css
4565 * @visible: whether to create control knobs for the new css or not
4567 * Create a new css associated with @cgrp - @ss pair. On success, the new
4568 * css is online and installed in @cgrp with all interface files created if
4569 * @visible. Returns 0 on success, -errno on failure.
4571 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4572 bool visible)
4574 struct cgroup *parent = cgroup_parent(cgrp);
4575 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4576 struct cgroup_subsys_state *css;
4577 int err;
4579 lockdep_assert_held(&cgroup_mutex);
4581 css = ss->css_alloc(parent_css);
4582 if (IS_ERR(css))
4583 return PTR_ERR(css);
4585 init_and_link_css(css, ss, cgrp);
4587 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4588 if (err)
4589 goto err_free_css;
4591 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
4592 if (err < 0)
4593 goto err_free_percpu_ref;
4594 css->id = err;
4596 if (visible) {
4597 err = cgroup_populate_dir(cgrp, 1 << ss->id);
4598 if (err)
4599 goto err_free_id;
4602 /* @css is ready to be brought online now, make it visible */
4603 list_add_tail_rcu(&css->sibling, &parent_css->children);
4604 cgroup_idr_replace(&ss->css_idr, css, css->id);
4606 err = online_css(css);
4607 if (err)
4608 goto err_list_del;
4610 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4611 cgroup_parent(parent)) {
4612 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4613 current->comm, current->pid, ss->name);
4614 if (!strcmp(ss->name, "memory"))
4615 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4616 ss->warned_broken_hierarchy = true;
4619 return 0;
4621 err_list_del:
4622 list_del_rcu(&css->sibling);
4623 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
4624 err_free_id:
4625 cgroup_idr_remove(&ss->css_idr, css->id);
4626 err_free_percpu_ref:
4627 percpu_ref_exit(&css->refcnt);
4628 err_free_css:
4629 call_rcu(&css->rcu_head, css_free_rcu_fn);
4630 return err;
4633 static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4634 umode_t mode)
4636 struct cgroup *parent, *cgrp;
4637 struct cgroup_root *root;
4638 struct cgroup_subsys *ss;
4639 struct kernfs_node *kn;
4640 struct cftype *base_files;
4641 int ssid, ret;
4643 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4645 if (strchr(name, '\n'))
4646 return -EINVAL;
4648 parent = cgroup_kn_lock_live(parent_kn);
4649 if (!parent)
4650 return -ENODEV;
4651 root = parent->root;
4653 /* allocate the cgroup and its ID, 0 is reserved for the root */
4654 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4655 if (!cgrp) {
4656 ret = -ENOMEM;
4657 goto out_unlock;
4660 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
4661 if (ret)
4662 goto out_free_cgrp;
4665 * Temporarily set the pointer to NULL, so idr_find() won't return
4666 * a half-baked cgroup.
4668 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
4669 if (cgrp->id < 0) {
4670 ret = -ENOMEM;
4671 goto out_cancel_ref;
4674 init_cgroup_housekeeping(cgrp);
4676 cgrp->self.parent = &parent->self;
4677 cgrp->root = root;
4679 if (notify_on_release(parent))
4680 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4682 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4683 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4685 /* create the directory */
4686 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
4687 if (IS_ERR(kn)) {
4688 ret = PTR_ERR(kn);
4689 goto out_free_id;
4691 cgrp->kn = kn;
4694 * This extra ref will be put in cgroup_free_fn() and guarantees
4695 * that @cgrp->kn is always accessible.
4697 kernfs_get(kn);
4699 cgrp->self.serial_nr = css_serial_nr_next++;
4701 /* allocation complete, commit to creation */
4702 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4703 atomic_inc(&root->nr_cgrps);
4704 cgroup_get(parent);
4707 * @cgrp is now fully operational. If something fails after this
4708 * point, it'll be released via the normal destruction path.
4710 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4712 ret = cgroup_kn_set_ugid(kn);
4713 if (ret)
4714 goto out_destroy;
4716 if (cgroup_on_dfl(cgrp))
4717 base_files = cgroup_dfl_base_files;
4718 else
4719 base_files = cgroup_legacy_base_files;
4721 ret = cgroup_addrm_files(cgrp, base_files, true);
4722 if (ret)
4723 goto out_destroy;
4725 /* let's create and online css's */
4726 for_each_subsys(ss, ssid) {
4727 if (parent->child_subsys_mask & (1 << ssid)) {
4728 ret = create_css(cgrp, ss,
4729 parent->subtree_control & (1 << ssid));
4730 if (ret)
4731 goto out_destroy;
4736 * On the default hierarchy, a child doesn't automatically inherit
4737 * subtree_control from the parent. Each is configured manually.
4739 if (!cgroup_on_dfl(cgrp)) {
4740 cgrp->subtree_control = parent->subtree_control;
4741 cgroup_refresh_child_subsys_mask(cgrp);
4744 kernfs_activate(kn);
4746 ret = 0;
4747 goto out_unlock;
4749 out_free_id:
4750 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
4751 out_cancel_ref:
4752 percpu_ref_exit(&cgrp->self.refcnt);
4753 out_free_cgrp:
4754 kfree(cgrp);
4755 out_unlock:
4756 cgroup_kn_unlock(parent_kn);
4757 return ret;
4759 out_destroy:
4760 cgroup_destroy_locked(cgrp);
4761 goto out_unlock;
4765 * This is called when the refcnt of a css is confirmed to be killed.
4766 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4767 * initate destruction and put the css ref from kill_css().
4769 static void css_killed_work_fn(struct work_struct *work)
4771 struct cgroup_subsys_state *css =
4772 container_of(work, struct cgroup_subsys_state, destroy_work);
4774 mutex_lock(&cgroup_mutex);
4775 offline_css(css);
4776 mutex_unlock(&cgroup_mutex);
4778 css_put(css);
4781 /* css kill confirmation processing requires process context, bounce */
4782 static void css_killed_ref_fn(struct percpu_ref *ref)
4784 struct cgroup_subsys_state *css =
4785 container_of(ref, struct cgroup_subsys_state, refcnt);
4787 INIT_WORK(&css->destroy_work, css_killed_work_fn);
4788 queue_work(cgroup_destroy_wq, &css->destroy_work);
4792 * kill_css - destroy a css
4793 * @css: css to destroy
4795 * This function initiates destruction of @css by removing cgroup interface
4796 * files and putting its base reference. ->css_offline() will be invoked
4797 * asynchronously once css_tryget_online() is guaranteed to fail and when
4798 * the reference count reaches zero, @css will be released.
4800 static void kill_css(struct cgroup_subsys_state *css)
4802 lockdep_assert_held(&cgroup_mutex);
4805 * This must happen before css is disassociated with its cgroup.
4806 * See seq_css() for details.
4808 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
4811 * Killing would put the base ref, but we need to keep it alive
4812 * until after ->css_offline().
4814 css_get(css);
4817 * cgroup core guarantees that, by the time ->css_offline() is
4818 * invoked, no new css reference will be given out via
4819 * css_tryget_online(). We can't simply call percpu_ref_kill() and
4820 * proceed to offlining css's because percpu_ref_kill() doesn't
4821 * guarantee that the ref is seen as killed on all CPUs on return.
4823 * Use percpu_ref_kill_and_confirm() to get notifications as each
4824 * css is confirmed to be seen as killed on all CPUs.
4826 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
4830 * cgroup_destroy_locked - the first stage of cgroup destruction
4831 * @cgrp: cgroup to be destroyed
4833 * css's make use of percpu refcnts whose killing latency shouldn't be
4834 * exposed to userland and are RCU protected. Also, cgroup core needs to
4835 * guarantee that css_tryget_online() won't succeed by the time
4836 * ->css_offline() is invoked. To satisfy all the requirements,
4837 * destruction is implemented in the following two steps.
4839 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4840 * userland visible parts and start killing the percpu refcnts of
4841 * css's. Set up so that the next stage will be kicked off once all
4842 * the percpu refcnts are confirmed to be killed.
4844 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4845 * rest of destruction. Once all cgroup references are gone, the
4846 * cgroup is RCU-freed.
4848 * This function implements s1. After this step, @cgrp is gone as far as
4849 * the userland is concerned and a new cgroup with the same name may be
4850 * created. As cgroup doesn't care about the names internally, this
4851 * doesn't cause any problem.
4853 static int cgroup_destroy_locked(struct cgroup *cgrp)
4854 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4856 struct cgroup_subsys_state *css;
4857 bool empty;
4858 int ssid;
4860 lockdep_assert_held(&cgroup_mutex);
4863 * css_set_rwsem synchronizes access to ->cset_links and prevents
4864 * @cgrp from being removed while put_css_set() is in progress.
4866 down_read(&css_set_rwsem);
4867 empty = list_empty(&cgrp->cset_links);
4868 up_read(&css_set_rwsem);
4869 if (!empty)
4870 return -EBUSY;
4873 * Make sure there's no live children. We can't test emptiness of
4874 * ->self.children as dead children linger on it while being
4875 * drained; otherwise, "rmdir parent/child parent" may fail.
4877 if (css_has_online_children(&cgrp->self))
4878 return -EBUSY;
4881 * Mark @cgrp dead. This prevents further task migration and child
4882 * creation by disabling cgroup_lock_live_group().
4884 cgrp->self.flags &= ~CSS_ONLINE;
4886 /* initiate massacre of all css's */
4887 for_each_css(css, ssid, cgrp)
4888 kill_css(css);
4891 * Remove @cgrp directory along with the base files. @cgrp has an
4892 * extra ref on its kn.
4894 kernfs_remove(cgrp->kn);
4896 check_for_release(cgroup_parent(cgrp));
4898 /* put the base reference */
4899 percpu_ref_kill(&cgrp->self.refcnt);
4901 return 0;
4904 static int cgroup_rmdir(struct kernfs_node *kn)
4906 struct cgroup *cgrp;
4907 int ret = 0;
4909 cgrp = cgroup_kn_lock_live(kn);
4910 if (!cgrp)
4911 return 0;
4913 ret = cgroup_destroy_locked(cgrp);
4915 cgroup_kn_unlock(kn);
4916 return ret;
4919 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
4920 .remount_fs = cgroup_remount,
4921 .show_options = cgroup_show_options,
4922 .mkdir = cgroup_mkdir,
4923 .rmdir = cgroup_rmdir,
4924 .rename = cgroup_rename,
4927 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
4929 struct cgroup_subsys_state *css;
4931 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4933 mutex_lock(&cgroup_mutex);
4935 idr_init(&ss->css_idr);
4936 INIT_LIST_HEAD(&ss->cfts);
4938 /* Create the root cgroup state for this subsystem */
4939 ss->root = &cgrp_dfl_root;
4940 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
4941 /* We don't handle early failures gracefully */
4942 BUG_ON(IS_ERR(css));
4943 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
4946 * Root csses are never destroyed and we can't initialize
4947 * percpu_ref during early init. Disable refcnting.
4949 css->flags |= CSS_NO_REF;
4951 if (early) {
4952 /* allocation can't be done safely during early init */
4953 css->id = 1;
4954 } else {
4955 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
4956 BUG_ON(css->id < 0);
4959 /* Update the init_css_set to contain a subsys
4960 * pointer to this state - since the subsystem is
4961 * newly registered, all tasks and hence the
4962 * init_css_set is in the subsystem's root cgroup. */
4963 init_css_set.subsys[ss->id] = css;
4965 have_fork_callback |= (bool)ss->fork << ss->id;
4966 have_exit_callback |= (bool)ss->exit << ss->id;
4967 have_canfork_callback |= (bool)ss->can_fork << ss->id;
4969 /* At system boot, before all subsystems have been
4970 * registered, no tasks have been forked, so we don't
4971 * need to invoke fork callbacks here. */
4972 BUG_ON(!list_empty(&init_task.tasks));
4974 BUG_ON(online_css(css));
4976 mutex_unlock(&cgroup_mutex);
4980 * cgroup_init_early - cgroup initialization at system boot
4982 * Initialize cgroups at system boot, and initialize any
4983 * subsystems that request early init.
4985 int __init cgroup_init_early(void)
4987 static struct cgroup_sb_opts __initdata opts;
4988 struct cgroup_subsys *ss;
4989 int i;
4991 init_cgroup_root(&cgrp_dfl_root, &opts);
4992 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
4994 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
4996 for_each_subsys(ss, i) {
4997 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
4998 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4999 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5000 ss->id, ss->name);
5001 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5002 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5004 ss->id = i;
5005 ss->name = cgroup_subsys_name[i];
5006 if (!ss->legacy_name)
5007 ss->legacy_name = cgroup_subsys_name[i];
5009 if (ss->early_init)
5010 cgroup_init_subsys(ss, true);
5012 return 0;
5016 * cgroup_init - cgroup initialization
5018 * Register cgroup filesystem and /proc file, and initialize
5019 * any subsystems that didn't request early init.
5021 int __init cgroup_init(void)
5023 struct cgroup_subsys *ss;
5024 unsigned long key;
5025 int ssid, err;
5027 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5028 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5029 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
5031 mutex_lock(&cgroup_mutex);
5033 /* Add init_css_set to the hash table */
5034 key = css_set_hash(init_css_set.subsys);
5035 hash_add(css_set_table, &init_css_set.hlist, key);
5037 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5039 mutex_unlock(&cgroup_mutex);
5041 for_each_subsys(ss, ssid) {
5042 if (ss->early_init) {
5043 struct cgroup_subsys_state *css =
5044 init_css_set.subsys[ss->id];
5046 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5047 GFP_KERNEL);
5048 BUG_ON(css->id < 0);
5049 } else {
5050 cgroup_init_subsys(ss, false);
5053 list_add_tail(&init_css_set.e_cset_node[ssid],
5054 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5057 * Setting dfl_root subsys_mask needs to consider the
5058 * disabled flag and cftype registration needs kmalloc,
5059 * both of which aren't available during early_init.
5061 if (ss->disabled)
5062 continue;
5064 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5066 if (cgroup_legacy_files_on_dfl && !ss->dfl_cftypes)
5067 ss->dfl_cftypes = ss->legacy_cftypes;
5069 if (!ss->dfl_cftypes)
5070 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
5072 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5073 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5074 } else {
5075 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5076 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5079 if (ss->bind)
5080 ss->bind(init_css_set.subsys[ssid]);
5083 err = sysfs_create_mount_point(fs_kobj, "cgroup");
5084 if (err)
5085 return err;
5087 err = register_filesystem(&cgroup_fs_type);
5088 if (err < 0) {
5089 sysfs_remove_mount_point(fs_kobj, "cgroup");
5090 return err;
5093 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
5094 return 0;
5097 static int __init cgroup_wq_init(void)
5100 * There isn't much point in executing destruction path in
5101 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5102 * Use 1 for @max_active.
5104 * We would prefer to do this in cgroup_init() above, but that
5105 * is called before init_workqueues(): so leave this until after.
5107 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5108 BUG_ON(!cgroup_destroy_wq);
5111 * Used to destroy pidlists and separate to serve as flush domain.
5112 * Cap @max_active to 1 too.
5114 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5115 0, 1);
5116 BUG_ON(!cgroup_pidlist_destroy_wq);
5118 return 0;
5120 core_initcall(cgroup_wq_init);
5123 * proc_cgroup_show()
5124 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5125 * - Used for /proc/<pid>/cgroup.
5127 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5128 struct pid *pid, struct task_struct *tsk)
5130 char *buf, *path;
5131 int retval;
5132 struct cgroup_root *root;
5134 retval = -ENOMEM;
5135 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5136 if (!buf)
5137 goto out;
5139 mutex_lock(&cgroup_mutex);
5140 down_read(&css_set_rwsem);
5142 for_each_root(root) {
5143 struct cgroup_subsys *ss;
5144 struct cgroup *cgrp;
5145 int ssid, count = 0;
5147 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
5148 continue;
5150 seq_printf(m, "%d:", root->hierarchy_id);
5151 if (root != &cgrp_dfl_root)
5152 for_each_subsys(ss, ssid)
5153 if (root->subsys_mask & (1 << ssid))
5154 seq_printf(m, "%s%s", count++ ? "," : "",
5155 ss->legacy_name);
5156 if (strlen(root->name))
5157 seq_printf(m, "%sname=%s", count ? "," : "",
5158 root->name);
5159 seq_putc(m, ':');
5160 cgrp = task_cgroup_from_root(tsk, root);
5161 path = cgroup_path(cgrp, buf, PATH_MAX);
5162 if (!path) {
5163 retval = -ENAMETOOLONG;
5164 goto out_unlock;
5166 seq_puts(m, path);
5167 seq_putc(m, '\n');
5170 retval = 0;
5171 out_unlock:
5172 up_read(&css_set_rwsem);
5173 mutex_unlock(&cgroup_mutex);
5174 kfree(buf);
5175 out:
5176 return retval;
5179 /* Display information about each subsystem and each hierarchy */
5180 static int proc_cgroupstats_show(struct seq_file *m, void *v)
5182 struct cgroup_subsys *ss;
5183 int i;
5185 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5187 * ideally we don't want subsystems moving around while we do this.
5188 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5189 * subsys/hierarchy state.
5191 mutex_lock(&cgroup_mutex);
5193 for_each_subsys(ss, i)
5194 seq_printf(m, "%s\t%d\t%d\t%d\n",
5195 ss->legacy_name, ss->root->hierarchy_id,
5196 atomic_read(&ss->root->nr_cgrps), !ss->disabled);
5198 mutex_unlock(&cgroup_mutex);
5199 return 0;
5202 static int cgroupstats_open(struct inode *inode, struct file *file)
5204 return single_open(file, proc_cgroupstats_show, NULL);
5207 static const struct file_operations proc_cgroupstats_operations = {
5208 .open = cgroupstats_open,
5209 .read = seq_read,
5210 .llseek = seq_lseek,
5211 .release = single_release,
5214 static void **subsys_canfork_priv_p(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5216 if (CGROUP_CANFORK_START <= i && i < CGROUP_CANFORK_END)
5217 return &ss_priv[i - CGROUP_CANFORK_START];
5218 return NULL;
5221 static void *subsys_canfork_priv(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5223 void **private = subsys_canfork_priv_p(ss_priv, i);
5224 return private ? *private : NULL;
5228 * cgroup_fork - initialize cgroup related fields during copy_process()
5229 * @child: pointer to task_struct of forking parent process.
5231 * A task is associated with the init_css_set until cgroup_post_fork()
5232 * attaches it to the parent's css_set. Empty cg_list indicates that
5233 * @child isn't holding reference to its css_set.
5235 void cgroup_fork(struct task_struct *child)
5237 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5238 INIT_LIST_HEAD(&child->cg_list);
5242 * cgroup_can_fork - called on a new task before the process is exposed
5243 * @child: the task in question.
5245 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5246 * returns an error, the fork aborts with that error code. This allows for
5247 * a cgroup subsystem to conditionally allow or deny new forks.
5249 int cgroup_can_fork(struct task_struct *child,
5250 void *ss_priv[CGROUP_CANFORK_COUNT])
5252 struct cgroup_subsys *ss;
5253 int i, j, ret;
5255 for_each_subsys_which(ss, i, &have_canfork_callback) {
5256 ret = ss->can_fork(child, subsys_canfork_priv_p(ss_priv, i));
5257 if (ret)
5258 goto out_revert;
5261 return 0;
5263 out_revert:
5264 for_each_subsys(ss, j) {
5265 if (j >= i)
5266 break;
5267 if (ss->cancel_fork)
5268 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, j));
5271 return ret;
5275 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5276 * @child: the task in question
5278 * This calls the cancel_fork() callbacks if a fork failed *after*
5279 * cgroup_can_fork() succeded.
5281 void cgroup_cancel_fork(struct task_struct *child,
5282 void *ss_priv[CGROUP_CANFORK_COUNT])
5284 struct cgroup_subsys *ss;
5285 int i;
5287 for_each_subsys(ss, i)
5288 if (ss->cancel_fork)
5289 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, i));
5293 * cgroup_post_fork - called on a new task after adding it to the task list
5294 * @child: the task in question
5296 * Adds the task to the list running through its css_set if necessary and
5297 * call the subsystem fork() callbacks. Has to be after the task is
5298 * visible on the task list in case we race with the first call to
5299 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5300 * list.
5302 void cgroup_post_fork(struct task_struct *child,
5303 void *old_ss_priv[CGROUP_CANFORK_COUNT])
5305 struct cgroup_subsys *ss;
5306 int i;
5309 * This may race against cgroup_enable_task_cg_lists(). As that
5310 * function sets use_task_css_set_links before grabbing
5311 * tasklist_lock and we just went through tasklist_lock to add
5312 * @child, it's guaranteed that either we see the set
5313 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5314 * @child during its iteration.
5316 * If we won the race, @child is associated with %current's
5317 * css_set. Grabbing css_set_rwsem guarantees both that the
5318 * association is stable, and, on completion of the parent's
5319 * migration, @child is visible in the source of migration or
5320 * already in the destination cgroup. This guarantee is necessary
5321 * when implementing operations which need to migrate all tasks of
5322 * a cgroup to another.
5324 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5325 * will remain in init_css_set. This is safe because all tasks are
5326 * in the init_css_set before cg_links is enabled and there's no
5327 * operation which transfers all tasks out of init_css_set.
5329 if (use_task_css_set_links) {
5330 struct css_set *cset;
5332 down_write(&css_set_rwsem);
5333 cset = task_css_set(current);
5334 if (list_empty(&child->cg_list)) {
5335 rcu_assign_pointer(child->cgroups, cset);
5336 list_add(&child->cg_list, &cset->tasks);
5337 get_css_set(cset);
5339 up_write(&css_set_rwsem);
5343 * Call ss->fork(). This must happen after @child is linked on
5344 * css_set; otherwise, @child might change state between ->fork()
5345 * and addition to css_set.
5347 for_each_subsys_which(ss, i, &have_fork_callback)
5348 ss->fork(child, subsys_canfork_priv(old_ss_priv, i));
5352 * cgroup_exit - detach cgroup from exiting task
5353 * @tsk: pointer to task_struct of exiting process
5355 * Description: Detach cgroup from @tsk and release it.
5357 * Note that cgroups marked notify_on_release force every task in
5358 * them to take the global cgroup_mutex mutex when exiting.
5359 * This could impact scaling on very large systems. Be reluctant to
5360 * use notify_on_release cgroups where very high task exit scaling
5361 * is required on large systems.
5363 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5364 * call cgroup_exit() while the task is still competent to handle
5365 * notify_on_release(), then leave the task attached to the root cgroup in
5366 * each hierarchy for the remainder of its exit. No need to bother with
5367 * init_css_set refcnting. init_css_set never goes away and we can't race
5368 * with migration path - PF_EXITING is visible to migration path.
5370 void cgroup_exit(struct task_struct *tsk)
5372 struct cgroup_subsys *ss;
5373 struct css_set *cset;
5374 bool put_cset = false;
5375 int i;
5378 * Unlink from @tsk from its css_set. As migration path can't race
5379 * with us, we can check cg_list without grabbing css_set_rwsem.
5381 if (!list_empty(&tsk->cg_list)) {
5382 down_write(&css_set_rwsem);
5383 list_del_init(&tsk->cg_list);
5384 up_write(&css_set_rwsem);
5385 put_cset = true;
5388 /* Reassign the task to the init_css_set. */
5389 cset = task_css_set(tsk);
5390 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
5392 /* see cgroup_post_fork() for details */
5393 for_each_subsys_which(ss, i, &have_exit_callback) {
5394 struct cgroup_subsys_state *old_css = cset->subsys[i];
5395 struct cgroup_subsys_state *css = task_css(tsk, i);
5397 ss->exit(css, old_css, tsk);
5400 if (put_cset)
5401 put_css_set(cset);
5404 static void check_for_release(struct cgroup *cgrp)
5406 if (notify_on_release(cgrp) && !cgroup_has_tasks(cgrp) &&
5407 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5408 schedule_work(&cgrp->release_agent_work);
5412 * Notify userspace when a cgroup is released, by running the
5413 * configured release agent with the name of the cgroup (path
5414 * relative to the root of cgroup file system) as the argument.
5416 * Most likely, this user command will try to rmdir this cgroup.
5418 * This races with the possibility that some other task will be
5419 * attached to this cgroup before it is removed, or that some other
5420 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5421 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5422 * unused, and this cgroup will be reprieved from its death sentence,
5423 * to continue to serve a useful existence. Next time it's released,
5424 * we will get notified again, if it still has 'notify_on_release' set.
5426 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5427 * means only wait until the task is successfully execve()'d. The
5428 * separate release agent task is forked by call_usermodehelper(),
5429 * then control in this thread returns here, without waiting for the
5430 * release agent task. We don't bother to wait because the caller of
5431 * this routine has no use for the exit status of the release agent
5432 * task, so no sense holding our caller up for that.
5434 static void cgroup_release_agent(struct work_struct *work)
5436 struct cgroup *cgrp =
5437 container_of(work, struct cgroup, release_agent_work);
5438 char *pathbuf = NULL, *agentbuf = NULL, *path;
5439 char *argv[3], *envp[3];
5441 mutex_lock(&cgroup_mutex);
5443 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5444 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5445 if (!pathbuf || !agentbuf)
5446 goto out;
5448 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5449 if (!path)
5450 goto out;
5452 argv[0] = agentbuf;
5453 argv[1] = path;
5454 argv[2] = NULL;
5456 /* minimal command environment */
5457 envp[0] = "HOME=/";
5458 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5459 envp[2] = NULL;
5461 mutex_unlock(&cgroup_mutex);
5462 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5463 goto out_free;
5464 out:
5465 mutex_unlock(&cgroup_mutex);
5466 out_free:
5467 kfree(agentbuf);
5468 kfree(pathbuf);
5471 static int __init cgroup_disable(char *str)
5473 struct cgroup_subsys *ss;
5474 char *token;
5475 int i;
5477 while ((token = strsep(&str, ",")) != NULL) {
5478 if (!*token)
5479 continue;
5481 for_each_subsys(ss, i) {
5482 if (strcmp(token, ss->name) &&
5483 strcmp(token, ss->legacy_name))
5484 continue;
5486 ss->disabled = 1;
5487 printk(KERN_INFO "Disabling %s control group subsystem\n",
5488 ss->name);
5489 break;
5492 return 1;
5494 __setup("cgroup_disable=", cgroup_disable);
5496 static int __init cgroup_set_legacy_files_on_dfl(char *str)
5498 printk("cgroup: using legacy files on the default hierarchy\n");
5499 cgroup_legacy_files_on_dfl = true;
5500 return 0;
5502 __setup("cgroup__DEVEL__legacy_files_on_dfl", cgroup_set_legacy_files_on_dfl);
5505 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5506 * @dentry: directory dentry of interest
5507 * @ss: subsystem of interest
5509 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5510 * to get the corresponding css and return it. If such css doesn't exist
5511 * or can't be pinned, an ERR_PTR value is returned.
5513 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5514 struct cgroup_subsys *ss)
5516 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5517 struct cgroup_subsys_state *css = NULL;
5518 struct cgroup *cgrp;
5520 /* is @dentry a cgroup dir? */
5521 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5522 kernfs_type(kn) != KERNFS_DIR)
5523 return ERR_PTR(-EBADF);
5525 rcu_read_lock();
5528 * This path doesn't originate from kernfs and @kn could already
5529 * have been or be removed at any point. @kn->priv is RCU
5530 * protected for this access. See css_release_work_fn() for details.
5532 cgrp = rcu_dereference(kn->priv);
5533 if (cgrp)
5534 css = cgroup_css(cgrp, ss);
5536 if (!css || !css_tryget_online(css))
5537 css = ERR_PTR(-ENOENT);
5539 rcu_read_unlock();
5540 return css;
5544 * css_from_id - lookup css by id
5545 * @id: the cgroup id
5546 * @ss: cgroup subsys to be looked into
5548 * Returns the css if there's valid one with @id, otherwise returns NULL.
5549 * Should be called under rcu_read_lock().
5551 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5553 WARN_ON_ONCE(!rcu_read_lock_held());
5554 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
5557 #ifdef CONFIG_CGROUP_DEBUG
5558 static struct cgroup_subsys_state *
5559 debug_css_alloc(struct cgroup_subsys_state *parent_css)
5561 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5563 if (!css)
5564 return ERR_PTR(-ENOMEM);
5566 return css;
5569 static void debug_css_free(struct cgroup_subsys_state *css)
5571 kfree(css);
5574 static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5575 struct cftype *cft)
5577 return cgroup_task_count(css->cgroup);
5580 static u64 current_css_set_read(struct cgroup_subsys_state *css,
5581 struct cftype *cft)
5583 return (u64)(unsigned long)current->cgroups;
5586 static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
5587 struct cftype *cft)
5589 u64 count;
5591 rcu_read_lock();
5592 count = atomic_read(&task_css_set(current)->refcount);
5593 rcu_read_unlock();
5594 return count;
5597 static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
5599 struct cgrp_cset_link *link;
5600 struct css_set *cset;
5601 char *name_buf;
5603 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5604 if (!name_buf)
5605 return -ENOMEM;
5607 down_read(&css_set_rwsem);
5608 rcu_read_lock();
5609 cset = rcu_dereference(current->cgroups);
5610 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
5611 struct cgroup *c = link->cgrp;
5613 cgroup_name(c, name_buf, NAME_MAX + 1);
5614 seq_printf(seq, "Root %d group %s\n",
5615 c->root->hierarchy_id, name_buf);
5617 rcu_read_unlock();
5618 up_read(&css_set_rwsem);
5619 kfree(name_buf);
5620 return 0;
5623 #define MAX_TASKS_SHOWN_PER_CSS 25
5624 static int cgroup_css_links_read(struct seq_file *seq, void *v)
5626 struct cgroup_subsys_state *css = seq_css(seq);
5627 struct cgrp_cset_link *link;
5629 down_read(&css_set_rwsem);
5630 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
5631 struct css_set *cset = link->cset;
5632 struct task_struct *task;
5633 int count = 0;
5635 seq_printf(seq, "css_set %p\n", cset);
5637 list_for_each_entry(task, &cset->tasks, cg_list) {
5638 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5639 goto overflow;
5640 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5643 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5644 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5645 goto overflow;
5646 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5648 continue;
5649 overflow:
5650 seq_puts(seq, " ...\n");
5652 up_read(&css_set_rwsem);
5653 return 0;
5656 static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
5658 return (!cgroup_has_tasks(css->cgroup) &&
5659 !css_has_online_children(&css->cgroup->self));
5662 static struct cftype debug_files[] = {
5664 .name = "taskcount",
5665 .read_u64 = debug_taskcount_read,
5669 .name = "current_css_set",
5670 .read_u64 = current_css_set_read,
5674 .name = "current_css_set_refcount",
5675 .read_u64 = current_css_set_refcount_read,
5679 .name = "current_css_set_cg_links",
5680 .seq_show = current_css_set_cg_links_read,
5684 .name = "cgroup_css_links",
5685 .seq_show = cgroup_css_links_read,
5689 .name = "releasable",
5690 .read_u64 = releasable_read,
5693 { } /* terminate */
5696 struct cgroup_subsys debug_cgrp_subsys = {
5697 .css_alloc = debug_css_alloc,
5698 .css_free = debug_css_free,
5699 .legacy_cftypes = debug_files,
5701 #endif /* CONFIG_CGROUP_DEBUG */