2 * Deadline Scheduling Class (SCHED_DEADLINE)
4 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6 * Tasks that periodically executes their instances for less than their
7 * runtime won't miss any of their deadlines.
8 * Tasks that are not periodic or sporadic or that tries to execute more
9 * than their reserved bandwidth will be slowed down (and may potentially
10 * miss some of their deadlines), and won't affect any other task.
12 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
13 * Juri Lelli <juri.lelli@gmail.com>,
14 * Michael Trimarchi <michael@amarulasolutions.com>,
15 * Fabio Checconi <fchecconi@gmail.com>
19 #include <linux/slab.h>
21 struct dl_bandwidth def_dl_bandwidth
;
23 static inline struct task_struct
*dl_task_of(struct sched_dl_entity
*dl_se
)
25 return container_of(dl_se
, struct task_struct
, dl
);
28 static inline struct rq
*rq_of_dl_rq(struct dl_rq
*dl_rq
)
30 return container_of(dl_rq
, struct rq
, dl
);
33 static inline struct dl_rq
*dl_rq_of_se(struct sched_dl_entity
*dl_se
)
35 struct task_struct
*p
= dl_task_of(dl_se
);
36 struct rq
*rq
= task_rq(p
);
41 static inline int on_dl_rq(struct sched_dl_entity
*dl_se
)
43 return !RB_EMPTY_NODE(&dl_se
->rb_node
);
46 static inline int is_leftmost(struct task_struct
*p
, struct dl_rq
*dl_rq
)
48 struct sched_dl_entity
*dl_se
= &p
->dl
;
50 return dl_rq
->rb_leftmost
== &dl_se
->rb_node
;
53 void init_dl_bandwidth(struct dl_bandwidth
*dl_b
, u64 period
, u64 runtime
)
55 raw_spin_lock_init(&dl_b
->dl_runtime_lock
);
56 dl_b
->dl_period
= period
;
57 dl_b
->dl_runtime
= runtime
;
60 void init_dl_bw(struct dl_bw
*dl_b
)
62 raw_spin_lock_init(&dl_b
->lock
);
63 raw_spin_lock(&def_dl_bandwidth
.dl_runtime_lock
);
64 if (global_rt_runtime() == RUNTIME_INF
)
67 dl_b
->bw
= to_ratio(global_rt_period(), global_rt_runtime());
68 raw_spin_unlock(&def_dl_bandwidth
.dl_runtime_lock
);
72 void init_dl_rq(struct dl_rq
*dl_rq
)
74 dl_rq
->rb_root
= RB_ROOT
;
77 /* zero means no -deadline tasks */
78 dl_rq
->earliest_dl
.curr
= dl_rq
->earliest_dl
.next
= 0;
80 dl_rq
->dl_nr_migratory
= 0;
81 dl_rq
->overloaded
= 0;
82 dl_rq
->pushable_dl_tasks_root
= RB_ROOT
;
84 init_dl_bw(&dl_rq
->dl_bw
);
90 static inline int dl_overloaded(struct rq
*rq
)
92 return atomic_read(&rq
->rd
->dlo_count
);
95 static inline void dl_set_overload(struct rq
*rq
)
100 cpumask_set_cpu(rq
->cpu
, rq
->rd
->dlo_mask
);
102 * Must be visible before the overload count is
103 * set (as in sched_rt.c).
105 * Matched by the barrier in pull_dl_task().
108 atomic_inc(&rq
->rd
->dlo_count
);
111 static inline void dl_clear_overload(struct rq
*rq
)
116 atomic_dec(&rq
->rd
->dlo_count
);
117 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->dlo_mask
);
120 static void update_dl_migration(struct dl_rq
*dl_rq
)
122 if (dl_rq
->dl_nr_migratory
&& dl_rq
->dl_nr_running
> 1) {
123 if (!dl_rq
->overloaded
) {
124 dl_set_overload(rq_of_dl_rq(dl_rq
));
125 dl_rq
->overloaded
= 1;
127 } else if (dl_rq
->overloaded
) {
128 dl_clear_overload(rq_of_dl_rq(dl_rq
));
129 dl_rq
->overloaded
= 0;
133 static void inc_dl_migration(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
135 struct task_struct
*p
= dl_task_of(dl_se
);
137 if (p
->nr_cpus_allowed
> 1)
138 dl_rq
->dl_nr_migratory
++;
140 update_dl_migration(dl_rq
);
143 static void dec_dl_migration(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
145 struct task_struct
*p
= dl_task_of(dl_se
);
147 if (p
->nr_cpus_allowed
> 1)
148 dl_rq
->dl_nr_migratory
--;
150 update_dl_migration(dl_rq
);
154 * The list of pushable -deadline task is not a plist, like in
155 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
157 static void enqueue_pushable_dl_task(struct rq
*rq
, struct task_struct
*p
)
159 struct dl_rq
*dl_rq
= &rq
->dl
;
160 struct rb_node
**link
= &dl_rq
->pushable_dl_tasks_root
.rb_node
;
161 struct rb_node
*parent
= NULL
;
162 struct task_struct
*entry
;
165 BUG_ON(!RB_EMPTY_NODE(&p
->pushable_dl_tasks
));
169 entry
= rb_entry(parent
, struct task_struct
,
171 if (dl_entity_preempt(&p
->dl
, &entry
->dl
))
172 link
= &parent
->rb_left
;
174 link
= &parent
->rb_right
;
180 dl_rq
->pushable_dl_tasks_leftmost
= &p
->pushable_dl_tasks
;
182 rb_link_node(&p
->pushable_dl_tasks
, parent
, link
);
183 rb_insert_color(&p
->pushable_dl_tasks
, &dl_rq
->pushable_dl_tasks_root
);
186 static void dequeue_pushable_dl_task(struct rq
*rq
, struct task_struct
*p
)
188 struct dl_rq
*dl_rq
= &rq
->dl
;
190 if (RB_EMPTY_NODE(&p
->pushable_dl_tasks
))
193 if (dl_rq
->pushable_dl_tasks_leftmost
== &p
->pushable_dl_tasks
) {
194 struct rb_node
*next_node
;
196 next_node
= rb_next(&p
->pushable_dl_tasks
);
197 dl_rq
->pushable_dl_tasks_leftmost
= next_node
;
200 rb_erase(&p
->pushable_dl_tasks
, &dl_rq
->pushable_dl_tasks_root
);
201 RB_CLEAR_NODE(&p
->pushable_dl_tasks
);
204 static inline int has_pushable_dl_tasks(struct rq
*rq
)
206 return !RB_EMPTY_ROOT(&rq
->dl
.pushable_dl_tasks_root
);
209 static int push_dl_task(struct rq
*rq
);
211 static inline bool need_pull_dl_task(struct rq
*rq
, struct task_struct
*prev
)
213 return dl_task(prev
);
216 static DEFINE_PER_CPU(struct callback_head
, dl_push_head
);
217 static DEFINE_PER_CPU(struct callback_head
, dl_pull_head
);
219 static void push_dl_tasks(struct rq
*);
220 static void pull_dl_task(struct rq
*);
222 static inline void queue_push_tasks(struct rq
*rq
)
224 if (!has_pushable_dl_tasks(rq
))
227 queue_balance_callback(rq
, &per_cpu(dl_push_head
, rq
->cpu
), push_dl_tasks
);
230 static inline void queue_pull_task(struct rq
*rq
)
232 queue_balance_callback(rq
, &per_cpu(dl_pull_head
, rq
->cpu
), pull_dl_task
);
235 static struct rq
*find_lock_later_rq(struct task_struct
*task
, struct rq
*rq
);
237 static struct rq
*dl_task_offline_migration(struct rq
*rq
, struct task_struct
*p
)
239 struct rq
*later_rq
= NULL
;
240 bool fallback
= false;
242 later_rq
= find_lock_later_rq(p
, rq
);
248 * If we cannot preempt any rq, fall back to pick any
252 cpu
= cpumask_any_and(cpu_active_mask
, tsk_cpus_allowed(p
));
253 if (cpu
>= nr_cpu_ids
) {
255 * Fail to find any suitable cpu.
256 * The task will never come back!
258 BUG_ON(dl_bandwidth_enabled());
261 * If admission control is disabled we
262 * try a little harder to let the task
265 cpu
= cpumask_any(cpu_active_mask
);
267 later_rq
= cpu_rq(cpu
);
268 double_lock_balance(rq
, later_rq
);
272 * By now the task is replenished and enqueued; migrate it.
274 deactivate_task(rq
, p
, 0);
275 set_task_cpu(p
, later_rq
->cpu
);
276 activate_task(later_rq
, p
, 0);
279 resched_curr(later_rq
);
281 double_unlock_balance(later_rq
, rq
);
289 void enqueue_pushable_dl_task(struct rq
*rq
, struct task_struct
*p
)
294 void dequeue_pushable_dl_task(struct rq
*rq
, struct task_struct
*p
)
299 void inc_dl_migration(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
304 void dec_dl_migration(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
308 static inline bool need_pull_dl_task(struct rq
*rq
, struct task_struct
*prev
)
313 static inline void pull_dl_task(struct rq
*rq
)
317 static inline void queue_push_tasks(struct rq
*rq
)
321 static inline void queue_pull_task(struct rq
*rq
)
324 #endif /* CONFIG_SMP */
326 static void enqueue_task_dl(struct rq
*rq
, struct task_struct
*p
, int flags
);
327 static void __dequeue_task_dl(struct rq
*rq
, struct task_struct
*p
, int flags
);
328 static void check_preempt_curr_dl(struct rq
*rq
, struct task_struct
*p
,
332 * We are being explicitly informed that a new instance is starting,
333 * and this means that:
334 * - the absolute deadline of the entity has to be placed at
335 * current time + relative deadline;
336 * - the runtime of the entity has to be set to the maximum value.
338 * The capability of specifying such event is useful whenever a -deadline
339 * entity wants to (try to!) synchronize its behaviour with the scheduler's
340 * one, and to (try to!) reconcile itself with its own scheduling
343 static inline void setup_new_dl_entity(struct sched_dl_entity
*dl_se
,
344 struct sched_dl_entity
*pi_se
)
346 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
347 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
349 WARN_ON(!dl_se
->dl_new
|| dl_se
->dl_throttled
);
352 * We use the regular wall clock time to set deadlines in the
353 * future; in fact, we must consider execution overheads (time
354 * spent on hardirq context, etc.).
356 dl_se
->deadline
= rq_clock(rq
) + pi_se
->dl_deadline
;
357 dl_se
->runtime
= pi_se
->dl_runtime
;
362 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
363 * possibility of a entity lasting more than what it declared, and thus
364 * exhausting its runtime.
366 * Here we are interested in making runtime overrun possible, but we do
367 * not want a entity which is misbehaving to affect the scheduling of all
369 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
370 * is used, in order to confine each entity within its own bandwidth.
372 * This function deals exactly with that, and ensures that when the runtime
373 * of a entity is replenished, its deadline is also postponed. That ensures
374 * the overrunning entity can't interfere with other entity in the system and
375 * can't make them miss their deadlines. Reasons why this kind of overruns
376 * could happen are, typically, a entity voluntarily trying to overcome its
377 * runtime, or it just underestimated it during sched_setattr().
379 static void replenish_dl_entity(struct sched_dl_entity
*dl_se
,
380 struct sched_dl_entity
*pi_se
)
382 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
383 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
385 BUG_ON(pi_se
->dl_runtime
<= 0);
388 * This could be the case for a !-dl task that is boosted.
389 * Just go with full inherited parameters.
391 if (dl_se
->dl_deadline
== 0) {
392 dl_se
->deadline
= rq_clock(rq
) + pi_se
->dl_deadline
;
393 dl_se
->runtime
= pi_se
->dl_runtime
;
397 * We keep moving the deadline away until we get some
398 * available runtime for the entity. This ensures correct
399 * handling of situations where the runtime overrun is
402 while (dl_se
->runtime
<= 0) {
403 dl_se
->deadline
+= pi_se
->dl_period
;
404 dl_se
->runtime
+= pi_se
->dl_runtime
;
408 * At this point, the deadline really should be "in
409 * the future" with respect to rq->clock. If it's
410 * not, we are, for some reason, lagging too much!
411 * Anyway, after having warn userspace abut that,
412 * we still try to keep the things running by
413 * resetting the deadline and the budget of the
416 if (dl_time_before(dl_se
->deadline
, rq_clock(rq
))) {
417 printk_deferred_once("sched: DL replenish lagged to much\n");
418 dl_se
->deadline
= rq_clock(rq
) + pi_se
->dl_deadline
;
419 dl_se
->runtime
= pi_se
->dl_runtime
;
422 if (dl_se
->dl_yielded
)
423 dl_se
->dl_yielded
= 0;
424 if (dl_se
->dl_throttled
)
425 dl_se
->dl_throttled
= 0;
429 * Here we check if --at time t-- an entity (which is probably being
430 * [re]activated or, in general, enqueued) can use its remaining runtime
431 * and its current deadline _without_ exceeding the bandwidth it is
432 * assigned (function returns true if it can't). We are in fact applying
433 * one of the CBS rules: when a task wakes up, if the residual runtime
434 * over residual deadline fits within the allocated bandwidth, then we
435 * can keep the current (absolute) deadline and residual budget without
436 * disrupting the schedulability of the system. Otherwise, we should
437 * refill the runtime and set the deadline a period in the future,
438 * because keeping the current (absolute) deadline of the task would
439 * result in breaking guarantees promised to other tasks (refer to
440 * Documentation/scheduler/sched-deadline.txt for more informations).
442 * This function returns true if:
444 * runtime / (deadline - t) > dl_runtime / dl_period ,
446 * IOW we can't recycle current parameters.
448 * Notice that the bandwidth check is done against the period. For
449 * task with deadline equal to period this is the same of using
450 * dl_deadline instead of dl_period in the equation above.
452 static bool dl_entity_overflow(struct sched_dl_entity
*dl_se
,
453 struct sched_dl_entity
*pi_se
, u64 t
)
458 * left and right are the two sides of the equation above,
459 * after a bit of shuffling to use multiplications instead
462 * Note that none of the time values involved in the two
463 * multiplications are absolute: dl_deadline and dl_runtime
464 * are the relative deadline and the maximum runtime of each
465 * instance, runtime is the runtime left for the last instance
466 * and (deadline - t), since t is rq->clock, is the time left
467 * to the (absolute) deadline. Even if overflowing the u64 type
468 * is very unlikely to occur in both cases, here we scale down
469 * as we want to avoid that risk at all. Scaling down by 10
470 * means that we reduce granularity to 1us. We are fine with it,
471 * since this is only a true/false check and, anyway, thinking
472 * of anything below microseconds resolution is actually fiction
473 * (but still we want to give the user that illusion >;).
475 left
= (pi_se
->dl_period
>> DL_SCALE
) * (dl_se
->runtime
>> DL_SCALE
);
476 right
= ((dl_se
->deadline
- t
) >> DL_SCALE
) *
477 (pi_se
->dl_runtime
>> DL_SCALE
);
479 return dl_time_before(right
, left
);
483 * When a -deadline entity is queued back on the runqueue, its runtime and
484 * deadline might need updating.
486 * The policy here is that we update the deadline of the entity only if:
487 * - the current deadline is in the past,
488 * - using the remaining runtime with the current deadline would make
489 * the entity exceed its bandwidth.
491 static void update_dl_entity(struct sched_dl_entity
*dl_se
,
492 struct sched_dl_entity
*pi_se
)
494 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
495 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
498 * The arrival of a new instance needs special treatment, i.e.,
499 * the actual scheduling parameters have to be "renewed".
502 setup_new_dl_entity(dl_se
, pi_se
);
506 if (dl_time_before(dl_se
->deadline
, rq_clock(rq
)) ||
507 dl_entity_overflow(dl_se
, pi_se
, rq_clock(rq
))) {
508 dl_se
->deadline
= rq_clock(rq
) + pi_se
->dl_deadline
;
509 dl_se
->runtime
= pi_se
->dl_runtime
;
514 * If the entity depleted all its runtime, and if we want it to sleep
515 * while waiting for some new execution time to become available, we
516 * set the bandwidth enforcement timer to the replenishment instant
517 * and try to activate it.
519 * Notice that it is important for the caller to know if the timer
520 * actually started or not (i.e., the replenishment instant is in
521 * the future or in the past).
523 static int start_dl_timer(struct task_struct
*p
)
525 struct sched_dl_entity
*dl_se
= &p
->dl
;
526 struct hrtimer
*timer
= &dl_se
->dl_timer
;
527 struct rq
*rq
= task_rq(p
);
531 lockdep_assert_held(&rq
->lock
);
534 * We want the timer to fire at the deadline, but considering
535 * that it is actually coming from rq->clock and not from
536 * hrtimer's time base reading.
538 act
= ns_to_ktime(dl_se
->deadline
);
539 now
= hrtimer_cb_get_time(timer
);
540 delta
= ktime_to_ns(now
) - rq_clock(rq
);
541 act
= ktime_add_ns(act
, delta
);
544 * If the expiry time already passed, e.g., because the value
545 * chosen as the deadline is too small, don't even try to
546 * start the timer in the past!
548 if (ktime_us_delta(act
, now
) < 0)
552 * !enqueued will guarantee another callback; even if one is already in
553 * progress. This ensures a balanced {get,put}_task_struct().
555 * The race against __run_timer() clearing the enqueued state is
556 * harmless because we're holding task_rq()->lock, therefore the timer
557 * expiring after we've done the check will wait on its task_rq_lock()
558 * and observe our state.
560 if (!hrtimer_is_queued(timer
)) {
562 hrtimer_start(timer
, act
, HRTIMER_MODE_ABS
);
569 * This is the bandwidth enforcement timer callback. If here, we know
570 * a task is not on its dl_rq, since the fact that the timer was running
571 * means the task is throttled and needs a runtime replenishment.
573 * However, what we actually do depends on the fact the task is active,
574 * (it is on its rq) or has been removed from there by a call to
575 * dequeue_task_dl(). In the former case we must issue the runtime
576 * replenishment and add the task back to the dl_rq; in the latter, we just
577 * do nothing but clearing dl_throttled, so that runtime and deadline
578 * updating (and the queueing back to dl_rq) will be done by the
579 * next call to enqueue_task_dl().
581 static enum hrtimer_restart
dl_task_timer(struct hrtimer
*timer
)
583 struct sched_dl_entity
*dl_se
= container_of(timer
,
584 struct sched_dl_entity
,
586 struct task_struct
*p
= dl_task_of(dl_se
);
590 rq
= task_rq_lock(p
, &flags
);
593 * The task might have changed its scheduling policy to something
594 * different than SCHED_DEADLINE (through switched_fromd_dl()).
597 __dl_clear_params(p
);
602 * This is possible if switched_from_dl() raced against a running
603 * callback that took the above !dl_task() path and we've since then
604 * switched back into SCHED_DEADLINE.
606 * There's nothing to do except drop our task reference.
612 * The task might have been boosted by someone else and might be in the
613 * boosting/deboosting path, its not throttled.
615 if (dl_se
->dl_boosted
)
619 * Spurious timer due to start_dl_timer() race; or we already received
620 * a replenishment from rt_mutex_setprio().
622 if (!dl_se
->dl_throttled
)
629 * If the throttle happened during sched-out; like:
636 * __dequeue_task_dl()
639 * We can be both throttled and !queued. Replenish the counter
640 * but do not enqueue -- wait for our wakeup to do that.
642 if (!task_on_rq_queued(p
)) {
643 replenish_dl_entity(dl_se
, dl_se
);
647 enqueue_task_dl(rq
, p
, ENQUEUE_REPLENISH
);
648 if (dl_task(rq
->curr
))
649 check_preempt_curr_dl(rq
, p
, 0);
655 * Perform balancing operations here; after the replenishments. We
656 * cannot drop rq->lock before this, otherwise the assertion in
657 * start_dl_timer() about not missing updates is not true.
659 * If we find that the rq the task was on is no longer available, we
660 * need to select a new rq.
662 * XXX figure out if select_task_rq_dl() deals with offline cpus.
664 if (unlikely(!rq
->online
))
665 rq
= dl_task_offline_migration(rq
, p
);
668 * Queueing this task back might have overloaded rq, check if we need
669 * to kick someone away.
671 if (has_pushable_dl_tasks(rq
))
676 task_rq_unlock(rq
, p
, &flags
);
679 * This can free the task_struct, including this hrtimer, do not touch
680 * anything related to that after this.
684 return HRTIMER_NORESTART
;
687 void init_dl_task_timer(struct sched_dl_entity
*dl_se
)
689 struct hrtimer
*timer
= &dl_se
->dl_timer
;
691 hrtimer_init(timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
692 timer
->function
= dl_task_timer
;
696 int dl_runtime_exceeded(struct sched_dl_entity
*dl_se
)
698 return (dl_se
->runtime
<= 0);
701 extern bool sched_rt_bandwidth_account(struct rt_rq
*rt_rq
);
704 * Update the current task's runtime statistics (provided it is still
705 * a -deadline task and has not been removed from the dl_rq).
707 static void update_curr_dl(struct rq
*rq
)
709 struct task_struct
*curr
= rq
->curr
;
710 struct sched_dl_entity
*dl_se
= &curr
->dl
;
713 if (!dl_task(curr
) || !on_dl_rq(dl_se
))
717 * Consumed budget is computed considering the time as
718 * observed by schedulable tasks (excluding time spent
719 * in hardirq context, etc.). Deadlines are instead
720 * computed using hard walltime. This seems to be the more
721 * natural solution, but the full ramifications of this
722 * approach need further study.
724 delta_exec
= rq_clock_task(rq
) - curr
->se
.exec_start
;
725 if (unlikely((s64
)delta_exec
<= 0))
728 schedstat_set(curr
->se
.statistics
.exec_max
,
729 max(curr
->se
.statistics
.exec_max
, delta_exec
));
731 curr
->se
.sum_exec_runtime
+= delta_exec
;
732 account_group_exec_runtime(curr
, delta_exec
);
734 curr
->se
.exec_start
= rq_clock_task(rq
);
735 cpuacct_charge(curr
, delta_exec
);
737 sched_rt_avg_update(rq
, delta_exec
);
739 dl_se
->runtime
-= dl_se
->dl_yielded
? 0 : delta_exec
;
740 if (dl_runtime_exceeded(dl_se
)) {
741 dl_se
->dl_throttled
= 1;
742 __dequeue_task_dl(rq
, curr
, 0);
743 if (unlikely(dl_se
->dl_boosted
|| !start_dl_timer(curr
)))
744 enqueue_task_dl(rq
, curr
, ENQUEUE_REPLENISH
);
746 if (!is_leftmost(curr
, &rq
->dl
))
751 * Because -- for now -- we share the rt bandwidth, we need to
752 * account our runtime there too, otherwise actual rt tasks
753 * would be able to exceed the shared quota.
755 * Account to the root rt group for now.
757 * The solution we're working towards is having the RT groups scheduled
758 * using deadline servers -- however there's a few nasties to figure
759 * out before that can happen.
761 if (rt_bandwidth_enabled()) {
762 struct rt_rq
*rt_rq
= &rq
->rt
;
764 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
766 * We'll let actual RT tasks worry about the overflow here, we
767 * have our own CBS to keep us inline; only account when RT
768 * bandwidth is relevant.
770 if (sched_rt_bandwidth_account(rt_rq
))
771 rt_rq
->rt_time
+= delta_exec
;
772 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
778 static struct task_struct
*pick_next_earliest_dl_task(struct rq
*rq
, int cpu
);
780 static inline u64
next_deadline(struct rq
*rq
)
782 struct task_struct
*next
= pick_next_earliest_dl_task(rq
, rq
->cpu
);
784 if (next
&& dl_prio(next
->prio
))
785 return next
->dl
.deadline
;
790 static void inc_dl_deadline(struct dl_rq
*dl_rq
, u64 deadline
)
792 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
794 if (dl_rq
->earliest_dl
.curr
== 0 ||
795 dl_time_before(deadline
, dl_rq
->earliest_dl
.curr
)) {
797 * If the dl_rq had no -deadline tasks, or if the new task
798 * has shorter deadline than the current one on dl_rq, we
799 * know that the previous earliest becomes our next earliest,
800 * as the new task becomes the earliest itself.
802 dl_rq
->earliest_dl
.next
= dl_rq
->earliest_dl
.curr
;
803 dl_rq
->earliest_dl
.curr
= deadline
;
804 cpudl_set(&rq
->rd
->cpudl
, rq
->cpu
, deadline
, 1);
805 } else if (dl_rq
->earliest_dl
.next
== 0 ||
806 dl_time_before(deadline
, dl_rq
->earliest_dl
.next
)) {
808 * On the other hand, if the new -deadline task has a
809 * a later deadline than the earliest one on dl_rq, but
810 * it is earlier than the next (if any), we must
811 * recompute the next-earliest.
813 dl_rq
->earliest_dl
.next
= next_deadline(rq
);
817 static void dec_dl_deadline(struct dl_rq
*dl_rq
, u64 deadline
)
819 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
822 * Since we may have removed our earliest (and/or next earliest)
823 * task we must recompute them.
825 if (!dl_rq
->dl_nr_running
) {
826 dl_rq
->earliest_dl
.curr
= 0;
827 dl_rq
->earliest_dl
.next
= 0;
828 cpudl_set(&rq
->rd
->cpudl
, rq
->cpu
, 0, 0);
830 struct rb_node
*leftmost
= dl_rq
->rb_leftmost
;
831 struct sched_dl_entity
*entry
;
833 entry
= rb_entry(leftmost
, struct sched_dl_entity
, rb_node
);
834 dl_rq
->earliest_dl
.curr
= entry
->deadline
;
835 dl_rq
->earliest_dl
.next
= next_deadline(rq
);
836 cpudl_set(&rq
->rd
->cpudl
, rq
->cpu
, entry
->deadline
, 1);
842 static inline void inc_dl_deadline(struct dl_rq
*dl_rq
, u64 deadline
) {}
843 static inline void dec_dl_deadline(struct dl_rq
*dl_rq
, u64 deadline
) {}
845 #endif /* CONFIG_SMP */
848 void inc_dl_tasks(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
850 int prio
= dl_task_of(dl_se
)->prio
;
851 u64 deadline
= dl_se
->deadline
;
853 WARN_ON(!dl_prio(prio
));
854 dl_rq
->dl_nr_running
++;
855 add_nr_running(rq_of_dl_rq(dl_rq
), 1);
857 inc_dl_deadline(dl_rq
, deadline
);
858 inc_dl_migration(dl_se
, dl_rq
);
862 void dec_dl_tasks(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
864 int prio
= dl_task_of(dl_se
)->prio
;
866 WARN_ON(!dl_prio(prio
));
867 WARN_ON(!dl_rq
->dl_nr_running
);
868 dl_rq
->dl_nr_running
--;
869 sub_nr_running(rq_of_dl_rq(dl_rq
), 1);
871 dec_dl_deadline(dl_rq
, dl_se
->deadline
);
872 dec_dl_migration(dl_se
, dl_rq
);
875 static void __enqueue_dl_entity(struct sched_dl_entity
*dl_se
)
877 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
878 struct rb_node
**link
= &dl_rq
->rb_root
.rb_node
;
879 struct rb_node
*parent
= NULL
;
880 struct sched_dl_entity
*entry
;
883 BUG_ON(!RB_EMPTY_NODE(&dl_se
->rb_node
));
887 entry
= rb_entry(parent
, struct sched_dl_entity
, rb_node
);
888 if (dl_time_before(dl_se
->deadline
, entry
->deadline
))
889 link
= &parent
->rb_left
;
891 link
= &parent
->rb_right
;
897 dl_rq
->rb_leftmost
= &dl_se
->rb_node
;
899 rb_link_node(&dl_se
->rb_node
, parent
, link
);
900 rb_insert_color(&dl_se
->rb_node
, &dl_rq
->rb_root
);
902 inc_dl_tasks(dl_se
, dl_rq
);
905 static void __dequeue_dl_entity(struct sched_dl_entity
*dl_se
)
907 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
909 if (RB_EMPTY_NODE(&dl_se
->rb_node
))
912 if (dl_rq
->rb_leftmost
== &dl_se
->rb_node
) {
913 struct rb_node
*next_node
;
915 next_node
= rb_next(&dl_se
->rb_node
);
916 dl_rq
->rb_leftmost
= next_node
;
919 rb_erase(&dl_se
->rb_node
, &dl_rq
->rb_root
);
920 RB_CLEAR_NODE(&dl_se
->rb_node
);
922 dec_dl_tasks(dl_se
, dl_rq
);
926 enqueue_dl_entity(struct sched_dl_entity
*dl_se
,
927 struct sched_dl_entity
*pi_se
, int flags
)
929 BUG_ON(on_dl_rq(dl_se
));
932 * If this is a wakeup or a new instance, the scheduling
933 * parameters of the task might need updating. Otherwise,
934 * we want a replenishment of its runtime.
936 if (dl_se
->dl_new
|| flags
& ENQUEUE_WAKEUP
)
937 update_dl_entity(dl_se
, pi_se
);
938 else if (flags
& ENQUEUE_REPLENISH
)
939 replenish_dl_entity(dl_se
, pi_se
);
941 __enqueue_dl_entity(dl_se
);
944 static void dequeue_dl_entity(struct sched_dl_entity
*dl_se
)
946 __dequeue_dl_entity(dl_se
);
949 static void enqueue_task_dl(struct rq
*rq
, struct task_struct
*p
, int flags
)
951 struct task_struct
*pi_task
= rt_mutex_get_top_task(p
);
952 struct sched_dl_entity
*pi_se
= &p
->dl
;
955 * Use the scheduling parameters of the top pi-waiter
956 * task if we have one and its (absolute) deadline is
957 * smaller than our one... OTW we keep our runtime and
960 if (pi_task
&& p
->dl
.dl_boosted
&& dl_prio(pi_task
->normal_prio
)) {
961 pi_se
= &pi_task
->dl
;
962 } else if (!dl_prio(p
->normal_prio
)) {
964 * Special case in which we have a !SCHED_DEADLINE task
965 * that is going to be deboosted, but exceedes its
966 * runtime while doing so. No point in replenishing
967 * it, as it's going to return back to its original
968 * scheduling class after this.
970 BUG_ON(!p
->dl
.dl_boosted
|| flags
!= ENQUEUE_REPLENISH
);
975 * If p is throttled, we do nothing. In fact, if it exhausted
976 * its budget it needs a replenishment and, since it now is on
977 * its rq, the bandwidth timer callback (which clearly has not
978 * run yet) will take care of this.
980 if (p
->dl
.dl_throttled
&& !(flags
& ENQUEUE_REPLENISH
))
983 enqueue_dl_entity(&p
->dl
, pi_se
, flags
);
985 if (!task_current(rq
, p
) && p
->nr_cpus_allowed
> 1)
986 enqueue_pushable_dl_task(rq
, p
);
989 static void __dequeue_task_dl(struct rq
*rq
, struct task_struct
*p
, int flags
)
991 dequeue_dl_entity(&p
->dl
);
992 dequeue_pushable_dl_task(rq
, p
);
995 static void dequeue_task_dl(struct rq
*rq
, struct task_struct
*p
, int flags
)
998 __dequeue_task_dl(rq
, p
, flags
);
1002 * Yield task semantic for -deadline tasks is:
1004 * get off from the CPU until our next instance, with
1005 * a new runtime. This is of little use now, since we
1006 * don't have a bandwidth reclaiming mechanism. Anyway,
1007 * bandwidth reclaiming is planned for the future, and
1008 * yield_task_dl will indicate that some spare budget
1009 * is available for other task instances to use it.
1011 static void yield_task_dl(struct rq
*rq
)
1013 struct task_struct
*p
= rq
->curr
;
1016 * We make the task go to sleep until its current deadline by
1017 * forcing its runtime to zero. This way, update_curr_dl() stops
1018 * it and the bandwidth timer will wake it up and will give it
1019 * new scheduling parameters (thanks to dl_yielded=1).
1021 if (p
->dl
.runtime
> 0) {
1022 rq
->curr
->dl
.dl_yielded
= 1;
1025 update_rq_clock(rq
);
1028 * Tell update_rq_clock() that we've just updated,
1029 * so we don't do microscopic update in schedule()
1030 * and double the fastpath cost.
1032 rq_clock_skip_update(rq
, true);
1037 static int find_later_rq(struct task_struct
*task
);
1040 select_task_rq_dl(struct task_struct
*p
, int cpu
, int sd_flag
, int flags
)
1042 struct task_struct
*curr
;
1045 if (sd_flag
!= SD_BALANCE_WAKE
)
1051 curr
= READ_ONCE(rq
->curr
); /* unlocked access */
1054 * If we are dealing with a -deadline task, we must
1055 * decide where to wake it up.
1056 * If it has a later deadline and the current task
1057 * on this rq can't move (provided the waking task
1058 * can!) we prefer to send it somewhere else. On the
1059 * other hand, if it has a shorter deadline, we
1060 * try to make it stay here, it might be important.
1062 if (unlikely(dl_task(curr
)) &&
1063 (curr
->nr_cpus_allowed
< 2 ||
1064 !dl_entity_preempt(&p
->dl
, &curr
->dl
)) &&
1065 (p
->nr_cpus_allowed
> 1)) {
1066 int target
= find_later_rq(p
);
1069 dl_time_before(p
->dl
.deadline
,
1070 cpu_rq(target
)->dl
.earliest_dl
.curr
))
1079 static void check_preempt_equal_dl(struct rq
*rq
, struct task_struct
*p
)
1082 * Current can't be migrated, useless to reschedule,
1083 * let's hope p can move out.
1085 if (rq
->curr
->nr_cpus_allowed
== 1 ||
1086 cpudl_find(&rq
->rd
->cpudl
, rq
->curr
, NULL
) == -1)
1090 * p is migratable, so let's not schedule it and
1091 * see if it is pushed or pulled somewhere else.
1093 if (p
->nr_cpus_allowed
!= 1 &&
1094 cpudl_find(&rq
->rd
->cpudl
, p
, NULL
) != -1)
1100 #endif /* CONFIG_SMP */
1103 * Only called when both the current and waking task are -deadline
1106 static void check_preempt_curr_dl(struct rq
*rq
, struct task_struct
*p
,
1109 if (dl_entity_preempt(&p
->dl
, &rq
->curr
->dl
)) {
1116 * In the unlikely case current and p have the same deadline
1117 * let us try to decide what's the best thing to do...
1119 if ((p
->dl
.deadline
== rq
->curr
->dl
.deadline
) &&
1120 !test_tsk_need_resched(rq
->curr
))
1121 check_preempt_equal_dl(rq
, p
);
1122 #endif /* CONFIG_SMP */
1125 #ifdef CONFIG_SCHED_HRTICK
1126 static void start_hrtick_dl(struct rq
*rq
, struct task_struct
*p
)
1128 hrtick_start(rq
, p
->dl
.runtime
);
1130 #else /* !CONFIG_SCHED_HRTICK */
1131 static void start_hrtick_dl(struct rq
*rq
, struct task_struct
*p
)
1136 static struct sched_dl_entity
*pick_next_dl_entity(struct rq
*rq
,
1137 struct dl_rq
*dl_rq
)
1139 struct rb_node
*left
= dl_rq
->rb_leftmost
;
1144 return rb_entry(left
, struct sched_dl_entity
, rb_node
);
1147 struct task_struct
*pick_next_task_dl(struct rq
*rq
, struct task_struct
*prev
)
1149 struct sched_dl_entity
*dl_se
;
1150 struct task_struct
*p
;
1151 struct dl_rq
*dl_rq
;
1155 if (need_pull_dl_task(rq
, prev
)) {
1157 * This is OK, because current is on_cpu, which avoids it being
1158 * picked for load-balance and preemption/IRQs are still
1159 * disabled avoiding further scheduler activity on it and we're
1160 * being very careful to re-start the picking loop.
1162 lockdep_unpin_lock(&rq
->lock
);
1164 lockdep_pin_lock(&rq
->lock
);
1166 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1167 * means a stop task can slip in, in which case we need to
1168 * re-start task selection.
1170 if (rq
->stop
&& task_on_rq_queued(rq
->stop
))
1175 * When prev is DL, we may throttle it in put_prev_task().
1176 * So, we update time before we check for dl_nr_running.
1178 if (prev
->sched_class
== &dl_sched_class
)
1181 if (unlikely(!dl_rq
->dl_nr_running
))
1184 put_prev_task(rq
, prev
);
1186 dl_se
= pick_next_dl_entity(rq
, dl_rq
);
1189 p
= dl_task_of(dl_se
);
1190 p
->se
.exec_start
= rq_clock_task(rq
);
1192 /* Running task will never be pushed. */
1193 dequeue_pushable_dl_task(rq
, p
);
1195 if (hrtick_enabled(rq
))
1196 start_hrtick_dl(rq
, p
);
1198 queue_push_tasks(rq
);
1203 static void put_prev_task_dl(struct rq
*rq
, struct task_struct
*p
)
1207 if (on_dl_rq(&p
->dl
) && p
->nr_cpus_allowed
> 1)
1208 enqueue_pushable_dl_task(rq
, p
);
1211 static void task_tick_dl(struct rq
*rq
, struct task_struct
*p
, int queued
)
1216 * Even when we have runtime, update_curr_dl() might have resulted in us
1217 * not being the leftmost task anymore. In that case NEED_RESCHED will
1218 * be set and schedule() will start a new hrtick for the next task.
1220 if (hrtick_enabled(rq
) && queued
&& p
->dl
.runtime
> 0 &&
1221 is_leftmost(p
, &rq
->dl
))
1222 start_hrtick_dl(rq
, p
);
1225 static void task_fork_dl(struct task_struct
*p
)
1228 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1233 static void task_dead_dl(struct task_struct
*p
)
1235 struct dl_bw
*dl_b
= dl_bw_of(task_cpu(p
));
1238 * Since we are TASK_DEAD we won't slip out of the domain!
1240 raw_spin_lock_irq(&dl_b
->lock
);
1241 /* XXX we should retain the bw until 0-lag */
1242 dl_b
->total_bw
-= p
->dl
.dl_bw
;
1243 raw_spin_unlock_irq(&dl_b
->lock
);
1246 static void set_curr_task_dl(struct rq
*rq
)
1248 struct task_struct
*p
= rq
->curr
;
1250 p
->se
.exec_start
= rq_clock_task(rq
);
1252 /* You can't push away the running task */
1253 dequeue_pushable_dl_task(rq
, p
);
1258 /* Only try algorithms three times */
1259 #define DL_MAX_TRIES 3
1261 static int pick_dl_task(struct rq
*rq
, struct task_struct
*p
, int cpu
)
1263 if (!task_running(rq
, p
) &&
1264 cpumask_test_cpu(cpu
, tsk_cpus_allowed(p
)))
1269 /* Returns the second earliest -deadline task, NULL otherwise */
1270 static struct task_struct
*pick_next_earliest_dl_task(struct rq
*rq
, int cpu
)
1272 struct rb_node
*next_node
= rq
->dl
.rb_leftmost
;
1273 struct sched_dl_entity
*dl_se
;
1274 struct task_struct
*p
= NULL
;
1277 next_node
= rb_next(next_node
);
1279 dl_se
= rb_entry(next_node
, struct sched_dl_entity
, rb_node
);
1280 p
= dl_task_of(dl_se
);
1282 if (pick_dl_task(rq
, p
, cpu
))
1292 * Return the earliest pushable rq's task, which is suitable to be executed
1293 * on the CPU, NULL otherwise:
1295 static struct task_struct
*pick_earliest_pushable_dl_task(struct rq
*rq
, int cpu
)
1297 struct rb_node
*next_node
= rq
->dl
.pushable_dl_tasks_leftmost
;
1298 struct task_struct
*p
= NULL
;
1300 if (!has_pushable_dl_tasks(rq
))
1305 p
= rb_entry(next_node
, struct task_struct
, pushable_dl_tasks
);
1307 if (pick_dl_task(rq
, p
, cpu
))
1310 next_node
= rb_next(next_node
);
1317 static DEFINE_PER_CPU(cpumask_var_t
, local_cpu_mask_dl
);
1319 static int find_later_rq(struct task_struct
*task
)
1321 struct sched_domain
*sd
;
1322 struct cpumask
*later_mask
= this_cpu_cpumask_var_ptr(local_cpu_mask_dl
);
1323 int this_cpu
= smp_processor_id();
1324 int best_cpu
, cpu
= task_cpu(task
);
1326 /* Make sure the mask is initialized first */
1327 if (unlikely(!later_mask
))
1330 if (task
->nr_cpus_allowed
== 1)
1334 * We have to consider system topology and task affinity
1335 * first, then we can look for a suitable cpu.
1337 best_cpu
= cpudl_find(&task_rq(task
)->rd
->cpudl
,
1343 * If we are here, some target has been found,
1344 * the most suitable of which is cached in best_cpu.
1345 * This is, among the runqueues where the current tasks
1346 * have later deadlines than the task's one, the rq
1347 * with the latest possible one.
1349 * Now we check how well this matches with task's
1350 * affinity and system topology.
1352 * The last cpu where the task run is our first
1353 * guess, since it is most likely cache-hot there.
1355 if (cpumask_test_cpu(cpu
, later_mask
))
1358 * Check if this_cpu is to be skipped (i.e., it is
1359 * not in the mask) or not.
1361 if (!cpumask_test_cpu(this_cpu
, later_mask
))
1365 for_each_domain(cpu
, sd
) {
1366 if (sd
->flags
& SD_WAKE_AFFINE
) {
1369 * If possible, preempting this_cpu is
1370 * cheaper than migrating.
1372 if (this_cpu
!= -1 &&
1373 cpumask_test_cpu(this_cpu
, sched_domain_span(sd
))) {
1379 * Last chance: if best_cpu is valid and is
1380 * in the mask, that becomes our choice.
1382 if (best_cpu
< nr_cpu_ids
&&
1383 cpumask_test_cpu(best_cpu
, sched_domain_span(sd
))) {
1392 * At this point, all our guesses failed, we just return
1393 * 'something', and let the caller sort the things out.
1398 cpu
= cpumask_any(later_mask
);
1399 if (cpu
< nr_cpu_ids
)
1405 /* Locks the rq it finds */
1406 static struct rq
*find_lock_later_rq(struct task_struct
*task
, struct rq
*rq
)
1408 struct rq
*later_rq
= NULL
;
1412 for (tries
= 0; tries
< DL_MAX_TRIES
; tries
++) {
1413 cpu
= find_later_rq(task
);
1415 if ((cpu
== -1) || (cpu
== rq
->cpu
))
1418 later_rq
= cpu_rq(cpu
);
1420 if (!dl_time_before(task
->dl
.deadline
,
1421 later_rq
->dl
.earliest_dl
.curr
)) {
1423 * Target rq has tasks of equal or earlier deadline,
1424 * retrying does not release any lock and is unlikely
1425 * to yield a different result.
1431 /* Retry if something changed. */
1432 if (double_lock_balance(rq
, later_rq
)) {
1433 if (unlikely(task_rq(task
) != rq
||
1434 !cpumask_test_cpu(later_rq
->cpu
,
1435 &task
->cpus_allowed
) ||
1436 task_running(rq
, task
) ||
1437 !task_on_rq_queued(task
))) {
1438 double_unlock_balance(rq
, later_rq
);
1445 * If the rq we found has no -deadline task, or
1446 * its earliest one has a later deadline than our
1447 * task, the rq is a good one.
1449 if (!later_rq
->dl
.dl_nr_running
||
1450 dl_time_before(task
->dl
.deadline
,
1451 later_rq
->dl
.earliest_dl
.curr
))
1454 /* Otherwise we try again. */
1455 double_unlock_balance(rq
, later_rq
);
1462 static struct task_struct
*pick_next_pushable_dl_task(struct rq
*rq
)
1464 struct task_struct
*p
;
1466 if (!has_pushable_dl_tasks(rq
))
1469 p
= rb_entry(rq
->dl
.pushable_dl_tasks_leftmost
,
1470 struct task_struct
, pushable_dl_tasks
);
1472 BUG_ON(rq
->cpu
!= task_cpu(p
));
1473 BUG_ON(task_current(rq
, p
));
1474 BUG_ON(p
->nr_cpus_allowed
<= 1);
1476 BUG_ON(!task_on_rq_queued(p
));
1477 BUG_ON(!dl_task(p
));
1483 * See if the non running -deadline tasks on this rq
1484 * can be sent to some other CPU where they can preempt
1485 * and start executing.
1487 static int push_dl_task(struct rq
*rq
)
1489 struct task_struct
*next_task
;
1490 struct rq
*later_rq
;
1493 if (!rq
->dl
.overloaded
)
1496 next_task
= pick_next_pushable_dl_task(rq
);
1501 if (unlikely(next_task
== rq
->curr
)) {
1507 * If next_task preempts rq->curr, and rq->curr
1508 * can move away, it makes sense to just reschedule
1509 * without going further in pushing next_task.
1511 if (dl_task(rq
->curr
) &&
1512 dl_time_before(next_task
->dl
.deadline
, rq
->curr
->dl
.deadline
) &&
1513 rq
->curr
->nr_cpus_allowed
> 1) {
1518 /* We might release rq lock */
1519 get_task_struct(next_task
);
1521 /* Will lock the rq it'll find */
1522 later_rq
= find_lock_later_rq(next_task
, rq
);
1524 struct task_struct
*task
;
1527 * We must check all this again, since
1528 * find_lock_later_rq releases rq->lock and it is
1529 * then possible that next_task has migrated.
1531 task
= pick_next_pushable_dl_task(rq
);
1532 if (task_cpu(next_task
) == rq
->cpu
&& task
== next_task
) {
1534 * The task is still there. We don't try
1535 * again, some other cpu will pull it when ready.
1544 put_task_struct(next_task
);
1549 deactivate_task(rq
, next_task
, 0);
1550 set_task_cpu(next_task
, later_rq
->cpu
);
1551 activate_task(later_rq
, next_task
, 0);
1554 resched_curr(later_rq
);
1556 double_unlock_balance(rq
, later_rq
);
1559 put_task_struct(next_task
);
1564 static void push_dl_tasks(struct rq
*rq
)
1566 /* push_dl_task() will return true if it moved a -deadline task */
1567 while (push_dl_task(rq
))
1571 static void pull_dl_task(struct rq
*this_rq
)
1573 int this_cpu
= this_rq
->cpu
, cpu
;
1574 struct task_struct
*p
;
1575 bool resched
= false;
1577 u64 dmin
= LONG_MAX
;
1579 if (likely(!dl_overloaded(this_rq
)))
1583 * Match the barrier from dl_set_overloaded; this guarantees that if we
1584 * see overloaded we must also see the dlo_mask bit.
1588 for_each_cpu(cpu
, this_rq
->rd
->dlo_mask
) {
1589 if (this_cpu
== cpu
)
1592 src_rq
= cpu_rq(cpu
);
1595 * It looks racy, abd it is! However, as in sched_rt.c,
1596 * we are fine with this.
1598 if (this_rq
->dl
.dl_nr_running
&&
1599 dl_time_before(this_rq
->dl
.earliest_dl
.curr
,
1600 src_rq
->dl
.earliest_dl
.next
))
1603 /* Might drop this_rq->lock */
1604 double_lock_balance(this_rq
, src_rq
);
1607 * If there are no more pullable tasks on the
1608 * rq, we're done with it.
1610 if (src_rq
->dl
.dl_nr_running
<= 1)
1613 p
= pick_earliest_pushable_dl_task(src_rq
, this_cpu
);
1616 * We found a task to be pulled if:
1617 * - it preempts our current (if there's one),
1618 * - it will preempt the last one we pulled (if any).
1620 if (p
&& dl_time_before(p
->dl
.deadline
, dmin
) &&
1621 (!this_rq
->dl
.dl_nr_running
||
1622 dl_time_before(p
->dl
.deadline
,
1623 this_rq
->dl
.earliest_dl
.curr
))) {
1624 WARN_ON(p
== src_rq
->curr
);
1625 WARN_ON(!task_on_rq_queued(p
));
1628 * Then we pull iff p has actually an earlier
1629 * deadline than the current task of its runqueue.
1631 if (dl_time_before(p
->dl
.deadline
,
1632 src_rq
->curr
->dl
.deadline
))
1637 deactivate_task(src_rq
, p
, 0);
1638 set_task_cpu(p
, this_cpu
);
1639 activate_task(this_rq
, p
, 0);
1640 dmin
= p
->dl
.deadline
;
1642 /* Is there any other task even earlier? */
1645 double_unlock_balance(this_rq
, src_rq
);
1649 resched_curr(this_rq
);
1653 * Since the task is not running and a reschedule is not going to happen
1654 * anytime soon on its runqueue, we try pushing it away now.
1656 static void task_woken_dl(struct rq
*rq
, struct task_struct
*p
)
1658 if (!task_running(rq
, p
) &&
1659 !test_tsk_need_resched(rq
->curr
) &&
1660 p
->nr_cpus_allowed
> 1 &&
1661 dl_task(rq
->curr
) &&
1662 (rq
->curr
->nr_cpus_allowed
< 2 ||
1663 !dl_entity_preempt(&p
->dl
, &rq
->curr
->dl
))) {
1668 static void set_cpus_allowed_dl(struct task_struct
*p
,
1669 const struct cpumask
*new_mask
)
1671 struct root_domain
*src_rd
;
1674 BUG_ON(!dl_task(p
));
1679 * Migrating a SCHED_DEADLINE task between exclusive
1680 * cpusets (different root_domains) entails a bandwidth
1681 * update. We already made space for us in the destination
1682 * domain (see cpuset_can_attach()).
1684 if (!cpumask_intersects(src_rd
->span
, new_mask
)) {
1685 struct dl_bw
*src_dl_b
;
1687 src_dl_b
= dl_bw_of(cpu_of(rq
));
1689 * We now free resources of the root_domain we are migrating
1690 * off. In the worst case, sched_setattr() may temporary fail
1691 * until we complete the update.
1693 raw_spin_lock(&src_dl_b
->lock
);
1694 __dl_clear(src_dl_b
, p
->dl
.dl_bw
);
1695 raw_spin_unlock(&src_dl_b
->lock
);
1698 set_cpus_allowed_common(p
, new_mask
);
1701 /* Assumes rq->lock is held */
1702 static void rq_online_dl(struct rq
*rq
)
1704 if (rq
->dl
.overloaded
)
1705 dl_set_overload(rq
);
1707 cpudl_set_freecpu(&rq
->rd
->cpudl
, rq
->cpu
);
1708 if (rq
->dl
.dl_nr_running
> 0)
1709 cpudl_set(&rq
->rd
->cpudl
, rq
->cpu
, rq
->dl
.earliest_dl
.curr
, 1);
1712 /* Assumes rq->lock is held */
1713 static void rq_offline_dl(struct rq
*rq
)
1715 if (rq
->dl
.overloaded
)
1716 dl_clear_overload(rq
);
1718 cpudl_set(&rq
->rd
->cpudl
, rq
->cpu
, 0, 0);
1719 cpudl_clear_freecpu(&rq
->rd
->cpudl
, rq
->cpu
);
1722 void __init
init_sched_dl_class(void)
1726 for_each_possible_cpu(i
)
1727 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl
, i
),
1728 GFP_KERNEL
, cpu_to_node(i
));
1731 #endif /* CONFIG_SMP */
1733 static void switched_from_dl(struct rq
*rq
, struct task_struct
*p
)
1736 * Start the deadline timer; if we switch back to dl before this we'll
1737 * continue consuming our current CBS slice. If we stay outside of
1738 * SCHED_DEADLINE until the deadline passes, the timer will reset the
1741 if (!start_dl_timer(p
))
1742 __dl_clear_params(p
);
1745 * Since this might be the only -deadline task on the rq,
1746 * this is the right place to try to pull some other one
1747 * from an overloaded cpu, if any.
1749 if (!task_on_rq_queued(p
) || rq
->dl
.dl_nr_running
)
1752 queue_pull_task(rq
);
1756 * When switching to -deadline, we may overload the rq, then
1757 * we try to push someone off, if possible.
1759 static void switched_to_dl(struct rq
*rq
, struct task_struct
*p
)
1761 if (task_on_rq_queued(p
) && rq
->curr
!= p
) {
1763 if (p
->nr_cpus_allowed
> 1 && rq
->dl
.overloaded
)
1764 queue_push_tasks(rq
);
1766 if (dl_task(rq
->curr
))
1767 check_preempt_curr_dl(rq
, p
, 0);
1775 * If the scheduling parameters of a -deadline task changed,
1776 * a push or pull operation might be needed.
1778 static void prio_changed_dl(struct rq
*rq
, struct task_struct
*p
,
1781 if (task_on_rq_queued(p
) || rq
->curr
== p
) {
1784 * This might be too much, but unfortunately
1785 * we don't have the old deadline value, and
1786 * we can't argue if the task is increasing
1787 * or lowering its prio, so...
1789 if (!rq
->dl
.overloaded
)
1790 queue_pull_task(rq
);
1793 * If we now have a earlier deadline task than p,
1794 * then reschedule, provided p is still on this
1797 if (dl_time_before(rq
->dl
.earliest_dl
.curr
, p
->dl
.deadline
))
1801 * Again, we don't know if p has a earlier
1802 * or later deadline, so let's blindly set a
1803 * (maybe not needed) rescheduling point.
1806 #endif /* CONFIG_SMP */
1808 switched_to_dl(rq
, p
);
1811 const struct sched_class dl_sched_class
= {
1812 .next
= &rt_sched_class
,
1813 .enqueue_task
= enqueue_task_dl
,
1814 .dequeue_task
= dequeue_task_dl
,
1815 .yield_task
= yield_task_dl
,
1817 .check_preempt_curr
= check_preempt_curr_dl
,
1819 .pick_next_task
= pick_next_task_dl
,
1820 .put_prev_task
= put_prev_task_dl
,
1823 .select_task_rq
= select_task_rq_dl
,
1824 .set_cpus_allowed
= set_cpus_allowed_dl
,
1825 .rq_online
= rq_online_dl
,
1826 .rq_offline
= rq_offline_dl
,
1827 .task_woken
= task_woken_dl
,
1830 .set_curr_task
= set_curr_task_dl
,
1831 .task_tick
= task_tick_dl
,
1832 .task_fork
= task_fork_dl
,
1833 .task_dead
= task_dead_dl
,
1835 .prio_changed
= prio_changed_dl
,
1836 .switched_from
= switched_from_dl
,
1837 .switched_to
= switched_to_dl
,
1839 .update_curr
= update_curr_dl
,
1842 #ifdef CONFIG_SCHED_DEBUG
1843 extern void print_dl_rq(struct seq_file
*m
, int cpu
, struct dl_rq
*dl_rq
);
1845 void print_dl_stats(struct seq_file
*m
, int cpu
)
1847 print_dl_rq(m
, cpu
, &cpu_rq(cpu
)->dl
);
1849 #endif /* CONFIG_SCHED_DEBUG */