2 * Generic waiting primitives.
4 * (C) 2004 Nadia Yvette Chambers, Oracle
6 #include <linux/init.h>
7 #include <linux/export.h>
8 #include <linux/sched.h>
10 #include <linux/wait.h>
11 #include <linux/hash.h>
12 #include <linux/kthread.h>
14 void __init_waitqueue_head(wait_queue_head_t
*q
, const char *name
, struct lock_class_key
*key
)
16 spin_lock_init(&q
->lock
);
17 lockdep_set_class_and_name(&q
->lock
, key
, name
);
18 INIT_LIST_HEAD(&q
->task_list
);
21 EXPORT_SYMBOL(__init_waitqueue_head
);
23 void add_wait_queue(wait_queue_head_t
*q
, wait_queue_t
*wait
)
27 wait
->flags
&= ~WQ_FLAG_EXCLUSIVE
;
28 spin_lock_irqsave(&q
->lock
, flags
);
29 __add_wait_queue(q
, wait
);
30 spin_unlock_irqrestore(&q
->lock
, flags
);
32 EXPORT_SYMBOL(add_wait_queue
);
34 void add_wait_queue_exclusive(wait_queue_head_t
*q
, wait_queue_t
*wait
)
38 wait
->flags
|= WQ_FLAG_EXCLUSIVE
;
39 spin_lock_irqsave(&q
->lock
, flags
);
40 __add_wait_queue_tail(q
, wait
);
41 spin_unlock_irqrestore(&q
->lock
, flags
);
43 EXPORT_SYMBOL(add_wait_queue_exclusive
);
45 void remove_wait_queue(wait_queue_head_t
*q
, wait_queue_t
*wait
)
49 spin_lock_irqsave(&q
->lock
, flags
);
50 __remove_wait_queue(q
, wait
);
51 spin_unlock_irqrestore(&q
->lock
, flags
);
53 EXPORT_SYMBOL(remove_wait_queue
);
57 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
58 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
59 * number) then we wake all the non-exclusive tasks and one exclusive task.
61 * There are circumstances in which we can try to wake a task which has already
62 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
63 * zero in this (rare) case, and we handle it by continuing to scan the queue.
65 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
66 int nr_exclusive
, int wake_flags
, void *key
)
68 wait_queue_t
*curr
, *next
;
70 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
71 unsigned flags
= curr
->flags
;
73 if (curr
->func(curr
, mode
, wake_flags
, key
) &&
74 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
80 * __wake_up - wake up threads blocked on a waitqueue.
82 * @mode: which threads
83 * @nr_exclusive: how many wake-one or wake-many threads to wake up
84 * @key: is directly passed to the wakeup function
86 * It may be assumed that this function implies a write memory barrier before
87 * changing the task state if and only if any tasks are woken up.
89 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
90 int nr_exclusive
, void *key
)
94 spin_lock_irqsave(&q
->lock
, flags
);
95 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
96 spin_unlock_irqrestore(&q
->lock
, flags
);
98 EXPORT_SYMBOL(__wake_up
);
101 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
103 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
, int nr
)
105 __wake_up_common(q
, mode
, nr
, 0, NULL
);
107 EXPORT_SYMBOL_GPL(__wake_up_locked
);
109 void __wake_up_locked_key(wait_queue_head_t
*q
, unsigned int mode
, int nr
,
112 __wake_up_common(q
, mode
, nr
, 0, key
);
114 EXPORT_SYMBOL_GPL(__wake_up_locked_key
);
117 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
119 * @mode: which threads
120 * @nr_exclusive: how many wake-one or wake-many threads to wake up
121 * @key: opaque value to be passed to wakeup targets
123 * The sync wakeup differs that the waker knows that it will schedule
124 * away soon, so while the target thread will be woken up, it will not
125 * be migrated to another CPU - ie. the two threads are 'synchronized'
126 * with each other. This can prevent needless bouncing between CPUs.
128 * On UP it can prevent extra preemption.
130 * It may be assumed that this function implies a write memory barrier before
131 * changing the task state if and only if any tasks are woken up.
133 void __wake_up_sync_key(wait_queue_head_t
*q
, unsigned int mode
,
134 int nr_exclusive
, void *key
)
137 int wake_flags
= 1; /* XXX WF_SYNC */
142 if (unlikely(nr_exclusive
!= 1))
145 spin_lock_irqsave(&q
->lock
, flags
);
146 __wake_up_common(q
, mode
, nr_exclusive
, wake_flags
, key
);
147 spin_unlock_irqrestore(&q
->lock
, flags
);
149 EXPORT_SYMBOL_GPL(__wake_up_sync_key
);
152 * __wake_up_sync - see __wake_up_sync_key()
154 void __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
156 __wake_up_sync_key(q
, mode
, nr_exclusive
, NULL
);
158 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
161 * Note: we use "set_current_state()" _after_ the wait-queue add,
162 * because we need a memory barrier there on SMP, so that any
163 * wake-function that tests for the wait-queue being active
164 * will be guaranteed to see waitqueue addition _or_ subsequent
165 * tests in this thread will see the wakeup having taken place.
167 * The spin_unlock() itself is semi-permeable and only protects
168 * one way (it only protects stuff inside the critical region and
169 * stops them from bleeding out - it would still allow subsequent
170 * loads to move into the critical region).
173 prepare_to_wait(wait_queue_head_t
*q
, wait_queue_t
*wait
, int state
)
177 wait
->flags
&= ~WQ_FLAG_EXCLUSIVE
;
178 spin_lock_irqsave(&q
->lock
, flags
);
179 if (list_empty(&wait
->task_list
))
180 __add_wait_queue(q
, wait
);
181 set_current_state(state
);
182 spin_unlock_irqrestore(&q
->lock
, flags
);
184 EXPORT_SYMBOL(prepare_to_wait
);
187 prepare_to_wait_exclusive(wait_queue_head_t
*q
, wait_queue_t
*wait
, int state
)
191 wait
->flags
|= WQ_FLAG_EXCLUSIVE
;
192 spin_lock_irqsave(&q
->lock
, flags
);
193 if (list_empty(&wait
->task_list
))
194 __add_wait_queue_tail(q
, wait
);
195 set_current_state(state
);
196 spin_unlock_irqrestore(&q
->lock
, flags
);
198 EXPORT_SYMBOL(prepare_to_wait_exclusive
);
200 long prepare_to_wait_event(wait_queue_head_t
*q
, wait_queue_t
*wait
, int state
)
204 if (signal_pending_state(state
, current
))
207 wait
->private = current
;
208 wait
->func
= autoremove_wake_function
;
210 spin_lock_irqsave(&q
->lock
, flags
);
211 if (list_empty(&wait
->task_list
)) {
212 if (wait
->flags
& WQ_FLAG_EXCLUSIVE
)
213 __add_wait_queue_tail(q
, wait
);
215 __add_wait_queue(q
, wait
);
217 set_current_state(state
);
218 spin_unlock_irqrestore(&q
->lock
, flags
);
222 EXPORT_SYMBOL(prepare_to_wait_event
);
225 * finish_wait - clean up after waiting in a queue
226 * @q: waitqueue waited on
227 * @wait: wait descriptor
229 * Sets current thread back to running state and removes
230 * the wait descriptor from the given waitqueue if still
233 void finish_wait(wait_queue_head_t
*q
, wait_queue_t
*wait
)
237 __set_current_state(TASK_RUNNING
);
239 * We can check for list emptiness outside the lock
241 * - we use the "careful" check that verifies both
242 * the next and prev pointers, so that there cannot
243 * be any half-pending updates in progress on other
244 * CPU's that we haven't seen yet (and that might
245 * still change the stack area.
247 * - all other users take the lock (ie we can only
248 * have _one_ other CPU that looks at or modifies
251 if (!list_empty_careful(&wait
->task_list
)) {
252 spin_lock_irqsave(&q
->lock
, flags
);
253 list_del_init(&wait
->task_list
);
254 spin_unlock_irqrestore(&q
->lock
, flags
);
257 EXPORT_SYMBOL(finish_wait
);
260 * abort_exclusive_wait - abort exclusive waiting in a queue
261 * @q: waitqueue waited on
262 * @wait: wait descriptor
263 * @mode: runstate of the waiter to be woken
264 * @key: key to identify a wait bit queue or %NULL
266 * Sets current thread back to running state and removes
267 * the wait descriptor from the given waitqueue if still
270 * Wakes up the next waiter if the caller is concurrently
271 * woken up through the queue.
273 * This prevents waiter starvation where an exclusive waiter
274 * aborts and is woken up concurrently and no one wakes up
277 void abort_exclusive_wait(wait_queue_head_t
*q
, wait_queue_t
*wait
,
278 unsigned int mode
, void *key
)
282 __set_current_state(TASK_RUNNING
);
283 spin_lock_irqsave(&q
->lock
, flags
);
284 if (!list_empty(&wait
->task_list
))
285 list_del_init(&wait
->task_list
);
286 else if (waitqueue_active(q
))
287 __wake_up_locked_key(q
, mode
, 1, key
);
288 spin_unlock_irqrestore(&q
->lock
, flags
);
290 EXPORT_SYMBOL(abort_exclusive_wait
);
292 int autoremove_wake_function(wait_queue_t
*wait
, unsigned mode
, int sync
, void *key
)
294 int ret
= default_wake_function(wait
, mode
, sync
, key
);
297 list_del_init(&wait
->task_list
);
300 EXPORT_SYMBOL(autoremove_wake_function
);
302 static inline bool is_kthread_should_stop(void)
304 return (current
->flags
& PF_KTHREAD
) && kthread_should_stop();
308 * DEFINE_WAIT_FUNC(wait, woken_wake_func);
310 * add_wait_queue(&wq, &wait);
315 * p->state = mode; condition = true;
316 * smp_mb(); // A smp_wmb(); // C
317 * if (!wait->flags & WQ_FLAG_WOKEN) wait->flags |= WQ_FLAG_WOKEN;
318 * schedule() try_to_wake_up();
319 * p->state = TASK_RUNNING; ~~~~~~~~~~~~~~~~~~
320 * wait->flags &= ~WQ_FLAG_WOKEN; condition = true;
321 * smp_mb() // B smp_wmb(); // C
322 * wait->flags |= WQ_FLAG_WOKEN;
324 * remove_wait_queue(&wq, &wait);
327 long wait_woken(wait_queue_t
*wait
, unsigned mode
, long timeout
)
329 set_current_state(mode
); /* A */
331 * The above implies an smp_mb(), which matches with the smp_wmb() from
332 * woken_wake_function() such that if we observe WQ_FLAG_WOKEN we must
333 * also observe all state before the wakeup.
335 if (!(wait
->flags
& WQ_FLAG_WOKEN
) && !is_kthread_should_stop())
336 timeout
= schedule_timeout(timeout
);
337 __set_current_state(TASK_RUNNING
);
340 * The below implies an smp_mb(), it too pairs with the smp_wmb() from
341 * woken_wake_function() such that we must either observe the wait
342 * condition being true _OR_ WQ_FLAG_WOKEN such that we will not miss
345 smp_store_mb(wait
->flags
, wait
->flags
& ~WQ_FLAG_WOKEN
); /* B */
349 EXPORT_SYMBOL(wait_woken
);
351 int woken_wake_function(wait_queue_t
*wait
, unsigned mode
, int sync
, void *key
)
354 * Although this function is called under waitqueue lock, LOCK
355 * doesn't imply write barrier and the users expects write
356 * barrier semantics on wakeup functions. The following
357 * smp_wmb() is equivalent to smp_wmb() in try_to_wake_up()
358 * and is paired with smp_store_mb() in wait_woken().
361 wait
->flags
|= WQ_FLAG_WOKEN
;
363 return default_wake_function(wait
, mode
, sync
, key
);
365 EXPORT_SYMBOL(woken_wake_function
);
367 int wake_bit_function(wait_queue_t
*wait
, unsigned mode
, int sync
, void *arg
)
369 struct wait_bit_key
*key
= arg
;
370 struct wait_bit_queue
*wait_bit
371 = container_of(wait
, struct wait_bit_queue
, wait
);
373 if (wait_bit
->key
.flags
!= key
->flags
||
374 wait_bit
->key
.bit_nr
!= key
->bit_nr
||
375 test_bit(key
->bit_nr
, key
->flags
))
378 return autoremove_wake_function(wait
, mode
, sync
, key
);
380 EXPORT_SYMBOL(wake_bit_function
);
383 * To allow interruptible waiting and asynchronous (i.e. nonblocking)
384 * waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are
385 * permitted return codes. Nonzero return codes halt waiting and return.
388 __wait_on_bit(wait_queue_head_t
*wq
, struct wait_bit_queue
*q
,
389 wait_bit_action_f
*action
, unsigned mode
)
394 prepare_to_wait(wq
, &q
->wait
, mode
);
395 if (test_bit(q
->key
.bit_nr
, q
->key
.flags
))
396 ret
= (*action
)(&q
->key
);
397 } while (test_bit(q
->key
.bit_nr
, q
->key
.flags
) && !ret
);
398 finish_wait(wq
, &q
->wait
);
401 EXPORT_SYMBOL(__wait_on_bit
);
403 int __sched
out_of_line_wait_on_bit(void *word
, int bit
,
404 wait_bit_action_f
*action
, unsigned mode
)
406 wait_queue_head_t
*wq
= bit_waitqueue(word
, bit
);
407 DEFINE_WAIT_BIT(wait
, word
, bit
);
409 return __wait_on_bit(wq
, &wait
, action
, mode
);
411 EXPORT_SYMBOL(out_of_line_wait_on_bit
);
413 int __sched
out_of_line_wait_on_bit_timeout(
414 void *word
, int bit
, wait_bit_action_f
*action
,
415 unsigned mode
, unsigned long timeout
)
417 wait_queue_head_t
*wq
= bit_waitqueue(word
, bit
);
418 DEFINE_WAIT_BIT(wait
, word
, bit
);
420 wait
.key
.timeout
= jiffies
+ timeout
;
421 return __wait_on_bit(wq
, &wait
, action
, mode
);
423 EXPORT_SYMBOL_GPL(out_of_line_wait_on_bit_timeout
);
426 __wait_on_bit_lock(wait_queue_head_t
*wq
, struct wait_bit_queue
*q
,
427 wait_bit_action_f
*action
, unsigned mode
)
432 prepare_to_wait_exclusive(wq
, &q
->wait
, mode
);
433 if (!test_bit(q
->key
.bit_nr
, q
->key
.flags
))
435 ret
= action(&q
->key
);
438 abort_exclusive_wait(wq
, &q
->wait
, mode
, &q
->key
);
440 } while (test_and_set_bit(q
->key
.bit_nr
, q
->key
.flags
));
441 finish_wait(wq
, &q
->wait
);
444 EXPORT_SYMBOL(__wait_on_bit_lock
);
446 int __sched
out_of_line_wait_on_bit_lock(void *word
, int bit
,
447 wait_bit_action_f
*action
, unsigned mode
)
449 wait_queue_head_t
*wq
= bit_waitqueue(word
, bit
);
450 DEFINE_WAIT_BIT(wait
, word
, bit
);
452 return __wait_on_bit_lock(wq
, &wait
, action
, mode
);
454 EXPORT_SYMBOL(out_of_line_wait_on_bit_lock
);
456 void __wake_up_bit(wait_queue_head_t
*wq
, void *word
, int bit
)
458 struct wait_bit_key key
= __WAIT_BIT_KEY_INITIALIZER(word
, bit
);
459 if (waitqueue_active(wq
))
460 __wake_up(wq
, TASK_NORMAL
, 1, &key
);
462 EXPORT_SYMBOL(__wake_up_bit
);
465 * wake_up_bit - wake up a waiter on a bit
466 * @word: the word being waited on, a kernel virtual address
467 * @bit: the bit of the word being waited on
469 * There is a standard hashed waitqueue table for generic use. This
470 * is the part of the hashtable's accessor API that wakes up waiters
471 * on a bit. For instance, if one were to have waiters on a bitflag,
472 * one would call wake_up_bit() after clearing the bit.
474 * In order for this to function properly, as it uses waitqueue_active()
475 * internally, some kind of memory barrier must be done prior to calling
476 * this. Typically, this will be smp_mb__after_atomic(), but in some
477 * cases where bitflags are manipulated non-atomically under a lock, one
478 * may need to use a less regular barrier, such fs/inode.c's smp_mb(),
479 * because spin_unlock() does not guarantee a memory barrier.
481 void wake_up_bit(void *word
, int bit
)
483 __wake_up_bit(bit_waitqueue(word
, bit
), word
, bit
);
485 EXPORT_SYMBOL(wake_up_bit
);
487 wait_queue_head_t
*bit_waitqueue(void *word
, int bit
)
489 const int shift
= BITS_PER_LONG
== 32 ? 5 : 6;
490 const struct zone
*zone
= page_zone(virt_to_page(word
));
491 unsigned long val
= (unsigned long)word
<< shift
| bit
;
493 return &zone
->wait_table
[hash_long(val
, zone
->wait_table_bits
)];
495 EXPORT_SYMBOL(bit_waitqueue
);
498 * Manipulate the atomic_t address to produce a better bit waitqueue table hash
499 * index (we're keying off bit -1, but that would produce a horrible hash
502 static inline wait_queue_head_t
*atomic_t_waitqueue(atomic_t
*p
)
504 if (BITS_PER_LONG
== 64) {
505 unsigned long q
= (unsigned long)p
;
506 return bit_waitqueue((void *)(q
& ~1), q
& 1);
508 return bit_waitqueue(p
, 0);
511 static int wake_atomic_t_function(wait_queue_t
*wait
, unsigned mode
, int sync
,
514 struct wait_bit_key
*key
= arg
;
515 struct wait_bit_queue
*wait_bit
516 = container_of(wait
, struct wait_bit_queue
, wait
);
517 atomic_t
*val
= key
->flags
;
519 if (wait_bit
->key
.flags
!= key
->flags
||
520 wait_bit
->key
.bit_nr
!= key
->bit_nr
||
521 atomic_read(val
) != 0)
523 return autoremove_wake_function(wait
, mode
, sync
, key
);
527 * To allow interruptible waiting and asynchronous (i.e. nonblocking) waiting,
528 * the actions of __wait_on_atomic_t() are permitted return codes. Nonzero
529 * return codes halt waiting and return.
532 int __wait_on_atomic_t(wait_queue_head_t
*wq
, struct wait_bit_queue
*q
,
533 int (*action
)(atomic_t
*), unsigned mode
)
539 prepare_to_wait(wq
, &q
->wait
, mode
);
541 if (atomic_read(val
) == 0)
543 ret
= (*action
)(val
);
544 } while (!ret
&& atomic_read(val
) != 0);
545 finish_wait(wq
, &q
->wait
);
549 #define DEFINE_WAIT_ATOMIC_T(name, p) \
550 struct wait_bit_queue name = { \
551 .key = __WAIT_ATOMIC_T_KEY_INITIALIZER(p), \
553 .private = current, \
554 .func = wake_atomic_t_function, \
556 LIST_HEAD_INIT((name).wait.task_list), \
560 __sched
int out_of_line_wait_on_atomic_t(atomic_t
*p
, int (*action
)(atomic_t
*),
563 wait_queue_head_t
*wq
= atomic_t_waitqueue(p
);
564 DEFINE_WAIT_ATOMIC_T(wait
, p
);
566 return __wait_on_atomic_t(wq
, &wait
, action
, mode
);
568 EXPORT_SYMBOL(out_of_line_wait_on_atomic_t
);
571 * wake_up_atomic_t - Wake up a waiter on a atomic_t
572 * @p: The atomic_t being waited on, a kernel virtual address
574 * Wake up anyone waiting for the atomic_t to go to zero.
576 * Abuse the bit-waker function and its waitqueue hash table set (the atomic_t
577 * check is done by the waiter's wake function, not the by the waker itself).
579 void wake_up_atomic_t(atomic_t
*p
)
581 __wake_up_bit(atomic_t_waitqueue(p
), p
, WAIT_ATOMIC_T_BIT_NR
);
583 EXPORT_SYMBOL(wake_up_atomic_t
);
585 __sched
int bit_wait(struct wait_bit_key
*word
)
587 if (signal_pending_state(current
->state
, current
))
592 EXPORT_SYMBOL(bit_wait
);
594 __sched
int bit_wait_io(struct wait_bit_key
*word
)
596 if (signal_pending_state(current
->state
, current
))
601 EXPORT_SYMBOL(bit_wait_io
);
603 __sched
int bit_wait_timeout(struct wait_bit_key
*word
)
605 unsigned long now
= READ_ONCE(jiffies
);
606 if (signal_pending_state(current
->state
, current
))
608 if (time_after_eq(now
, word
->timeout
))
610 schedule_timeout(word
->timeout
- now
);
613 EXPORT_SYMBOL_GPL(bit_wait_timeout
);
615 __sched
int bit_wait_io_timeout(struct wait_bit_key
*word
)
617 unsigned long now
= READ_ONCE(jiffies
);
618 if (signal_pending_state(current
->state
, current
))
620 if (time_after_eq(now
, word
->timeout
))
622 io_schedule_timeout(word
->timeout
- now
);
625 EXPORT_SYMBOL_GPL(bit_wait_io_timeout
);