PM / Domains: Remove pm_genpd_poweron() API
[linux/fpc-iii.git] / kernel / time / clockevents.c
bloba9b76a40319e86b5d545621d274c262bc69c7c70
1 /*
2 * linux/kernel/time/clockevents.c
4 * This file contains functions which manage clock event devices.
6 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
7 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
8 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10 * This code is licenced under the GPL version 2. For details see
11 * kernel-base/COPYING.
14 #include <linux/clockchips.h>
15 #include <linux/hrtimer.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/smp.h>
19 #include <linux/device.h>
21 #include "tick-internal.h"
23 /* The registered clock event devices */
24 static LIST_HEAD(clockevent_devices);
25 static LIST_HEAD(clockevents_released);
26 /* Protection for the above */
27 static DEFINE_RAW_SPINLOCK(clockevents_lock);
28 /* Protection for unbind operations */
29 static DEFINE_MUTEX(clockevents_mutex);
31 struct ce_unbind {
32 struct clock_event_device *ce;
33 int res;
36 static u64 cev_delta2ns(unsigned long latch, struct clock_event_device *evt,
37 bool ismax)
39 u64 clc = (u64) latch << evt->shift;
40 u64 rnd;
42 if (unlikely(!evt->mult)) {
43 evt->mult = 1;
44 WARN_ON(1);
46 rnd = (u64) evt->mult - 1;
49 * Upper bound sanity check. If the backwards conversion is
50 * not equal latch, we know that the above shift overflowed.
52 if ((clc >> evt->shift) != (u64)latch)
53 clc = ~0ULL;
56 * Scaled math oddities:
58 * For mult <= (1 << shift) we can safely add mult - 1 to
59 * prevent integer rounding loss. So the backwards conversion
60 * from nsec to device ticks will be correct.
62 * For mult > (1 << shift), i.e. device frequency is > 1GHz we
63 * need to be careful. Adding mult - 1 will result in a value
64 * which when converted back to device ticks can be larger
65 * than latch by up to (mult - 1) >> shift. For the min_delta
66 * calculation we still want to apply this in order to stay
67 * above the minimum device ticks limit. For the upper limit
68 * we would end up with a latch value larger than the upper
69 * limit of the device, so we omit the add to stay below the
70 * device upper boundary.
72 * Also omit the add if it would overflow the u64 boundary.
74 if ((~0ULL - clc > rnd) &&
75 (!ismax || evt->mult <= (1ULL << evt->shift)))
76 clc += rnd;
78 do_div(clc, evt->mult);
80 /* Deltas less than 1usec are pointless noise */
81 return clc > 1000 ? clc : 1000;
84 /**
85 * clockevents_delta2ns - Convert a latch value (device ticks) to nanoseconds
86 * @latch: value to convert
87 * @evt: pointer to clock event device descriptor
89 * Math helper, returns latch value converted to nanoseconds (bound checked)
91 u64 clockevent_delta2ns(unsigned long latch, struct clock_event_device *evt)
93 return cev_delta2ns(latch, evt, false);
95 EXPORT_SYMBOL_GPL(clockevent_delta2ns);
97 static int __clockevents_switch_state(struct clock_event_device *dev,
98 enum clock_event_state state)
100 if (dev->features & CLOCK_EVT_FEAT_DUMMY)
101 return 0;
103 /* Transition with new state-specific callbacks */
104 switch (state) {
105 case CLOCK_EVT_STATE_DETACHED:
106 /* The clockevent device is getting replaced. Shut it down. */
108 case CLOCK_EVT_STATE_SHUTDOWN:
109 if (dev->set_state_shutdown)
110 return dev->set_state_shutdown(dev);
111 return 0;
113 case CLOCK_EVT_STATE_PERIODIC:
114 /* Core internal bug */
115 if (!(dev->features & CLOCK_EVT_FEAT_PERIODIC))
116 return -ENOSYS;
117 if (dev->set_state_periodic)
118 return dev->set_state_periodic(dev);
119 return 0;
121 case CLOCK_EVT_STATE_ONESHOT:
122 /* Core internal bug */
123 if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT))
124 return -ENOSYS;
125 if (dev->set_state_oneshot)
126 return dev->set_state_oneshot(dev);
127 return 0;
129 case CLOCK_EVT_STATE_ONESHOT_STOPPED:
130 /* Core internal bug */
131 if (WARN_ONCE(!clockevent_state_oneshot(dev),
132 "Current state: %d\n",
133 clockevent_get_state(dev)))
134 return -EINVAL;
136 if (dev->set_state_oneshot_stopped)
137 return dev->set_state_oneshot_stopped(dev);
138 else
139 return -ENOSYS;
141 default:
142 return -ENOSYS;
147 * clockevents_switch_state - set the operating state of a clock event device
148 * @dev: device to modify
149 * @state: new state
151 * Must be called with interrupts disabled !
153 void clockevents_switch_state(struct clock_event_device *dev,
154 enum clock_event_state state)
156 if (clockevent_get_state(dev) != state) {
157 if (__clockevents_switch_state(dev, state))
158 return;
160 clockevent_set_state(dev, state);
163 * A nsec2cyc multiplicator of 0 is invalid and we'd crash
164 * on it, so fix it up and emit a warning:
166 if (clockevent_state_oneshot(dev)) {
167 if (unlikely(!dev->mult)) {
168 dev->mult = 1;
169 WARN_ON(1);
176 * clockevents_shutdown - shutdown the device and clear next_event
177 * @dev: device to shutdown
179 void clockevents_shutdown(struct clock_event_device *dev)
181 clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
182 dev->next_event.tv64 = KTIME_MAX;
186 * clockevents_tick_resume - Resume the tick device before using it again
187 * @dev: device to resume
189 int clockevents_tick_resume(struct clock_event_device *dev)
191 int ret = 0;
193 if (dev->tick_resume)
194 ret = dev->tick_resume(dev);
196 return ret;
199 #ifdef CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST
201 /* Limit min_delta to a jiffie */
202 #define MIN_DELTA_LIMIT (NSEC_PER_SEC / HZ)
205 * clockevents_increase_min_delta - raise minimum delta of a clock event device
206 * @dev: device to increase the minimum delta
208 * Returns 0 on success, -ETIME when the minimum delta reached the limit.
210 static int clockevents_increase_min_delta(struct clock_event_device *dev)
212 /* Nothing to do if we already reached the limit */
213 if (dev->min_delta_ns >= MIN_DELTA_LIMIT) {
214 printk_deferred(KERN_WARNING
215 "CE: Reprogramming failure. Giving up\n");
216 dev->next_event.tv64 = KTIME_MAX;
217 return -ETIME;
220 if (dev->min_delta_ns < 5000)
221 dev->min_delta_ns = 5000;
222 else
223 dev->min_delta_ns += dev->min_delta_ns >> 1;
225 if (dev->min_delta_ns > MIN_DELTA_LIMIT)
226 dev->min_delta_ns = MIN_DELTA_LIMIT;
228 printk_deferred(KERN_WARNING
229 "CE: %s increased min_delta_ns to %llu nsec\n",
230 dev->name ? dev->name : "?",
231 (unsigned long long) dev->min_delta_ns);
232 return 0;
236 * clockevents_program_min_delta - Set clock event device to the minimum delay.
237 * @dev: device to program
239 * Returns 0 on success, -ETIME when the retry loop failed.
241 static int clockevents_program_min_delta(struct clock_event_device *dev)
243 unsigned long long clc;
244 int64_t delta;
245 int i;
247 for (i = 0;;) {
248 delta = dev->min_delta_ns;
249 dev->next_event = ktime_add_ns(ktime_get(), delta);
251 if (clockevent_state_shutdown(dev))
252 return 0;
254 dev->retries++;
255 clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
256 if (dev->set_next_event((unsigned long) clc, dev) == 0)
257 return 0;
259 if (++i > 2) {
261 * We tried 3 times to program the device with the
262 * given min_delta_ns. Try to increase the minimum
263 * delta, if that fails as well get out of here.
265 if (clockevents_increase_min_delta(dev))
266 return -ETIME;
267 i = 0;
272 #else /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */
275 * clockevents_program_min_delta - Set clock event device to the minimum delay.
276 * @dev: device to program
278 * Returns 0 on success, -ETIME when the retry loop failed.
280 static int clockevents_program_min_delta(struct clock_event_device *dev)
282 unsigned long long clc;
283 int64_t delta;
285 delta = dev->min_delta_ns;
286 dev->next_event = ktime_add_ns(ktime_get(), delta);
288 if (clockevent_state_shutdown(dev))
289 return 0;
291 dev->retries++;
292 clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
293 return dev->set_next_event((unsigned long) clc, dev);
296 #endif /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */
299 * clockevents_program_event - Reprogram the clock event device.
300 * @dev: device to program
301 * @expires: absolute expiry time (monotonic clock)
302 * @force: program minimum delay if expires can not be set
304 * Returns 0 on success, -ETIME when the event is in the past.
306 int clockevents_program_event(struct clock_event_device *dev, ktime_t expires,
307 bool force)
309 unsigned long long clc;
310 int64_t delta;
311 int rc;
313 if (unlikely(expires.tv64 < 0)) {
314 WARN_ON_ONCE(1);
315 return -ETIME;
318 dev->next_event = expires;
320 if (clockevent_state_shutdown(dev))
321 return 0;
323 /* We must be in ONESHOT state here */
324 WARN_ONCE(!clockevent_state_oneshot(dev), "Current state: %d\n",
325 clockevent_get_state(dev));
327 /* Shortcut for clockevent devices that can deal with ktime. */
328 if (dev->features & CLOCK_EVT_FEAT_KTIME)
329 return dev->set_next_ktime(expires, dev);
331 delta = ktime_to_ns(ktime_sub(expires, ktime_get()));
332 if (delta <= 0)
333 return force ? clockevents_program_min_delta(dev) : -ETIME;
335 delta = min(delta, (int64_t) dev->max_delta_ns);
336 delta = max(delta, (int64_t) dev->min_delta_ns);
338 clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
339 rc = dev->set_next_event((unsigned long) clc, dev);
341 return (rc && force) ? clockevents_program_min_delta(dev) : rc;
345 * Called after a notify add to make devices available which were
346 * released from the notifier call.
348 static void clockevents_notify_released(void)
350 struct clock_event_device *dev;
352 while (!list_empty(&clockevents_released)) {
353 dev = list_entry(clockevents_released.next,
354 struct clock_event_device, list);
355 list_del(&dev->list);
356 list_add(&dev->list, &clockevent_devices);
357 tick_check_new_device(dev);
362 * Try to install a replacement clock event device
364 static int clockevents_replace(struct clock_event_device *ced)
366 struct clock_event_device *dev, *newdev = NULL;
368 list_for_each_entry(dev, &clockevent_devices, list) {
369 if (dev == ced || !clockevent_state_detached(dev))
370 continue;
372 if (!tick_check_replacement(newdev, dev))
373 continue;
375 if (!try_module_get(dev->owner))
376 continue;
378 if (newdev)
379 module_put(newdev->owner);
380 newdev = dev;
382 if (newdev) {
383 tick_install_replacement(newdev);
384 list_del_init(&ced->list);
386 return newdev ? 0 : -EBUSY;
390 * Called with clockevents_mutex and clockevents_lock held
392 static int __clockevents_try_unbind(struct clock_event_device *ced, int cpu)
394 /* Fast track. Device is unused */
395 if (clockevent_state_detached(ced)) {
396 list_del_init(&ced->list);
397 return 0;
400 return ced == per_cpu(tick_cpu_device, cpu).evtdev ? -EAGAIN : -EBUSY;
404 * SMP function call to unbind a device
406 static void __clockevents_unbind(void *arg)
408 struct ce_unbind *cu = arg;
409 int res;
411 raw_spin_lock(&clockevents_lock);
412 res = __clockevents_try_unbind(cu->ce, smp_processor_id());
413 if (res == -EAGAIN)
414 res = clockevents_replace(cu->ce);
415 cu->res = res;
416 raw_spin_unlock(&clockevents_lock);
420 * Issues smp function call to unbind a per cpu device. Called with
421 * clockevents_mutex held.
423 static int clockevents_unbind(struct clock_event_device *ced, int cpu)
425 struct ce_unbind cu = { .ce = ced, .res = -ENODEV };
427 smp_call_function_single(cpu, __clockevents_unbind, &cu, 1);
428 return cu.res;
432 * Unbind a clockevents device.
434 int clockevents_unbind_device(struct clock_event_device *ced, int cpu)
436 int ret;
438 mutex_lock(&clockevents_mutex);
439 ret = clockevents_unbind(ced, cpu);
440 mutex_unlock(&clockevents_mutex);
441 return ret;
443 EXPORT_SYMBOL_GPL(clockevents_unbind_device);
446 * clockevents_register_device - register a clock event device
447 * @dev: device to register
449 void clockevents_register_device(struct clock_event_device *dev)
451 unsigned long flags;
453 /* Initialize state to DETACHED */
454 clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED);
456 if (!dev->cpumask) {
457 WARN_ON(num_possible_cpus() > 1);
458 dev->cpumask = cpumask_of(smp_processor_id());
461 raw_spin_lock_irqsave(&clockevents_lock, flags);
463 list_add(&dev->list, &clockevent_devices);
464 tick_check_new_device(dev);
465 clockevents_notify_released();
467 raw_spin_unlock_irqrestore(&clockevents_lock, flags);
469 EXPORT_SYMBOL_GPL(clockevents_register_device);
471 void clockevents_config(struct clock_event_device *dev, u32 freq)
473 u64 sec;
475 if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT))
476 return;
479 * Calculate the maximum number of seconds we can sleep. Limit
480 * to 10 minutes for hardware which can program more than
481 * 32bit ticks so we still get reasonable conversion values.
483 sec = dev->max_delta_ticks;
484 do_div(sec, freq);
485 if (!sec)
486 sec = 1;
487 else if (sec > 600 && dev->max_delta_ticks > UINT_MAX)
488 sec = 600;
490 clockevents_calc_mult_shift(dev, freq, sec);
491 dev->min_delta_ns = cev_delta2ns(dev->min_delta_ticks, dev, false);
492 dev->max_delta_ns = cev_delta2ns(dev->max_delta_ticks, dev, true);
496 * clockevents_config_and_register - Configure and register a clock event device
497 * @dev: device to register
498 * @freq: The clock frequency
499 * @min_delta: The minimum clock ticks to program in oneshot mode
500 * @max_delta: The maximum clock ticks to program in oneshot mode
502 * min/max_delta can be 0 for devices which do not support oneshot mode.
504 void clockevents_config_and_register(struct clock_event_device *dev,
505 u32 freq, unsigned long min_delta,
506 unsigned long max_delta)
508 dev->min_delta_ticks = min_delta;
509 dev->max_delta_ticks = max_delta;
510 clockevents_config(dev, freq);
511 clockevents_register_device(dev);
513 EXPORT_SYMBOL_GPL(clockevents_config_and_register);
515 int __clockevents_update_freq(struct clock_event_device *dev, u32 freq)
517 clockevents_config(dev, freq);
519 if (clockevent_state_oneshot(dev))
520 return clockevents_program_event(dev, dev->next_event, false);
522 if (clockevent_state_periodic(dev))
523 return __clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC);
525 return 0;
529 * clockevents_update_freq - Update frequency and reprogram a clock event device.
530 * @dev: device to modify
531 * @freq: new device frequency
533 * Reconfigure and reprogram a clock event device in oneshot
534 * mode. Must be called on the cpu for which the device delivers per
535 * cpu timer events. If called for the broadcast device the core takes
536 * care of serialization.
538 * Returns 0 on success, -ETIME when the event is in the past.
540 int clockevents_update_freq(struct clock_event_device *dev, u32 freq)
542 unsigned long flags;
543 int ret;
545 local_irq_save(flags);
546 ret = tick_broadcast_update_freq(dev, freq);
547 if (ret == -ENODEV)
548 ret = __clockevents_update_freq(dev, freq);
549 local_irq_restore(flags);
550 return ret;
554 * Noop handler when we shut down an event device
556 void clockevents_handle_noop(struct clock_event_device *dev)
561 * clockevents_exchange_device - release and request clock devices
562 * @old: device to release (can be NULL)
563 * @new: device to request (can be NULL)
565 * Called from various tick functions with clockevents_lock held and
566 * interrupts disabled.
568 void clockevents_exchange_device(struct clock_event_device *old,
569 struct clock_event_device *new)
572 * Caller releases a clock event device. We queue it into the
573 * released list and do a notify add later.
575 if (old) {
576 module_put(old->owner);
577 clockevents_switch_state(old, CLOCK_EVT_STATE_DETACHED);
578 list_del(&old->list);
579 list_add(&old->list, &clockevents_released);
582 if (new) {
583 BUG_ON(!clockevent_state_detached(new));
584 clockevents_shutdown(new);
589 * clockevents_suspend - suspend clock devices
591 void clockevents_suspend(void)
593 struct clock_event_device *dev;
595 list_for_each_entry_reverse(dev, &clockevent_devices, list)
596 if (dev->suspend && !clockevent_state_detached(dev))
597 dev->suspend(dev);
601 * clockevents_resume - resume clock devices
603 void clockevents_resume(void)
605 struct clock_event_device *dev;
607 list_for_each_entry(dev, &clockevent_devices, list)
608 if (dev->resume && !clockevent_state_detached(dev))
609 dev->resume(dev);
612 #ifdef CONFIG_HOTPLUG_CPU
614 * tick_cleanup_dead_cpu - Cleanup the tick and clockevents of a dead cpu
616 void tick_cleanup_dead_cpu(int cpu)
618 struct clock_event_device *dev, *tmp;
619 unsigned long flags;
621 raw_spin_lock_irqsave(&clockevents_lock, flags);
623 tick_shutdown_broadcast_oneshot(cpu);
624 tick_shutdown_broadcast(cpu);
625 tick_shutdown(cpu);
627 * Unregister the clock event devices which were
628 * released from the users in the notify chain.
630 list_for_each_entry_safe(dev, tmp, &clockevents_released, list)
631 list_del(&dev->list);
633 * Now check whether the CPU has left unused per cpu devices
635 list_for_each_entry_safe(dev, tmp, &clockevent_devices, list) {
636 if (cpumask_test_cpu(cpu, dev->cpumask) &&
637 cpumask_weight(dev->cpumask) == 1 &&
638 !tick_is_broadcast_device(dev)) {
639 BUG_ON(!clockevent_state_detached(dev));
640 list_del(&dev->list);
643 raw_spin_unlock_irqrestore(&clockevents_lock, flags);
645 #endif
647 #ifdef CONFIG_SYSFS
648 struct bus_type clockevents_subsys = {
649 .name = "clockevents",
650 .dev_name = "clockevent",
653 static DEFINE_PER_CPU(struct device, tick_percpu_dev);
654 static struct tick_device *tick_get_tick_dev(struct device *dev);
656 static ssize_t sysfs_show_current_tick_dev(struct device *dev,
657 struct device_attribute *attr,
658 char *buf)
660 struct tick_device *td;
661 ssize_t count = 0;
663 raw_spin_lock_irq(&clockevents_lock);
664 td = tick_get_tick_dev(dev);
665 if (td && td->evtdev)
666 count = snprintf(buf, PAGE_SIZE, "%s\n", td->evtdev->name);
667 raw_spin_unlock_irq(&clockevents_lock);
668 return count;
670 static DEVICE_ATTR(current_device, 0444, sysfs_show_current_tick_dev, NULL);
672 /* We don't support the abomination of removable broadcast devices */
673 static ssize_t sysfs_unbind_tick_dev(struct device *dev,
674 struct device_attribute *attr,
675 const char *buf, size_t count)
677 char name[CS_NAME_LEN];
678 ssize_t ret = sysfs_get_uname(buf, name, count);
679 struct clock_event_device *ce;
681 if (ret < 0)
682 return ret;
684 ret = -ENODEV;
685 mutex_lock(&clockevents_mutex);
686 raw_spin_lock_irq(&clockevents_lock);
687 list_for_each_entry(ce, &clockevent_devices, list) {
688 if (!strcmp(ce->name, name)) {
689 ret = __clockevents_try_unbind(ce, dev->id);
690 break;
693 raw_spin_unlock_irq(&clockevents_lock);
695 * We hold clockevents_mutex, so ce can't go away
697 if (ret == -EAGAIN)
698 ret = clockevents_unbind(ce, dev->id);
699 mutex_unlock(&clockevents_mutex);
700 return ret ? ret : count;
702 static DEVICE_ATTR(unbind_device, 0200, NULL, sysfs_unbind_tick_dev);
704 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
705 static struct device tick_bc_dev = {
706 .init_name = "broadcast",
707 .id = 0,
708 .bus = &clockevents_subsys,
711 static struct tick_device *tick_get_tick_dev(struct device *dev)
713 return dev == &tick_bc_dev ? tick_get_broadcast_device() :
714 &per_cpu(tick_cpu_device, dev->id);
717 static __init int tick_broadcast_init_sysfs(void)
719 int err = device_register(&tick_bc_dev);
721 if (!err)
722 err = device_create_file(&tick_bc_dev, &dev_attr_current_device);
723 return err;
725 #else
726 static struct tick_device *tick_get_tick_dev(struct device *dev)
728 return &per_cpu(tick_cpu_device, dev->id);
730 static inline int tick_broadcast_init_sysfs(void) { return 0; }
731 #endif
733 static int __init tick_init_sysfs(void)
735 int cpu;
737 for_each_possible_cpu(cpu) {
738 struct device *dev = &per_cpu(tick_percpu_dev, cpu);
739 int err;
741 dev->id = cpu;
742 dev->bus = &clockevents_subsys;
743 err = device_register(dev);
744 if (!err)
745 err = device_create_file(dev, &dev_attr_current_device);
746 if (!err)
747 err = device_create_file(dev, &dev_attr_unbind_device);
748 if (err)
749 return err;
751 return tick_broadcast_init_sysfs();
754 static int __init clockevents_init_sysfs(void)
756 int err = subsys_system_register(&clockevents_subsys, NULL);
758 if (!err)
759 err = tick_init_sysfs();
760 return err;
762 device_initcall(clockevents_init_sysfs);
763 #endif /* SYSFS */