Linux 3.0.78
[linux/fpc-iii.git] / kernel / workqueue.c
blobdc8438d2aa65f8d32cf31091247466230f76c338
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
4 * Copyright (C) 2002 Ingo Molnar
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
12 * Made to use alloc_percpu by Christoph Lameter.
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
23 * Please read Documentation/workqueue.txt for details.
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
45 #include "workqueue_sched.h"
47 enum {
48 /* global_cwq flags */
49 GCWQ_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
50 GCWQ_MANAGING_WORKERS = 1 << 1, /* managing workers */
51 GCWQ_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
52 GCWQ_FREEZING = 1 << 3, /* freeze in progress */
53 GCWQ_HIGHPRI_PENDING = 1 << 4, /* highpri works on queue */
55 /* worker flags */
56 WORKER_STARTED = 1 << 0, /* started */
57 WORKER_DIE = 1 << 1, /* die die die */
58 WORKER_IDLE = 1 << 2, /* is idle */
59 WORKER_PREP = 1 << 3, /* preparing to run works */
60 WORKER_ROGUE = 1 << 4, /* not bound to any cpu */
61 WORKER_REBIND = 1 << 5, /* mom is home, come back */
62 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
63 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
65 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_ROGUE | WORKER_REBIND |
66 WORKER_CPU_INTENSIVE | WORKER_UNBOUND,
68 /* gcwq->trustee_state */
69 TRUSTEE_START = 0, /* start */
70 TRUSTEE_IN_CHARGE = 1, /* trustee in charge of gcwq */
71 TRUSTEE_BUTCHER = 2, /* butcher workers */
72 TRUSTEE_RELEASE = 3, /* release workers */
73 TRUSTEE_DONE = 4, /* trustee is done */
75 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
76 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER,
77 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1,
79 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
80 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
82 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
83 /* call for help after 10ms
84 (min two ticks) */
85 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
86 CREATE_COOLDOWN = HZ, /* time to breath after fail */
87 TRUSTEE_COOLDOWN = HZ / 10, /* for trustee draining */
90 * Rescue workers are used only on emergencies and shared by
91 * all cpus. Give -20.
93 RESCUER_NICE_LEVEL = -20,
97 * Structure fields follow one of the following exclusion rules.
99 * I: Modifiable by initialization/destruction paths and read-only for
100 * everyone else.
102 * P: Preemption protected. Disabling preemption is enough and should
103 * only be modified and accessed from the local cpu.
105 * L: gcwq->lock protected. Access with gcwq->lock held.
107 * X: During normal operation, modification requires gcwq->lock and
108 * should be done only from local cpu. Either disabling preemption
109 * on local cpu or grabbing gcwq->lock is enough for read access.
110 * If GCWQ_DISASSOCIATED is set, it's identical to L.
112 * F: wq->flush_mutex protected.
114 * W: workqueue_lock protected.
117 struct global_cwq;
120 * The poor guys doing the actual heavy lifting. All on-duty workers
121 * are either serving the manager role, on idle list or on busy hash.
123 struct worker {
124 /* on idle list while idle, on busy hash table while busy */
125 union {
126 struct list_head entry; /* L: while idle */
127 struct hlist_node hentry; /* L: while busy */
130 struct work_struct *current_work; /* L: work being processed */
131 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
132 struct list_head scheduled; /* L: scheduled works */
133 struct task_struct *task; /* I: worker task */
134 struct global_cwq *gcwq; /* I: the associated gcwq */
135 /* 64 bytes boundary on 64bit, 32 on 32bit */
136 unsigned long last_active; /* L: last active timestamp */
137 unsigned int flags; /* X: flags */
138 int id; /* I: worker id */
139 struct work_struct rebind_work; /* L: rebind worker to cpu */
143 * Global per-cpu workqueue. There's one and only one for each cpu
144 * and all works are queued and processed here regardless of their
145 * target workqueues.
147 struct global_cwq {
148 spinlock_t lock; /* the gcwq lock */
149 struct list_head worklist; /* L: list of pending works */
150 unsigned int cpu; /* I: the associated cpu */
151 unsigned int flags; /* L: GCWQ_* flags */
153 int nr_workers; /* L: total number of workers */
154 int nr_idle; /* L: currently idle ones */
156 /* workers are chained either in the idle_list or busy_hash */
157 struct list_head idle_list; /* X: list of idle workers */
158 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE];
159 /* L: hash of busy workers */
161 struct timer_list idle_timer; /* L: worker idle timeout */
162 struct timer_list mayday_timer; /* L: SOS timer for dworkers */
164 struct ida worker_ida; /* L: for worker IDs */
166 struct task_struct *trustee; /* L: for gcwq shutdown */
167 unsigned int trustee_state; /* L: trustee state */
168 wait_queue_head_t trustee_wait; /* trustee wait */
169 struct worker *first_idle; /* L: first idle worker */
170 } ____cacheline_aligned_in_smp;
173 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
174 * work_struct->data are used for flags and thus cwqs need to be
175 * aligned at two's power of the number of flag bits.
177 struct cpu_workqueue_struct {
178 struct global_cwq *gcwq; /* I: the associated gcwq */
179 struct workqueue_struct *wq; /* I: the owning workqueue */
180 int work_color; /* L: current color */
181 int flush_color; /* L: flushing color */
182 int nr_in_flight[WORK_NR_COLORS];
183 /* L: nr of in_flight works */
184 int nr_active; /* L: nr of active works */
185 int max_active; /* L: max active works */
186 struct list_head delayed_works; /* L: delayed works */
190 * Structure used to wait for workqueue flush.
192 struct wq_flusher {
193 struct list_head list; /* F: list of flushers */
194 int flush_color; /* F: flush color waiting for */
195 struct completion done; /* flush completion */
199 * All cpumasks are assumed to be always set on UP and thus can't be
200 * used to determine whether there's something to be done.
202 #ifdef CONFIG_SMP
203 typedef cpumask_var_t mayday_mask_t;
204 #define mayday_test_and_set_cpu(cpu, mask) \
205 cpumask_test_and_set_cpu((cpu), (mask))
206 #define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
207 #define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
208 #define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
209 #define free_mayday_mask(mask) free_cpumask_var((mask))
210 #else
211 typedef unsigned long mayday_mask_t;
212 #define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
213 #define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
214 #define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
215 #define alloc_mayday_mask(maskp, gfp) true
216 #define free_mayday_mask(mask) do { } while (0)
217 #endif
220 * The externally visible workqueue abstraction is an array of
221 * per-CPU workqueues:
223 struct workqueue_struct {
224 unsigned int flags; /* I: WQ_* flags */
225 union {
226 struct cpu_workqueue_struct __percpu *pcpu;
227 struct cpu_workqueue_struct *single;
228 unsigned long v;
229 } cpu_wq; /* I: cwq's */
230 struct list_head list; /* W: list of all workqueues */
232 struct mutex flush_mutex; /* protects wq flushing */
233 int work_color; /* F: current work color */
234 int flush_color; /* F: current flush color */
235 atomic_t nr_cwqs_to_flush; /* flush in progress */
236 struct wq_flusher *first_flusher; /* F: first flusher */
237 struct list_head flusher_queue; /* F: flush waiters */
238 struct list_head flusher_overflow; /* F: flush overflow list */
240 mayday_mask_t mayday_mask; /* cpus requesting rescue */
241 struct worker *rescuer; /* I: rescue worker */
243 int saved_max_active; /* W: saved cwq max_active */
244 const char *name; /* I: workqueue name */
245 #ifdef CONFIG_LOCKDEP
246 struct lockdep_map lockdep_map;
247 #endif
250 struct workqueue_struct *system_wq __read_mostly;
251 struct workqueue_struct *system_long_wq __read_mostly;
252 struct workqueue_struct *system_nrt_wq __read_mostly;
253 struct workqueue_struct *system_unbound_wq __read_mostly;
254 struct workqueue_struct *system_freezable_wq __read_mostly;
255 struct workqueue_struct *system_nrt_freezable_wq __read_mostly;
256 EXPORT_SYMBOL_GPL(system_wq);
257 EXPORT_SYMBOL_GPL(system_long_wq);
258 EXPORT_SYMBOL_GPL(system_nrt_wq);
259 EXPORT_SYMBOL_GPL(system_unbound_wq);
260 EXPORT_SYMBOL_GPL(system_freezable_wq);
261 EXPORT_SYMBOL_GPL(system_nrt_freezable_wq);
263 #define CREATE_TRACE_POINTS
264 #include <trace/events/workqueue.h>
266 #define for_each_busy_worker(worker, i, pos, gcwq) \
267 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \
268 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
270 static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
271 unsigned int sw)
273 if (cpu < nr_cpu_ids) {
274 if (sw & 1) {
275 cpu = cpumask_next(cpu, mask);
276 if (cpu < nr_cpu_ids)
277 return cpu;
279 if (sw & 2)
280 return WORK_CPU_UNBOUND;
282 return WORK_CPU_NONE;
285 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
286 struct workqueue_struct *wq)
288 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
292 * CPU iterators
294 * An extra gcwq is defined for an invalid cpu number
295 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
296 * specific CPU. The following iterators are similar to
297 * for_each_*_cpu() iterators but also considers the unbound gcwq.
299 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
300 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
301 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
302 * WORK_CPU_UNBOUND for unbound workqueues
304 #define for_each_gcwq_cpu(cpu) \
305 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
306 (cpu) < WORK_CPU_NONE; \
307 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
309 #define for_each_online_gcwq_cpu(cpu) \
310 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
311 (cpu) < WORK_CPU_NONE; \
312 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
314 #define for_each_cwq_cpu(cpu, wq) \
315 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
316 (cpu) < WORK_CPU_NONE; \
317 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
319 #ifdef CONFIG_DEBUG_OBJECTS_WORK
321 static struct debug_obj_descr work_debug_descr;
323 static void *work_debug_hint(void *addr)
325 return ((struct work_struct *) addr)->func;
329 * fixup_init is called when:
330 * - an active object is initialized
332 static int work_fixup_init(void *addr, enum debug_obj_state state)
334 struct work_struct *work = addr;
336 switch (state) {
337 case ODEBUG_STATE_ACTIVE:
338 cancel_work_sync(work);
339 debug_object_init(work, &work_debug_descr);
340 return 1;
341 default:
342 return 0;
347 * fixup_activate is called when:
348 * - an active object is activated
349 * - an unknown object is activated (might be a statically initialized object)
351 static int work_fixup_activate(void *addr, enum debug_obj_state state)
353 struct work_struct *work = addr;
355 switch (state) {
357 case ODEBUG_STATE_NOTAVAILABLE:
359 * This is not really a fixup. The work struct was
360 * statically initialized. We just make sure that it
361 * is tracked in the object tracker.
363 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
364 debug_object_init(work, &work_debug_descr);
365 debug_object_activate(work, &work_debug_descr);
366 return 0;
368 WARN_ON_ONCE(1);
369 return 0;
371 case ODEBUG_STATE_ACTIVE:
372 WARN_ON(1);
374 default:
375 return 0;
380 * fixup_free is called when:
381 * - an active object is freed
383 static int work_fixup_free(void *addr, enum debug_obj_state state)
385 struct work_struct *work = addr;
387 switch (state) {
388 case ODEBUG_STATE_ACTIVE:
389 cancel_work_sync(work);
390 debug_object_free(work, &work_debug_descr);
391 return 1;
392 default:
393 return 0;
397 static struct debug_obj_descr work_debug_descr = {
398 .name = "work_struct",
399 .debug_hint = work_debug_hint,
400 .fixup_init = work_fixup_init,
401 .fixup_activate = work_fixup_activate,
402 .fixup_free = work_fixup_free,
405 static inline void debug_work_activate(struct work_struct *work)
407 debug_object_activate(work, &work_debug_descr);
410 static inline void debug_work_deactivate(struct work_struct *work)
412 debug_object_deactivate(work, &work_debug_descr);
415 void __init_work(struct work_struct *work, int onstack)
417 if (onstack)
418 debug_object_init_on_stack(work, &work_debug_descr);
419 else
420 debug_object_init(work, &work_debug_descr);
422 EXPORT_SYMBOL_GPL(__init_work);
424 void destroy_work_on_stack(struct work_struct *work)
426 debug_object_free(work, &work_debug_descr);
428 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
430 #else
431 static inline void debug_work_activate(struct work_struct *work) { }
432 static inline void debug_work_deactivate(struct work_struct *work) { }
433 #endif
435 /* Serializes the accesses to the list of workqueues. */
436 static DEFINE_SPINLOCK(workqueue_lock);
437 static LIST_HEAD(workqueues);
438 static bool workqueue_freezing; /* W: have wqs started freezing? */
441 * The almighty global cpu workqueues. nr_running is the only field
442 * which is expected to be used frequently by other cpus via
443 * try_to_wake_up(). Put it in a separate cacheline.
445 static DEFINE_PER_CPU(struct global_cwq, global_cwq);
446 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, gcwq_nr_running);
449 * Global cpu workqueue and nr_running counter for unbound gcwq. The
450 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
451 * workers have WORKER_UNBOUND set.
453 static struct global_cwq unbound_global_cwq;
454 static atomic_t unbound_gcwq_nr_running = ATOMIC_INIT(0); /* always 0 */
456 static int worker_thread(void *__worker);
458 static struct global_cwq *get_gcwq(unsigned int cpu)
460 if (cpu != WORK_CPU_UNBOUND)
461 return &per_cpu(global_cwq, cpu);
462 else
463 return &unbound_global_cwq;
466 static atomic_t *get_gcwq_nr_running(unsigned int cpu)
468 if (cpu != WORK_CPU_UNBOUND)
469 return &per_cpu(gcwq_nr_running, cpu);
470 else
471 return &unbound_gcwq_nr_running;
474 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
475 struct workqueue_struct *wq)
477 if (!(wq->flags & WQ_UNBOUND)) {
478 if (likely(cpu < nr_cpu_ids)) {
479 #ifdef CONFIG_SMP
480 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
481 #else
482 return wq->cpu_wq.single;
483 #endif
485 } else if (likely(cpu == WORK_CPU_UNBOUND))
486 return wq->cpu_wq.single;
487 return NULL;
490 static unsigned int work_color_to_flags(int color)
492 return color << WORK_STRUCT_COLOR_SHIFT;
495 static int get_work_color(struct work_struct *work)
497 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
498 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
501 static int work_next_color(int color)
503 return (color + 1) % WORK_NR_COLORS;
507 * A work's data points to the cwq with WORK_STRUCT_CWQ set while the
508 * work is on queue. Once execution starts, WORK_STRUCT_CWQ is
509 * cleared and the work data contains the cpu number it was last on.
511 * set_work_{cwq|cpu}() and clear_work_data() can be used to set the
512 * cwq, cpu or clear work->data. These functions should only be
513 * called while the work is owned - ie. while the PENDING bit is set.
515 * get_work_[g]cwq() can be used to obtain the gcwq or cwq
516 * corresponding to a work. gcwq is available once the work has been
517 * queued anywhere after initialization. cwq is available only from
518 * queueing until execution starts.
520 static inline void set_work_data(struct work_struct *work, unsigned long data,
521 unsigned long flags)
523 BUG_ON(!work_pending(work));
524 atomic_long_set(&work->data, data | flags | work_static(work));
527 static void set_work_cwq(struct work_struct *work,
528 struct cpu_workqueue_struct *cwq,
529 unsigned long extra_flags)
531 set_work_data(work, (unsigned long)cwq,
532 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
535 static void set_work_cpu(struct work_struct *work, unsigned int cpu)
537 set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING);
540 static void clear_work_data(struct work_struct *work)
542 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
545 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
547 unsigned long data = atomic_long_read(&work->data);
549 if (data & WORK_STRUCT_CWQ)
550 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
551 else
552 return NULL;
555 static struct global_cwq *get_work_gcwq(struct work_struct *work)
557 unsigned long data = atomic_long_read(&work->data);
558 unsigned int cpu;
560 if (data & WORK_STRUCT_CWQ)
561 return ((struct cpu_workqueue_struct *)
562 (data & WORK_STRUCT_WQ_DATA_MASK))->gcwq;
564 cpu = data >> WORK_STRUCT_FLAG_BITS;
565 if (cpu == WORK_CPU_NONE)
566 return NULL;
568 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
569 return get_gcwq(cpu);
573 * Policy functions. These define the policies on how the global
574 * worker pool is managed. Unless noted otherwise, these functions
575 * assume that they're being called with gcwq->lock held.
578 static bool __need_more_worker(struct global_cwq *gcwq)
580 return !atomic_read(get_gcwq_nr_running(gcwq->cpu)) ||
581 gcwq->flags & GCWQ_HIGHPRI_PENDING;
585 * Need to wake up a worker? Called from anything but currently
586 * running workers.
588 static bool need_more_worker(struct global_cwq *gcwq)
590 return !list_empty(&gcwq->worklist) && __need_more_worker(gcwq);
593 /* Can I start working? Called from busy but !running workers. */
594 static bool may_start_working(struct global_cwq *gcwq)
596 return gcwq->nr_idle;
599 /* Do I need to keep working? Called from currently running workers. */
600 static bool keep_working(struct global_cwq *gcwq)
602 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
604 return !list_empty(&gcwq->worklist) &&
605 (atomic_read(nr_running) <= 1 ||
606 gcwq->flags & GCWQ_HIGHPRI_PENDING);
609 /* Do we need a new worker? Called from manager. */
610 static bool need_to_create_worker(struct global_cwq *gcwq)
612 return need_more_worker(gcwq) && !may_start_working(gcwq);
615 /* Do I need to be the manager? */
616 static bool need_to_manage_workers(struct global_cwq *gcwq)
618 return need_to_create_worker(gcwq) || gcwq->flags & GCWQ_MANAGE_WORKERS;
621 /* Do we have too many workers and should some go away? */
622 static bool too_many_workers(struct global_cwq *gcwq)
624 bool managing = gcwq->flags & GCWQ_MANAGING_WORKERS;
625 int nr_idle = gcwq->nr_idle + managing; /* manager is considered idle */
626 int nr_busy = gcwq->nr_workers - nr_idle;
628 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
632 * Wake up functions.
635 /* Return the first worker. Safe with preemption disabled */
636 static struct worker *first_worker(struct global_cwq *gcwq)
638 if (unlikely(list_empty(&gcwq->idle_list)))
639 return NULL;
641 return list_first_entry(&gcwq->idle_list, struct worker, entry);
645 * wake_up_worker - wake up an idle worker
646 * @gcwq: gcwq to wake worker for
648 * Wake up the first idle worker of @gcwq.
650 * CONTEXT:
651 * spin_lock_irq(gcwq->lock).
653 static void wake_up_worker(struct global_cwq *gcwq)
655 struct worker *worker = first_worker(gcwq);
657 if (likely(worker))
658 wake_up_process(worker->task);
662 * wq_worker_waking_up - a worker is waking up
663 * @task: task waking up
664 * @cpu: CPU @task is waking up to
666 * This function is called during try_to_wake_up() when a worker is
667 * being awoken.
669 * CONTEXT:
670 * spin_lock_irq(rq->lock)
672 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
674 struct worker *worker = kthread_data(task);
676 if (!(worker->flags & WORKER_NOT_RUNNING))
677 atomic_inc(get_gcwq_nr_running(cpu));
681 * wq_worker_sleeping - a worker is going to sleep
682 * @task: task going to sleep
683 * @cpu: CPU in question, must be the current CPU number
685 * This function is called during schedule() when a busy worker is
686 * going to sleep. Worker on the same cpu can be woken up by
687 * returning pointer to its task.
689 * CONTEXT:
690 * spin_lock_irq(rq->lock)
692 * RETURNS:
693 * Worker task on @cpu to wake up, %NULL if none.
695 struct task_struct *wq_worker_sleeping(struct task_struct *task,
696 unsigned int cpu)
698 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
699 struct global_cwq *gcwq = get_gcwq(cpu);
700 atomic_t *nr_running = get_gcwq_nr_running(cpu);
702 if (worker->flags & WORKER_NOT_RUNNING)
703 return NULL;
705 /* this can only happen on the local cpu */
706 BUG_ON(cpu != raw_smp_processor_id());
709 * The counterpart of the following dec_and_test, implied mb,
710 * worklist not empty test sequence is in insert_work().
711 * Please read comment there.
713 * NOT_RUNNING is clear. This means that trustee is not in
714 * charge and we're running on the local cpu w/ rq lock held
715 * and preemption disabled, which in turn means that none else
716 * could be manipulating idle_list, so dereferencing idle_list
717 * without gcwq lock is safe.
719 if (atomic_dec_and_test(nr_running) && !list_empty(&gcwq->worklist))
720 to_wakeup = first_worker(gcwq);
721 return to_wakeup ? to_wakeup->task : NULL;
725 * worker_set_flags - set worker flags and adjust nr_running accordingly
726 * @worker: self
727 * @flags: flags to set
728 * @wakeup: wakeup an idle worker if necessary
730 * Set @flags in @worker->flags and adjust nr_running accordingly. If
731 * nr_running becomes zero and @wakeup is %true, an idle worker is
732 * woken up.
734 * CONTEXT:
735 * spin_lock_irq(gcwq->lock)
737 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
738 bool wakeup)
740 struct global_cwq *gcwq = worker->gcwq;
742 WARN_ON_ONCE(worker->task != current);
745 * If transitioning into NOT_RUNNING, adjust nr_running and
746 * wake up an idle worker as necessary if requested by
747 * @wakeup.
749 if ((flags & WORKER_NOT_RUNNING) &&
750 !(worker->flags & WORKER_NOT_RUNNING)) {
751 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
753 if (wakeup) {
754 if (atomic_dec_and_test(nr_running) &&
755 !list_empty(&gcwq->worklist))
756 wake_up_worker(gcwq);
757 } else
758 atomic_dec(nr_running);
761 worker->flags |= flags;
765 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
766 * @worker: self
767 * @flags: flags to clear
769 * Clear @flags in @worker->flags and adjust nr_running accordingly.
771 * CONTEXT:
772 * spin_lock_irq(gcwq->lock)
774 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
776 struct global_cwq *gcwq = worker->gcwq;
777 unsigned int oflags = worker->flags;
779 WARN_ON_ONCE(worker->task != current);
781 worker->flags &= ~flags;
784 * If transitioning out of NOT_RUNNING, increment nr_running. Note
785 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
786 * of multiple flags, not a single flag.
788 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
789 if (!(worker->flags & WORKER_NOT_RUNNING))
790 atomic_inc(get_gcwq_nr_running(gcwq->cpu));
794 * busy_worker_head - return the busy hash head for a work
795 * @gcwq: gcwq of interest
796 * @work: work to be hashed
798 * Return hash head of @gcwq for @work.
800 * CONTEXT:
801 * spin_lock_irq(gcwq->lock).
803 * RETURNS:
804 * Pointer to the hash head.
806 static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
807 struct work_struct *work)
809 const int base_shift = ilog2(sizeof(struct work_struct));
810 unsigned long v = (unsigned long)work;
812 /* simple shift and fold hash, do we need something better? */
813 v >>= base_shift;
814 v += v >> BUSY_WORKER_HASH_ORDER;
815 v &= BUSY_WORKER_HASH_MASK;
817 return &gcwq->busy_hash[v];
821 * __find_worker_executing_work - find worker which is executing a work
822 * @gcwq: gcwq of interest
823 * @bwh: hash head as returned by busy_worker_head()
824 * @work: work to find worker for
826 * Find a worker which is executing @work on @gcwq. @bwh should be
827 * the hash head obtained by calling busy_worker_head() with the same
828 * work.
830 * CONTEXT:
831 * spin_lock_irq(gcwq->lock).
833 * RETURNS:
834 * Pointer to worker which is executing @work if found, NULL
835 * otherwise.
837 static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
838 struct hlist_head *bwh,
839 struct work_struct *work)
841 struct worker *worker;
842 struct hlist_node *tmp;
844 hlist_for_each_entry(worker, tmp, bwh, hentry)
845 if (worker->current_work == work)
846 return worker;
847 return NULL;
851 * find_worker_executing_work - find worker which is executing a work
852 * @gcwq: gcwq of interest
853 * @work: work to find worker for
855 * Find a worker which is executing @work on @gcwq. This function is
856 * identical to __find_worker_executing_work() except that this
857 * function calculates @bwh itself.
859 * CONTEXT:
860 * spin_lock_irq(gcwq->lock).
862 * RETURNS:
863 * Pointer to worker which is executing @work if found, NULL
864 * otherwise.
866 static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
867 struct work_struct *work)
869 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
870 work);
874 * gcwq_determine_ins_pos - find insertion position
875 * @gcwq: gcwq of interest
876 * @cwq: cwq a work is being queued for
878 * A work for @cwq is about to be queued on @gcwq, determine insertion
879 * position for the work. If @cwq is for HIGHPRI wq, the work is
880 * queued at the head of the queue but in FIFO order with respect to
881 * other HIGHPRI works; otherwise, at the end of the queue. This
882 * function also sets GCWQ_HIGHPRI_PENDING flag to hint @gcwq that
883 * there are HIGHPRI works pending.
885 * CONTEXT:
886 * spin_lock_irq(gcwq->lock).
888 * RETURNS:
889 * Pointer to inserstion position.
891 static inline struct list_head *gcwq_determine_ins_pos(struct global_cwq *gcwq,
892 struct cpu_workqueue_struct *cwq)
894 struct work_struct *twork;
896 if (likely(!(cwq->wq->flags & WQ_HIGHPRI)))
897 return &gcwq->worklist;
899 list_for_each_entry(twork, &gcwq->worklist, entry) {
900 struct cpu_workqueue_struct *tcwq = get_work_cwq(twork);
902 if (!(tcwq->wq->flags & WQ_HIGHPRI))
903 break;
906 gcwq->flags |= GCWQ_HIGHPRI_PENDING;
907 return &twork->entry;
911 * insert_work - insert a work into gcwq
912 * @cwq: cwq @work belongs to
913 * @work: work to insert
914 * @head: insertion point
915 * @extra_flags: extra WORK_STRUCT_* flags to set
917 * Insert @work which belongs to @cwq into @gcwq after @head.
918 * @extra_flags is or'd to work_struct flags.
920 * CONTEXT:
921 * spin_lock_irq(gcwq->lock).
923 static void insert_work(struct cpu_workqueue_struct *cwq,
924 struct work_struct *work, struct list_head *head,
925 unsigned int extra_flags)
927 struct global_cwq *gcwq = cwq->gcwq;
929 /* we own @work, set data and link */
930 set_work_cwq(work, cwq, extra_flags);
933 * Ensure that we get the right work->data if we see the
934 * result of list_add() below, see try_to_grab_pending().
936 smp_wmb();
938 list_add_tail(&work->entry, head);
941 * Ensure either worker_sched_deactivated() sees the above
942 * list_add_tail() or we see zero nr_running to avoid workers
943 * lying around lazily while there are works to be processed.
945 smp_mb();
947 if (__need_more_worker(gcwq))
948 wake_up_worker(gcwq);
952 * Test whether @work is being queued from another work executing on the
953 * same workqueue. This is rather expensive and should only be used from
954 * cold paths.
956 static bool is_chained_work(struct workqueue_struct *wq)
958 unsigned long flags;
959 unsigned int cpu;
961 for_each_gcwq_cpu(cpu) {
962 struct global_cwq *gcwq = get_gcwq(cpu);
963 struct worker *worker;
964 struct hlist_node *pos;
965 int i;
967 spin_lock_irqsave(&gcwq->lock, flags);
968 for_each_busy_worker(worker, i, pos, gcwq) {
969 if (worker->task != current)
970 continue;
971 spin_unlock_irqrestore(&gcwq->lock, flags);
973 * I'm @worker, no locking necessary. See if @work
974 * is headed to the same workqueue.
976 return worker->current_cwq->wq == wq;
978 spin_unlock_irqrestore(&gcwq->lock, flags);
980 return false;
983 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
984 struct work_struct *work)
986 struct global_cwq *gcwq;
987 struct cpu_workqueue_struct *cwq;
988 struct list_head *worklist;
989 unsigned int work_flags;
990 unsigned long flags;
992 debug_work_activate(work);
994 /* if dying, only works from the same workqueue are allowed */
995 if (unlikely(wq->flags & WQ_DYING) &&
996 WARN_ON_ONCE(!is_chained_work(wq)))
997 return;
999 /* determine gcwq to use */
1000 if (!(wq->flags & WQ_UNBOUND)) {
1001 struct global_cwq *last_gcwq;
1003 if (unlikely(cpu == WORK_CPU_UNBOUND))
1004 cpu = raw_smp_processor_id();
1007 * It's multi cpu. If @wq is non-reentrant and @work
1008 * was previously on a different cpu, it might still
1009 * be running there, in which case the work needs to
1010 * be queued on that cpu to guarantee non-reentrance.
1012 gcwq = get_gcwq(cpu);
1013 if (wq->flags & WQ_NON_REENTRANT &&
1014 (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
1015 struct worker *worker;
1017 spin_lock_irqsave(&last_gcwq->lock, flags);
1019 worker = find_worker_executing_work(last_gcwq, work);
1021 if (worker && worker->current_cwq->wq == wq)
1022 gcwq = last_gcwq;
1023 else {
1024 /* meh... not running there, queue here */
1025 spin_unlock_irqrestore(&last_gcwq->lock, flags);
1026 spin_lock_irqsave(&gcwq->lock, flags);
1028 } else
1029 spin_lock_irqsave(&gcwq->lock, flags);
1030 } else {
1031 gcwq = get_gcwq(WORK_CPU_UNBOUND);
1032 spin_lock_irqsave(&gcwq->lock, flags);
1035 /* gcwq determined, get cwq and queue */
1036 cwq = get_cwq(gcwq->cpu, wq);
1037 trace_workqueue_queue_work(cpu, cwq, work);
1039 BUG_ON(!list_empty(&work->entry));
1041 cwq->nr_in_flight[cwq->work_color]++;
1042 work_flags = work_color_to_flags(cwq->work_color);
1044 if (likely(cwq->nr_active < cwq->max_active)) {
1045 trace_workqueue_activate_work(work);
1046 cwq->nr_active++;
1047 worklist = gcwq_determine_ins_pos(gcwq, cwq);
1048 } else {
1049 work_flags |= WORK_STRUCT_DELAYED;
1050 worklist = &cwq->delayed_works;
1053 insert_work(cwq, work, worklist, work_flags);
1055 spin_unlock_irqrestore(&gcwq->lock, flags);
1059 * queue_work - queue work on a workqueue
1060 * @wq: workqueue to use
1061 * @work: work to queue
1063 * Returns 0 if @work was already on a queue, non-zero otherwise.
1065 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1066 * it can be processed by another CPU.
1068 int queue_work(struct workqueue_struct *wq, struct work_struct *work)
1070 int ret;
1072 ret = queue_work_on(get_cpu(), wq, work);
1073 put_cpu();
1075 return ret;
1077 EXPORT_SYMBOL_GPL(queue_work);
1080 * queue_work_on - queue work on specific cpu
1081 * @cpu: CPU number to execute work on
1082 * @wq: workqueue to use
1083 * @work: work to queue
1085 * Returns 0 if @work was already on a queue, non-zero otherwise.
1087 * We queue the work to a specific CPU, the caller must ensure it
1088 * can't go away.
1091 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
1093 int ret = 0;
1095 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1096 __queue_work(cpu, wq, work);
1097 ret = 1;
1099 return ret;
1101 EXPORT_SYMBOL_GPL(queue_work_on);
1103 static void delayed_work_timer_fn(unsigned long __data)
1105 struct delayed_work *dwork = (struct delayed_work *)__data;
1106 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1108 __queue_work(smp_processor_id(), cwq->wq, &dwork->work);
1112 * queue_delayed_work - queue work on a workqueue after delay
1113 * @wq: workqueue to use
1114 * @dwork: delayable work to queue
1115 * @delay: number of jiffies to wait before queueing
1117 * Returns 0 if @work was already on a queue, non-zero otherwise.
1119 int queue_delayed_work(struct workqueue_struct *wq,
1120 struct delayed_work *dwork, unsigned long delay)
1122 if (delay == 0)
1123 return queue_work(wq, &dwork->work);
1125 return queue_delayed_work_on(-1, wq, dwork, delay);
1127 EXPORT_SYMBOL_GPL(queue_delayed_work);
1130 * queue_delayed_work_on - queue work on specific CPU after delay
1131 * @cpu: CPU number to execute work on
1132 * @wq: workqueue to use
1133 * @dwork: work to queue
1134 * @delay: number of jiffies to wait before queueing
1136 * Returns 0 if @work was already on a queue, non-zero otherwise.
1138 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1139 struct delayed_work *dwork, unsigned long delay)
1141 int ret = 0;
1142 struct timer_list *timer = &dwork->timer;
1143 struct work_struct *work = &dwork->work;
1145 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1146 unsigned int lcpu;
1148 WARN_ON_ONCE(timer_pending(timer));
1149 WARN_ON_ONCE(!list_empty(&work->entry));
1151 timer_stats_timer_set_start_info(&dwork->timer);
1154 * This stores cwq for the moment, for the timer_fn.
1155 * Note that the work's gcwq is preserved to allow
1156 * reentrance detection for delayed works.
1158 if (!(wq->flags & WQ_UNBOUND)) {
1159 struct global_cwq *gcwq = get_work_gcwq(work);
1161 if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
1162 lcpu = gcwq->cpu;
1163 else
1164 lcpu = raw_smp_processor_id();
1165 } else
1166 lcpu = WORK_CPU_UNBOUND;
1168 set_work_cwq(work, get_cwq(lcpu, wq), 0);
1170 timer->expires = jiffies + delay;
1171 timer->data = (unsigned long)dwork;
1172 timer->function = delayed_work_timer_fn;
1174 if (unlikely(cpu >= 0))
1175 add_timer_on(timer, cpu);
1176 else
1177 add_timer(timer);
1178 ret = 1;
1180 return ret;
1182 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1185 * worker_enter_idle - enter idle state
1186 * @worker: worker which is entering idle state
1188 * @worker is entering idle state. Update stats and idle timer if
1189 * necessary.
1191 * LOCKING:
1192 * spin_lock_irq(gcwq->lock).
1194 static void worker_enter_idle(struct worker *worker)
1196 struct global_cwq *gcwq = worker->gcwq;
1198 BUG_ON(worker->flags & WORKER_IDLE);
1199 BUG_ON(!list_empty(&worker->entry) &&
1200 (worker->hentry.next || worker->hentry.pprev));
1202 /* can't use worker_set_flags(), also called from start_worker() */
1203 worker->flags |= WORKER_IDLE;
1204 gcwq->nr_idle++;
1205 worker->last_active = jiffies;
1207 /* idle_list is LIFO */
1208 list_add(&worker->entry, &gcwq->idle_list);
1210 if (likely(!(worker->flags & WORKER_ROGUE))) {
1211 if (too_many_workers(gcwq) && !timer_pending(&gcwq->idle_timer))
1212 mod_timer(&gcwq->idle_timer,
1213 jiffies + IDLE_WORKER_TIMEOUT);
1214 } else
1215 wake_up_all(&gcwq->trustee_wait);
1218 * Sanity check nr_running. Because trustee releases gcwq->lock
1219 * between setting %WORKER_ROGUE and zapping nr_running, the
1220 * warning may trigger spuriously. Check iff trustee is idle.
1222 WARN_ON_ONCE(gcwq->trustee_state == TRUSTEE_DONE &&
1223 gcwq->nr_workers == gcwq->nr_idle &&
1224 atomic_read(get_gcwq_nr_running(gcwq->cpu)));
1228 * worker_leave_idle - leave idle state
1229 * @worker: worker which is leaving idle state
1231 * @worker is leaving idle state. Update stats.
1233 * LOCKING:
1234 * spin_lock_irq(gcwq->lock).
1236 static void worker_leave_idle(struct worker *worker)
1238 struct global_cwq *gcwq = worker->gcwq;
1240 BUG_ON(!(worker->flags & WORKER_IDLE));
1241 worker_clr_flags(worker, WORKER_IDLE);
1242 gcwq->nr_idle--;
1243 list_del_init(&worker->entry);
1247 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1248 * @worker: self
1250 * Works which are scheduled while the cpu is online must at least be
1251 * scheduled to a worker which is bound to the cpu so that if they are
1252 * flushed from cpu callbacks while cpu is going down, they are
1253 * guaranteed to execute on the cpu.
1255 * This function is to be used by rogue workers and rescuers to bind
1256 * themselves to the target cpu and may race with cpu going down or
1257 * coming online. kthread_bind() can't be used because it may put the
1258 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1259 * verbatim as it's best effort and blocking and gcwq may be
1260 * [dis]associated in the meantime.
1262 * This function tries set_cpus_allowed() and locks gcwq and verifies
1263 * the binding against GCWQ_DISASSOCIATED which is set during
1264 * CPU_DYING and cleared during CPU_ONLINE, so if the worker enters
1265 * idle state or fetches works without dropping lock, it can guarantee
1266 * the scheduling requirement described in the first paragraph.
1268 * CONTEXT:
1269 * Might sleep. Called without any lock but returns with gcwq->lock
1270 * held.
1272 * RETURNS:
1273 * %true if the associated gcwq is online (@worker is successfully
1274 * bound), %false if offline.
1276 static bool worker_maybe_bind_and_lock(struct worker *worker)
1277 __acquires(&gcwq->lock)
1279 struct global_cwq *gcwq = worker->gcwq;
1280 struct task_struct *task = worker->task;
1282 while (true) {
1284 * The following call may fail, succeed or succeed
1285 * without actually migrating the task to the cpu if
1286 * it races with cpu hotunplug operation. Verify
1287 * against GCWQ_DISASSOCIATED.
1289 if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1290 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1292 spin_lock_irq(&gcwq->lock);
1293 if (gcwq->flags & GCWQ_DISASSOCIATED)
1294 return false;
1295 if (task_cpu(task) == gcwq->cpu &&
1296 cpumask_equal(&current->cpus_allowed,
1297 get_cpu_mask(gcwq->cpu)))
1298 return true;
1299 spin_unlock_irq(&gcwq->lock);
1302 * We've raced with CPU hot[un]plug. Give it a breather
1303 * and retry migration. cond_resched() is required here;
1304 * otherwise, we might deadlock against cpu_stop trying to
1305 * bring down the CPU on non-preemptive kernel.
1307 cpu_relax();
1308 cond_resched();
1313 * Function for worker->rebind_work used to rebind rogue busy workers
1314 * to the associated cpu which is coming back online. This is
1315 * scheduled by cpu up but can race with other cpu hotplug operations
1316 * and may be executed twice without intervening cpu down.
1318 static void worker_rebind_fn(struct work_struct *work)
1320 struct worker *worker = container_of(work, struct worker, rebind_work);
1321 struct global_cwq *gcwq = worker->gcwq;
1323 if (worker_maybe_bind_and_lock(worker))
1324 worker_clr_flags(worker, WORKER_REBIND);
1326 spin_unlock_irq(&gcwq->lock);
1329 static struct worker *alloc_worker(void)
1331 struct worker *worker;
1333 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1334 if (worker) {
1335 INIT_LIST_HEAD(&worker->entry);
1336 INIT_LIST_HEAD(&worker->scheduled);
1337 INIT_WORK(&worker->rebind_work, worker_rebind_fn);
1338 /* on creation a worker is in !idle && prep state */
1339 worker->flags = WORKER_PREP;
1341 return worker;
1345 * create_worker - create a new workqueue worker
1346 * @gcwq: gcwq the new worker will belong to
1347 * @bind: whether to set affinity to @cpu or not
1349 * Create a new worker which is bound to @gcwq. The returned worker
1350 * can be started by calling start_worker() or destroyed using
1351 * destroy_worker().
1353 * CONTEXT:
1354 * Might sleep. Does GFP_KERNEL allocations.
1356 * RETURNS:
1357 * Pointer to the newly created worker.
1359 static struct worker *create_worker(struct global_cwq *gcwq, bool bind)
1361 bool on_unbound_cpu = gcwq->cpu == WORK_CPU_UNBOUND;
1362 struct worker *worker = NULL;
1363 int id = -1;
1365 spin_lock_irq(&gcwq->lock);
1366 while (ida_get_new(&gcwq->worker_ida, &id)) {
1367 spin_unlock_irq(&gcwq->lock);
1368 if (!ida_pre_get(&gcwq->worker_ida, GFP_KERNEL))
1369 goto fail;
1370 spin_lock_irq(&gcwq->lock);
1372 spin_unlock_irq(&gcwq->lock);
1374 worker = alloc_worker();
1375 if (!worker)
1376 goto fail;
1378 worker->gcwq = gcwq;
1379 worker->id = id;
1381 if (!on_unbound_cpu)
1382 worker->task = kthread_create_on_node(worker_thread,
1383 worker,
1384 cpu_to_node(gcwq->cpu),
1385 "kworker/%u:%d", gcwq->cpu, id);
1386 else
1387 worker->task = kthread_create(worker_thread, worker,
1388 "kworker/u:%d", id);
1389 if (IS_ERR(worker->task))
1390 goto fail;
1393 * A rogue worker will become a regular one if CPU comes
1394 * online later on. Make sure every worker has
1395 * PF_THREAD_BOUND set.
1397 if (bind && !on_unbound_cpu)
1398 kthread_bind(worker->task, gcwq->cpu);
1399 else {
1400 worker->task->flags |= PF_THREAD_BOUND;
1401 if (on_unbound_cpu)
1402 worker->flags |= WORKER_UNBOUND;
1405 return worker;
1406 fail:
1407 if (id >= 0) {
1408 spin_lock_irq(&gcwq->lock);
1409 ida_remove(&gcwq->worker_ida, id);
1410 spin_unlock_irq(&gcwq->lock);
1412 kfree(worker);
1413 return NULL;
1417 * start_worker - start a newly created worker
1418 * @worker: worker to start
1420 * Make the gcwq aware of @worker and start it.
1422 * CONTEXT:
1423 * spin_lock_irq(gcwq->lock).
1425 static void start_worker(struct worker *worker)
1427 worker->flags |= WORKER_STARTED;
1428 worker->gcwq->nr_workers++;
1429 worker_enter_idle(worker);
1430 wake_up_process(worker->task);
1434 * destroy_worker - destroy a workqueue worker
1435 * @worker: worker to be destroyed
1437 * Destroy @worker and adjust @gcwq stats accordingly.
1439 * CONTEXT:
1440 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1442 static void destroy_worker(struct worker *worker)
1444 struct global_cwq *gcwq = worker->gcwq;
1445 int id = worker->id;
1447 /* sanity check frenzy */
1448 BUG_ON(worker->current_work);
1449 BUG_ON(!list_empty(&worker->scheduled));
1451 if (worker->flags & WORKER_STARTED)
1452 gcwq->nr_workers--;
1453 if (worker->flags & WORKER_IDLE)
1454 gcwq->nr_idle--;
1456 list_del_init(&worker->entry);
1457 worker->flags |= WORKER_DIE;
1459 spin_unlock_irq(&gcwq->lock);
1461 kthread_stop(worker->task);
1462 kfree(worker);
1464 spin_lock_irq(&gcwq->lock);
1465 ida_remove(&gcwq->worker_ida, id);
1468 static void idle_worker_timeout(unsigned long __gcwq)
1470 struct global_cwq *gcwq = (void *)__gcwq;
1472 spin_lock_irq(&gcwq->lock);
1474 if (too_many_workers(gcwq)) {
1475 struct worker *worker;
1476 unsigned long expires;
1478 /* idle_list is kept in LIFO order, check the last one */
1479 worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1480 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1482 if (time_before(jiffies, expires))
1483 mod_timer(&gcwq->idle_timer, expires);
1484 else {
1485 /* it's been idle for too long, wake up manager */
1486 gcwq->flags |= GCWQ_MANAGE_WORKERS;
1487 wake_up_worker(gcwq);
1491 spin_unlock_irq(&gcwq->lock);
1494 static bool send_mayday(struct work_struct *work)
1496 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1497 struct workqueue_struct *wq = cwq->wq;
1498 unsigned int cpu;
1500 if (!(wq->flags & WQ_RESCUER))
1501 return false;
1503 /* mayday mayday mayday */
1504 cpu = cwq->gcwq->cpu;
1505 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1506 if (cpu == WORK_CPU_UNBOUND)
1507 cpu = 0;
1508 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1509 wake_up_process(wq->rescuer->task);
1510 return true;
1513 static void gcwq_mayday_timeout(unsigned long __gcwq)
1515 struct global_cwq *gcwq = (void *)__gcwq;
1516 struct work_struct *work;
1518 spin_lock_irq(&gcwq->lock);
1520 if (need_to_create_worker(gcwq)) {
1522 * We've been trying to create a new worker but
1523 * haven't been successful. We might be hitting an
1524 * allocation deadlock. Send distress signals to
1525 * rescuers.
1527 list_for_each_entry(work, &gcwq->worklist, entry)
1528 send_mayday(work);
1531 spin_unlock_irq(&gcwq->lock);
1533 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INTERVAL);
1537 * maybe_create_worker - create a new worker if necessary
1538 * @gcwq: gcwq to create a new worker for
1540 * Create a new worker for @gcwq if necessary. @gcwq is guaranteed to
1541 * have at least one idle worker on return from this function. If
1542 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1543 * sent to all rescuers with works scheduled on @gcwq to resolve
1544 * possible allocation deadlock.
1546 * On return, need_to_create_worker() is guaranteed to be false and
1547 * may_start_working() true.
1549 * LOCKING:
1550 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1551 * multiple times. Does GFP_KERNEL allocations. Called only from
1552 * manager.
1554 * RETURNS:
1555 * false if no action was taken and gcwq->lock stayed locked, true
1556 * otherwise.
1558 static bool maybe_create_worker(struct global_cwq *gcwq)
1559 __releases(&gcwq->lock)
1560 __acquires(&gcwq->lock)
1562 if (!need_to_create_worker(gcwq))
1563 return false;
1564 restart:
1565 spin_unlock_irq(&gcwq->lock);
1567 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1568 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1570 while (true) {
1571 struct worker *worker;
1573 worker = create_worker(gcwq, true);
1574 if (worker) {
1575 del_timer_sync(&gcwq->mayday_timer);
1576 spin_lock_irq(&gcwq->lock);
1577 start_worker(worker);
1578 BUG_ON(need_to_create_worker(gcwq));
1579 return true;
1582 if (!need_to_create_worker(gcwq))
1583 break;
1585 __set_current_state(TASK_INTERRUPTIBLE);
1586 schedule_timeout(CREATE_COOLDOWN);
1588 if (!need_to_create_worker(gcwq))
1589 break;
1592 del_timer_sync(&gcwq->mayday_timer);
1593 spin_lock_irq(&gcwq->lock);
1594 if (need_to_create_worker(gcwq))
1595 goto restart;
1596 return true;
1600 * maybe_destroy_worker - destroy workers which have been idle for a while
1601 * @gcwq: gcwq to destroy workers for
1603 * Destroy @gcwq workers which have been idle for longer than
1604 * IDLE_WORKER_TIMEOUT.
1606 * LOCKING:
1607 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1608 * multiple times. Called only from manager.
1610 * RETURNS:
1611 * false if no action was taken and gcwq->lock stayed locked, true
1612 * otherwise.
1614 static bool maybe_destroy_workers(struct global_cwq *gcwq)
1616 bool ret = false;
1618 while (too_many_workers(gcwq)) {
1619 struct worker *worker;
1620 unsigned long expires;
1622 worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1623 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1625 if (time_before(jiffies, expires)) {
1626 mod_timer(&gcwq->idle_timer, expires);
1627 break;
1630 destroy_worker(worker);
1631 ret = true;
1634 return ret;
1638 * manage_workers - manage worker pool
1639 * @worker: self
1641 * Assume the manager role and manage gcwq worker pool @worker belongs
1642 * to. At any given time, there can be only zero or one manager per
1643 * gcwq. The exclusion is handled automatically by this function.
1645 * The caller can safely start processing works on false return. On
1646 * true return, it's guaranteed that need_to_create_worker() is false
1647 * and may_start_working() is true.
1649 * CONTEXT:
1650 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1651 * multiple times. Does GFP_KERNEL allocations.
1653 * RETURNS:
1654 * false if no action was taken and gcwq->lock stayed locked, true if
1655 * some action was taken.
1657 static bool manage_workers(struct worker *worker)
1659 struct global_cwq *gcwq = worker->gcwq;
1660 bool ret = false;
1662 if (gcwq->flags & GCWQ_MANAGING_WORKERS)
1663 return ret;
1665 gcwq->flags &= ~GCWQ_MANAGE_WORKERS;
1666 gcwq->flags |= GCWQ_MANAGING_WORKERS;
1669 * Destroy and then create so that may_start_working() is true
1670 * on return.
1672 ret |= maybe_destroy_workers(gcwq);
1673 ret |= maybe_create_worker(gcwq);
1675 gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
1678 * The trustee might be waiting to take over the manager
1679 * position, tell it we're done.
1681 if (unlikely(gcwq->trustee))
1682 wake_up_all(&gcwq->trustee_wait);
1684 return ret;
1688 * move_linked_works - move linked works to a list
1689 * @work: start of series of works to be scheduled
1690 * @head: target list to append @work to
1691 * @nextp: out paramter for nested worklist walking
1693 * Schedule linked works starting from @work to @head. Work series to
1694 * be scheduled starts at @work and includes any consecutive work with
1695 * WORK_STRUCT_LINKED set in its predecessor.
1697 * If @nextp is not NULL, it's updated to point to the next work of
1698 * the last scheduled work. This allows move_linked_works() to be
1699 * nested inside outer list_for_each_entry_safe().
1701 * CONTEXT:
1702 * spin_lock_irq(gcwq->lock).
1704 static void move_linked_works(struct work_struct *work, struct list_head *head,
1705 struct work_struct **nextp)
1707 struct work_struct *n;
1710 * Linked worklist will always end before the end of the list,
1711 * use NULL for list head.
1713 list_for_each_entry_safe_from(work, n, NULL, entry) {
1714 list_move_tail(&work->entry, head);
1715 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1716 break;
1720 * If we're already inside safe list traversal and have moved
1721 * multiple works to the scheduled queue, the next position
1722 * needs to be updated.
1724 if (nextp)
1725 *nextp = n;
1728 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
1730 struct work_struct *work = list_first_entry(&cwq->delayed_works,
1731 struct work_struct, entry);
1732 struct list_head *pos = gcwq_determine_ins_pos(cwq->gcwq, cwq);
1734 trace_workqueue_activate_work(work);
1735 move_linked_works(work, pos, NULL);
1736 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1737 cwq->nr_active++;
1741 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1742 * @cwq: cwq of interest
1743 * @color: color of work which left the queue
1744 * @delayed: for a delayed work
1746 * A work either has completed or is removed from pending queue,
1747 * decrement nr_in_flight of its cwq and handle workqueue flushing.
1749 * CONTEXT:
1750 * spin_lock_irq(gcwq->lock).
1752 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
1753 bool delayed)
1755 /* ignore uncolored works */
1756 if (color == WORK_NO_COLOR)
1757 return;
1759 cwq->nr_in_flight[color]--;
1761 if (!delayed) {
1762 cwq->nr_active--;
1763 if (!list_empty(&cwq->delayed_works)) {
1764 /* one down, submit a delayed one */
1765 if (cwq->nr_active < cwq->max_active)
1766 cwq_activate_first_delayed(cwq);
1770 /* is flush in progress and are we at the flushing tip? */
1771 if (likely(cwq->flush_color != color))
1772 return;
1774 /* are there still in-flight works? */
1775 if (cwq->nr_in_flight[color])
1776 return;
1778 /* this cwq is done, clear flush_color */
1779 cwq->flush_color = -1;
1782 * If this was the last cwq, wake up the first flusher. It
1783 * will handle the rest.
1785 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1786 complete(&cwq->wq->first_flusher->done);
1790 * process_one_work - process single work
1791 * @worker: self
1792 * @work: work to process
1794 * Process @work. This function contains all the logics necessary to
1795 * process a single work including synchronization against and
1796 * interaction with other workers on the same cpu, queueing and
1797 * flushing. As long as context requirement is met, any worker can
1798 * call this function to process a work.
1800 * CONTEXT:
1801 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1803 static void process_one_work(struct worker *worker, struct work_struct *work)
1804 __releases(&gcwq->lock)
1805 __acquires(&gcwq->lock)
1807 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1808 struct global_cwq *gcwq = cwq->gcwq;
1809 struct hlist_head *bwh = busy_worker_head(gcwq, work);
1810 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
1811 work_func_t f = work->func;
1812 int work_color;
1813 struct worker *collision;
1814 #ifdef CONFIG_LOCKDEP
1816 * It is permissible to free the struct work_struct from
1817 * inside the function that is called from it, this we need to
1818 * take into account for lockdep too. To avoid bogus "held
1819 * lock freed" warnings as well as problems when looking into
1820 * work->lockdep_map, make a copy and use that here.
1822 struct lockdep_map lockdep_map = work->lockdep_map;
1823 #endif
1825 * A single work shouldn't be executed concurrently by
1826 * multiple workers on a single cpu. Check whether anyone is
1827 * already processing the work. If so, defer the work to the
1828 * currently executing one.
1830 collision = __find_worker_executing_work(gcwq, bwh, work);
1831 if (unlikely(collision)) {
1832 move_linked_works(work, &collision->scheduled, NULL);
1833 return;
1836 /* claim and process */
1837 debug_work_deactivate(work);
1838 hlist_add_head(&worker->hentry, bwh);
1839 worker->current_work = work;
1840 worker->current_cwq = cwq;
1841 work_color = get_work_color(work);
1843 /* record the current cpu number in the work data and dequeue */
1844 set_work_cpu(work, gcwq->cpu);
1845 list_del_init(&work->entry);
1848 * If HIGHPRI_PENDING, check the next work, and, if HIGHPRI,
1849 * wake up another worker; otherwise, clear HIGHPRI_PENDING.
1851 if (unlikely(gcwq->flags & GCWQ_HIGHPRI_PENDING)) {
1852 struct work_struct *nwork = list_first_entry(&gcwq->worklist,
1853 struct work_struct, entry);
1855 if (!list_empty(&gcwq->worklist) &&
1856 get_work_cwq(nwork)->wq->flags & WQ_HIGHPRI)
1857 wake_up_worker(gcwq);
1858 else
1859 gcwq->flags &= ~GCWQ_HIGHPRI_PENDING;
1863 * CPU intensive works don't participate in concurrency
1864 * management. They're the scheduler's responsibility.
1866 if (unlikely(cpu_intensive))
1867 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
1869 spin_unlock_irq(&gcwq->lock);
1871 smp_wmb(); /* paired with test_and_set_bit(PENDING) */
1872 work_clear_pending(work);
1874 lock_map_acquire_read(&cwq->wq->lockdep_map);
1875 lock_map_acquire(&lockdep_map);
1876 trace_workqueue_execute_start(work);
1877 f(work);
1879 * While we must be careful to not use "work" after this, the trace
1880 * point will only record its address.
1882 trace_workqueue_execute_end(work);
1883 lock_map_release(&lockdep_map);
1884 lock_map_release(&cwq->wq->lockdep_map);
1886 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
1887 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
1888 "%s/0x%08x/%d\n",
1889 current->comm, preempt_count(), task_pid_nr(current));
1890 printk(KERN_ERR " last function: ");
1891 print_symbol("%s\n", (unsigned long)f);
1892 debug_show_held_locks(current);
1893 dump_stack();
1896 spin_lock_irq(&gcwq->lock);
1898 /* clear cpu intensive status */
1899 if (unlikely(cpu_intensive))
1900 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
1902 /* we're done with it, release */
1903 hlist_del_init(&worker->hentry);
1904 worker->current_work = NULL;
1905 worker->current_cwq = NULL;
1906 cwq_dec_nr_in_flight(cwq, work_color, false);
1910 * process_scheduled_works - process scheduled works
1911 * @worker: self
1913 * Process all scheduled works. Please note that the scheduled list
1914 * may change while processing a work, so this function repeatedly
1915 * fetches a work from the top and executes it.
1917 * CONTEXT:
1918 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1919 * multiple times.
1921 static void process_scheduled_works(struct worker *worker)
1923 while (!list_empty(&worker->scheduled)) {
1924 struct work_struct *work = list_first_entry(&worker->scheduled,
1925 struct work_struct, entry);
1926 process_one_work(worker, work);
1931 * worker_thread - the worker thread function
1932 * @__worker: self
1934 * The gcwq worker thread function. There's a single dynamic pool of
1935 * these per each cpu. These workers process all works regardless of
1936 * their specific target workqueue. The only exception is works which
1937 * belong to workqueues with a rescuer which will be explained in
1938 * rescuer_thread().
1940 static int worker_thread(void *__worker)
1942 struct worker *worker = __worker;
1943 struct global_cwq *gcwq = worker->gcwq;
1945 /* tell the scheduler that this is a workqueue worker */
1946 worker->task->flags |= PF_WQ_WORKER;
1947 woke_up:
1948 spin_lock_irq(&gcwq->lock);
1950 /* DIE can be set only while we're idle, checking here is enough */
1951 if (worker->flags & WORKER_DIE) {
1952 spin_unlock_irq(&gcwq->lock);
1953 worker->task->flags &= ~PF_WQ_WORKER;
1954 return 0;
1957 worker_leave_idle(worker);
1958 recheck:
1959 /* no more worker necessary? */
1960 if (!need_more_worker(gcwq))
1961 goto sleep;
1963 /* do we need to manage? */
1964 if (unlikely(!may_start_working(gcwq)) && manage_workers(worker))
1965 goto recheck;
1968 * ->scheduled list can only be filled while a worker is
1969 * preparing to process a work or actually processing it.
1970 * Make sure nobody diddled with it while I was sleeping.
1972 BUG_ON(!list_empty(&worker->scheduled));
1975 * When control reaches this point, we're guaranteed to have
1976 * at least one idle worker or that someone else has already
1977 * assumed the manager role.
1979 worker_clr_flags(worker, WORKER_PREP);
1981 do {
1982 struct work_struct *work =
1983 list_first_entry(&gcwq->worklist,
1984 struct work_struct, entry);
1986 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
1987 /* optimization path, not strictly necessary */
1988 process_one_work(worker, work);
1989 if (unlikely(!list_empty(&worker->scheduled)))
1990 process_scheduled_works(worker);
1991 } else {
1992 move_linked_works(work, &worker->scheduled, NULL);
1993 process_scheduled_works(worker);
1995 } while (keep_working(gcwq));
1997 worker_set_flags(worker, WORKER_PREP, false);
1998 sleep:
1999 if (unlikely(need_to_manage_workers(gcwq)) && manage_workers(worker))
2000 goto recheck;
2003 * gcwq->lock is held and there's no work to process and no
2004 * need to manage, sleep. Workers are woken up only while
2005 * holding gcwq->lock or from local cpu, so setting the
2006 * current state before releasing gcwq->lock is enough to
2007 * prevent losing any event.
2009 worker_enter_idle(worker);
2010 __set_current_state(TASK_INTERRUPTIBLE);
2011 spin_unlock_irq(&gcwq->lock);
2012 schedule();
2013 goto woke_up;
2017 * rescuer_thread - the rescuer thread function
2018 * @__wq: the associated workqueue
2020 * Workqueue rescuer thread function. There's one rescuer for each
2021 * workqueue which has WQ_RESCUER set.
2023 * Regular work processing on a gcwq may block trying to create a new
2024 * worker which uses GFP_KERNEL allocation which has slight chance of
2025 * developing into deadlock if some works currently on the same queue
2026 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2027 * the problem rescuer solves.
2029 * When such condition is possible, the gcwq summons rescuers of all
2030 * workqueues which have works queued on the gcwq and let them process
2031 * those works so that forward progress can be guaranteed.
2033 * This should happen rarely.
2035 static int rescuer_thread(void *__wq)
2037 struct workqueue_struct *wq = __wq;
2038 struct worker *rescuer = wq->rescuer;
2039 struct list_head *scheduled = &rescuer->scheduled;
2040 bool is_unbound = wq->flags & WQ_UNBOUND;
2041 unsigned int cpu;
2043 set_user_nice(current, RESCUER_NICE_LEVEL);
2044 repeat:
2045 set_current_state(TASK_INTERRUPTIBLE);
2047 if (kthread_should_stop()) {
2048 __set_current_state(TASK_RUNNING);
2049 return 0;
2053 * See whether any cpu is asking for help. Unbounded
2054 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2056 for_each_mayday_cpu(cpu, wq->mayday_mask) {
2057 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2058 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2059 struct global_cwq *gcwq = cwq->gcwq;
2060 struct work_struct *work, *n;
2062 __set_current_state(TASK_RUNNING);
2063 mayday_clear_cpu(cpu, wq->mayday_mask);
2065 /* migrate to the target cpu if possible */
2066 rescuer->gcwq = gcwq;
2067 worker_maybe_bind_and_lock(rescuer);
2070 * Slurp in all works issued via this workqueue and
2071 * process'em.
2073 BUG_ON(!list_empty(&rescuer->scheduled));
2074 list_for_each_entry_safe(work, n, &gcwq->worklist, entry)
2075 if (get_work_cwq(work) == cwq)
2076 move_linked_works(work, scheduled, &n);
2078 process_scheduled_works(rescuer);
2081 * Leave this gcwq. If keep_working() is %true, notify a
2082 * regular worker; otherwise, we end up with 0 concurrency
2083 * and stalling the execution.
2085 if (keep_working(gcwq))
2086 wake_up_worker(gcwq);
2088 spin_unlock_irq(&gcwq->lock);
2091 schedule();
2092 goto repeat;
2095 struct wq_barrier {
2096 struct work_struct work;
2097 struct completion done;
2100 static void wq_barrier_func(struct work_struct *work)
2102 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2103 complete(&barr->done);
2107 * insert_wq_barrier - insert a barrier work
2108 * @cwq: cwq to insert barrier into
2109 * @barr: wq_barrier to insert
2110 * @target: target work to attach @barr to
2111 * @worker: worker currently executing @target, NULL if @target is not executing
2113 * @barr is linked to @target such that @barr is completed only after
2114 * @target finishes execution. Please note that the ordering
2115 * guarantee is observed only with respect to @target and on the local
2116 * cpu.
2118 * Currently, a queued barrier can't be canceled. This is because
2119 * try_to_grab_pending() can't determine whether the work to be
2120 * grabbed is at the head of the queue and thus can't clear LINKED
2121 * flag of the previous work while there must be a valid next work
2122 * after a work with LINKED flag set.
2124 * Note that when @worker is non-NULL, @target may be modified
2125 * underneath us, so we can't reliably determine cwq from @target.
2127 * CONTEXT:
2128 * spin_lock_irq(gcwq->lock).
2130 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2131 struct wq_barrier *barr,
2132 struct work_struct *target, struct worker *worker)
2134 struct list_head *head;
2135 unsigned int linked = 0;
2138 * debugobject calls are safe here even with gcwq->lock locked
2139 * as we know for sure that this will not trigger any of the
2140 * checks and call back into the fixup functions where we
2141 * might deadlock.
2143 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2144 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2145 init_completion(&barr->done);
2148 * If @target is currently being executed, schedule the
2149 * barrier to the worker; otherwise, put it after @target.
2151 if (worker)
2152 head = worker->scheduled.next;
2153 else {
2154 unsigned long *bits = work_data_bits(target);
2156 head = target->entry.next;
2157 /* there can already be other linked works, inherit and set */
2158 linked = *bits & WORK_STRUCT_LINKED;
2159 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2162 debug_work_activate(&barr->work);
2163 insert_work(cwq, &barr->work, head,
2164 work_color_to_flags(WORK_NO_COLOR) | linked);
2168 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2169 * @wq: workqueue being flushed
2170 * @flush_color: new flush color, < 0 for no-op
2171 * @work_color: new work color, < 0 for no-op
2173 * Prepare cwqs for workqueue flushing.
2175 * If @flush_color is non-negative, flush_color on all cwqs should be
2176 * -1. If no cwq has in-flight commands at the specified color, all
2177 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2178 * has in flight commands, its cwq->flush_color is set to
2179 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2180 * wakeup logic is armed and %true is returned.
2182 * The caller should have initialized @wq->first_flusher prior to
2183 * calling this function with non-negative @flush_color. If
2184 * @flush_color is negative, no flush color update is done and %false
2185 * is returned.
2187 * If @work_color is non-negative, all cwqs should have the same
2188 * work_color which is previous to @work_color and all will be
2189 * advanced to @work_color.
2191 * CONTEXT:
2192 * mutex_lock(wq->flush_mutex).
2194 * RETURNS:
2195 * %true if @flush_color >= 0 and there's something to flush. %false
2196 * otherwise.
2198 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2199 int flush_color, int work_color)
2201 bool wait = false;
2202 unsigned int cpu;
2204 if (flush_color >= 0) {
2205 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2206 atomic_set(&wq->nr_cwqs_to_flush, 1);
2209 for_each_cwq_cpu(cpu, wq) {
2210 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2211 struct global_cwq *gcwq = cwq->gcwq;
2213 spin_lock_irq(&gcwq->lock);
2215 if (flush_color >= 0) {
2216 BUG_ON(cwq->flush_color != -1);
2218 if (cwq->nr_in_flight[flush_color]) {
2219 cwq->flush_color = flush_color;
2220 atomic_inc(&wq->nr_cwqs_to_flush);
2221 wait = true;
2225 if (work_color >= 0) {
2226 BUG_ON(work_color != work_next_color(cwq->work_color));
2227 cwq->work_color = work_color;
2230 spin_unlock_irq(&gcwq->lock);
2233 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2234 complete(&wq->first_flusher->done);
2236 return wait;
2240 * flush_workqueue - ensure that any scheduled work has run to completion.
2241 * @wq: workqueue to flush
2243 * Forces execution of the workqueue and blocks until its completion.
2244 * This is typically used in driver shutdown handlers.
2246 * We sleep until all works which were queued on entry have been handled,
2247 * but we are not livelocked by new incoming ones.
2249 void flush_workqueue(struct workqueue_struct *wq)
2251 struct wq_flusher this_flusher = {
2252 .list = LIST_HEAD_INIT(this_flusher.list),
2253 .flush_color = -1,
2254 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2256 int next_color;
2258 lock_map_acquire(&wq->lockdep_map);
2259 lock_map_release(&wq->lockdep_map);
2261 mutex_lock(&wq->flush_mutex);
2264 * Start-to-wait phase
2266 next_color = work_next_color(wq->work_color);
2268 if (next_color != wq->flush_color) {
2270 * Color space is not full. The current work_color
2271 * becomes our flush_color and work_color is advanced
2272 * by one.
2274 BUG_ON(!list_empty(&wq->flusher_overflow));
2275 this_flusher.flush_color = wq->work_color;
2276 wq->work_color = next_color;
2278 if (!wq->first_flusher) {
2279 /* no flush in progress, become the first flusher */
2280 BUG_ON(wq->flush_color != this_flusher.flush_color);
2282 wq->first_flusher = &this_flusher;
2284 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2285 wq->work_color)) {
2286 /* nothing to flush, done */
2287 wq->flush_color = next_color;
2288 wq->first_flusher = NULL;
2289 goto out_unlock;
2291 } else {
2292 /* wait in queue */
2293 BUG_ON(wq->flush_color == this_flusher.flush_color);
2294 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2295 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2297 } else {
2299 * Oops, color space is full, wait on overflow queue.
2300 * The next flush completion will assign us
2301 * flush_color and transfer to flusher_queue.
2303 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2306 mutex_unlock(&wq->flush_mutex);
2308 wait_for_completion(&this_flusher.done);
2311 * Wake-up-and-cascade phase
2313 * First flushers are responsible for cascading flushes and
2314 * handling overflow. Non-first flushers can simply return.
2316 if (wq->first_flusher != &this_flusher)
2317 return;
2319 mutex_lock(&wq->flush_mutex);
2321 /* we might have raced, check again with mutex held */
2322 if (wq->first_flusher != &this_flusher)
2323 goto out_unlock;
2325 wq->first_flusher = NULL;
2327 BUG_ON(!list_empty(&this_flusher.list));
2328 BUG_ON(wq->flush_color != this_flusher.flush_color);
2330 while (true) {
2331 struct wq_flusher *next, *tmp;
2333 /* complete all the flushers sharing the current flush color */
2334 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2335 if (next->flush_color != wq->flush_color)
2336 break;
2337 list_del_init(&next->list);
2338 complete(&next->done);
2341 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2342 wq->flush_color != work_next_color(wq->work_color));
2344 /* this flush_color is finished, advance by one */
2345 wq->flush_color = work_next_color(wq->flush_color);
2347 /* one color has been freed, handle overflow queue */
2348 if (!list_empty(&wq->flusher_overflow)) {
2350 * Assign the same color to all overflowed
2351 * flushers, advance work_color and append to
2352 * flusher_queue. This is the start-to-wait
2353 * phase for these overflowed flushers.
2355 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2356 tmp->flush_color = wq->work_color;
2358 wq->work_color = work_next_color(wq->work_color);
2360 list_splice_tail_init(&wq->flusher_overflow,
2361 &wq->flusher_queue);
2362 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2365 if (list_empty(&wq->flusher_queue)) {
2366 BUG_ON(wq->flush_color != wq->work_color);
2367 break;
2371 * Need to flush more colors. Make the next flusher
2372 * the new first flusher and arm cwqs.
2374 BUG_ON(wq->flush_color == wq->work_color);
2375 BUG_ON(wq->flush_color != next->flush_color);
2377 list_del_init(&next->list);
2378 wq->first_flusher = next;
2380 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2381 break;
2384 * Meh... this color is already done, clear first
2385 * flusher and repeat cascading.
2387 wq->first_flusher = NULL;
2390 out_unlock:
2391 mutex_unlock(&wq->flush_mutex);
2393 EXPORT_SYMBOL_GPL(flush_workqueue);
2395 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2396 bool wait_executing)
2398 struct worker *worker = NULL;
2399 struct global_cwq *gcwq;
2400 struct cpu_workqueue_struct *cwq;
2402 might_sleep();
2403 gcwq = get_work_gcwq(work);
2404 if (!gcwq)
2405 return false;
2407 spin_lock_irq(&gcwq->lock);
2408 if (!list_empty(&work->entry)) {
2410 * See the comment near try_to_grab_pending()->smp_rmb().
2411 * If it was re-queued to a different gcwq under us, we
2412 * are not going to wait.
2414 smp_rmb();
2415 cwq = get_work_cwq(work);
2416 if (unlikely(!cwq || gcwq != cwq->gcwq))
2417 goto already_gone;
2418 } else if (wait_executing) {
2419 worker = find_worker_executing_work(gcwq, work);
2420 if (!worker)
2421 goto already_gone;
2422 cwq = worker->current_cwq;
2423 } else
2424 goto already_gone;
2426 insert_wq_barrier(cwq, barr, work, worker);
2427 spin_unlock_irq(&gcwq->lock);
2430 * If @max_active is 1 or rescuer is in use, flushing another work
2431 * item on the same workqueue may lead to deadlock. Make sure the
2432 * flusher is not running on the same workqueue by verifying write
2433 * access.
2435 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2436 lock_map_acquire(&cwq->wq->lockdep_map);
2437 else
2438 lock_map_acquire_read(&cwq->wq->lockdep_map);
2439 lock_map_release(&cwq->wq->lockdep_map);
2441 return true;
2442 already_gone:
2443 spin_unlock_irq(&gcwq->lock);
2444 return false;
2448 * flush_work - wait for a work to finish executing the last queueing instance
2449 * @work: the work to flush
2451 * Wait until @work has finished execution. This function considers
2452 * only the last queueing instance of @work. If @work has been
2453 * enqueued across different CPUs on a non-reentrant workqueue or on
2454 * multiple workqueues, @work might still be executing on return on
2455 * some of the CPUs from earlier queueing.
2457 * If @work was queued only on a non-reentrant, ordered or unbound
2458 * workqueue, @work is guaranteed to be idle on return if it hasn't
2459 * been requeued since flush started.
2461 * RETURNS:
2462 * %true if flush_work() waited for the work to finish execution,
2463 * %false if it was already idle.
2465 bool flush_work(struct work_struct *work)
2467 struct wq_barrier barr;
2469 if (start_flush_work(work, &barr, true)) {
2470 wait_for_completion(&barr.done);
2471 destroy_work_on_stack(&barr.work);
2472 return true;
2473 } else
2474 return false;
2476 EXPORT_SYMBOL_GPL(flush_work);
2478 static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
2480 struct wq_barrier barr;
2481 struct worker *worker;
2483 spin_lock_irq(&gcwq->lock);
2485 worker = find_worker_executing_work(gcwq, work);
2486 if (unlikely(worker))
2487 insert_wq_barrier(worker->current_cwq, &barr, work, worker);
2489 spin_unlock_irq(&gcwq->lock);
2491 if (unlikely(worker)) {
2492 wait_for_completion(&barr.done);
2493 destroy_work_on_stack(&barr.work);
2494 return true;
2495 } else
2496 return false;
2499 static bool wait_on_work(struct work_struct *work)
2501 bool ret = false;
2502 int cpu;
2504 might_sleep();
2506 lock_map_acquire(&work->lockdep_map);
2507 lock_map_release(&work->lockdep_map);
2509 for_each_gcwq_cpu(cpu)
2510 ret |= wait_on_cpu_work(get_gcwq(cpu), work);
2511 return ret;
2515 * flush_work_sync - wait until a work has finished execution
2516 * @work: the work to flush
2518 * Wait until @work has finished execution. On return, it's
2519 * guaranteed that all queueing instances of @work which happened
2520 * before this function is called are finished. In other words, if
2521 * @work hasn't been requeued since this function was called, @work is
2522 * guaranteed to be idle on return.
2524 * RETURNS:
2525 * %true if flush_work_sync() waited for the work to finish execution,
2526 * %false if it was already idle.
2528 bool flush_work_sync(struct work_struct *work)
2530 struct wq_barrier barr;
2531 bool pending, waited;
2533 /* we'll wait for executions separately, queue barr only if pending */
2534 pending = start_flush_work(work, &barr, false);
2536 /* wait for executions to finish */
2537 waited = wait_on_work(work);
2539 /* wait for the pending one */
2540 if (pending) {
2541 wait_for_completion(&barr.done);
2542 destroy_work_on_stack(&barr.work);
2545 return pending || waited;
2547 EXPORT_SYMBOL_GPL(flush_work_sync);
2550 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
2551 * so this work can't be re-armed in any way.
2553 static int try_to_grab_pending(struct work_struct *work)
2555 struct global_cwq *gcwq;
2556 int ret = -1;
2558 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2559 return 0;
2562 * The queueing is in progress, or it is already queued. Try to
2563 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2565 gcwq = get_work_gcwq(work);
2566 if (!gcwq)
2567 return ret;
2569 spin_lock_irq(&gcwq->lock);
2570 if (!list_empty(&work->entry)) {
2572 * This work is queued, but perhaps we locked the wrong gcwq.
2573 * In that case we must see the new value after rmb(), see
2574 * insert_work()->wmb().
2576 smp_rmb();
2577 if (gcwq == get_work_gcwq(work)) {
2578 debug_work_deactivate(work);
2579 list_del_init(&work->entry);
2580 cwq_dec_nr_in_flight(get_work_cwq(work),
2581 get_work_color(work),
2582 *work_data_bits(work) & WORK_STRUCT_DELAYED);
2583 ret = 1;
2586 spin_unlock_irq(&gcwq->lock);
2588 return ret;
2591 static bool __cancel_work_timer(struct work_struct *work,
2592 struct timer_list* timer)
2594 int ret;
2596 do {
2597 ret = (timer && likely(del_timer(timer)));
2598 if (!ret)
2599 ret = try_to_grab_pending(work);
2600 wait_on_work(work);
2601 } while (unlikely(ret < 0));
2603 clear_work_data(work);
2604 return ret;
2608 * cancel_work_sync - cancel a work and wait for it to finish
2609 * @work: the work to cancel
2611 * Cancel @work and wait for its execution to finish. This function
2612 * can be used even if the work re-queues itself or migrates to
2613 * another workqueue. On return from this function, @work is
2614 * guaranteed to be not pending or executing on any CPU.
2616 * cancel_work_sync(&delayed_work->work) must not be used for
2617 * delayed_work's. Use cancel_delayed_work_sync() instead.
2619 * The caller must ensure that the workqueue on which @work was last
2620 * queued can't be destroyed before this function returns.
2622 * RETURNS:
2623 * %true if @work was pending, %false otherwise.
2625 bool cancel_work_sync(struct work_struct *work)
2627 return __cancel_work_timer(work, NULL);
2629 EXPORT_SYMBOL_GPL(cancel_work_sync);
2632 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2633 * @dwork: the delayed work to flush
2635 * Delayed timer is cancelled and the pending work is queued for
2636 * immediate execution. Like flush_work(), this function only
2637 * considers the last queueing instance of @dwork.
2639 * RETURNS:
2640 * %true if flush_work() waited for the work to finish execution,
2641 * %false if it was already idle.
2643 bool flush_delayed_work(struct delayed_work *dwork)
2645 if (del_timer_sync(&dwork->timer))
2646 __queue_work(raw_smp_processor_id(),
2647 get_work_cwq(&dwork->work)->wq, &dwork->work);
2648 return flush_work(&dwork->work);
2650 EXPORT_SYMBOL(flush_delayed_work);
2653 * flush_delayed_work_sync - wait for a dwork to finish
2654 * @dwork: the delayed work to flush
2656 * Delayed timer is cancelled and the pending work is queued for
2657 * execution immediately. Other than timer handling, its behavior
2658 * is identical to flush_work_sync().
2660 * RETURNS:
2661 * %true if flush_work_sync() waited for the work to finish execution,
2662 * %false if it was already idle.
2664 bool flush_delayed_work_sync(struct delayed_work *dwork)
2666 if (del_timer_sync(&dwork->timer))
2667 __queue_work(raw_smp_processor_id(),
2668 get_work_cwq(&dwork->work)->wq, &dwork->work);
2669 return flush_work_sync(&dwork->work);
2671 EXPORT_SYMBOL(flush_delayed_work_sync);
2674 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2675 * @dwork: the delayed work cancel
2677 * This is cancel_work_sync() for delayed works.
2679 * RETURNS:
2680 * %true if @dwork was pending, %false otherwise.
2682 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2684 return __cancel_work_timer(&dwork->work, &dwork->timer);
2686 EXPORT_SYMBOL(cancel_delayed_work_sync);
2689 * schedule_work - put work task in global workqueue
2690 * @work: job to be done
2692 * Returns zero if @work was already on the kernel-global workqueue and
2693 * non-zero otherwise.
2695 * This puts a job in the kernel-global workqueue if it was not already
2696 * queued and leaves it in the same position on the kernel-global
2697 * workqueue otherwise.
2699 int schedule_work(struct work_struct *work)
2701 return queue_work(system_wq, work);
2703 EXPORT_SYMBOL(schedule_work);
2706 * schedule_work_on - put work task on a specific cpu
2707 * @cpu: cpu to put the work task on
2708 * @work: job to be done
2710 * This puts a job on a specific cpu
2712 int schedule_work_on(int cpu, struct work_struct *work)
2714 return queue_work_on(cpu, system_wq, work);
2716 EXPORT_SYMBOL(schedule_work_on);
2719 * schedule_delayed_work - put work task in global workqueue after delay
2720 * @dwork: job to be done
2721 * @delay: number of jiffies to wait or 0 for immediate execution
2723 * After waiting for a given time this puts a job in the kernel-global
2724 * workqueue.
2726 int schedule_delayed_work(struct delayed_work *dwork,
2727 unsigned long delay)
2729 return queue_delayed_work(system_wq, dwork, delay);
2731 EXPORT_SYMBOL(schedule_delayed_work);
2734 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2735 * @cpu: cpu to use
2736 * @dwork: job to be done
2737 * @delay: number of jiffies to wait
2739 * After waiting for a given time this puts a job in the kernel-global
2740 * workqueue on the specified CPU.
2742 int schedule_delayed_work_on(int cpu,
2743 struct delayed_work *dwork, unsigned long delay)
2745 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
2747 EXPORT_SYMBOL(schedule_delayed_work_on);
2750 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2751 * @func: the function to call
2753 * schedule_on_each_cpu() executes @func on each online CPU using the
2754 * system workqueue and blocks until all CPUs have completed.
2755 * schedule_on_each_cpu() is very slow.
2757 * RETURNS:
2758 * 0 on success, -errno on failure.
2760 int schedule_on_each_cpu(work_func_t func)
2762 int cpu;
2763 struct work_struct __percpu *works;
2765 works = alloc_percpu(struct work_struct);
2766 if (!works)
2767 return -ENOMEM;
2769 get_online_cpus();
2771 for_each_online_cpu(cpu) {
2772 struct work_struct *work = per_cpu_ptr(works, cpu);
2774 INIT_WORK(work, func);
2775 schedule_work_on(cpu, work);
2778 for_each_online_cpu(cpu)
2779 flush_work(per_cpu_ptr(works, cpu));
2781 put_online_cpus();
2782 free_percpu(works);
2783 return 0;
2787 * flush_scheduled_work - ensure that any scheduled work has run to completion.
2789 * Forces execution of the kernel-global workqueue and blocks until its
2790 * completion.
2792 * Think twice before calling this function! It's very easy to get into
2793 * trouble if you don't take great care. Either of the following situations
2794 * will lead to deadlock:
2796 * One of the work items currently on the workqueue needs to acquire
2797 * a lock held by your code or its caller.
2799 * Your code is running in the context of a work routine.
2801 * They will be detected by lockdep when they occur, but the first might not
2802 * occur very often. It depends on what work items are on the workqueue and
2803 * what locks they need, which you have no control over.
2805 * In most situations flushing the entire workqueue is overkill; you merely
2806 * need to know that a particular work item isn't queued and isn't running.
2807 * In such cases you should use cancel_delayed_work_sync() or
2808 * cancel_work_sync() instead.
2810 void flush_scheduled_work(void)
2812 flush_workqueue(system_wq);
2814 EXPORT_SYMBOL(flush_scheduled_work);
2817 * execute_in_process_context - reliably execute the routine with user context
2818 * @fn: the function to execute
2819 * @ew: guaranteed storage for the execute work structure (must
2820 * be available when the work executes)
2822 * Executes the function immediately if process context is available,
2823 * otherwise schedules the function for delayed execution.
2825 * Returns: 0 - function was executed
2826 * 1 - function was scheduled for execution
2828 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2830 if (!in_interrupt()) {
2831 fn(&ew->work);
2832 return 0;
2835 INIT_WORK(&ew->work, fn);
2836 schedule_work(&ew->work);
2838 return 1;
2840 EXPORT_SYMBOL_GPL(execute_in_process_context);
2842 int keventd_up(void)
2844 return system_wq != NULL;
2847 static int alloc_cwqs(struct workqueue_struct *wq)
2850 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
2851 * Make sure that the alignment isn't lower than that of
2852 * unsigned long long.
2854 const size_t size = sizeof(struct cpu_workqueue_struct);
2855 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
2856 __alignof__(unsigned long long));
2857 #ifdef CONFIG_SMP
2858 bool percpu = !(wq->flags & WQ_UNBOUND);
2859 #else
2860 bool percpu = false;
2861 #endif
2863 if (percpu)
2864 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
2865 else {
2866 void *ptr;
2869 * Allocate enough room to align cwq and put an extra
2870 * pointer at the end pointing back to the originally
2871 * allocated pointer which will be used for free.
2873 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
2874 if (ptr) {
2875 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
2876 *(void **)(wq->cpu_wq.single + 1) = ptr;
2880 /* just in case, make sure it's actually aligned */
2881 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
2882 return wq->cpu_wq.v ? 0 : -ENOMEM;
2885 static void free_cwqs(struct workqueue_struct *wq)
2887 #ifdef CONFIG_SMP
2888 bool percpu = !(wq->flags & WQ_UNBOUND);
2889 #else
2890 bool percpu = false;
2891 #endif
2893 if (percpu)
2894 free_percpu(wq->cpu_wq.pcpu);
2895 else if (wq->cpu_wq.single) {
2896 /* the pointer to free is stored right after the cwq */
2897 kfree(*(void **)(wq->cpu_wq.single + 1));
2901 static int wq_clamp_max_active(int max_active, unsigned int flags,
2902 const char *name)
2904 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
2906 if (max_active < 1 || max_active > lim)
2907 printk(KERN_WARNING "workqueue: max_active %d requested for %s "
2908 "is out of range, clamping between %d and %d\n",
2909 max_active, name, 1, lim);
2911 return clamp_val(max_active, 1, lim);
2914 struct workqueue_struct *__alloc_workqueue_key(const char *name,
2915 unsigned int flags,
2916 int max_active,
2917 struct lock_class_key *key,
2918 const char *lock_name)
2920 struct workqueue_struct *wq;
2921 unsigned int cpu;
2924 * Workqueues which may be used during memory reclaim should
2925 * have a rescuer to guarantee forward progress.
2927 if (flags & WQ_MEM_RECLAIM)
2928 flags |= WQ_RESCUER;
2931 * Unbound workqueues aren't concurrency managed and should be
2932 * dispatched to workers immediately.
2934 if (flags & WQ_UNBOUND)
2935 flags |= WQ_HIGHPRI;
2937 max_active = max_active ?: WQ_DFL_ACTIVE;
2938 max_active = wq_clamp_max_active(max_active, flags, name);
2940 wq = kzalloc(sizeof(*wq), GFP_KERNEL);
2941 if (!wq)
2942 goto err;
2944 wq->flags = flags;
2945 wq->saved_max_active = max_active;
2946 mutex_init(&wq->flush_mutex);
2947 atomic_set(&wq->nr_cwqs_to_flush, 0);
2948 INIT_LIST_HEAD(&wq->flusher_queue);
2949 INIT_LIST_HEAD(&wq->flusher_overflow);
2951 wq->name = name;
2952 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
2953 INIT_LIST_HEAD(&wq->list);
2955 if (alloc_cwqs(wq) < 0)
2956 goto err;
2958 for_each_cwq_cpu(cpu, wq) {
2959 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2960 struct global_cwq *gcwq = get_gcwq(cpu);
2962 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
2963 cwq->gcwq = gcwq;
2964 cwq->wq = wq;
2965 cwq->flush_color = -1;
2966 cwq->max_active = max_active;
2967 INIT_LIST_HEAD(&cwq->delayed_works);
2970 if (flags & WQ_RESCUER) {
2971 struct worker *rescuer;
2973 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
2974 goto err;
2976 wq->rescuer = rescuer = alloc_worker();
2977 if (!rescuer)
2978 goto err;
2980 rescuer->task = kthread_create(rescuer_thread, wq, "%s", name);
2981 if (IS_ERR(rescuer->task))
2982 goto err;
2984 rescuer->task->flags |= PF_THREAD_BOUND;
2985 wake_up_process(rescuer->task);
2989 * workqueue_lock protects global freeze state and workqueues
2990 * list. Grab it, set max_active accordingly and add the new
2991 * workqueue to workqueues list.
2993 spin_lock(&workqueue_lock);
2995 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
2996 for_each_cwq_cpu(cpu, wq)
2997 get_cwq(cpu, wq)->max_active = 0;
2999 list_add(&wq->list, &workqueues);
3001 spin_unlock(&workqueue_lock);
3003 return wq;
3004 err:
3005 if (wq) {
3006 free_cwqs(wq);
3007 free_mayday_mask(wq->mayday_mask);
3008 kfree(wq->rescuer);
3009 kfree(wq);
3011 return NULL;
3013 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
3016 * destroy_workqueue - safely terminate a workqueue
3017 * @wq: target workqueue
3019 * Safely destroy a workqueue. All work currently pending will be done first.
3021 void destroy_workqueue(struct workqueue_struct *wq)
3023 unsigned int flush_cnt = 0;
3024 unsigned int cpu;
3027 * Mark @wq dying and drain all pending works. Once WQ_DYING is
3028 * set, only chain queueing is allowed. IOW, only currently
3029 * pending or running work items on @wq can queue further work
3030 * items on it. @wq is flushed repeatedly until it becomes empty.
3031 * The number of flushing is detemined by the depth of chaining and
3032 * should be relatively short. Whine if it takes too long.
3034 wq->flags |= WQ_DYING;
3035 reflush:
3036 flush_workqueue(wq);
3038 for_each_cwq_cpu(cpu, wq) {
3039 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3040 bool drained;
3042 spin_lock_irq(&cwq->gcwq->lock);
3043 drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
3044 spin_unlock_irq(&cwq->gcwq->lock);
3046 if (drained)
3047 continue;
3049 if (++flush_cnt == 10 ||
3050 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
3051 printk(KERN_WARNING "workqueue %s: flush on "
3052 "destruction isn't complete after %u tries\n",
3053 wq->name, flush_cnt);
3054 goto reflush;
3058 * wq list is used to freeze wq, remove from list after
3059 * flushing is complete in case freeze races us.
3061 spin_lock(&workqueue_lock);
3062 list_del(&wq->list);
3063 spin_unlock(&workqueue_lock);
3065 /* sanity check */
3066 for_each_cwq_cpu(cpu, wq) {
3067 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3068 int i;
3070 for (i = 0; i < WORK_NR_COLORS; i++)
3071 BUG_ON(cwq->nr_in_flight[i]);
3072 BUG_ON(cwq->nr_active);
3073 BUG_ON(!list_empty(&cwq->delayed_works));
3076 if (wq->flags & WQ_RESCUER) {
3077 kthread_stop(wq->rescuer->task);
3078 free_mayday_mask(wq->mayday_mask);
3079 kfree(wq->rescuer);
3082 free_cwqs(wq);
3083 kfree(wq);
3085 EXPORT_SYMBOL_GPL(destroy_workqueue);
3088 * workqueue_set_max_active - adjust max_active of a workqueue
3089 * @wq: target workqueue
3090 * @max_active: new max_active value.
3092 * Set max_active of @wq to @max_active.
3094 * CONTEXT:
3095 * Don't call from IRQ context.
3097 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3099 unsigned int cpu;
3101 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3103 spin_lock(&workqueue_lock);
3105 wq->saved_max_active = max_active;
3107 for_each_cwq_cpu(cpu, wq) {
3108 struct global_cwq *gcwq = get_gcwq(cpu);
3110 spin_lock_irq(&gcwq->lock);
3112 if (!(wq->flags & WQ_FREEZABLE) ||
3113 !(gcwq->flags & GCWQ_FREEZING))
3114 get_cwq(gcwq->cpu, wq)->max_active = max_active;
3116 spin_unlock_irq(&gcwq->lock);
3119 spin_unlock(&workqueue_lock);
3121 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3124 * workqueue_congested - test whether a workqueue is congested
3125 * @cpu: CPU in question
3126 * @wq: target workqueue
3128 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3129 * no synchronization around this function and the test result is
3130 * unreliable and only useful as advisory hints or for debugging.
3132 * RETURNS:
3133 * %true if congested, %false otherwise.
3135 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
3137 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3139 return !list_empty(&cwq->delayed_works);
3141 EXPORT_SYMBOL_GPL(workqueue_congested);
3144 * work_cpu - return the last known associated cpu for @work
3145 * @work: the work of interest
3147 * RETURNS:
3148 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
3150 unsigned int work_cpu(struct work_struct *work)
3152 struct global_cwq *gcwq = get_work_gcwq(work);
3154 return gcwq ? gcwq->cpu : WORK_CPU_NONE;
3156 EXPORT_SYMBOL_GPL(work_cpu);
3159 * work_busy - test whether a work is currently pending or running
3160 * @work: the work to be tested
3162 * Test whether @work is currently pending or running. There is no
3163 * synchronization around this function and the test result is
3164 * unreliable and only useful as advisory hints or for debugging.
3165 * Especially for reentrant wqs, the pending state might hide the
3166 * running state.
3168 * RETURNS:
3169 * OR'd bitmask of WORK_BUSY_* bits.
3171 unsigned int work_busy(struct work_struct *work)
3173 struct global_cwq *gcwq = get_work_gcwq(work);
3174 unsigned long flags;
3175 unsigned int ret = 0;
3177 if (!gcwq)
3178 return false;
3180 spin_lock_irqsave(&gcwq->lock, flags);
3182 if (work_pending(work))
3183 ret |= WORK_BUSY_PENDING;
3184 if (find_worker_executing_work(gcwq, work))
3185 ret |= WORK_BUSY_RUNNING;
3187 spin_unlock_irqrestore(&gcwq->lock, flags);
3189 return ret;
3191 EXPORT_SYMBOL_GPL(work_busy);
3194 * CPU hotplug.
3196 * There are two challenges in supporting CPU hotplug. Firstly, there
3197 * are a lot of assumptions on strong associations among work, cwq and
3198 * gcwq which make migrating pending and scheduled works very
3199 * difficult to implement without impacting hot paths. Secondly,
3200 * gcwqs serve mix of short, long and very long running works making
3201 * blocked draining impractical.
3203 * This is solved by allowing a gcwq to be detached from CPU, running
3204 * it with unbound (rogue) workers and allowing it to be reattached
3205 * later if the cpu comes back online. A separate thread is created
3206 * to govern a gcwq in such state and is called the trustee of the
3207 * gcwq.
3209 * Trustee states and their descriptions.
3211 * START Command state used on startup. On CPU_DOWN_PREPARE, a
3212 * new trustee is started with this state.
3214 * IN_CHARGE Once started, trustee will enter this state after
3215 * assuming the manager role and making all existing
3216 * workers rogue. DOWN_PREPARE waits for trustee to
3217 * enter this state. After reaching IN_CHARGE, trustee
3218 * tries to execute the pending worklist until it's empty
3219 * and the state is set to BUTCHER, or the state is set
3220 * to RELEASE.
3222 * BUTCHER Command state which is set by the cpu callback after
3223 * the cpu has went down. Once this state is set trustee
3224 * knows that there will be no new works on the worklist
3225 * and once the worklist is empty it can proceed to
3226 * killing idle workers.
3228 * RELEASE Command state which is set by the cpu callback if the
3229 * cpu down has been canceled or it has come online
3230 * again. After recognizing this state, trustee stops
3231 * trying to drain or butcher and clears ROGUE, rebinds
3232 * all remaining workers back to the cpu and releases
3233 * manager role.
3235 * DONE Trustee will enter this state after BUTCHER or RELEASE
3236 * is complete.
3238 * trustee CPU draining
3239 * took over down complete
3240 * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE
3241 * | | ^
3242 * | CPU is back online v return workers |
3243 * ----------------> RELEASE --------------
3247 * trustee_wait_event_timeout - timed event wait for trustee
3248 * @cond: condition to wait for
3249 * @timeout: timeout in jiffies
3251 * wait_event_timeout() for trustee to use. Handles locking and
3252 * checks for RELEASE request.
3254 * CONTEXT:
3255 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3256 * multiple times. To be used by trustee.
3258 * RETURNS:
3259 * Positive indicating left time if @cond is satisfied, 0 if timed
3260 * out, -1 if canceled.
3262 #define trustee_wait_event_timeout(cond, timeout) ({ \
3263 long __ret = (timeout); \
3264 while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) && \
3265 __ret) { \
3266 spin_unlock_irq(&gcwq->lock); \
3267 __wait_event_timeout(gcwq->trustee_wait, (cond) || \
3268 (gcwq->trustee_state == TRUSTEE_RELEASE), \
3269 __ret); \
3270 spin_lock_irq(&gcwq->lock); \
3272 gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret); \
3276 * trustee_wait_event - event wait for trustee
3277 * @cond: condition to wait for
3279 * wait_event() for trustee to use. Automatically handles locking and
3280 * checks for CANCEL request.
3282 * CONTEXT:
3283 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3284 * multiple times. To be used by trustee.
3286 * RETURNS:
3287 * 0 if @cond is satisfied, -1 if canceled.
3289 #define trustee_wait_event(cond) ({ \
3290 long __ret1; \
3291 __ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\
3292 __ret1 < 0 ? -1 : 0; \
3295 static int __cpuinit trustee_thread(void *__gcwq)
3297 struct global_cwq *gcwq = __gcwq;
3298 struct worker *worker;
3299 struct work_struct *work;
3300 struct hlist_node *pos;
3301 long rc;
3302 int i;
3304 BUG_ON(gcwq->cpu != smp_processor_id());
3306 spin_lock_irq(&gcwq->lock);
3308 * Claim the manager position and make all workers rogue.
3309 * Trustee must be bound to the target cpu and can't be
3310 * cancelled.
3312 BUG_ON(gcwq->cpu != smp_processor_id());
3313 rc = trustee_wait_event(!(gcwq->flags & GCWQ_MANAGING_WORKERS));
3314 BUG_ON(rc < 0);
3316 gcwq->flags |= GCWQ_MANAGING_WORKERS;
3318 list_for_each_entry(worker, &gcwq->idle_list, entry)
3319 worker->flags |= WORKER_ROGUE;
3321 for_each_busy_worker(worker, i, pos, gcwq)
3322 worker->flags |= WORKER_ROGUE;
3325 * Call schedule() so that we cross rq->lock and thus can
3326 * guarantee sched callbacks see the rogue flag. This is
3327 * necessary as scheduler callbacks may be invoked from other
3328 * cpus.
3330 spin_unlock_irq(&gcwq->lock);
3331 schedule();
3332 spin_lock_irq(&gcwq->lock);
3335 * Sched callbacks are disabled now. Zap nr_running. After
3336 * this, nr_running stays zero and need_more_worker() and
3337 * keep_working() are always true as long as the worklist is
3338 * not empty.
3340 atomic_set(get_gcwq_nr_running(gcwq->cpu), 0);
3342 spin_unlock_irq(&gcwq->lock);
3343 del_timer_sync(&gcwq->idle_timer);
3344 spin_lock_irq(&gcwq->lock);
3347 * We're now in charge. Notify and proceed to drain. We need
3348 * to keep the gcwq running during the whole CPU down
3349 * procedure as other cpu hotunplug callbacks may need to
3350 * flush currently running tasks.
3352 gcwq->trustee_state = TRUSTEE_IN_CHARGE;
3353 wake_up_all(&gcwq->trustee_wait);
3356 * The original cpu is in the process of dying and may go away
3357 * anytime now. When that happens, we and all workers would
3358 * be migrated to other cpus. Try draining any left work. We
3359 * want to get it over with ASAP - spam rescuers, wake up as
3360 * many idlers as necessary and create new ones till the
3361 * worklist is empty. Note that if the gcwq is frozen, there
3362 * may be frozen works in freezable cwqs. Don't declare
3363 * completion while frozen.
3365 while (gcwq->nr_workers != gcwq->nr_idle ||
3366 gcwq->flags & GCWQ_FREEZING ||
3367 gcwq->trustee_state == TRUSTEE_IN_CHARGE) {
3368 int nr_works = 0;
3370 list_for_each_entry(work, &gcwq->worklist, entry) {
3371 send_mayday(work);
3372 nr_works++;
3375 list_for_each_entry(worker, &gcwq->idle_list, entry) {
3376 if (!nr_works--)
3377 break;
3378 wake_up_process(worker->task);
3381 if (need_to_create_worker(gcwq)) {
3382 spin_unlock_irq(&gcwq->lock);
3383 worker = create_worker(gcwq, false);
3384 spin_lock_irq(&gcwq->lock);
3385 if (worker) {
3386 worker->flags |= WORKER_ROGUE;
3387 start_worker(worker);
3391 /* give a breather */
3392 if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0)
3393 break;
3397 * Either all works have been scheduled and cpu is down, or
3398 * cpu down has already been canceled. Wait for and butcher
3399 * all workers till we're canceled.
3401 do {
3402 rc = trustee_wait_event(!list_empty(&gcwq->idle_list));
3403 while (!list_empty(&gcwq->idle_list))
3404 destroy_worker(list_first_entry(&gcwq->idle_list,
3405 struct worker, entry));
3406 } while (gcwq->nr_workers && rc >= 0);
3409 * At this point, either draining has completed and no worker
3410 * is left, or cpu down has been canceled or the cpu is being
3411 * brought back up. There shouldn't be any idle one left.
3412 * Tell the remaining busy ones to rebind once it finishes the
3413 * currently scheduled works by scheduling the rebind_work.
3415 WARN_ON(!list_empty(&gcwq->idle_list));
3417 for_each_busy_worker(worker, i, pos, gcwq) {
3418 struct work_struct *rebind_work = &worker->rebind_work;
3419 unsigned long worker_flags = worker->flags;
3422 * Rebind_work may race with future cpu hotplug
3423 * operations. Use a separate flag to mark that
3424 * rebinding is scheduled. The morphing should
3425 * be atomic.
3427 worker_flags |= WORKER_REBIND;
3428 worker_flags &= ~WORKER_ROGUE;
3429 ACCESS_ONCE(worker->flags) = worker_flags;
3431 /* queue rebind_work, wq doesn't matter, use the default one */
3432 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
3433 work_data_bits(rebind_work)))
3434 continue;
3436 debug_work_activate(rebind_work);
3437 insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
3438 worker->scheduled.next,
3439 work_color_to_flags(WORK_NO_COLOR));
3442 /* relinquish manager role */
3443 gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
3445 /* notify completion */
3446 gcwq->trustee = NULL;
3447 gcwq->trustee_state = TRUSTEE_DONE;
3448 wake_up_all(&gcwq->trustee_wait);
3449 spin_unlock_irq(&gcwq->lock);
3450 return 0;
3454 * wait_trustee_state - wait for trustee to enter the specified state
3455 * @gcwq: gcwq the trustee of interest belongs to
3456 * @state: target state to wait for
3458 * Wait for the trustee to reach @state. DONE is already matched.
3460 * CONTEXT:
3461 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3462 * multiple times. To be used by cpu_callback.
3464 static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state)
3465 __releases(&gcwq->lock)
3466 __acquires(&gcwq->lock)
3468 if (!(gcwq->trustee_state == state ||
3469 gcwq->trustee_state == TRUSTEE_DONE)) {
3470 spin_unlock_irq(&gcwq->lock);
3471 __wait_event(gcwq->trustee_wait,
3472 gcwq->trustee_state == state ||
3473 gcwq->trustee_state == TRUSTEE_DONE);
3474 spin_lock_irq(&gcwq->lock);
3478 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
3479 unsigned long action,
3480 void *hcpu)
3482 unsigned int cpu = (unsigned long)hcpu;
3483 struct global_cwq *gcwq = get_gcwq(cpu);
3484 struct task_struct *new_trustee = NULL;
3485 struct worker *uninitialized_var(new_worker);
3486 unsigned long flags;
3488 action &= ~CPU_TASKS_FROZEN;
3490 switch (action) {
3491 case CPU_DOWN_PREPARE:
3492 new_trustee = kthread_create(trustee_thread, gcwq,
3493 "workqueue_trustee/%d\n", cpu);
3494 if (IS_ERR(new_trustee))
3495 return notifier_from_errno(PTR_ERR(new_trustee));
3496 kthread_bind(new_trustee, cpu);
3497 /* fall through */
3498 case CPU_UP_PREPARE:
3499 BUG_ON(gcwq->first_idle);
3500 new_worker = create_worker(gcwq, false);
3501 if (!new_worker) {
3502 if (new_trustee)
3503 kthread_stop(new_trustee);
3504 return NOTIFY_BAD;
3508 /* some are called w/ irq disabled, don't disturb irq status */
3509 spin_lock_irqsave(&gcwq->lock, flags);
3511 switch (action) {
3512 case CPU_DOWN_PREPARE:
3513 /* initialize trustee and tell it to acquire the gcwq */
3514 BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE);
3515 gcwq->trustee = new_trustee;
3516 gcwq->trustee_state = TRUSTEE_START;
3517 wake_up_process(gcwq->trustee);
3518 wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE);
3519 /* fall through */
3520 case CPU_UP_PREPARE:
3521 BUG_ON(gcwq->first_idle);
3522 gcwq->first_idle = new_worker;
3523 break;
3525 case CPU_DYING:
3527 * Before this, the trustee and all workers except for
3528 * the ones which are still executing works from
3529 * before the last CPU down must be on the cpu. After
3530 * this, they'll all be diasporas.
3532 gcwq->flags |= GCWQ_DISASSOCIATED;
3533 break;
3535 case CPU_POST_DEAD:
3536 gcwq->trustee_state = TRUSTEE_BUTCHER;
3537 /* fall through */
3538 case CPU_UP_CANCELED:
3539 destroy_worker(gcwq->first_idle);
3540 gcwq->first_idle = NULL;
3541 break;
3543 case CPU_DOWN_FAILED:
3544 case CPU_ONLINE:
3545 gcwq->flags &= ~GCWQ_DISASSOCIATED;
3546 if (gcwq->trustee_state != TRUSTEE_DONE) {
3547 gcwq->trustee_state = TRUSTEE_RELEASE;
3548 wake_up_process(gcwq->trustee);
3549 wait_trustee_state(gcwq, TRUSTEE_DONE);
3553 * Trustee is done and there might be no worker left.
3554 * Put the first_idle in and request a real manager to
3555 * take a look.
3557 spin_unlock_irq(&gcwq->lock);
3558 kthread_bind(gcwq->first_idle->task, cpu);
3559 spin_lock_irq(&gcwq->lock);
3560 gcwq->flags |= GCWQ_MANAGE_WORKERS;
3561 start_worker(gcwq->first_idle);
3562 gcwq->first_idle = NULL;
3563 break;
3566 spin_unlock_irqrestore(&gcwq->lock, flags);
3568 return notifier_from_errno(0);
3572 * Workqueues should be brought up before normal priority CPU notifiers.
3573 * This will be registered high priority CPU notifier.
3575 static int __devinit workqueue_cpu_up_callback(struct notifier_block *nfb,
3576 unsigned long action,
3577 void *hcpu)
3579 switch (action & ~CPU_TASKS_FROZEN) {
3580 case CPU_UP_PREPARE:
3581 case CPU_UP_CANCELED:
3582 case CPU_DOWN_FAILED:
3583 case CPU_ONLINE:
3584 return workqueue_cpu_callback(nfb, action, hcpu);
3586 return NOTIFY_OK;
3590 * Workqueues should be brought down after normal priority CPU notifiers.
3591 * This will be registered as low priority CPU notifier.
3593 static int __devinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3594 unsigned long action,
3595 void *hcpu)
3597 switch (action & ~CPU_TASKS_FROZEN) {
3598 case CPU_DOWN_PREPARE:
3599 case CPU_DYING:
3600 case CPU_POST_DEAD:
3601 return workqueue_cpu_callback(nfb, action, hcpu);
3603 return NOTIFY_OK;
3606 #ifdef CONFIG_SMP
3608 struct work_for_cpu {
3609 struct work_struct work;
3610 long (*fn)(void *);
3611 void *arg;
3612 long ret;
3615 static void work_for_cpu_fn(struct work_struct *work)
3617 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
3619 wfc->ret = wfc->fn(wfc->arg);
3623 * work_on_cpu - run a function in user context on a particular cpu
3624 * @cpu: the cpu to run on
3625 * @fn: the function to run
3626 * @arg: the function arg
3628 * This will return the value @fn returns.
3629 * It is up to the caller to ensure that the cpu doesn't go offline.
3630 * The caller must not hold any locks which would prevent @fn from completing.
3632 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3634 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
3636 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
3637 schedule_work_on(cpu, &wfc.work);
3638 flush_work(&wfc.work);
3639 return wfc.ret;
3641 EXPORT_SYMBOL_GPL(work_on_cpu);
3642 #endif /* CONFIG_SMP */
3644 #ifdef CONFIG_FREEZER
3647 * freeze_workqueues_begin - begin freezing workqueues
3649 * Start freezing workqueues. After this function returns, all freezable
3650 * workqueues will queue new works to their frozen_works list instead of
3651 * gcwq->worklist.
3653 * CONTEXT:
3654 * Grabs and releases workqueue_lock and gcwq->lock's.
3656 void freeze_workqueues_begin(void)
3658 unsigned int cpu;
3660 spin_lock(&workqueue_lock);
3662 BUG_ON(workqueue_freezing);
3663 workqueue_freezing = true;
3665 for_each_gcwq_cpu(cpu) {
3666 struct global_cwq *gcwq = get_gcwq(cpu);
3667 struct workqueue_struct *wq;
3669 spin_lock_irq(&gcwq->lock);
3671 BUG_ON(gcwq->flags & GCWQ_FREEZING);
3672 gcwq->flags |= GCWQ_FREEZING;
3674 list_for_each_entry(wq, &workqueues, list) {
3675 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3677 if (cwq && wq->flags & WQ_FREEZABLE)
3678 cwq->max_active = 0;
3681 spin_unlock_irq(&gcwq->lock);
3684 spin_unlock(&workqueue_lock);
3688 * freeze_workqueues_busy - are freezable workqueues still busy?
3690 * Check whether freezing is complete. This function must be called
3691 * between freeze_workqueues_begin() and thaw_workqueues().
3693 * CONTEXT:
3694 * Grabs and releases workqueue_lock.
3696 * RETURNS:
3697 * %true if some freezable workqueues are still busy. %false if freezing
3698 * is complete.
3700 bool freeze_workqueues_busy(void)
3702 unsigned int cpu;
3703 bool busy = false;
3705 spin_lock(&workqueue_lock);
3707 BUG_ON(!workqueue_freezing);
3709 for_each_gcwq_cpu(cpu) {
3710 struct workqueue_struct *wq;
3712 * nr_active is monotonically decreasing. It's safe
3713 * to peek without lock.
3715 list_for_each_entry(wq, &workqueues, list) {
3716 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3718 if (!cwq || !(wq->flags & WQ_FREEZABLE))
3719 continue;
3721 BUG_ON(cwq->nr_active < 0);
3722 if (cwq->nr_active) {
3723 busy = true;
3724 goto out_unlock;
3728 out_unlock:
3729 spin_unlock(&workqueue_lock);
3730 return busy;
3734 * thaw_workqueues - thaw workqueues
3736 * Thaw workqueues. Normal queueing is restored and all collected
3737 * frozen works are transferred to their respective gcwq worklists.
3739 * CONTEXT:
3740 * Grabs and releases workqueue_lock and gcwq->lock's.
3742 void thaw_workqueues(void)
3744 unsigned int cpu;
3746 spin_lock(&workqueue_lock);
3748 if (!workqueue_freezing)
3749 goto out_unlock;
3751 for_each_gcwq_cpu(cpu) {
3752 struct global_cwq *gcwq = get_gcwq(cpu);
3753 struct workqueue_struct *wq;
3755 spin_lock_irq(&gcwq->lock);
3757 BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3758 gcwq->flags &= ~GCWQ_FREEZING;
3760 list_for_each_entry(wq, &workqueues, list) {
3761 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3763 if (!cwq || !(wq->flags & WQ_FREEZABLE))
3764 continue;
3766 /* restore max_active and repopulate worklist */
3767 cwq->max_active = wq->saved_max_active;
3769 while (!list_empty(&cwq->delayed_works) &&
3770 cwq->nr_active < cwq->max_active)
3771 cwq_activate_first_delayed(cwq);
3774 wake_up_worker(gcwq);
3776 spin_unlock_irq(&gcwq->lock);
3779 workqueue_freezing = false;
3780 out_unlock:
3781 spin_unlock(&workqueue_lock);
3783 #endif /* CONFIG_FREEZER */
3785 static int __init init_workqueues(void)
3787 unsigned int cpu;
3788 int i;
3790 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3791 cpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3793 /* initialize gcwqs */
3794 for_each_gcwq_cpu(cpu) {
3795 struct global_cwq *gcwq = get_gcwq(cpu);
3797 spin_lock_init(&gcwq->lock);
3798 INIT_LIST_HEAD(&gcwq->worklist);
3799 gcwq->cpu = cpu;
3800 gcwq->flags |= GCWQ_DISASSOCIATED;
3802 INIT_LIST_HEAD(&gcwq->idle_list);
3803 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3804 INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3806 init_timer_deferrable(&gcwq->idle_timer);
3807 gcwq->idle_timer.function = idle_worker_timeout;
3808 gcwq->idle_timer.data = (unsigned long)gcwq;
3810 setup_timer(&gcwq->mayday_timer, gcwq_mayday_timeout,
3811 (unsigned long)gcwq);
3813 ida_init(&gcwq->worker_ida);
3815 gcwq->trustee_state = TRUSTEE_DONE;
3816 init_waitqueue_head(&gcwq->trustee_wait);
3819 /* create the initial worker */
3820 for_each_online_gcwq_cpu(cpu) {
3821 struct global_cwq *gcwq = get_gcwq(cpu);
3822 struct worker *worker;
3824 if (cpu != WORK_CPU_UNBOUND)
3825 gcwq->flags &= ~GCWQ_DISASSOCIATED;
3826 worker = create_worker(gcwq, true);
3827 BUG_ON(!worker);
3828 spin_lock_irq(&gcwq->lock);
3829 start_worker(worker);
3830 spin_unlock_irq(&gcwq->lock);
3833 system_wq = alloc_workqueue("events", 0, 0);
3834 system_long_wq = alloc_workqueue("events_long", 0, 0);
3835 system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
3836 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3837 WQ_UNBOUND_MAX_ACTIVE);
3838 system_freezable_wq = alloc_workqueue("events_freezable",
3839 WQ_FREEZABLE, 0);
3840 system_nrt_freezable_wq = alloc_workqueue("events_nrt_freezable",
3841 WQ_NON_REENTRANT | WQ_FREEZABLE, 0);
3842 BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq ||
3843 !system_unbound_wq || !system_freezable_wq ||
3844 !system_nrt_freezable_wq);
3845 return 0;
3847 early_initcall(init_workqueues);