2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/pmem.h>
29 #include <linux/sched.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
35 #define RADIX_DAX_MASK 0xf
36 #define RADIX_DAX_SHIFT 4
37 #define RADIX_DAX_PTE (0x4 | RADIX_TREE_EXCEPTIONAL_ENTRY)
38 #define RADIX_DAX_PMD (0x8 | RADIX_TREE_EXCEPTIONAL_ENTRY)
39 #define RADIX_DAX_TYPE(entry) ((unsigned long)entry & RADIX_DAX_MASK)
40 #define RADIX_DAX_SECTOR(entry) (((unsigned long)entry >> RADIX_DAX_SHIFT))
41 #define RADIX_DAX_ENTRY(sector, pmd) ((void *)((unsigned long)sector << \
42 RADIX_DAX_SHIFT | (pmd ? RADIX_DAX_PMD : RADIX_DAX_PTE)))
44 static long dax_map_atomic(struct block_device
*bdev
, struct blk_dax_ctl
*dax
)
46 struct request_queue
*q
= bdev
->bd_queue
;
49 dax
->addr
= (void __pmem
*) ERR_PTR(-EIO
);
50 if (blk_queue_enter(q
, true) != 0)
53 rc
= bdev_direct_access(bdev
, dax
);
55 dax
->addr
= (void __pmem
*) ERR_PTR(rc
);
62 static void dax_unmap_atomic(struct block_device
*bdev
,
63 const struct blk_dax_ctl
*dax
)
65 if (IS_ERR(dax
->addr
))
67 blk_queue_exit(bdev
->bd_queue
);
70 struct page
*read_dax_sector(struct block_device
*bdev
, sector_t n
)
72 struct page
*page
= alloc_pages(GFP_KERNEL
, 0);
73 struct blk_dax_ctl dax
= {
75 .sector
= n
& ~((((int) PAGE_SIZE
) / 512) - 1),
80 return ERR_PTR(-ENOMEM
);
82 rc
= dax_map_atomic(bdev
, &dax
);
85 memcpy_from_pmem(page_address(page
), dax
.addr
, PAGE_SIZE
);
86 dax_unmap_atomic(bdev
, &dax
);
91 * dax_clear_sectors() is called from within transaction context from XFS,
92 * and hence this means the stack from this point must follow GFP_NOFS
93 * semantics for all operations.
95 int dax_clear_sectors(struct block_device
*bdev
, sector_t _sector
, long _size
)
97 struct blk_dax_ctl dax
= {
106 count
= dax_map_atomic(bdev
, &dax
);
109 sz
= min_t(long, count
, SZ_128K
);
110 clear_pmem(dax
.addr
, sz
);
112 dax
.sector
+= sz
/ 512;
113 dax_unmap_atomic(bdev
, &dax
);
120 EXPORT_SYMBOL_GPL(dax_clear_sectors
);
122 /* the clear_pmem() calls are ordered by a wmb_pmem() in the caller */
123 static void dax_new_buf(void __pmem
*addr
, unsigned size
, unsigned first
,
124 loff_t pos
, loff_t end
)
126 loff_t final
= end
- pos
+ first
; /* The final byte of the buffer */
129 clear_pmem(addr
, first
);
131 clear_pmem(addr
+ final
, size
- final
);
134 static bool buffer_written(struct buffer_head
*bh
)
136 return buffer_mapped(bh
) && !buffer_unwritten(bh
);
140 * When ext4 encounters a hole, it returns without modifying the buffer_head
141 * which means that we can't trust b_size. To cope with this, we set b_state
142 * to 0 before calling get_block and, if any bit is set, we know we can trust
143 * b_size. Unfortunate, really, since ext4 knows precisely how long a hole is
144 * and would save us time calling get_block repeatedly.
146 static bool buffer_size_valid(struct buffer_head
*bh
)
148 return bh
->b_state
!= 0;
152 static sector_t
to_sector(const struct buffer_head
*bh
,
153 const struct inode
*inode
)
155 sector_t sector
= bh
->b_blocknr
<< (inode
->i_blkbits
- 9);
160 static ssize_t
dax_io(struct inode
*inode
, struct iov_iter
*iter
,
161 loff_t start
, loff_t end
, get_block_t get_block
,
162 struct buffer_head
*bh
)
164 loff_t pos
= start
, max
= start
, bh_max
= start
;
165 bool hole
= false, need_wmb
= false;
166 struct block_device
*bdev
= NULL
;
167 int rw
= iov_iter_rw(iter
), rc
;
169 struct blk_dax_ctl dax
= {
170 .addr
= (void __pmem
*) ERR_PTR(-EIO
),
174 end
= min(end
, i_size_read(inode
));
179 unsigned blkbits
= inode
->i_blkbits
;
180 long page
= pos
>> PAGE_SHIFT
;
181 sector_t block
= page
<< (PAGE_SHIFT
- blkbits
);
182 unsigned first
= pos
- (block
<< blkbits
);
186 bh
->b_size
= PAGE_ALIGN(end
- pos
);
188 rc
= get_block(inode
, block
, bh
, rw
== WRITE
);
191 if (!buffer_size_valid(bh
))
192 bh
->b_size
= 1 << blkbits
;
193 bh_max
= pos
- first
+ bh
->b_size
;
196 unsigned done
= bh
->b_size
-
197 (bh_max
- (pos
- first
));
198 bh
->b_blocknr
+= done
>> blkbits
;
202 hole
= rw
== READ
&& !buffer_written(bh
);
204 size
= bh
->b_size
- first
;
206 dax_unmap_atomic(bdev
, &dax
);
207 dax
.sector
= to_sector(bh
, inode
);
208 dax
.size
= bh
->b_size
;
209 map_len
= dax_map_atomic(bdev
, &dax
);
214 if (buffer_unwritten(bh
) || buffer_new(bh
)) {
215 dax_new_buf(dax
.addr
, map_len
, first
,
220 size
= map_len
- first
;
222 max
= min(pos
+ size
, end
);
225 if (iov_iter_rw(iter
) == WRITE
) {
226 len
= copy_from_iter_pmem(dax
.addr
, max
- pos
, iter
);
229 len
= copy_to_iter((void __force
*) dax
.addr
, max
- pos
,
232 len
= iov_iter_zero(max
- pos
, iter
);
240 if (!IS_ERR(dax
.addr
))
246 dax_unmap_atomic(bdev
, &dax
);
248 return (pos
== start
) ? rc
: pos
- start
;
252 * dax_do_io - Perform I/O to a DAX file
253 * @iocb: The control block for this I/O
254 * @inode: The file which the I/O is directed at
255 * @iter: The addresses to do I/O from or to
256 * @get_block: The filesystem method used to translate file offsets to blocks
257 * @end_io: A filesystem callback for I/O completion
260 * This function uses the same locking scheme as do_blockdev_direct_IO:
261 * If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the
262 * caller for writes. For reads, we take and release the i_mutex ourselves.
263 * If DIO_LOCKING is not set, the filesystem takes care of its own locking.
264 * As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O
267 ssize_t
dax_do_io(struct kiocb
*iocb
, struct inode
*inode
,
268 struct iov_iter
*iter
, get_block_t get_block
,
269 dio_iodone_t end_io
, int flags
)
271 struct buffer_head bh
;
272 ssize_t retval
= -EINVAL
;
273 loff_t pos
= iocb
->ki_pos
;
274 loff_t end
= pos
+ iov_iter_count(iter
);
276 memset(&bh
, 0, sizeof(bh
));
277 bh
.b_bdev
= inode
->i_sb
->s_bdev
;
279 if ((flags
& DIO_LOCKING
) && iov_iter_rw(iter
) == READ
) {
280 struct address_space
*mapping
= inode
->i_mapping
;
282 retval
= filemap_write_and_wait_range(mapping
, pos
, end
- 1);
289 /* Protects against truncate */
290 if (!(flags
& DIO_SKIP_DIO_COUNT
))
291 inode_dio_begin(inode
);
293 retval
= dax_io(inode
, iter
, pos
, end
, get_block
, &bh
);
295 if ((flags
& DIO_LOCKING
) && iov_iter_rw(iter
) == READ
)
301 err
= end_io(iocb
, pos
, retval
, bh
.b_private
);
306 if (!(flags
& DIO_SKIP_DIO_COUNT
))
307 inode_dio_end(inode
);
311 EXPORT_SYMBOL_GPL(dax_do_io
);
314 * The user has performed a load from a hole in the file. Allocating
315 * a new page in the file would cause excessive storage usage for
316 * workloads with sparse files. We allocate a page cache page instead.
317 * We'll kick it out of the page cache if it's ever written to,
318 * otherwise it will simply fall out of the page cache under memory
319 * pressure without ever having been dirtied.
321 static int dax_load_hole(struct address_space
*mapping
, struct page
*page
,
322 struct vm_fault
*vmf
)
325 struct inode
*inode
= mapping
->host
;
327 page
= find_or_create_page(mapping
, vmf
->pgoff
,
328 GFP_KERNEL
| __GFP_ZERO
);
331 /* Recheck i_size under page lock to avoid truncate race */
332 size
= (i_size_read(inode
) + PAGE_SIZE
- 1) >> PAGE_SHIFT
;
333 if (vmf
->pgoff
>= size
) {
336 return VM_FAULT_SIGBUS
;
340 return VM_FAULT_LOCKED
;
343 static int copy_user_bh(struct page
*to
, struct inode
*inode
,
344 struct buffer_head
*bh
, unsigned long vaddr
)
346 struct blk_dax_ctl dax
= {
347 .sector
= to_sector(bh
, inode
),
350 struct block_device
*bdev
= bh
->b_bdev
;
353 if (dax_map_atomic(bdev
, &dax
) < 0)
354 return PTR_ERR(dax
.addr
);
355 vto
= kmap_atomic(to
);
356 copy_user_page(vto
, (void __force
*)dax
.addr
, vaddr
, to
);
358 dax_unmap_atomic(bdev
, &dax
);
363 #define DAX_PMD_INDEX(page_index) (page_index & (PMD_MASK >> PAGE_SHIFT))
365 static int dax_radix_entry(struct address_space
*mapping
, pgoff_t index
,
366 sector_t sector
, bool pmd_entry
, bool dirty
)
368 struct radix_tree_root
*page_tree
= &mapping
->page_tree
;
369 pgoff_t pmd_index
= DAX_PMD_INDEX(index
);
373 WARN_ON_ONCE(pmd_entry
&& !dirty
);
375 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
377 spin_lock_irq(&mapping
->tree_lock
);
379 entry
= radix_tree_lookup(page_tree
, pmd_index
);
380 if (entry
&& RADIX_DAX_TYPE(entry
) == RADIX_DAX_PMD
) {
385 entry
= radix_tree_lookup(page_tree
, index
);
387 type
= RADIX_DAX_TYPE(entry
);
388 if (WARN_ON_ONCE(type
!= RADIX_DAX_PTE
&&
389 type
!= RADIX_DAX_PMD
)) {
394 if (!pmd_entry
|| type
== RADIX_DAX_PMD
)
398 * We only insert dirty PMD entries into the radix tree. This
399 * means we don't need to worry about removing a dirty PTE
400 * entry and inserting a clean PMD entry, thus reducing the
401 * range we would flush with a follow-up fsync/msync call.
403 radix_tree_delete(&mapping
->page_tree
, index
);
404 mapping
->nrexceptional
--;
407 if (sector
== NO_SECTOR
) {
409 * This can happen during correct operation if our pfn_mkwrite
410 * fault raced against a hole punch operation. If this
411 * happens the pte that was hole punched will have been
412 * unmapped and the radix tree entry will have been removed by
413 * the time we are called, but the call will still happen. We
414 * will return all the way up to wp_pfn_shared(), where the
415 * pte_same() check will fail, eventually causing page fault
416 * to be retried by the CPU.
421 error
= radix_tree_insert(page_tree
, index
,
422 RADIX_DAX_ENTRY(sector
, pmd_entry
));
426 mapping
->nrexceptional
++;
429 radix_tree_tag_set(page_tree
, index
, PAGECACHE_TAG_DIRTY
);
431 spin_unlock_irq(&mapping
->tree_lock
);
435 static int dax_writeback_one(struct block_device
*bdev
,
436 struct address_space
*mapping
, pgoff_t index
, void *entry
)
438 struct radix_tree_root
*page_tree
= &mapping
->page_tree
;
439 int type
= RADIX_DAX_TYPE(entry
);
440 struct radix_tree_node
*node
;
441 struct blk_dax_ctl dax
;
445 spin_lock_irq(&mapping
->tree_lock
);
447 * Regular page slots are stabilized by the page lock even
448 * without the tree itself locked. These unlocked entries
449 * need verification under the tree lock.
451 if (!__radix_tree_lookup(page_tree
, index
, &node
, &slot
))
456 /* another fsync thread may have already written back this entry */
457 if (!radix_tree_tag_get(page_tree
, index
, PAGECACHE_TAG_TOWRITE
))
460 if (WARN_ON_ONCE(type
!= RADIX_DAX_PTE
&& type
!= RADIX_DAX_PMD
)) {
465 dax
.sector
= RADIX_DAX_SECTOR(entry
);
466 dax
.size
= (type
== RADIX_DAX_PMD
? PMD_SIZE
: PAGE_SIZE
);
467 spin_unlock_irq(&mapping
->tree_lock
);
470 * We cannot hold tree_lock while calling dax_map_atomic() because it
471 * eventually calls cond_resched().
473 ret
= dax_map_atomic(bdev
, &dax
);
477 if (WARN_ON_ONCE(ret
< dax
.size
)) {
482 wb_cache_pmem(dax
.addr
, dax
.size
);
484 spin_lock_irq(&mapping
->tree_lock
);
485 radix_tree_tag_clear(page_tree
, index
, PAGECACHE_TAG_TOWRITE
);
486 spin_unlock_irq(&mapping
->tree_lock
);
488 dax_unmap_atomic(bdev
, &dax
);
492 spin_unlock_irq(&mapping
->tree_lock
);
497 * Flush the mapping to the persistent domain within the byte range of [start,
498 * end]. This is required by data integrity operations to ensure file data is
499 * on persistent storage prior to completion of the operation.
501 int dax_writeback_mapping_range(struct address_space
*mapping
,
502 struct block_device
*bdev
, struct writeback_control
*wbc
)
504 struct inode
*inode
= mapping
->host
;
505 pgoff_t start_index
, end_index
, pmd_index
;
506 pgoff_t indices
[PAGEVEC_SIZE
];
512 if (WARN_ON_ONCE(inode
->i_blkbits
!= PAGE_SHIFT
))
515 if (!mapping
->nrexceptional
|| wbc
->sync_mode
!= WB_SYNC_ALL
)
518 start_index
= wbc
->range_start
>> PAGE_SHIFT
;
519 end_index
= wbc
->range_end
>> PAGE_SHIFT
;
520 pmd_index
= DAX_PMD_INDEX(start_index
);
523 entry
= radix_tree_lookup(&mapping
->page_tree
, pmd_index
);
526 /* see if the start of our range is covered by a PMD entry */
527 if (entry
&& RADIX_DAX_TYPE(entry
) == RADIX_DAX_PMD
)
528 start_index
= pmd_index
;
530 tag_pages_for_writeback(mapping
, start_index
, end_index
);
532 pagevec_init(&pvec
, 0);
534 pvec
.nr
= find_get_entries_tag(mapping
, start_index
,
535 PAGECACHE_TAG_TOWRITE
, PAGEVEC_SIZE
,
536 pvec
.pages
, indices
);
541 for (i
= 0; i
< pvec
.nr
; i
++) {
542 if (indices
[i
] > end_index
) {
547 ret
= dax_writeback_one(bdev
, mapping
, indices
[i
],
556 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range
);
558 static int dax_insert_mapping(struct inode
*inode
, struct buffer_head
*bh
,
559 struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
561 unsigned long vaddr
= (unsigned long)vmf
->virtual_address
;
562 struct address_space
*mapping
= inode
->i_mapping
;
563 struct block_device
*bdev
= bh
->b_bdev
;
564 struct blk_dax_ctl dax
= {
565 .sector
= to_sector(bh
, inode
),
571 i_mmap_lock_read(mapping
);
574 * Check truncate didn't happen while we were allocating a block.
575 * If it did, this block may or may not be still allocated to the
576 * file. We can't tell the filesystem to free it because we can't
577 * take i_mutex here. In the worst case, the file still has blocks
578 * allocated past the end of the file.
580 size
= (i_size_read(inode
) + PAGE_SIZE
- 1) >> PAGE_SHIFT
;
581 if (unlikely(vmf
->pgoff
>= size
)) {
586 if (dax_map_atomic(bdev
, &dax
) < 0) {
587 error
= PTR_ERR(dax
.addr
);
591 if (buffer_unwritten(bh
) || buffer_new(bh
)) {
592 clear_pmem(dax
.addr
, PAGE_SIZE
);
595 dax_unmap_atomic(bdev
, &dax
);
597 error
= dax_radix_entry(mapping
, vmf
->pgoff
, dax
.sector
, false,
598 vmf
->flags
& FAULT_FLAG_WRITE
);
602 error
= vm_insert_mixed(vma
, vaddr
, dax
.pfn
);
605 i_mmap_unlock_read(mapping
);
611 * __dax_fault - handle a page fault on a DAX file
612 * @vma: The virtual memory area where the fault occurred
613 * @vmf: The description of the fault
614 * @get_block: The filesystem method used to translate file offsets to blocks
615 * @complete_unwritten: The filesystem method used to convert unwritten blocks
616 * to written so the data written to them is exposed. This is required for
617 * required by write faults for filesystems that will return unwritten
618 * extent mappings from @get_block, but it is optional for reads as
619 * dax_insert_mapping() will always zero unwritten blocks. If the fs does
620 * not support unwritten extents, the it should pass NULL.
622 * When a page fault occurs, filesystems may call this helper in their
623 * fault handler for DAX files. __dax_fault() assumes the caller has done all
624 * the necessary locking for the page fault to proceed successfully.
626 int __dax_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
,
627 get_block_t get_block
, dax_iodone_t complete_unwritten
)
629 struct file
*file
= vma
->vm_file
;
630 struct address_space
*mapping
= file
->f_mapping
;
631 struct inode
*inode
= mapping
->host
;
633 struct buffer_head bh
;
634 unsigned long vaddr
= (unsigned long)vmf
->virtual_address
;
635 unsigned blkbits
= inode
->i_blkbits
;
641 size
= (i_size_read(inode
) + PAGE_SIZE
- 1) >> PAGE_SHIFT
;
642 if (vmf
->pgoff
>= size
)
643 return VM_FAULT_SIGBUS
;
645 memset(&bh
, 0, sizeof(bh
));
646 block
= (sector_t
)vmf
->pgoff
<< (PAGE_SHIFT
- blkbits
);
647 bh
.b_bdev
= inode
->i_sb
->s_bdev
;
648 bh
.b_size
= PAGE_SIZE
;
651 page
= find_get_page(mapping
, vmf
->pgoff
);
653 if (!lock_page_or_retry(page
, vma
->vm_mm
, vmf
->flags
)) {
655 return VM_FAULT_RETRY
;
657 if (unlikely(page
->mapping
!= mapping
)) {
662 size
= (i_size_read(inode
) + PAGE_SIZE
- 1) >> PAGE_SHIFT
;
663 if (unlikely(vmf
->pgoff
>= size
)) {
665 * We have a struct page covering a hole in the file
666 * from a read fault and we've raced with a truncate
673 error
= get_block(inode
, block
, &bh
, 0);
674 if (!error
&& (bh
.b_size
< PAGE_SIZE
))
675 error
= -EIO
; /* fs corruption? */
679 if (!buffer_mapped(&bh
) && !buffer_unwritten(&bh
) && !vmf
->cow_page
) {
680 if (vmf
->flags
& FAULT_FLAG_WRITE
) {
681 error
= get_block(inode
, block
, &bh
, 1);
682 count_vm_event(PGMAJFAULT
);
683 mem_cgroup_count_vm_event(vma
->vm_mm
, PGMAJFAULT
);
684 major
= VM_FAULT_MAJOR
;
685 if (!error
&& (bh
.b_size
< PAGE_SIZE
))
690 return dax_load_hole(mapping
, page
, vmf
);
695 struct page
*new_page
= vmf
->cow_page
;
696 if (buffer_written(&bh
))
697 error
= copy_user_bh(new_page
, inode
, &bh
, vaddr
);
699 clear_user_highpage(new_page
, vaddr
);
704 i_mmap_lock_read(mapping
);
705 /* Check we didn't race with truncate */
706 size
= (i_size_read(inode
) + PAGE_SIZE
- 1) >>
708 if (vmf
->pgoff
>= size
) {
709 i_mmap_unlock_read(mapping
);
714 return VM_FAULT_LOCKED
;
717 /* Check we didn't race with a read fault installing a new page */
719 page
= find_lock_page(mapping
, vmf
->pgoff
);
722 unmap_mapping_range(mapping
, vmf
->pgoff
<< PAGE_SHIFT
,
724 delete_from_page_cache(page
);
731 * If we successfully insert the new mapping over an unwritten extent,
732 * we need to ensure we convert the unwritten extent. If there is an
733 * error inserting the mapping, the filesystem needs to leave it as
734 * unwritten to prevent exposure of the stale underlying data to
735 * userspace, but we still need to call the completion function so
736 * the private resources on the mapping buffer can be released. We
737 * indicate what the callback should do via the uptodate variable, same
738 * as for normal BH based IO completions.
740 error
= dax_insert_mapping(inode
, &bh
, vma
, vmf
);
741 if (buffer_unwritten(&bh
)) {
742 if (complete_unwritten
)
743 complete_unwritten(&bh
, !error
);
745 WARN_ON_ONCE(!(vmf
->flags
& FAULT_FLAG_WRITE
));
749 if (error
== -ENOMEM
)
750 return VM_FAULT_OOM
| major
;
751 /* -EBUSY is fine, somebody else faulted on the same PTE */
752 if ((error
< 0) && (error
!= -EBUSY
))
753 return VM_FAULT_SIGBUS
| major
;
754 return VM_FAULT_NOPAGE
| major
;
763 EXPORT_SYMBOL(__dax_fault
);
766 * dax_fault - handle a page fault on a DAX file
767 * @vma: The virtual memory area where the fault occurred
768 * @vmf: The description of the fault
769 * @get_block: The filesystem method used to translate file offsets to blocks
771 * When a page fault occurs, filesystems may call this helper in their
772 * fault handler for DAX files.
774 int dax_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
,
775 get_block_t get_block
, dax_iodone_t complete_unwritten
)
778 struct super_block
*sb
= file_inode(vma
->vm_file
)->i_sb
;
780 if (vmf
->flags
& FAULT_FLAG_WRITE
) {
781 sb_start_pagefault(sb
);
782 file_update_time(vma
->vm_file
);
784 result
= __dax_fault(vma
, vmf
, get_block
, complete_unwritten
);
785 if (vmf
->flags
& FAULT_FLAG_WRITE
)
786 sb_end_pagefault(sb
);
790 EXPORT_SYMBOL_GPL(dax_fault
);
792 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
794 * The 'colour' (ie low bits) within a PMD of a page offset. This comes up
795 * more often than one might expect in the below function.
797 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
799 static void __dax_dbg(struct buffer_head
*bh
, unsigned long address
,
800 const char *reason
, const char *fn
)
803 char bname
[BDEVNAME_SIZE
];
804 bdevname(bh
->b_bdev
, bname
);
805 pr_debug("%s: %s addr: %lx dev %s state %lx start %lld "
806 "length %zd fallback: %s\n", fn
, current
->comm
,
807 address
, bname
, bh
->b_state
, (u64
)bh
->b_blocknr
,
810 pr_debug("%s: %s addr: %lx fallback: %s\n", fn
,
811 current
->comm
, address
, reason
);
815 #define dax_pmd_dbg(bh, address, reason) __dax_dbg(bh, address, reason, "dax_pmd")
817 int __dax_pmd_fault(struct vm_area_struct
*vma
, unsigned long address
,
818 pmd_t
*pmd
, unsigned int flags
, get_block_t get_block
,
819 dax_iodone_t complete_unwritten
)
821 struct file
*file
= vma
->vm_file
;
822 struct address_space
*mapping
= file
->f_mapping
;
823 struct inode
*inode
= mapping
->host
;
824 struct buffer_head bh
;
825 unsigned blkbits
= inode
->i_blkbits
;
826 unsigned long pmd_addr
= address
& PMD_MASK
;
827 bool write
= flags
& FAULT_FLAG_WRITE
;
828 struct block_device
*bdev
;
831 int error
, result
= 0;
834 /* dax pmd mappings require pfn_t_devmap() */
835 if (!IS_ENABLED(CONFIG_FS_DAX_PMD
))
836 return VM_FAULT_FALLBACK
;
838 /* Fall back to PTEs if we're going to COW */
839 if (write
&& !(vma
->vm_flags
& VM_SHARED
)) {
840 split_huge_pmd(vma
, pmd
, address
);
841 dax_pmd_dbg(NULL
, address
, "cow write");
842 return VM_FAULT_FALLBACK
;
844 /* If the PMD would extend outside the VMA */
845 if (pmd_addr
< vma
->vm_start
) {
846 dax_pmd_dbg(NULL
, address
, "vma start unaligned");
847 return VM_FAULT_FALLBACK
;
849 if ((pmd_addr
+ PMD_SIZE
) > vma
->vm_end
) {
850 dax_pmd_dbg(NULL
, address
, "vma end unaligned");
851 return VM_FAULT_FALLBACK
;
854 pgoff
= linear_page_index(vma
, pmd_addr
);
855 size
= (i_size_read(inode
) + PAGE_SIZE
- 1) >> PAGE_SHIFT
;
857 return VM_FAULT_SIGBUS
;
858 /* If the PMD would cover blocks out of the file */
859 if ((pgoff
| PG_PMD_COLOUR
) >= size
) {
860 dax_pmd_dbg(NULL
, address
,
861 "offset + huge page size > file size");
862 return VM_FAULT_FALLBACK
;
865 memset(&bh
, 0, sizeof(bh
));
866 bh
.b_bdev
= inode
->i_sb
->s_bdev
;
867 block
= (sector_t
)pgoff
<< (PAGE_SHIFT
- blkbits
);
869 bh
.b_size
= PMD_SIZE
;
871 if (get_block(inode
, block
, &bh
, 0) != 0)
872 return VM_FAULT_SIGBUS
;
874 if (!buffer_mapped(&bh
) && write
) {
875 if (get_block(inode
, block
, &bh
, 1) != 0)
876 return VM_FAULT_SIGBUS
;
883 * If the filesystem isn't willing to tell us the length of a hole,
884 * just fall back to PTEs. Calling get_block 512 times in a loop
887 if (!buffer_size_valid(&bh
) || bh
.b_size
< PMD_SIZE
) {
888 dax_pmd_dbg(&bh
, address
, "allocated block too small");
889 return VM_FAULT_FALLBACK
;
893 * If we allocated new storage, make sure no process has any
894 * zero pages covering this hole
897 loff_t lstart
= pgoff
<< PAGE_SHIFT
;
898 loff_t lend
= lstart
+ PMD_SIZE
- 1; /* inclusive */
900 truncate_pagecache_range(inode
, lstart
, lend
);
903 i_mmap_lock_read(mapping
);
906 * If a truncate happened while we were allocating blocks, we may
907 * leave blocks allocated to the file that are beyond EOF. We can't
908 * take i_mutex here, so just leave them hanging; they'll be freed
909 * when the file is deleted.
911 size
= (i_size_read(inode
) + PAGE_SIZE
- 1) >> PAGE_SHIFT
;
913 result
= VM_FAULT_SIGBUS
;
916 if ((pgoff
| PG_PMD_COLOUR
) >= size
) {
917 dax_pmd_dbg(&bh
, address
,
918 "offset + huge page size > file size");
922 if (!write
&& !buffer_mapped(&bh
) && buffer_uptodate(&bh
)) {
925 struct page
*zero_page
= get_huge_zero_page();
927 if (unlikely(!zero_page
)) {
928 dax_pmd_dbg(&bh
, address
, "no zero page");
932 ptl
= pmd_lock(vma
->vm_mm
, pmd
);
933 if (!pmd_none(*pmd
)) {
935 dax_pmd_dbg(&bh
, address
, "pmd already present");
939 dev_dbg(part_to_dev(bdev
->bd_part
),
940 "%s: %s addr: %lx pfn: <zero> sect: %llx\n",
941 __func__
, current
->comm
, address
,
942 (unsigned long long) to_sector(&bh
, inode
));
944 entry
= mk_pmd(zero_page
, vma
->vm_page_prot
);
945 entry
= pmd_mkhuge(entry
);
946 set_pmd_at(vma
->vm_mm
, pmd_addr
, pmd
, entry
);
947 result
= VM_FAULT_NOPAGE
;
950 struct blk_dax_ctl dax
= {
951 .sector
= to_sector(&bh
, inode
),
954 long length
= dax_map_atomic(bdev
, &dax
);
957 result
= VM_FAULT_SIGBUS
;
960 if (length
< PMD_SIZE
) {
961 dax_pmd_dbg(&bh
, address
, "dax-length too small");
962 dax_unmap_atomic(bdev
, &dax
);
965 if (pfn_t_to_pfn(dax
.pfn
) & PG_PMD_COLOUR
) {
966 dax_pmd_dbg(&bh
, address
, "pfn unaligned");
967 dax_unmap_atomic(bdev
, &dax
);
971 if (!pfn_t_devmap(dax
.pfn
)) {
972 dax_unmap_atomic(bdev
, &dax
);
973 dax_pmd_dbg(&bh
, address
, "pfn not in memmap");
977 if (buffer_unwritten(&bh
) || buffer_new(&bh
)) {
978 clear_pmem(dax
.addr
, PMD_SIZE
);
980 count_vm_event(PGMAJFAULT
);
981 mem_cgroup_count_vm_event(vma
->vm_mm
, PGMAJFAULT
);
982 result
|= VM_FAULT_MAJOR
;
984 dax_unmap_atomic(bdev
, &dax
);
987 * For PTE faults we insert a radix tree entry for reads, and
988 * leave it clean. Then on the first write we dirty the radix
989 * tree entry via the dax_pfn_mkwrite() path. This sequence
990 * allows the dax_pfn_mkwrite() call to be simpler and avoid a
991 * call into get_block() to translate the pgoff to a sector in
992 * order to be able to create a new radix tree entry.
994 * The PMD path doesn't have an equivalent to
995 * dax_pfn_mkwrite(), though, so for a read followed by a
996 * write we traverse all the way through __dax_pmd_fault()
997 * twice. This means we can just skip inserting a radix tree
998 * entry completely on the initial read and just wait until
999 * the write to insert a dirty entry.
1002 error
= dax_radix_entry(mapping
, pgoff
, dax
.sector
,
1005 dax_pmd_dbg(&bh
, address
,
1006 "PMD radix insertion failed");
1011 dev_dbg(part_to_dev(bdev
->bd_part
),
1012 "%s: %s addr: %lx pfn: %lx sect: %llx\n",
1013 __func__
, current
->comm
, address
,
1014 pfn_t_to_pfn(dax
.pfn
),
1015 (unsigned long long) dax
.sector
);
1016 result
|= vmf_insert_pfn_pmd(vma
, address
, pmd
,
1021 i_mmap_unlock_read(mapping
);
1023 if (buffer_unwritten(&bh
))
1024 complete_unwritten(&bh
, !(result
& VM_FAULT_ERROR
));
1029 count_vm_event(THP_FAULT_FALLBACK
);
1030 result
= VM_FAULT_FALLBACK
;
1033 EXPORT_SYMBOL_GPL(__dax_pmd_fault
);
1036 * dax_pmd_fault - handle a PMD fault on a DAX file
1037 * @vma: The virtual memory area where the fault occurred
1038 * @vmf: The description of the fault
1039 * @get_block: The filesystem method used to translate file offsets to blocks
1041 * When a page fault occurs, filesystems may call this helper in their
1042 * pmd_fault handler for DAX files.
1044 int dax_pmd_fault(struct vm_area_struct
*vma
, unsigned long address
,
1045 pmd_t
*pmd
, unsigned int flags
, get_block_t get_block
,
1046 dax_iodone_t complete_unwritten
)
1049 struct super_block
*sb
= file_inode(vma
->vm_file
)->i_sb
;
1051 if (flags
& FAULT_FLAG_WRITE
) {
1052 sb_start_pagefault(sb
);
1053 file_update_time(vma
->vm_file
);
1055 result
= __dax_pmd_fault(vma
, address
, pmd
, flags
, get_block
,
1056 complete_unwritten
);
1057 if (flags
& FAULT_FLAG_WRITE
)
1058 sb_end_pagefault(sb
);
1062 EXPORT_SYMBOL_GPL(dax_pmd_fault
);
1063 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1066 * dax_pfn_mkwrite - handle first write to DAX page
1067 * @vma: The virtual memory area where the fault occurred
1068 * @vmf: The description of the fault
1070 int dax_pfn_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1072 struct file
*file
= vma
->vm_file
;
1076 * We pass NO_SECTOR to dax_radix_entry() because we expect that a
1077 * RADIX_DAX_PTE entry already exists in the radix tree from a
1078 * previous call to __dax_fault(). We just want to look up that PTE
1079 * entry using vmf->pgoff and make sure the dirty tag is set. This
1080 * saves us from having to make a call to get_block() here to look
1083 error
= dax_radix_entry(file
->f_mapping
, vmf
->pgoff
, NO_SECTOR
, false,
1086 if (error
== -ENOMEM
)
1087 return VM_FAULT_OOM
;
1089 return VM_FAULT_SIGBUS
;
1090 return VM_FAULT_NOPAGE
;
1092 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite
);
1095 * dax_zero_page_range - zero a range within a page of a DAX file
1096 * @inode: The file being truncated
1097 * @from: The file offset that is being truncated to
1098 * @length: The number of bytes to zero
1099 * @get_block: The filesystem method used to translate file offsets to blocks
1101 * This function can be called by a filesystem when it is zeroing part of a
1102 * page in a DAX file. This is intended for hole-punch operations. If
1103 * you are truncating a file, the helper function dax_truncate_page() may be
1106 * We work in terms of PAGE_SIZE here for commonality with
1107 * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
1108 * took care of disposing of the unnecessary blocks. Even if the filesystem
1109 * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
1110 * since the file might be mmapped.
1112 int dax_zero_page_range(struct inode
*inode
, loff_t from
, unsigned length
,
1113 get_block_t get_block
)
1115 struct buffer_head bh
;
1116 pgoff_t index
= from
>> PAGE_SHIFT
;
1117 unsigned offset
= from
& (PAGE_SIZE
-1);
1120 /* Block boundary? Nothing to do */
1123 BUG_ON((offset
+ length
) > PAGE_SIZE
);
1125 memset(&bh
, 0, sizeof(bh
));
1126 bh
.b_bdev
= inode
->i_sb
->s_bdev
;
1127 bh
.b_size
= PAGE_SIZE
;
1128 err
= get_block(inode
, index
, &bh
, 0);
1131 if (buffer_written(&bh
)) {
1132 struct block_device
*bdev
= bh
.b_bdev
;
1133 struct blk_dax_ctl dax
= {
1134 .sector
= to_sector(&bh
, inode
),
1138 if (dax_map_atomic(bdev
, &dax
) < 0)
1139 return PTR_ERR(dax
.addr
);
1140 clear_pmem(dax
.addr
+ offset
, length
);
1142 dax_unmap_atomic(bdev
, &dax
);
1147 EXPORT_SYMBOL_GPL(dax_zero_page_range
);
1150 * dax_truncate_page - handle a partial page being truncated in a DAX file
1151 * @inode: The file being truncated
1152 * @from: The file offset that is being truncated to
1153 * @get_block: The filesystem method used to translate file offsets to blocks
1155 * Similar to block_truncate_page(), this function can be called by a
1156 * filesystem when it is truncating a DAX file to handle the partial page.
1158 * We work in terms of PAGE_SIZE here for commonality with
1159 * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
1160 * took care of disposing of the unnecessary blocks. Even if the filesystem
1161 * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
1162 * since the file might be mmapped.
1164 int dax_truncate_page(struct inode
*inode
, loff_t from
, get_block_t get_block
)
1166 unsigned length
= PAGE_ALIGN(from
) - from
;
1167 return dax_zero_page_range(inode
, from
, length
, get_block
);
1169 EXPORT_SYMBOL_GPL(dax_truncate_page
);