samples/kprobes: print out the symbol name for the hooks
[linux/fpc-iii.git] / fs / dax.c
bloba345c168acaae4956dad1cba8707061b5d22f534
1 /*
2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/pmem.h>
29 #include <linux/sched.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
35 #define RADIX_DAX_MASK 0xf
36 #define RADIX_DAX_SHIFT 4
37 #define RADIX_DAX_PTE (0x4 | RADIX_TREE_EXCEPTIONAL_ENTRY)
38 #define RADIX_DAX_PMD (0x8 | RADIX_TREE_EXCEPTIONAL_ENTRY)
39 #define RADIX_DAX_TYPE(entry) ((unsigned long)entry & RADIX_DAX_MASK)
40 #define RADIX_DAX_SECTOR(entry) (((unsigned long)entry >> RADIX_DAX_SHIFT))
41 #define RADIX_DAX_ENTRY(sector, pmd) ((void *)((unsigned long)sector << \
42 RADIX_DAX_SHIFT | (pmd ? RADIX_DAX_PMD : RADIX_DAX_PTE)))
44 static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax)
46 struct request_queue *q = bdev->bd_queue;
47 long rc = -EIO;
49 dax->addr = (void __pmem *) ERR_PTR(-EIO);
50 if (blk_queue_enter(q, true) != 0)
51 return rc;
53 rc = bdev_direct_access(bdev, dax);
54 if (rc < 0) {
55 dax->addr = (void __pmem *) ERR_PTR(rc);
56 blk_queue_exit(q);
57 return rc;
59 return rc;
62 static void dax_unmap_atomic(struct block_device *bdev,
63 const struct blk_dax_ctl *dax)
65 if (IS_ERR(dax->addr))
66 return;
67 blk_queue_exit(bdev->bd_queue);
70 struct page *read_dax_sector(struct block_device *bdev, sector_t n)
72 struct page *page = alloc_pages(GFP_KERNEL, 0);
73 struct blk_dax_ctl dax = {
74 .size = PAGE_SIZE,
75 .sector = n & ~((((int) PAGE_SIZE) / 512) - 1),
77 long rc;
79 if (!page)
80 return ERR_PTR(-ENOMEM);
82 rc = dax_map_atomic(bdev, &dax);
83 if (rc < 0)
84 return ERR_PTR(rc);
85 memcpy_from_pmem(page_address(page), dax.addr, PAGE_SIZE);
86 dax_unmap_atomic(bdev, &dax);
87 return page;
91 * dax_clear_sectors() is called from within transaction context from XFS,
92 * and hence this means the stack from this point must follow GFP_NOFS
93 * semantics for all operations.
95 int dax_clear_sectors(struct block_device *bdev, sector_t _sector, long _size)
97 struct blk_dax_ctl dax = {
98 .sector = _sector,
99 .size = _size,
102 might_sleep();
103 do {
104 long count, sz;
106 count = dax_map_atomic(bdev, &dax);
107 if (count < 0)
108 return count;
109 sz = min_t(long, count, SZ_128K);
110 clear_pmem(dax.addr, sz);
111 dax.size -= sz;
112 dax.sector += sz / 512;
113 dax_unmap_atomic(bdev, &dax);
114 cond_resched();
115 } while (dax.size);
117 wmb_pmem();
118 return 0;
120 EXPORT_SYMBOL_GPL(dax_clear_sectors);
122 /* the clear_pmem() calls are ordered by a wmb_pmem() in the caller */
123 static void dax_new_buf(void __pmem *addr, unsigned size, unsigned first,
124 loff_t pos, loff_t end)
126 loff_t final = end - pos + first; /* The final byte of the buffer */
128 if (first > 0)
129 clear_pmem(addr, first);
130 if (final < size)
131 clear_pmem(addr + final, size - final);
134 static bool buffer_written(struct buffer_head *bh)
136 return buffer_mapped(bh) && !buffer_unwritten(bh);
140 * When ext4 encounters a hole, it returns without modifying the buffer_head
141 * which means that we can't trust b_size. To cope with this, we set b_state
142 * to 0 before calling get_block and, if any bit is set, we know we can trust
143 * b_size. Unfortunate, really, since ext4 knows precisely how long a hole is
144 * and would save us time calling get_block repeatedly.
146 static bool buffer_size_valid(struct buffer_head *bh)
148 return bh->b_state != 0;
152 static sector_t to_sector(const struct buffer_head *bh,
153 const struct inode *inode)
155 sector_t sector = bh->b_blocknr << (inode->i_blkbits - 9);
157 return sector;
160 static ssize_t dax_io(struct inode *inode, struct iov_iter *iter,
161 loff_t start, loff_t end, get_block_t get_block,
162 struct buffer_head *bh)
164 loff_t pos = start, max = start, bh_max = start;
165 bool hole = false, need_wmb = false;
166 struct block_device *bdev = NULL;
167 int rw = iov_iter_rw(iter), rc;
168 long map_len = 0;
169 struct blk_dax_ctl dax = {
170 .addr = (void __pmem *) ERR_PTR(-EIO),
173 if (rw == READ)
174 end = min(end, i_size_read(inode));
176 while (pos < end) {
177 size_t len;
178 if (pos == max) {
179 unsigned blkbits = inode->i_blkbits;
180 long page = pos >> PAGE_SHIFT;
181 sector_t block = page << (PAGE_SHIFT - blkbits);
182 unsigned first = pos - (block << blkbits);
183 long size;
185 if (pos == bh_max) {
186 bh->b_size = PAGE_ALIGN(end - pos);
187 bh->b_state = 0;
188 rc = get_block(inode, block, bh, rw == WRITE);
189 if (rc)
190 break;
191 if (!buffer_size_valid(bh))
192 bh->b_size = 1 << blkbits;
193 bh_max = pos - first + bh->b_size;
194 bdev = bh->b_bdev;
195 } else {
196 unsigned done = bh->b_size -
197 (bh_max - (pos - first));
198 bh->b_blocknr += done >> blkbits;
199 bh->b_size -= done;
202 hole = rw == READ && !buffer_written(bh);
203 if (hole) {
204 size = bh->b_size - first;
205 } else {
206 dax_unmap_atomic(bdev, &dax);
207 dax.sector = to_sector(bh, inode);
208 dax.size = bh->b_size;
209 map_len = dax_map_atomic(bdev, &dax);
210 if (map_len < 0) {
211 rc = map_len;
212 break;
214 if (buffer_unwritten(bh) || buffer_new(bh)) {
215 dax_new_buf(dax.addr, map_len, first,
216 pos, end);
217 need_wmb = true;
219 dax.addr += first;
220 size = map_len - first;
222 max = min(pos + size, end);
225 if (iov_iter_rw(iter) == WRITE) {
226 len = copy_from_iter_pmem(dax.addr, max - pos, iter);
227 need_wmb = true;
228 } else if (!hole)
229 len = copy_to_iter((void __force *) dax.addr, max - pos,
230 iter);
231 else
232 len = iov_iter_zero(max - pos, iter);
234 if (!len) {
235 rc = -EFAULT;
236 break;
239 pos += len;
240 if (!IS_ERR(dax.addr))
241 dax.addr += len;
244 if (need_wmb)
245 wmb_pmem();
246 dax_unmap_atomic(bdev, &dax);
248 return (pos == start) ? rc : pos - start;
252 * dax_do_io - Perform I/O to a DAX file
253 * @iocb: The control block for this I/O
254 * @inode: The file which the I/O is directed at
255 * @iter: The addresses to do I/O from or to
256 * @get_block: The filesystem method used to translate file offsets to blocks
257 * @end_io: A filesystem callback for I/O completion
258 * @flags: See below
260 * This function uses the same locking scheme as do_blockdev_direct_IO:
261 * If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the
262 * caller for writes. For reads, we take and release the i_mutex ourselves.
263 * If DIO_LOCKING is not set, the filesystem takes care of its own locking.
264 * As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O
265 * is in progress.
267 ssize_t dax_do_io(struct kiocb *iocb, struct inode *inode,
268 struct iov_iter *iter, get_block_t get_block,
269 dio_iodone_t end_io, int flags)
271 struct buffer_head bh;
272 ssize_t retval = -EINVAL;
273 loff_t pos = iocb->ki_pos;
274 loff_t end = pos + iov_iter_count(iter);
276 memset(&bh, 0, sizeof(bh));
277 bh.b_bdev = inode->i_sb->s_bdev;
279 if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ) {
280 struct address_space *mapping = inode->i_mapping;
281 inode_lock(inode);
282 retval = filemap_write_and_wait_range(mapping, pos, end - 1);
283 if (retval) {
284 inode_unlock(inode);
285 goto out;
289 /* Protects against truncate */
290 if (!(flags & DIO_SKIP_DIO_COUNT))
291 inode_dio_begin(inode);
293 retval = dax_io(inode, iter, pos, end, get_block, &bh);
295 if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ)
296 inode_unlock(inode);
298 if (end_io) {
299 int err;
301 err = end_io(iocb, pos, retval, bh.b_private);
302 if (err)
303 retval = err;
306 if (!(flags & DIO_SKIP_DIO_COUNT))
307 inode_dio_end(inode);
308 out:
309 return retval;
311 EXPORT_SYMBOL_GPL(dax_do_io);
314 * The user has performed a load from a hole in the file. Allocating
315 * a new page in the file would cause excessive storage usage for
316 * workloads with sparse files. We allocate a page cache page instead.
317 * We'll kick it out of the page cache if it's ever written to,
318 * otherwise it will simply fall out of the page cache under memory
319 * pressure without ever having been dirtied.
321 static int dax_load_hole(struct address_space *mapping, struct page *page,
322 struct vm_fault *vmf)
324 unsigned long size;
325 struct inode *inode = mapping->host;
326 if (!page)
327 page = find_or_create_page(mapping, vmf->pgoff,
328 GFP_KERNEL | __GFP_ZERO);
329 if (!page)
330 return VM_FAULT_OOM;
331 /* Recheck i_size under page lock to avoid truncate race */
332 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
333 if (vmf->pgoff >= size) {
334 unlock_page(page);
335 put_page(page);
336 return VM_FAULT_SIGBUS;
339 vmf->page = page;
340 return VM_FAULT_LOCKED;
343 static int copy_user_bh(struct page *to, struct inode *inode,
344 struct buffer_head *bh, unsigned long vaddr)
346 struct blk_dax_ctl dax = {
347 .sector = to_sector(bh, inode),
348 .size = bh->b_size,
350 struct block_device *bdev = bh->b_bdev;
351 void *vto;
353 if (dax_map_atomic(bdev, &dax) < 0)
354 return PTR_ERR(dax.addr);
355 vto = kmap_atomic(to);
356 copy_user_page(vto, (void __force *)dax.addr, vaddr, to);
357 kunmap_atomic(vto);
358 dax_unmap_atomic(bdev, &dax);
359 return 0;
362 #define NO_SECTOR -1
363 #define DAX_PMD_INDEX(page_index) (page_index & (PMD_MASK >> PAGE_SHIFT))
365 static int dax_radix_entry(struct address_space *mapping, pgoff_t index,
366 sector_t sector, bool pmd_entry, bool dirty)
368 struct radix_tree_root *page_tree = &mapping->page_tree;
369 pgoff_t pmd_index = DAX_PMD_INDEX(index);
370 int type, error = 0;
371 void *entry;
373 WARN_ON_ONCE(pmd_entry && !dirty);
374 if (dirty)
375 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
377 spin_lock_irq(&mapping->tree_lock);
379 entry = radix_tree_lookup(page_tree, pmd_index);
380 if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD) {
381 index = pmd_index;
382 goto dirty;
385 entry = radix_tree_lookup(page_tree, index);
386 if (entry) {
387 type = RADIX_DAX_TYPE(entry);
388 if (WARN_ON_ONCE(type != RADIX_DAX_PTE &&
389 type != RADIX_DAX_PMD)) {
390 error = -EIO;
391 goto unlock;
394 if (!pmd_entry || type == RADIX_DAX_PMD)
395 goto dirty;
398 * We only insert dirty PMD entries into the radix tree. This
399 * means we don't need to worry about removing a dirty PTE
400 * entry and inserting a clean PMD entry, thus reducing the
401 * range we would flush with a follow-up fsync/msync call.
403 radix_tree_delete(&mapping->page_tree, index);
404 mapping->nrexceptional--;
407 if (sector == NO_SECTOR) {
409 * This can happen during correct operation if our pfn_mkwrite
410 * fault raced against a hole punch operation. If this
411 * happens the pte that was hole punched will have been
412 * unmapped and the radix tree entry will have been removed by
413 * the time we are called, but the call will still happen. We
414 * will return all the way up to wp_pfn_shared(), where the
415 * pte_same() check will fail, eventually causing page fault
416 * to be retried by the CPU.
418 goto unlock;
421 error = radix_tree_insert(page_tree, index,
422 RADIX_DAX_ENTRY(sector, pmd_entry));
423 if (error)
424 goto unlock;
426 mapping->nrexceptional++;
427 dirty:
428 if (dirty)
429 radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
430 unlock:
431 spin_unlock_irq(&mapping->tree_lock);
432 return error;
435 static int dax_writeback_one(struct block_device *bdev,
436 struct address_space *mapping, pgoff_t index, void *entry)
438 struct radix_tree_root *page_tree = &mapping->page_tree;
439 int type = RADIX_DAX_TYPE(entry);
440 struct radix_tree_node *node;
441 struct blk_dax_ctl dax;
442 void **slot;
443 int ret = 0;
445 spin_lock_irq(&mapping->tree_lock);
447 * Regular page slots are stabilized by the page lock even
448 * without the tree itself locked. These unlocked entries
449 * need verification under the tree lock.
451 if (!__radix_tree_lookup(page_tree, index, &node, &slot))
452 goto unlock;
453 if (*slot != entry)
454 goto unlock;
456 /* another fsync thread may have already written back this entry */
457 if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
458 goto unlock;
460 if (WARN_ON_ONCE(type != RADIX_DAX_PTE && type != RADIX_DAX_PMD)) {
461 ret = -EIO;
462 goto unlock;
465 dax.sector = RADIX_DAX_SECTOR(entry);
466 dax.size = (type == RADIX_DAX_PMD ? PMD_SIZE : PAGE_SIZE);
467 spin_unlock_irq(&mapping->tree_lock);
470 * We cannot hold tree_lock while calling dax_map_atomic() because it
471 * eventually calls cond_resched().
473 ret = dax_map_atomic(bdev, &dax);
474 if (ret < 0)
475 return ret;
477 if (WARN_ON_ONCE(ret < dax.size)) {
478 ret = -EIO;
479 goto unmap;
482 wb_cache_pmem(dax.addr, dax.size);
484 spin_lock_irq(&mapping->tree_lock);
485 radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
486 spin_unlock_irq(&mapping->tree_lock);
487 unmap:
488 dax_unmap_atomic(bdev, &dax);
489 return ret;
491 unlock:
492 spin_unlock_irq(&mapping->tree_lock);
493 return ret;
497 * Flush the mapping to the persistent domain within the byte range of [start,
498 * end]. This is required by data integrity operations to ensure file data is
499 * on persistent storage prior to completion of the operation.
501 int dax_writeback_mapping_range(struct address_space *mapping,
502 struct block_device *bdev, struct writeback_control *wbc)
504 struct inode *inode = mapping->host;
505 pgoff_t start_index, end_index, pmd_index;
506 pgoff_t indices[PAGEVEC_SIZE];
507 struct pagevec pvec;
508 bool done = false;
509 int i, ret = 0;
510 void *entry;
512 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
513 return -EIO;
515 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
516 return 0;
518 start_index = wbc->range_start >> PAGE_SHIFT;
519 end_index = wbc->range_end >> PAGE_SHIFT;
520 pmd_index = DAX_PMD_INDEX(start_index);
522 rcu_read_lock();
523 entry = radix_tree_lookup(&mapping->page_tree, pmd_index);
524 rcu_read_unlock();
526 /* see if the start of our range is covered by a PMD entry */
527 if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD)
528 start_index = pmd_index;
530 tag_pages_for_writeback(mapping, start_index, end_index);
532 pagevec_init(&pvec, 0);
533 while (!done) {
534 pvec.nr = find_get_entries_tag(mapping, start_index,
535 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
536 pvec.pages, indices);
538 if (pvec.nr == 0)
539 break;
541 for (i = 0; i < pvec.nr; i++) {
542 if (indices[i] > end_index) {
543 done = true;
544 break;
547 ret = dax_writeback_one(bdev, mapping, indices[i],
548 pvec.pages[i]);
549 if (ret < 0)
550 return ret;
553 wmb_pmem();
554 return 0;
556 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
558 static int dax_insert_mapping(struct inode *inode, struct buffer_head *bh,
559 struct vm_area_struct *vma, struct vm_fault *vmf)
561 unsigned long vaddr = (unsigned long)vmf->virtual_address;
562 struct address_space *mapping = inode->i_mapping;
563 struct block_device *bdev = bh->b_bdev;
564 struct blk_dax_ctl dax = {
565 .sector = to_sector(bh, inode),
566 .size = bh->b_size,
568 pgoff_t size;
569 int error;
571 i_mmap_lock_read(mapping);
574 * Check truncate didn't happen while we were allocating a block.
575 * If it did, this block may or may not be still allocated to the
576 * file. We can't tell the filesystem to free it because we can't
577 * take i_mutex here. In the worst case, the file still has blocks
578 * allocated past the end of the file.
580 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
581 if (unlikely(vmf->pgoff >= size)) {
582 error = -EIO;
583 goto out;
586 if (dax_map_atomic(bdev, &dax) < 0) {
587 error = PTR_ERR(dax.addr);
588 goto out;
591 if (buffer_unwritten(bh) || buffer_new(bh)) {
592 clear_pmem(dax.addr, PAGE_SIZE);
593 wmb_pmem();
595 dax_unmap_atomic(bdev, &dax);
597 error = dax_radix_entry(mapping, vmf->pgoff, dax.sector, false,
598 vmf->flags & FAULT_FLAG_WRITE);
599 if (error)
600 goto out;
602 error = vm_insert_mixed(vma, vaddr, dax.pfn);
604 out:
605 i_mmap_unlock_read(mapping);
607 return error;
611 * __dax_fault - handle a page fault on a DAX file
612 * @vma: The virtual memory area where the fault occurred
613 * @vmf: The description of the fault
614 * @get_block: The filesystem method used to translate file offsets to blocks
615 * @complete_unwritten: The filesystem method used to convert unwritten blocks
616 * to written so the data written to them is exposed. This is required for
617 * required by write faults for filesystems that will return unwritten
618 * extent mappings from @get_block, but it is optional for reads as
619 * dax_insert_mapping() will always zero unwritten blocks. If the fs does
620 * not support unwritten extents, the it should pass NULL.
622 * When a page fault occurs, filesystems may call this helper in their
623 * fault handler for DAX files. __dax_fault() assumes the caller has done all
624 * the necessary locking for the page fault to proceed successfully.
626 int __dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
627 get_block_t get_block, dax_iodone_t complete_unwritten)
629 struct file *file = vma->vm_file;
630 struct address_space *mapping = file->f_mapping;
631 struct inode *inode = mapping->host;
632 struct page *page;
633 struct buffer_head bh;
634 unsigned long vaddr = (unsigned long)vmf->virtual_address;
635 unsigned blkbits = inode->i_blkbits;
636 sector_t block;
637 pgoff_t size;
638 int error;
639 int major = 0;
641 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
642 if (vmf->pgoff >= size)
643 return VM_FAULT_SIGBUS;
645 memset(&bh, 0, sizeof(bh));
646 block = (sector_t)vmf->pgoff << (PAGE_SHIFT - blkbits);
647 bh.b_bdev = inode->i_sb->s_bdev;
648 bh.b_size = PAGE_SIZE;
650 repeat:
651 page = find_get_page(mapping, vmf->pgoff);
652 if (page) {
653 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
654 put_page(page);
655 return VM_FAULT_RETRY;
657 if (unlikely(page->mapping != mapping)) {
658 unlock_page(page);
659 put_page(page);
660 goto repeat;
662 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
663 if (unlikely(vmf->pgoff >= size)) {
665 * We have a struct page covering a hole in the file
666 * from a read fault and we've raced with a truncate
668 error = -EIO;
669 goto unlock_page;
673 error = get_block(inode, block, &bh, 0);
674 if (!error && (bh.b_size < PAGE_SIZE))
675 error = -EIO; /* fs corruption? */
676 if (error)
677 goto unlock_page;
679 if (!buffer_mapped(&bh) && !buffer_unwritten(&bh) && !vmf->cow_page) {
680 if (vmf->flags & FAULT_FLAG_WRITE) {
681 error = get_block(inode, block, &bh, 1);
682 count_vm_event(PGMAJFAULT);
683 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
684 major = VM_FAULT_MAJOR;
685 if (!error && (bh.b_size < PAGE_SIZE))
686 error = -EIO;
687 if (error)
688 goto unlock_page;
689 } else {
690 return dax_load_hole(mapping, page, vmf);
694 if (vmf->cow_page) {
695 struct page *new_page = vmf->cow_page;
696 if (buffer_written(&bh))
697 error = copy_user_bh(new_page, inode, &bh, vaddr);
698 else
699 clear_user_highpage(new_page, vaddr);
700 if (error)
701 goto unlock_page;
702 vmf->page = page;
703 if (!page) {
704 i_mmap_lock_read(mapping);
705 /* Check we didn't race with truncate */
706 size = (i_size_read(inode) + PAGE_SIZE - 1) >>
707 PAGE_SHIFT;
708 if (vmf->pgoff >= size) {
709 i_mmap_unlock_read(mapping);
710 error = -EIO;
711 goto out;
714 return VM_FAULT_LOCKED;
717 /* Check we didn't race with a read fault installing a new page */
718 if (!page && major)
719 page = find_lock_page(mapping, vmf->pgoff);
721 if (page) {
722 unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
723 PAGE_SIZE, 0);
724 delete_from_page_cache(page);
725 unlock_page(page);
726 put_page(page);
727 page = NULL;
731 * If we successfully insert the new mapping over an unwritten extent,
732 * we need to ensure we convert the unwritten extent. If there is an
733 * error inserting the mapping, the filesystem needs to leave it as
734 * unwritten to prevent exposure of the stale underlying data to
735 * userspace, but we still need to call the completion function so
736 * the private resources on the mapping buffer can be released. We
737 * indicate what the callback should do via the uptodate variable, same
738 * as for normal BH based IO completions.
740 error = dax_insert_mapping(inode, &bh, vma, vmf);
741 if (buffer_unwritten(&bh)) {
742 if (complete_unwritten)
743 complete_unwritten(&bh, !error);
744 else
745 WARN_ON_ONCE(!(vmf->flags & FAULT_FLAG_WRITE));
748 out:
749 if (error == -ENOMEM)
750 return VM_FAULT_OOM | major;
751 /* -EBUSY is fine, somebody else faulted on the same PTE */
752 if ((error < 0) && (error != -EBUSY))
753 return VM_FAULT_SIGBUS | major;
754 return VM_FAULT_NOPAGE | major;
756 unlock_page:
757 if (page) {
758 unlock_page(page);
759 put_page(page);
761 goto out;
763 EXPORT_SYMBOL(__dax_fault);
766 * dax_fault - handle a page fault on a DAX file
767 * @vma: The virtual memory area where the fault occurred
768 * @vmf: The description of the fault
769 * @get_block: The filesystem method used to translate file offsets to blocks
771 * When a page fault occurs, filesystems may call this helper in their
772 * fault handler for DAX files.
774 int dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
775 get_block_t get_block, dax_iodone_t complete_unwritten)
777 int result;
778 struct super_block *sb = file_inode(vma->vm_file)->i_sb;
780 if (vmf->flags & FAULT_FLAG_WRITE) {
781 sb_start_pagefault(sb);
782 file_update_time(vma->vm_file);
784 result = __dax_fault(vma, vmf, get_block, complete_unwritten);
785 if (vmf->flags & FAULT_FLAG_WRITE)
786 sb_end_pagefault(sb);
788 return result;
790 EXPORT_SYMBOL_GPL(dax_fault);
792 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
794 * The 'colour' (ie low bits) within a PMD of a page offset. This comes up
795 * more often than one might expect in the below function.
797 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
799 static void __dax_dbg(struct buffer_head *bh, unsigned long address,
800 const char *reason, const char *fn)
802 if (bh) {
803 char bname[BDEVNAME_SIZE];
804 bdevname(bh->b_bdev, bname);
805 pr_debug("%s: %s addr: %lx dev %s state %lx start %lld "
806 "length %zd fallback: %s\n", fn, current->comm,
807 address, bname, bh->b_state, (u64)bh->b_blocknr,
808 bh->b_size, reason);
809 } else {
810 pr_debug("%s: %s addr: %lx fallback: %s\n", fn,
811 current->comm, address, reason);
815 #define dax_pmd_dbg(bh, address, reason) __dax_dbg(bh, address, reason, "dax_pmd")
817 int __dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
818 pmd_t *pmd, unsigned int flags, get_block_t get_block,
819 dax_iodone_t complete_unwritten)
821 struct file *file = vma->vm_file;
822 struct address_space *mapping = file->f_mapping;
823 struct inode *inode = mapping->host;
824 struct buffer_head bh;
825 unsigned blkbits = inode->i_blkbits;
826 unsigned long pmd_addr = address & PMD_MASK;
827 bool write = flags & FAULT_FLAG_WRITE;
828 struct block_device *bdev;
829 pgoff_t size, pgoff;
830 sector_t block;
831 int error, result = 0;
832 bool alloc = false;
834 /* dax pmd mappings require pfn_t_devmap() */
835 if (!IS_ENABLED(CONFIG_FS_DAX_PMD))
836 return VM_FAULT_FALLBACK;
838 /* Fall back to PTEs if we're going to COW */
839 if (write && !(vma->vm_flags & VM_SHARED)) {
840 split_huge_pmd(vma, pmd, address);
841 dax_pmd_dbg(NULL, address, "cow write");
842 return VM_FAULT_FALLBACK;
844 /* If the PMD would extend outside the VMA */
845 if (pmd_addr < vma->vm_start) {
846 dax_pmd_dbg(NULL, address, "vma start unaligned");
847 return VM_FAULT_FALLBACK;
849 if ((pmd_addr + PMD_SIZE) > vma->vm_end) {
850 dax_pmd_dbg(NULL, address, "vma end unaligned");
851 return VM_FAULT_FALLBACK;
854 pgoff = linear_page_index(vma, pmd_addr);
855 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
856 if (pgoff >= size)
857 return VM_FAULT_SIGBUS;
858 /* If the PMD would cover blocks out of the file */
859 if ((pgoff | PG_PMD_COLOUR) >= size) {
860 dax_pmd_dbg(NULL, address,
861 "offset + huge page size > file size");
862 return VM_FAULT_FALLBACK;
865 memset(&bh, 0, sizeof(bh));
866 bh.b_bdev = inode->i_sb->s_bdev;
867 block = (sector_t)pgoff << (PAGE_SHIFT - blkbits);
869 bh.b_size = PMD_SIZE;
871 if (get_block(inode, block, &bh, 0) != 0)
872 return VM_FAULT_SIGBUS;
874 if (!buffer_mapped(&bh) && write) {
875 if (get_block(inode, block, &bh, 1) != 0)
876 return VM_FAULT_SIGBUS;
877 alloc = true;
880 bdev = bh.b_bdev;
883 * If the filesystem isn't willing to tell us the length of a hole,
884 * just fall back to PTEs. Calling get_block 512 times in a loop
885 * would be silly.
887 if (!buffer_size_valid(&bh) || bh.b_size < PMD_SIZE) {
888 dax_pmd_dbg(&bh, address, "allocated block too small");
889 return VM_FAULT_FALLBACK;
893 * If we allocated new storage, make sure no process has any
894 * zero pages covering this hole
896 if (alloc) {
897 loff_t lstart = pgoff << PAGE_SHIFT;
898 loff_t lend = lstart + PMD_SIZE - 1; /* inclusive */
900 truncate_pagecache_range(inode, lstart, lend);
903 i_mmap_lock_read(mapping);
906 * If a truncate happened while we were allocating blocks, we may
907 * leave blocks allocated to the file that are beyond EOF. We can't
908 * take i_mutex here, so just leave them hanging; they'll be freed
909 * when the file is deleted.
911 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
912 if (pgoff >= size) {
913 result = VM_FAULT_SIGBUS;
914 goto out;
916 if ((pgoff | PG_PMD_COLOUR) >= size) {
917 dax_pmd_dbg(&bh, address,
918 "offset + huge page size > file size");
919 goto fallback;
922 if (!write && !buffer_mapped(&bh) && buffer_uptodate(&bh)) {
923 spinlock_t *ptl;
924 pmd_t entry;
925 struct page *zero_page = get_huge_zero_page();
927 if (unlikely(!zero_page)) {
928 dax_pmd_dbg(&bh, address, "no zero page");
929 goto fallback;
932 ptl = pmd_lock(vma->vm_mm, pmd);
933 if (!pmd_none(*pmd)) {
934 spin_unlock(ptl);
935 dax_pmd_dbg(&bh, address, "pmd already present");
936 goto fallback;
939 dev_dbg(part_to_dev(bdev->bd_part),
940 "%s: %s addr: %lx pfn: <zero> sect: %llx\n",
941 __func__, current->comm, address,
942 (unsigned long long) to_sector(&bh, inode));
944 entry = mk_pmd(zero_page, vma->vm_page_prot);
945 entry = pmd_mkhuge(entry);
946 set_pmd_at(vma->vm_mm, pmd_addr, pmd, entry);
947 result = VM_FAULT_NOPAGE;
948 spin_unlock(ptl);
949 } else {
950 struct blk_dax_ctl dax = {
951 .sector = to_sector(&bh, inode),
952 .size = PMD_SIZE,
954 long length = dax_map_atomic(bdev, &dax);
956 if (length < 0) {
957 result = VM_FAULT_SIGBUS;
958 goto out;
960 if (length < PMD_SIZE) {
961 dax_pmd_dbg(&bh, address, "dax-length too small");
962 dax_unmap_atomic(bdev, &dax);
963 goto fallback;
965 if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR) {
966 dax_pmd_dbg(&bh, address, "pfn unaligned");
967 dax_unmap_atomic(bdev, &dax);
968 goto fallback;
971 if (!pfn_t_devmap(dax.pfn)) {
972 dax_unmap_atomic(bdev, &dax);
973 dax_pmd_dbg(&bh, address, "pfn not in memmap");
974 goto fallback;
977 if (buffer_unwritten(&bh) || buffer_new(&bh)) {
978 clear_pmem(dax.addr, PMD_SIZE);
979 wmb_pmem();
980 count_vm_event(PGMAJFAULT);
981 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
982 result |= VM_FAULT_MAJOR;
984 dax_unmap_atomic(bdev, &dax);
987 * For PTE faults we insert a radix tree entry for reads, and
988 * leave it clean. Then on the first write we dirty the radix
989 * tree entry via the dax_pfn_mkwrite() path. This sequence
990 * allows the dax_pfn_mkwrite() call to be simpler and avoid a
991 * call into get_block() to translate the pgoff to a sector in
992 * order to be able to create a new radix tree entry.
994 * The PMD path doesn't have an equivalent to
995 * dax_pfn_mkwrite(), though, so for a read followed by a
996 * write we traverse all the way through __dax_pmd_fault()
997 * twice. This means we can just skip inserting a radix tree
998 * entry completely on the initial read and just wait until
999 * the write to insert a dirty entry.
1001 if (write) {
1002 error = dax_radix_entry(mapping, pgoff, dax.sector,
1003 true, true);
1004 if (error) {
1005 dax_pmd_dbg(&bh, address,
1006 "PMD radix insertion failed");
1007 goto fallback;
1011 dev_dbg(part_to_dev(bdev->bd_part),
1012 "%s: %s addr: %lx pfn: %lx sect: %llx\n",
1013 __func__, current->comm, address,
1014 pfn_t_to_pfn(dax.pfn),
1015 (unsigned long long) dax.sector);
1016 result |= vmf_insert_pfn_pmd(vma, address, pmd,
1017 dax.pfn, write);
1020 out:
1021 i_mmap_unlock_read(mapping);
1023 if (buffer_unwritten(&bh))
1024 complete_unwritten(&bh, !(result & VM_FAULT_ERROR));
1026 return result;
1028 fallback:
1029 count_vm_event(THP_FAULT_FALLBACK);
1030 result = VM_FAULT_FALLBACK;
1031 goto out;
1033 EXPORT_SYMBOL_GPL(__dax_pmd_fault);
1036 * dax_pmd_fault - handle a PMD fault on a DAX file
1037 * @vma: The virtual memory area where the fault occurred
1038 * @vmf: The description of the fault
1039 * @get_block: The filesystem method used to translate file offsets to blocks
1041 * When a page fault occurs, filesystems may call this helper in their
1042 * pmd_fault handler for DAX files.
1044 int dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
1045 pmd_t *pmd, unsigned int flags, get_block_t get_block,
1046 dax_iodone_t complete_unwritten)
1048 int result;
1049 struct super_block *sb = file_inode(vma->vm_file)->i_sb;
1051 if (flags & FAULT_FLAG_WRITE) {
1052 sb_start_pagefault(sb);
1053 file_update_time(vma->vm_file);
1055 result = __dax_pmd_fault(vma, address, pmd, flags, get_block,
1056 complete_unwritten);
1057 if (flags & FAULT_FLAG_WRITE)
1058 sb_end_pagefault(sb);
1060 return result;
1062 EXPORT_SYMBOL_GPL(dax_pmd_fault);
1063 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1066 * dax_pfn_mkwrite - handle first write to DAX page
1067 * @vma: The virtual memory area where the fault occurred
1068 * @vmf: The description of the fault
1070 int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1072 struct file *file = vma->vm_file;
1073 int error;
1076 * We pass NO_SECTOR to dax_radix_entry() because we expect that a
1077 * RADIX_DAX_PTE entry already exists in the radix tree from a
1078 * previous call to __dax_fault(). We just want to look up that PTE
1079 * entry using vmf->pgoff and make sure the dirty tag is set. This
1080 * saves us from having to make a call to get_block() here to look
1081 * up the sector.
1083 error = dax_radix_entry(file->f_mapping, vmf->pgoff, NO_SECTOR, false,
1084 true);
1086 if (error == -ENOMEM)
1087 return VM_FAULT_OOM;
1088 if (error)
1089 return VM_FAULT_SIGBUS;
1090 return VM_FAULT_NOPAGE;
1092 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
1095 * dax_zero_page_range - zero a range within a page of a DAX file
1096 * @inode: The file being truncated
1097 * @from: The file offset that is being truncated to
1098 * @length: The number of bytes to zero
1099 * @get_block: The filesystem method used to translate file offsets to blocks
1101 * This function can be called by a filesystem when it is zeroing part of a
1102 * page in a DAX file. This is intended for hole-punch operations. If
1103 * you are truncating a file, the helper function dax_truncate_page() may be
1104 * more convenient.
1106 * We work in terms of PAGE_SIZE here for commonality with
1107 * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
1108 * took care of disposing of the unnecessary blocks. Even if the filesystem
1109 * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
1110 * since the file might be mmapped.
1112 int dax_zero_page_range(struct inode *inode, loff_t from, unsigned length,
1113 get_block_t get_block)
1115 struct buffer_head bh;
1116 pgoff_t index = from >> PAGE_SHIFT;
1117 unsigned offset = from & (PAGE_SIZE-1);
1118 int err;
1120 /* Block boundary? Nothing to do */
1121 if (!length)
1122 return 0;
1123 BUG_ON((offset + length) > PAGE_SIZE);
1125 memset(&bh, 0, sizeof(bh));
1126 bh.b_bdev = inode->i_sb->s_bdev;
1127 bh.b_size = PAGE_SIZE;
1128 err = get_block(inode, index, &bh, 0);
1129 if (err < 0)
1130 return err;
1131 if (buffer_written(&bh)) {
1132 struct block_device *bdev = bh.b_bdev;
1133 struct blk_dax_ctl dax = {
1134 .sector = to_sector(&bh, inode),
1135 .size = PAGE_SIZE,
1138 if (dax_map_atomic(bdev, &dax) < 0)
1139 return PTR_ERR(dax.addr);
1140 clear_pmem(dax.addr + offset, length);
1141 wmb_pmem();
1142 dax_unmap_atomic(bdev, &dax);
1145 return 0;
1147 EXPORT_SYMBOL_GPL(dax_zero_page_range);
1150 * dax_truncate_page - handle a partial page being truncated in a DAX file
1151 * @inode: The file being truncated
1152 * @from: The file offset that is being truncated to
1153 * @get_block: The filesystem method used to translate file offsets to blocks
1155 * Similar to block_truncate_page(), this function can be called by a
1156 * filesystem when it is truncating a DAX file to handle the partial page.
1158 * We work in terms of PAGE_SIZE here for commonality with
1159 * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
1160 * took care of disposing of the unnecessary blocks. Even if the filesystem
1161 * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
1162 * since the file might be mmapped.
1164 int dax_truncate_page(struct inode *inode, loff_t from, get_block_t get_block)
1166 unsigned length = PAGE_ALIGN(from) - from;
1167 return dax_zero_page_range(inode, from, length, get_block);
1169 EXPORT_SYMBOL_GPL(dax_truncate_page);