Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[linux/fpc-iii.git] / security / commoncap.c
blobf66713bd7450a7e522fd29faa543eb1171885a18
1 /* Common capabilities, needed by capability.o.
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2 of the License, or
6 * (at your option) any later version.
8 */
10 #include <linux/capability.h>
11 #include <linux/audit.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/security.h>
16 #include <linux/file.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/skbuff.h>
22 #include <linux/netlink.h>
23 #include <linux/ptrace.h>
24 #include <linux/xattr.h>
25 #include <linux/hugetlb.h>
26 #include <linux/mount.h>
27 #include <linux/sched.h>
28 #include <linux/prctl.h>
29 #include <linux/securebits.h>
30 #include <linux/user_namespace.h>
31 #include <linux/binfmts.h>
32 #include <linux/personality.h>
35 * If a non-root user executes a setuid-root binary in
36 * !secure(SECURE_NOROOT) mode, then we raise capabilities.
37 * However if fE is also set, then the intent is for only
38 * the file capabilities to be applied, and the setuid-root
39 * bit is left on either to change the uid (plausible) or
40 * to get full privilege on a kernel without file capabilities
41 * support. So in that case we do not raise capabilities.
43 * Warn if that happens, once per boot.
45 static void warn_setuid_and_fcaps_mixed(const char *fname)
47 static int warned;
48 if (!warned) {
49 printk(KERN_INFO "warning: `%s' has both setuid-root and"
50 " effective capabilities. Therefore not raising all"
51 " capabilities.\n", fname);
52 warned = 1;
56 int cap_netlink_send(struct sock *sk, struct sk_buff *skb)
58 return 0;
61 /**
62 * cap_capable - Determine whether a task has a particular effective capability
63 * @cred: The credentials to use
64 * @ns: The user namespace in which we need the capability
65 * @cap: The capability to check for
66 * @audit: Whether to write an audit message or not
68 * Determine whether the nominated task has the specified capability amongst
69 * its effective set, returning 0 if it does, -ve if it does not.
71 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
72 * and has_capability() functions. That is, it has the reverse semantics:
73 * cap_has_capability() returns 0 when a task has a capability, but the
74 * kernel's capable() and has_capability() returns 1 for this case.
76 int cap_capable(const struct cred *cred, struct user_namespace *targ_ns,
77 int cap, int audit)
79 struct user_namespace *ns = targ_ns;
81 /* See if cred has the capability in the target user namespace
82 * by examining the target user namespace and all of the target
83 * user namespace's parents.
85 for (;;) {
86 /* Do we have the necessary capabilities? */
87 if (ns == cred->user_ns)
88 return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM;
90 /* Have we tried all of the parent namespaces? */
91 if (ns == &init_user_ns)
92 return -EPERM;
94 /*
95 * The owner of the user namespace in the parent of the
96 * user namespace has all caps.
98 if ((ns->parent == cred->user_ns) && uid_eq(ns->owner, cred->euid))
99 return 0;
102 * If you have a capability in a parent user ns, then you have
103 * it over all children user namespaces as well.
105 ns = ns->parent;
108 /* We never get here */
112 * cap_settime - Determine whether the current process may set the system clock
113 * @ts: The time to set
114 * @tz: The timezone to set
116 * Determine whether the current process may set the system clock and timezone
117 * information, returning 0 if permission granted, -ve if denied.
119 int cap_settime(const struct timespec *ts, const struct timezone *tz)
121 if (!capable(CAP_SYS_TIME))
122 return -EPERM;
123 return 0;
127 * cap_ptrace_access_check - Determine whether the current process may access
128 * another
129 * @child: The process to be accessed
130 * @mode: The mode of attachment.
132 * If we are in the same or an ancestor user_ns and have all the target
133 * task's capabilities, then ptrace access is allowed.
134 * If we have the ptrace capability to the target user_ns, then ptrace
135 * access is allowed.
136 * Else denied.
138 * Determine whether a process may access another, returning 0 if permission
139 * granted, -ve if denied.
141 int cap_ptrace_access_check(struct task_struct *child, unsigned int mode)
143 int ret = 0;
144 const struct cred *cred, *child_cred;
146 rcu_read_lock();
147 cred = current_cred();
148 child_cred = __task_cred(child);
149 if (cred->user_ns == child_cred->user_ns &&
150 cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
151 goto out;
152 if (ns_capable(child_cred->user_ns, CAP_SYS_PTRACE))
153 goto out;
154 ret = -EPERM;
155 out:
156 rcu_read_unlock();
157 return ret;
161 * cap_ptrace_traceme - Determine whether another process may trace the current
162 * @parent: The task proposed to be the tracer
164 * If parent is in the same or an ancestor user_ns and has all current's
165 * capabilities, then ptrace access is allowed.
166 * If parent has the ptrace capability to current's user_ns, then ptrace
167 * access is allowed.
168 * Else denied.
170 * Determine whether the nominated task is permitted to trace the current
171 * process, returning 0 if permission is granted, -ve if denied.
173 int cap_ptrace_traceme(struct task_struct *parent)
175 int ret = 0;
176 const struct cred *cred, *child_cred;
178 rcu_read_lock();
179 cred = __task_cred(parent);
180 child_cred = current_cred();
181 if (cred->user_ns == child_cred->user_ns &&
182 cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
183 goto out;
184 if (has_ns_capability(parent, child_cred->user_ns, CAP_SYS_PTRACE))
185 goto out;
186 ret = -EPERM;
187 out:
188 rcu_read_unlock();
189 return ret;
193 * cap_capget - Retrieve a task's capability sets
194 * @target: The task from which to retrieve the capability sets
195 * @effective: The place to record the effective set
196 * @inheritable: The place to record the inheritable set
197 * @permitted: The place to record the permitted set
199 * This function retrieves the capabilities of the nominated task and returns
200 * them to the caller.
202 int cap_capget(struct task_struct *target, kernel_cap_t *effective,
203 kernel_cap_t *inheritable, kernel_cap_t *permitted)
205 const struct cred *cred;
207 /* Derived from kernel/capability.c:sys_capget. */
208 rcu_read_lock();
209 cred = __task_cred(target);
210 *effective = cred->cap_effective;
211 *inheritable = cred->cap_inheritable;
212 *permitted = cred->cap_permitted;
213 rcu_read_unlock();
214 return 0;
218 * Determine whether the inheritable capabilities are limited to the old
219 * permitted set. Returns 1 if they are limited, 0 if they are not.
221 static inline int cap_inh_is_capped(void)
224 /* they are so limited unless the current task has the CAP_SETPCAP
225 * capability
227 if (cap_capable(current_cred(), current_cred()->user_ns,
228 CAP_SETPCAP, SECURITY_CAP_AUDIT) == 0)
229 return 0;
230 return 1;
234 * cap_capset - Validate and apply proposed changes to current's capabilities
235 * @new: The proposed new credentials; alterations should be made here
236 * @old: The current task's current credentials
237 * @effective: A pointer to the proposed new effective capabilities set
238 * @inheritable: A pointer to the proposed new inheritable capabilities set
239 * @permitted: A pointer to the proposed new permitted capabilities set
241 * This function validates and applies a proposed mass change to the current
242 * process's capability sets. The changes are made to the proposed new
243 * credentials, and assuming no error, will be committed by the caller of LSM.
245 int cap_capset(struct cred *new,
246 const struct cred *old,
247 const kernel_cap_t *effective,
248 const kernel_cap_t *inheritable,
249 const kernel_cap_t *permitted)
251 if (cap_inh_is_capped() &&
252 !cap_issubset(*inheritable,
253 cap_combine(old->cap_inheritable,
254 old->cap_permitted)))
255 /* incapable of using this inheritable set */
256 return -EPERM;
258 if (!cap_issubset(*inheritable,
259 cap_combine(old->cap_inheritable,
260 old->cap_bset)))
261 /* no new pI capabilities outside bounding set */
262 return -EPERM;
264 /* verify restrictions on target's new Permitted set */
265 if (!cap_issubset(*permitted, old->cap_permitted))
266 return -EPERM;
268 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
269 if (!cap_issubset(*effective, *permitted))
270 return -EPERM;
272 new->cap_effective = *effective;
273 new->cap_inheritable = *inheritable;
274 new->cap_permitted = *permitted;
275 return 0;
279 * Clear proposed capability sets for execve().
281 static inline void bprm_clear_caps(struct linux_binprm *bprm)
283 cap_clear(bprm->cred->cap_permitted);
284 bprm->cap_effective = false;
288 * cap_inode_need_killpriv - Determine if inode change affects privileges
289 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
291 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
292 * affects the security markings on that inode, and if it is, should
293 * inode_killpriv() be invoked or the change rejected?
295 * Returns 0 if granted; +ve if granted, but inode_killpriv() is required; and
296 * -ve to deny the change.
298 int cap_inode_need_killpriv(struct dentry *dentry)
300 struct inode *inode = dentry->d_inode;
301 int error;
303 if (!inode->i_op->getxattr)
304 return 0;
306 error = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, NULL, 0);
307 if (error <= 0)
308 return 0;
309 return 1;
313 * cap_inode_killpriv - Erase the security markings on an inode
314 * @dentry: The inode/dentry to alter
316 * Erase the privilege-enhancing security markings on an inode.
318 * Returns 0 if successful, -ve on error.
320 int cap_inode_killpriv(struct dentry *dentry)
322 struct inode *inode = dentry->d_inode;
324 if (!inode->i_op->removexattr)
325 return 0;
327 return inode->i_op->removexattr(dentry, XATTR_NAME_CAPS);
331 * Calculate the new process capability sets from the capability sets attached
332 * to a file.
334 static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
335 struct linux_binprm *bprm,
336 bool *effective,
337 bool *has_cap)
339 struct cred *new = bprm->cred;
340 unsigned i;
341 int ret = 0;
343 if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
344 *effective = true;
346 if (caps->magic_etc & VFS_CAP_REVISION_MASK)
347 *has_cap = true;
349 CAP_FOR_EACH_U32(i) {
350 __u32 permitted = caps->permitted.cap[i];
351 __u32 inheritable = caps->inheritable.cap[i];
354 * pP' = (X & fP) | (pI & fI)
356 new->cap_permitted.cap[i] =
357 (new->cap_bset.cap[i] & permitted) |
358 (new->cap_inheritable.cap[i] & inheritable);
360 if (permitted & ~new->cap_permitted.cap[i])
361 /* insufficient to execute correctly */
362 ret = -EPERM;
366 * For legacy apps, with no internal support for recognizing they
367 * do not have enough capabilities, we return an error if they are
368 * missing some "forced" (aka file-permitted) capabilities.
370 return *effective ? ret : 0;
374 * Extract the on-exec-apply capability sets for an executable file.
376 int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps)
378 struct inode *inode = dentry->d_inode;
379 __u32 magic_etc;
380 unsigned tocopy, i;
381 int size;
382 struct vfs_cap_data caps;
384 memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
386 if (!inode || !inode->i_op->getxattr)
387 return -ENODATA;
389 size = inode->i_op->getxattr((struct dentry *)dentry, XATTR_NAME_CAPS, &caps,
390 XATTR_CAPS_SZ);
391 if (size == -ENODATA || size == -EOPNOTSUPP)
392 /* no data, that's ok */
393 return -ENODATA;
394 if (size < 0)
395 return size;
397 if (size < sizeof(magic_etc))
398 return -EINVAL;
400 cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps.magic_etc);
402 switch (magic_etc & VFS_CAP_REVISION_MASK) {
403 case VFS_CAP_REVISION_1:
404 if (size != XATTR_CAPS_SZ_1)
405 return -EINVAL;
406 tocopy = VFS_CAP_U32_1;
407 break;
408 case VFS_CAP_REVISION_2:
409 if (size != XATTR_CAPS_SZ_2)
410 return -EINVAL;
411 tocopy = VFS_CAP_U32_2;
412 break;
413 default:
414 return -EINVAL;
417 CAP_FOR_EACH_U32(i) {
418 if (i >= tocopy)
419 break;
420 cpu_caps->permitted.cap[i] = le32_to_cpu(caps.data[i].permitted);
421 cpu_caps->inheritable.cap[i] = le32_to_cpu(caps.data[i].inheritable);
424 cpu_caps->permitted.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
425 cpu_caps->inheritable.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
427 return 0;
431 * Attempt to get the on-exec apply capability sets for an executable file from
432 * its xattrs and, if present, apply them to the proposed credentials being
433 * constructed by execve().
435 static int get_file_caps(struct linux_binprm *bprm, bool *effective, bool *has_cap)
437 int rc = 0;
438 struct cpu_vfs_cap_data vcaps;
440 bprm_clear_caps(bprm);
442 if (!file_caps_enabled)
443 return 0;
445 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
446 return 0;
448 rc = get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
449 if (rc < 0) {
450 if (rc == -EINVAL)
451 printk(KERN_NOTICE "%s: get_vfs_caps_from_disk returned %d for %s\n",
452 __func__, rc, bprm->filename);
453 else if (rc == -ENODATA)
454 rc = 0;
455 goto out;
458 rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_cap);
459 if (rc == -EINVAL)
460 printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n",
461 __func__, rc, bprm->filename);
463 out:
464 if (rc)
465 bprm_clear_caps(bprm);
467 return rc;
471 * cap_bprm_set_creds - Set up the proposed credentials for execve().
472 * @bprm: The execution parameters, including the proposed creds
474 * Set up the proposed credentials for a new execution context being
475 * constructed by execve(). The proposed creds in @bprm->cred is altered,
476 * which won't take effect immediately. Returns 0 if successful, -ve on error.
478 int cap_bprm_set_creds(struct linux_binprm *bprm)
480 const struct cred *old = current_cred();
481 struct cred *new = bprm->cred;
482 bool effective, has_cap = false;
483 int ret;
484 kuid_t root_uid;
486 effective = false;
487 ret = get_file_caps(bprm, &effective, &has_cap);
488 if (ret < 0)
489 return ret;
491 root_uid = make_kuid(new->user_ns, 0);
493 if (!issecure(SECURE_NOROOT)) {
495 * If the legacy file capability is set, then don't set privs
496 * for a setuid root binary run by a non-root user. Do set it
497 * for a root user just to cause least surprise to an admin.
499 if (has_cap && !uid_eq(new->uid, root_uid) && uid_eq(new->euid, root_uid)) {
500 warn_setuid_and_fcaps_mixed(bprm->filename);
501 goto skip;
504 * To support inheritance of root-permissions and suid-root
505 * executables under compatibility mode, we override the
506 * capability sets for the file.
508 * If only the real uid is 0, we do not set the effective bit.
510 if (uid_eq(new->euid, root_uid) || uid_eq(new->uid, root_uid)) {
511 /* pP' = (cap_bset & ~0) | (pI & ~0) */
512 new->cap_permitted = cap_combine(old->cap_bset,
513 old->cap_inheritable);
515 if (uid_eq(new->euid, root_uid))
516 effective = true;
518 skip:
520 /* if we have fs caps, clear dangerous personality flags */
521 if (!cap_issubset(new->cap_permitted, old->cap_permitted))
522 bprm->per_clear |= PER_CLEAR_ON_SETID;
525 /* Don't let someone trace a set[ug]id/setpcap binary with the revised
526 * credentials unless they have the appropriate permit.
528 * In addition, if NO_NEW_PRIVS, then ensure we get no new privs.
530 if ((!uid_eq(new->euid, old->uid) ||
531 !gid_eq(new->egid, old->gid) ||
532 !cap_issubset(new->cap_permitted, old->cap_permitted)) &&
533 bprm->unsafe & ~LSM_UNSAFE_PTRACE_CAP) {
534 /* downgrade; they get no more than they had, and maybe less */
535 if (!capable(CAP_SETUID) ||
536 (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)) {
537 new->euid = new->uid;
538 new->egid = new->gid;
540 new->cap_permitted = cap_intersect(new->cap_permitted,
541 old->cap_permitted);
544 new->suid = new->fsuid = new->euid;
545 new->sgid = new->fsgid = new->egid;
547 if (effective)
548 new->cap_effective = new->cap_permitted;
549 else
550 cap_clear(new->cap_effective);
551 bprm->cap_effective = effective;
554 * Audit candidate if current->cap_effective is set
556 * We do not bother to audit if 3 things are true:
557 * 1) cap_effective has all caps
558 * 2) we are root
559 * 3) root is supposed to have all caps (SECURE_NOROOT)
560 * Since this is just a normal root execing a process.
562 * Number 1 above might fail if you don't have a full bset, but I think
563 * that is interesting information to audit.
565 if (!cap_isclear(new->cap_effective)) {
566 if (!cap_issubset(CAP_FULL_SET, new->cap_effective) ||
567 !uid_eq(new->euid, root_uid) || !uid_eq(new->uid, root_uid) ||
568 issecure(SECURE_NOROOT)) {
569 ret = audit_log_bprm_fcaps(bprm, new, old);
570 if (ret < 0)
571 return ret;
575 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
576 return 0;
580 * cap_bprm_secureexec - Determine whether a secure execution is required
581 * @bprm: The execution parameters
583 * Determine whether a secure execution is required, return 1 if it is, and 0
584 * if it is not.
586 * The credentials have been committed by this point, and so are no longer
587 * available through @bprm->cred.
589 int cap_bprm_secureexec(struct linux_binprm *bprm)
591 const struct cred *cred = current_cred();
592 kuid_t root_uid = make_kuid(cred->user_ns, 0);
594 if (!uid_eq(cred->uid, root_uid)) {
595 if (bprm->cap_effective)
596 return 1;
597 if (!cap_isclear(cred->cap_permitted))
598 return 1;
601 return (!uid_eq(cred->euid, cred->uid) ||
602 !gid_eq(cred->egid, cred->gid));
606 * cap_inode_setxattr - Determine whether an xattr may be altered
607 * @dentry: The inode/dentry being altered
608 * @name: The name of the xattr to be changed
609 * @value: The value that the xattr will be changed to
610 * @size: The size of value
611 * @flags: The replacement flag
613 * Determine whether an xattr may be altered or set on an inode, returning 0 if
614 * permission is granted, -ve if denied.
616 * This is used to make sure security xattrs don't get updated or set by those
617 * who aren't privileged to do so.
619 int cap_inode_setxattr(struct dentry *dentry, const char *name,
620 const void *value, size_t size, int flags)
622 if (!strcmp(name, XATTR_NAME_CAPS)) {
623 if (!capable(CAP_SETFCAP))
624 return -EPERM;
625 return 0;
628 if (!strncmp(name, XATTR_SECURITY_PREFIX,
629 sizeof(XATTR_SECURITY_PREFIX) - 1) &&
630 !capable(CAP_SYS_ADMIN))
631 return -EPERM;
632 return 0;
636 * cap_inode_removexattr - Determine whether an xattr may be removed
637 * @dentry: The inode/dentry being altered
638 * @name: The name of the xattr to be changed
640 * Determine whether an xattr may be removed from an inode, returning 0 if
641 * permission is granted, -ve if denied.
643 * This is used to make sure security xattrs don't get removed by those who
644 * aren't privileged to remove them.
646 int cap_inode_removexattr(struct dentry *dentry, const char *name)
648 if (!strcmp(name, XATTR_NAME_CAPS)) {
649 if (!capable(CAP_SETFCAP))
650 return -EPERM;
651 return 0;
654 if (!strncmp(name, XATTR_SECURITY_PREFIX,
655 sizeof(XATTR_SECURITY_PREFIX) - 1) &&
656 !capable(CAP_SYS_ADMIN))
657 return -EPERM;
658 return 0;
662 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
663 * a process after a call to setuid, setreuid, or setresuid.
665 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
666 * {r,e,s}uid != 0, the permitted and effective capabilities are
667 * cleared.
669 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
670 * capabilities of the process are cleared.
672 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
673 * capabilities are set to the permitted capabilities.
675 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
676 * never happen.
678 * -astor
680 * cevans - New behaviour, Oct '99
681 * A process may, via prctl(), elect to keep its capabilities when it
682 * calls setuid() and switches away from uid==0. Both permitted and
683 * effective sets will be retained.
684 * Without this change, it was impossible for a daemon to drop only some
685 * of its privilege. The call to setuid(!=0) would drop all privileges!
686 * Keeping uid 0 is not an option because uid 0 owns too many vital
687 * files..
688 * Thanks to Olaf Kirch and Peter Benie for spotting this.
690 static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
692 kuid_t root_uid = make_kuid(old->user_ns, 0);
694 if ((uid_eq(old->uid, root_uid) ||
695 uid_eq(old->euid, root_uid) ||
696 uid_eq(old->suid, root_uid)) &&
697 (!uid_eq(new->uid, root_uid) &&
698 !uid_eq(new->euid, root_uid) &&
699 !uid_eq(new->suid, root_uid)) &&
700 !issecure(SECURE_KEEP_CAPS)) {
701 cap_clear(new->cap_permitted);
702 cap_clear(new->cap_effective);
704 if (uid_eq(old->euid, root_uid) && !uid_eq(new->euid, root_uid))
705 cap_clear(new->cap_effective);
706 if (!uid_eq(old->euid, root_uid) && uid_eq(new->euid, root_uid))
707 new->cap_effective = new->cap_permitted;
711 * cap_task_fix_setuid - Fix up the results of setuid() call
712 * @new: The proposed credentials
713 * @old: The current task's current credentials
714 * @flags: Indications of what has changed
716 * Fix up the results of setuid() call before the credential changes are
717 * actually applied, returning 0 to grant the changes, -ve to deny them.
719 int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
721 switch (flags) {
722 case LSM_SETID_RE:
723 case LSM_SETID_ID:
724 case LSM_SETID_RES:
725 /* juggle the capabilities to follow [RES]UID changes unless
726 * otherwise suppressed */
727 if (!issecure(SECURE_NO_SETUID_FIXUP))
728 cap_emulate_setxuid(new, old);
729 break;
731 case LSM_SETID_FS:
732 /* juggle the capabilties to follow FSUID changes, unless
733 * otherwise suppressed
735 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
736 * if not, we might be a bit too harsh here.
738 if (!issecure(SECURE_NO_SETUID_FIXUP)) {
739 kuid_t root_uid = make_kuid(old->user_ns, 0);
740 if (uid_eq(old->fsuid, root_uid) && !uid_eq(new->fsuid, root_uid))
741 new->cap_effective =
742 cap_drop_fs_set(new->cap_effective);
744 if (!uid_eq(old->fsuid, root_uid) && uid_eq(new->fsuid, root_uid))
745 new->cap_effective =
746 cap_raise_fs_set(new->cap_effective,
747 new->cap_permitted);
749 break;
751 default:
752 return -EINVAL;
755 return 0;
759 * Rationale: code calling task_setscheduler, task_setioprio, and
760 * task_setnice, assumes that
761 * . if capable(cap_sys_nice), then those actions should be allowed
762 * . if not capable(cap_sys_nice), but acting on your own processes,
763 * then those actions should be allowed
764 * This is insufficient now since you can call code without suid, but
765 * yet with increased caps.
766 * So we check for increased caps on the target process.
768 static int cap_safe_nice(struct task_struct *p)
770 int is_subset, ret = 0;
772 rcu_read_lock();
773 is_subset = cap_issubset(__task_cred(p)->cap_permitted,
774 current_cred()->cap_permitted);
775 if (!is_subset && !ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
776 ret = -EPERM;
777 rcu_read_unlock();
779 return ret;
783 * cap_task_setscheduler - Detemine if scheduler policy change is permitted
784 * @p: The task to affect
786 * Detemine if the requested scheduler policy change is permitted for the
787 * specified task, returning 0 if permission is granted, -ve if denied.
789 int cap_task_setscheduler(struct task_struct *p)
791 return cap_safe_nice(p);
795 * cap_task_ioprio - Detemine if I/O priority change is permitted
796 * @p: The task to affect
797 * @ioprio: The I/O priority to set
799 * Detemine if the requested I/O priority change is permitted for the specified
800 * task, returning 0 if permission is granted, -ve if denied.
802 int cap_task_setioprio(struct task_struct *p, int ioprio)
804 return cap_safe_nice(p);
808 * cap_task_ioprio - Detemine if task priority change is permitted
809 * @p: The task to affect
810 * @nice: The nice value to set
812 * Detemine if the requested task priority change is permitted for the
813 * specified task, returning 0 if permission is granted, -ve if denied.
815 int cap_task_setnice(struct task_struct *p, int nice)
817 return cap_safe_nice(p);
821 * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from
822 * the current task's bounding set. Returns 0 on success, -ve on error.
824 static int cap_prctl_drop(unsigned long cap)
826 struct cred *new;
828 if (!ns_capable(current_user_ns(), CAP_SETPCAP))
829 return -EPERM;
830 if (!cap_valid(cap))
831 return -EINVAL;
833 new = prepare_creds();
834 if (!new)
835 return -ENOMEM;
836 cap_lower(new->cap_bset, cap);
837 return commit_creds(new);
841 * cap_task_prctl - Implement process control functions for this security module
842 * @option: The process control function requested
843 * @arg2, @arg3, @arg4, @arg5: The argument data for this function
845 * Allow process control functions (sys_prctl()) to alter capabilities; may
846 * also deny access to other functions not otherwise implemented here.
848 * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
849 * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM
850 * modules will consider performing the function.
852 int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
853 unsigned long arg4, unsigned long arg5)
855 const struct cred *old = current_cred();
856 struct cred *new;
858 switch (option) {
859 case PR_CAPBSET_READ:
860 if (!cap_valid(arg2))
861 return -EINVAL;
862 return !!cap_raised(old->cap_bset, arg2);
864 case PR_CAPBSET_DROP:
865 return cap_prctl_drop(arg2);
868 * The next four prctl's remain to assist with transitioning a
869 * system from legacy UID=0 based privilege (when filesystem
870 * capabilities are not in use) to a system using filesystem
871 * capabilities only - as the POSIX.1e draft intended.
873 * Note:
875 * PR_SET_SECUREBITS =
876 * issecure_mask(SECURE_KEEP_CAPS_LOCKED)
877 * | issecure_mask(SECURE_NOROOT)
878 * | issecure_mask(SECURE_NOROOT_LOCKED)
879 * | issecure_mask(SECURE_NO_SETUID_FIXUP)
880 * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
882 * will ensure that the current process and all of its
883 * children will be locked into a pure
884 * capability-based-privilege environment.
886 case PR_SET_SECUREBITS:
887 if ((((old->securebits & SECURE_ALL_LOCKS) >> 1)
888 & (old->securebits ^ arg2)) /*[1]*/
889 || ((old->securebits & SECURE_ALL_LOCKS & ~arg2)) /*[2]*/
890 || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/
891 || (cap_capable(current_cred(),
892 current_cred()->user_ns, CAP_SETPCAP,
893 SECURITY_CAP_AUDIT) != 0) /*[4]*/
895 * [1] no changing of bits that are locked
896 * [2] no unlocking of locks
897 * [3] no setting of unsupported bits
898 * [4] doing anything requires privilege (go read about
899 * the "sendmail capabilities bug")
902 /* cannot change a locked bit */
903 return -EPERM;
905 new = prepare_creds();
906 if (!new)
907 return -ENOMEM;
908 new->securebits = arg2;
909 return commit_creds(new);
911 case PR_GET_SECUREBITS:
912 return old->securebits;
914 case PR_GET_KEEPCAPS:
915 return !!issecure(SECURE_KEEP_CAPS);
917 case PR_SET_KEEPCAPS:
918 if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
919 return -EINVAL;
920 if (issecure(SECURE_KEEP_CAPS_LOCKED))
921 return -EPERM;
923 new = prepare_creds();
924 if (!new)
925 return -ENOMEM;
926 if (arg2)
927 new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
928 else
929 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
930 return commit_creds(new);
932 default:
933 /* No functionality available - continue with default */
934 return -ENOSYS;
939 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
940 * @mm: The VM space in which the new mapping is to be made
941 * @pages: The size of the mapping
943 * Determine whether the allocation of a new virtual mapping by the current
944 * task is permitted, returning 0 if permission is granted, -ve if not.
946 int cap_vm_enough_memory(struct mm_struct *mm, long pages)
948 int cap_sys_admin = 0;
950 if (cap_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
951 SECURITY_CAP_NOAUDIT) == 0)
952 cap_sys_admin = 1;
953 return __vm_enough_memory(mm, pages, cap_sys_admin);
957 * cap_mmap_addr - check if able to map given addr
958 * @addr: address attempting to be mapped
960 * If the process is attempting to map memory below dac_mmap_min_addr they need
961 * CAP_SYS_RAWIO. The other parameters to this function are unused by the
962 * capability security module. Returns 0 if this mapping should be allowed
963 * -EPERM if not.
965 int cap_mmap_addr(unsigned long addr)
967 int ret = 0;
969 if (addr < dac_mmap_min_addr) {
970 ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO,
971 SECURITY_CAP_AUDIT);
972 /* set PF_SUPERPRIV if it turns out we allow the low mmap */
973 if (ret == 0)
974 current->flags |= PF_SUPERPRIV;
976 return ret;
979 int cap_mmap_file(struct file *file, unsigned long reqprot,
980 unsigned long prot, unsigned long flags)
982 return 0;