2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
24 * This file implements UBIFS initialization and VFS superblock operations. Some
25 * initialization stuff which is rather large and complex is placed at
26 * corresponding subsystems, but most of it is here.
29 #include <linux/init.h>
30 #include <linux/slab.h>
31 #include <linux/module.h>
32 #include <linux/ctype.h>
33 #include <linux/kthread.h>
34 #include <linux/parser.h>
35 #include <linux/seq_file.h>
36 #include <linux/mount.h>
37 #include <linux/math64.h>
38 #include <linux/writeback.h>
42 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
43 * allocating too much.
45 #define UBIFS_KMALLOC_OK (128*1024)
47 /* Slab cache for UBIFS inodes */
48 static struct kmem_cache
*ubifs_inode_slab
;
50 /* UBIFS TNC shrinker description */
51 static struct shrinker ubifs_shrinker_info
= {
52 .scan_objects
= ubifs_shrink_scan
,
53 .count_objects
= ubifs_shrink_count
,
54 .seeks
= DEFAULT_SEEKS
,
58 * validate_inode - validate inode.
59 * @c: UBIFS file-system description object
60 * @inode: the inode to validate
62 * This is a helper function for 'ubifs_iget()' which validates various fields
63 * of a newly built inode to make sure they contain sane values and prevent
64 * possible vulnerabilities. Returns zero if the inode is all right and
65 * a non-zero error code if not.
67 static int validate_inode(struct ubifs_info
*c
, const struct inode
*inode
)
70 const struct ubifs_inode
*ui
= ubifs_inode(inode
);
72 if (inode
->i_size
> c
->max_inode_sz
) {
73 ubifs_err(c
, "inode is too large (%lld)",
74 (long long)inode
->i_size
);
78 if (ui
->compr_type
>= UBIFS_COMPR_TYPES_CNT
) {
79 ubifs_err(c
, "unknown compression type %d", ui
->compr_type
);
83 if (ui
->xattr_names
+ ui
->xattr_cnt
> XATTR_LIST_MAX
)
86 if (ui
->data_len
< 0 || ui
->data_len
> UBIFS_MAX_INO_DATA
)
89 if (ui
->xattr
&& !S_ISREG(inode
->i_mode
))
92 if (!ubifs_compr_present(c
, ui
->compr_type
)) {
93 ubifs_warn(c
, "inode %lu uses '%s' compression, but it was not compiled in",
94 inode
->i_ino
, ubifs_compr_name(c
, ui
->compr_type
));
97 err
= dbg_check_dir(c
, inode
);
101 struct inode
*ubifs_iget(struct super_block
*sb
, unsigned long inum
)
105 struct ubifs_ino_node
*ino
;
106 struct ubifs_info
*c
= sb
->s_fs_info
;
108 struct ubifs_inode
*ui
;
110 dbg_gen("inode %lu", inum
);
112 inode
= iget_locked(sb
, inum
);
114 return ERR_PTR(-ENOMEM
);
115 if (!(inode
->i_state
& I_NEW
))
117 ui
= ubifs_inode(inode
);
119 ino
= kmalloc(UBIFS_MAX_INO_NODE_SZ
, GFP_NOFS
);
125 ino_key_init(c
, &key
, inode
->i_ino
);
127 err
= ubifs_tnc_lookup(c
, &key
, ino
);
131 inode
->i_flags
|= S_NOCMTIME
;
132 #ifndef CONFIG_UBIFS_ATIME_SUPPORT
133 inode
->i_flags
|= S_NOATIME
;
135 set_nlink(inode
, le32_to_cpu(ino
->nlink
));
136 i_uid_write(inode
, le32_to_cpu(ino
->uid
));
137 i_gid_write(inode
, le32_to_cpu(ino
->gid
));
138 inode
->i_atime
.tv_sec
= (int64_t)le64_to_cpu(ino
->atime_sec
);
139 inode
->i_atime
.tv_nsec
= le32_to_cpu(ino
->atime_nsec
);
140 inode
->i_mtime
.tv_sec
= (int64_t)le64_to_cpu(ino
->mtime_sec
);
141 inode
->i_mtime
.tv_nsec
= le32_to_cpu(ino
->mtime_nsec
);
142 inode
->i_ctime
.tv_sec
= (int64_t)le64_to_cpu(ino
->ctime_sec
);
143 inode
->i_ctime
.tv_nsec
= le32_to_cpu(ino
->ctime_nsec
);
144 inode
->i_mode
= le32_to_cpu(ino
->mode
);
145 inode
->i_size
= le64_to_cpu(ino
->size
);
147 ui
->data_len
= le32_to_cpu(ino
->data_len
);
148 ui
->flags
= le32_to_cpu(ino
->flags
);
149 ui
->compr_type
= le16_to_cpu(ino
->compr_type
);
150 ui
->creat_sqnum
= le64_to_cpu(ino
->creat_sqnum
);
151 ui
->xattr_cnt
= le32_to_cpu(ino
->xattr_cnt
);
152 ui
->xattr_size
= le32_to_cpu(ino
->xattr_size
);
153 ui
->xattr_names
= le32_to_cpu(ino
->xattr_names
);
154 ui
->synced_i_size
= ui
->ui_size
= inode
->i_size
;
156 ui
->xattr
= (ui
->flags
& UBIFS_XATTR_FL
) ? 1 : 0;
158 err
= validate_inode(c
, inode
);
162 switch (inode
->i_mode
& S_IFMT
) {
164 inode
->i_mapping
->a_ops
= &ubifs_file_address_operations
;
165 inode
->i_op
= &ubifs_file_inode_operations
;
166 inode
->i_fop
= &ubifs_file_operations
;
168 ui
->data
= kmalloc(ui
->data_len
+ 1, GFP_NOFS
);
173 memcpy(ui
->data
, ino
->data
, ui
->data_len
);
174 ((char *)ui
->data
)[ui
->data_len
] = '\0';
175 } else if (ui
->data_len
!= 0) {
181 inode
->i_op
= &ubifs_dir_inode_operations
;
182 inode
->i_fop
= &ubifs_dir_operations
;
183 if (ui
->data_len
!= 0) {
189 inode
->i_op
= &ubifs_symlink_inode_operations
;
190 if (ui
->data_len
<= 0 || ui
->data_len
> UBIFS_MAX_INO_DATA
) {
194 ui
->data
= kmalloc(ui
->data_len
+ 1, GFP_NOFS
);
199 memcpy(ui
->data
, ino
->data
, ui
->data_len
);
200 ((char *)ui
->data
)[ui
->data_len
] = '\0';
206 union ubifs_dev_desc
*dev
;
208 ui
->data
= kmalloc(sizeof(union ubifs_dev_desc
), GFP_NOFS
);
214 dev
= (union ubifs_dev_desc
*)ino
->data
;
215 if (ui
->data_len
== sizeof(dev
->new))
216 rdev
= new_decode_dev(le32_to_cpu(dev
->new));
217 else if (ui
->data_len
== sizeof(dev
->huge
))
218 rdev
= huge_decode_dev(le64_to_cpu(dev
->huge
));
223 memcpy(ui
->data
, ino
->data
, ui
->data_len
);
224 inode
->i_op
= &ubifs_file_inode_operations
;
225 init_special_inode(inode
, inode
->i_mode
, rdev
);
230 inode
->i_op
= &ubifs_file_inode_operations
;
231 init_special_inode(inode
, inode
->i_mode
, 0);
232 if (ui
->data_len
!= 0) {
243 ubifs_set_inode_flags(inode
);
244 unlock_new_inode(inode
);
248 ubifs_err(c
, "inode %lu validation failed, error %d", inode
->i_ino
, err
);
249 ubifs_dump_node(c
, ino
);
250 ubifs_dump_inode(c
, inode
);
255 ubifs_err(c
, "failed to read inode %lu, error %d", inode
->i_ino
, err
);
260 static struct inode
*ubifs_alloc_inode(struct super_block
*sb
)
262 struct ubifs_inode
*ui
;
264 ui
= kmem_cache_alloc(ubifs_inode_slab
, GFP_NOFS
);
268 memset((void *)ui
+ sizeof(struct inode
), 0,
269 sizeof(struct ubifs_inode
) - sizeof(struct inode
));
270 mutex_init(&ui
->ui_mutex
);
271 spin_lock_init(&ui
->ui_lock
);
272 return &ui
->vfs_inode
;
275 static void ubifs_i_callback(struct rcu_head
*head
)
277 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
278 struct ubifs_inode
*ui
= ubifs_inode(inode
);
279 kmem_cache_free(ubifs_inode_slab
, ui
);
282 static void ubifs_destroy_inode(struct inode
*inode
)
284 struct ubifs_inode
*ui
= ubifs_inode(inode
);
287 call_rcu(&inode
->i_rcu
, ubifs_i_callback
);
291 * Note, Linux write-back code calls this without 'i_mutex'.
293 static int ubifs_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
296 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
297 struct ubifs_inode
*ui
= ubifs_inode(inode
);
299 ubifs_assert(c
, !ui
->xattr
);
300 if (is_bad_inode(inode
))
303 mutex_lock(&ui
->ui_mutex
);
305 * Due to races between write-back forced by budgeting
306 * (see 'sync_some_inodes()') and background write-back, the inode may
307 * have already been synchronized, do not do this again. This might
308 * also happen if it was synchronized in an VFS operation, e.g.
312 mutex_unlock(&ui
->ui_mutex
);
317 * As an optimization, do not write orphan inodes to the media just
318 * because this is not needed.
320 dbg_gen("inode %lu, mode %#x, nlink %u",
321 inode
->i_ino
, (int)inode
->i_mode
, inode
->i_nlink
);
322 if (inode
->i_nlink
) {
323 err
= ubifs_jnl_write_inode(c
, inode
);
325 ubifs_err(c
, "can't write inode %lu, error %d",
328 err
= dbg_check_inode_size(c
, inode
, ui
->ui_size
);
332 mutex_unlock(&ui
->ui_mutex
);
333 ubifs_release_dirty_inode_budget(c
, ui
);
337 static void ubifs_evict_inode(struct inode
*inode
)
340 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
341 struct ubifs_inode
*ui
= ubifs_inode(inode
);
345 * Extended attribute inode deletions are fully handled in
346 * 'ubifs_removexattr()'. These inodes are special and have
347 * limited usage, so there is nothing to do here.
351 dbg_gen("inode %lu, mode %#x", inode
->i_ino
, (int)inode
->i_mode
);
352 ubifs_assert(c
, !atomic_read(&inode
->i_count
));
354 truncate_inode_pages_final(&inode
->i_data
);
359 if (is_bad_inode(inode
))
362 ui
->ui_size
= inode
->i_size
= 0;
363 err
= ubifs_jnl_delete_inode(c
, inode
);
366 * Worst case we have a lost orphan inode wasting space, so a
367 * simple error message is OK here.
369 ubifs_err(c
, "can't delete inode %lu, error %d",
374 ubifs_release_dirty_inode_budget(c
, ui
);
376 /* We've deleted something - clean the "no space" flags */
377 c
->bi
.nospace
= c
->bi
.nospace_rp
= 0;
382 fscrypt_put_encryption_info(inode
);
385 static void ubifs_dirty_inode(struct inode
*inode
, int flags
)
387 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
388 struct ubifs_inode
*ui
= ubifs_inode(inode
);
390 ubifs_assert(c
, mutex_is_locked(&ui
->ui_mutex
));
393 dbg_gen("inode %lu", inode
->i_ino
);
397 static int ubifs_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
399 struct ubifs_info
*c
= dentry
->d_sb
->s_fs_info
;
400 unsigned long long free
;
401 __le32
*uuid
= (__le32
*)c
->uuid
;
403 free
= ubifs_get_free_space(c
);
404 dbg_gen("free space %lld bytes (%lld blocks)",
405 free
, free
>> UBIFS_BLOCK_SHIFT
);
407 buf
->f_type
= UBIFS_SUPER_MAGIC
;
408 buf
->f_bsize
= UBIFS_BLOCK_SIZE
;
409 buf
->f_blocks
= c
->block_cnt
;
410 buf
->f_bfree
= free
>> UBIFS_BLOCK_SHIFT
;
411 if (free
> c
->report_rp_size
)
412 buf
->f_bavail
= (free
- c
->report_rp_size
) >> UBIFS_BLOCK_SHIFT
;
417 buf
->f_namelen
= UBIFS_MAX_NLEN
;
418 buf
->f_fsid
.val
[0] = le32_to_cpu(uuid
[0]) ^ le32_to_cpu(uuid
[2]);
419 buf
->f_fsid
.val
[1] = le32_to_cpu(uuid
[1]) ^ le32_to_cpu(uuid
[3]);
420 ubifs_assert(c
, buf
->f_bfree
<= c
->block_cnt
);
424 static int ubifs_show_options(struct seq_file
*s
, struct dentry
*root
)
426 struct ubifs_info
*c
= root
->d_sb
->s_fs_info
;
428 if (c
->mount_opts
.unmount_mode
== 2)
429 seq_puts(s
, ",fast_unmount");
430 else if (c
->mount_opts
.unmount_mode
== 1)
431 seq_puts(s
, ",norm_unmount");
433 if (c
->mount_opts
.bulk_read
== 2)
434 seq_puts(s
, ",bulk_read");
435 else if (c
->mount_opts
.bulk_read
== 1)
436 seq_puts(s
, ",no_bulk_read");
438 if (c
->mount_opts
.chk_data_crc
== 2)
439 seq_puts(s
, ",chk_data_crc");
440 else if (c
->mount_opts
.chk_data_crc
== 1)
441 seq_puts(s
, ",no_chk_data_crc");
443 if (c
->mount_opts
.override_compr
) {
444 seq_printf(s
, ",compr=%s",
445 ubifs_compr_name(c
, c
->mount_opts
.compr_type
));
448 seq_printf(s
, ",assert=%s", ubifs_assert_action_name(c
));
449 seq_printf(s
, ",ubi=%d,vol=%d", c
->vi
.ubi_num
, c
->vi
.vol_id
);
454 static int ubifs_sync_fs(struct super_block
*sb
, int wait
)
457 struct ubifs_info
*c
= sb
->s_fs_info
;
460 * Zero @wait is just an advisory thing to help the file system shove
461 * lots of data into the queues, and there will be the second
462 * '->sync_fs()' call, with non-zero @wait.
468 * Synchronize write buffers, because 'ubifs_run_commit()' does not
469 * do this if it waits for an already running commit.
471 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
472 err
= ubifs_wbuf_sync(&c
->jheads
[i
].wbuf
);
478 * Strictly speaking, it is not necessary to commit the journal here,
479 * synchronizing write-buffers would be enough. But committing makes
480 * UBIFS free space predictions much more accurate, so we want to let
481 * the user be able to get more accurate results of 'statfs()' after
482 * they synchronize the file system.
484 err
= ubifs_run_commit(c
);
488 return ubi_sync(c
->vi
.ubi_num
);
492 * init_constants_early - initialize UBIFS constants.
493 * @c: UBIFS file-system description object
495 * This function initialize UBIFS constants which do not need the superblock to
496 * be read. It also checks that the UBI volume satisfies basic UBIFS
497 * requirements. Returns zero in case of success and a negative error code in
500 static int init_constants_early(struct ubifs_info
*c
)
502 if (c
->vi
.corrupted
) {
503 ubifs_warn(c
, "UBI volume is corrupted - read-only mode");
508 ubifs_msg(c
, "read-only UBI device");
512 if (c
->vi
.vol_type
== UBI_STATIC_VOLUME
) {
513 ubifs_msg(c
, "static UBI volume - read-only mode");
517 c
->leb_cnt
= c
->vi
.size
;
518 c
->leb_size
= c
->vi
.usable_leb_size
;
519 c
->leb_start
= c
->di
.leb_start
;
520 c
->half_leb_size
= c
->leb_size
/ 2;
521 c
->min_io_size
= c
->di
.min_io_size
;
522 c
->min_io_shift
= fls(c
->min_io_size
) - 1;
523 c
->max_write_size
= c
->di
.max_write_size
;
524 c
->max_write_shift
= fls(c
->max_write_size
) - 1;
526 if (c
->leb_size
< UBIFS_MIN_LEB_SZ
) {
527 ubifs_errc(c
, "too small LEBs (%d bytes), min. is %d bytes",
528 c
->leb_size
, UBIFS_MIN_LEB_SZ
);
532 if (c
->leb_cnt
< UBIFS_MIN_LEB_CNT
) {
533 ubifs_errc(c
, "too few LEBs (%d), min. is %d",
534 c
->leb_cnt
, UBIFS_MIN_LEB_CNT
);
538 if (!is_power_of_2(c
->min_io_size
)) {
539 ubifs_errc(c
, "bad min. I/O size %d", c
->min_io_size
);
544 * Maximum write size has to be greater or equivalent to min. I/O
545 * size, and be multiple of min. I/O size.
547 if (c
->max_write_size
< c
->min_io_size
||
548 c
->max_write_size
% c
->min_io_size
||
549 !is_power_of_2(c
->max_write_size
)) {
550 ubifs_errc(c
, "bad write buffer size %d for %d min. I/O unit",
551 c
->max_write_size
, c
->min_io_size
);
556 * UBIFS aligns all node to 8-byte boundary, so to make function in
557 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
560 if (c
->min_io_size
< 8) {
563 if (c
->max_write_size
< c
->min_io_size
) {
564 c
->max_write_size
= c
->min_io_size
;
565 c
->max_write_shift
= c
->min_io_shift
;
569 c
->ref_node_alsz
= ALIGN(UBIFS_REF_NODE_SZ
, c
->min_io_size
);
570 c
->mst_node_alsz
= ALIGN(UBIFS_MST_NODE_SZ
, c
->min_io_size
);
573 * Initialize node length ranges which are mostly needed for node
576 c
->ranges
[UBIFS_PAD_NODE
].len
= UBIFS_PAD_NODE_SZ
;
577 c
->ranges
[UBIFS_SB_NODE
].len
= UBIFS_SB_NODE_SZ
;
578 c
->ranges
[UBIFS_MST_NODE
].len
= UBIFS_MST_NODE_SZ
;
579 c
->ranges
[UBIFS_REF_NODE
].len
= UBIFS_REF_NODE_SZ
;
580 c
->ranges
[UBIFS_TRUN_NODE
].len
= UBIFS_TRUN_NODE_SZ
;
581 c
->ranges
[UBIFS_CS_NODE
].len
= UBIFS_CS_NODE_SZ
;
583 c
->ranges
[UBIFS_INO_NODE
].min_len
= UBIFS_INO_NODE_SZ
;
584 c
->ranges
[UBIFS_INO_NODE
].max_len
= UBIFS_MAX_INO_NODE_SZ
;
585 c
->ranges
[UBIFS_ORPH_NODE
].min_len
=
586 UBIFS_ORPH_NODE_SZ
+ sizeof(__le64
);
587 c
->ranges
[UBIFS_ORPH_NODE
].max_len
= c
->leb_size
;
588 c
->ranges
[UBIFS_DENT_NODE
].min_len
= UBIFS_DENT_NODE_SZ
;
589 c
->ranges
[UBIFS_DENT_NODE
].max_len
= UBIFS_MAX_DENT_NODE_SZ
;
590 c
->ranges
[UBIFS_XENT_NODE
].min_len
= UBIFS_XENT_NODE_SZ
;
591 c
->ranges
[UBIFS_XENT_NODE
].max_len
= UBIFS_MAX_XENT_NODE_SZ
;
592 c
->ranges
[UBIFS_DATA_NODE
].min_len
= UBIFS_DATA_NODE_SZ
;
593 c
->ranges
[UBIFS_DATA_NODE
].max_len
= UBIFS_MAX_DATA_NODE_SZ
;
595 * Minimum indexing node size is amended later when superblock is
596 * read and the key length is known.
598 c
->ranges
[UBIFS_IDX_NODE
].min_len
= UBIFS_IDX_NODE_SZ
+ UBIFS_BRANCH_SZ
;
600 * Maximum indexing node size is amended later when superblock is
601 * read and the fanout is known.
603 c
->ranges
[UBIFS_IDX_NODE
].max_len
= INT_MAX
;
606 * Initialize dead and dark LEB space watermarks. See gc.c for comments
607 * about these values.
609 c
->dead_wm
= ALIGN(MIN_WRITE_SZ
, c
->min_io_size
);
610 c
->dark_wm
= ALIGN(UBIFS_MAX_NODE_SZ
, c
->min_io_size
);
613 * Calculate how many bytes would be wasted at the end of LEB if it was
614 * fully filled with data nodes of maximum size. This is used in
615 * calculations when reporting free space.
617 c
->leb_overhead
= c
->leb_size
% UBIFS_MAX_DATA_NODE_SZ
;
619 /* Buffer size for bulk-reads */
620 c
->max_bu_buf_len
= UBIFS_MAX_BULK_READ
* UBIFS_MAX_DATA_NODE_SZ
;
621 if (c
->max_bu_buf_len
> c
->leb_size
)
622 c
->max_bu_buf_len
= c
->leb_size
;
627 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
628 * @c: UBIFS file-system description object
629 * @lnum: LEB the write-buffer was synchronized to
630 * @free: how many free bytes left in this LEB
631 * @pad: how many bytes were padded
633 * This is a callback function which is called by the I/O unit when the
634 * write-buffer is synchronized. We need this to correctly maintain space
635 * accounting in bud logical eraseblocks. This function returns zero in case of
636 * success and a negative error code in case of failure.
638 * This function actually belongs to the journal, but we keep it here because
639 * we want to keep it static.
641 static int bud_wbuf_callback(struct ubifs_info
*c
, int lnum
, int free
, int pad
)
643 return ubifs_update_one_lp(c
, lnum
, free
, pad
, 0, 0);
647 * init_constants_sb - initialize UBIFS constants.
648 * @c: UBIFS file-system description object
650 * This is a helper function which initializes various UBIFS constants after
651 * the superblock has been read. It also checks various UBIFS parameters and
652 * makes sure they are all right. Returns zero in case of success and a
653 * negative error code in case of failure.
655 static int init_constants_sb(struct ubifs_info
*c
)
660 c
->main_bytes
= (long long)c
->main_lebs
* c
->leb_size
;
661 c
->max_znode_sz
= sizeof(struct ubifs_znode
) +
662 c
->fanout
* sizeof(struct ubifs_zbranch
);
664 tmp
= ubifs_idx_node_sz(c
, 1);
665 c
->ranges
[UBIFS_IDX_NODE
].min_len
= tmp
;
666 c
->min_idx_node_sz
= ALIGN(tmp
, 8);
668 tmp
= ubifs_idx_node_sz(c
, c
->fanout
);
669 c
->ranges
[UBIFS_IDX_NODE
].max_len
= tmp
;
670 c
->max_idx_node_sz
= ALIGN(tmp
, 8);
672 /* Make sure LEB size is large enough to fit full commit */
673 tmp
= UBIFS_CS_NODE_SZ
+ UBIFS_REF_NODE_SZ
* c
->jhead_cnt
;
674 tmp
= ALIGN(tmp
, c
->min_io_size
);
675 if (tmp
> c
->leb_size
) {
676 ubifs_err(c
, "too small LEB size %d, at least %d needed",
682 * Make sure that the log is large enough to fit reference nodes for
683 * all buds plus one reserved LEB.
685 tmp64
= c
->max_bud_bytes
+ c
->leb_size
- 1;
686 c
->max_bud_cnt
= div_u64(tmp64
, c
->leb_size
);
687 tmp
= (c
->ref_node_alsz
* c
->max_bud_cnt
+ c
->leb_size
- 1);
690 if (c
->log_lebs
< tmp
) {
691 ubifs_err(c
, "too small log %d LEBs, required min. %d LEBs",
697 * When budgeting we assume worst-case scenarios when the pages are not
698 * be compressed and direntries are of the maximum size.
700 * Note, data, which may be stored in inodes is budgeted separately, so
701 * it is not included into 'c->bi.inode_budget'.
703 c
->bi
.page_budget
= UBIFS_MAX_DATA_NODE_SZ
* UBIFS_BLOCKS_PER_PAGE
;
704 c
->bi
.inode_budget
= UBIFS_INO_NODE_SZ
;
705 c
->bi
.dent_budget
= UBIFS_MAX_DENT_NODE_SZ
;
708 * When the amount of flash space used by buds becomes
709 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
710 * The writers are unblocked when the commit is finished. To avoid
711 * writers to be blocked UBIFS initiates background commit in advance,
712 * when number of bud bytes becomes above the limit defined below.
714 c
->bg_bud_bytes
= (c
->max_bud_bytes
* 13) >> 4;
717 * Ensure minimum journal size. All the bytes in the journal heads are
718 * considered to be used, when calculating the current journal usage.
719 * Consequently, if the journal is too small, UBIFS will treat it as
722 tmp64
= (long long)(c
->jhead_cnt
+ 1) * c
->leb_size
+ 1;
723 if (c
->bg_bud_bytes
< tmp64
)
724 c
->bg_bud_bytes
= tmp64
;
725 if (c
->max_bud_bytes
< tmp64
+ c
->leb_size
)
726 c
->max_bud_bytes
= tmp64
+ c
->leb_size
;
728 err
= ubifs_calc_lpt_geom(c
);
732 /* Initialize effective LEB size used in budgeting calculations */
733 c
->idx_leb_size
= c
->leb_size
- c
->max_idx_node_sz
;
738 * init_constants_master - initialize UBIFS constants.
739 * @c: UBIFS file-system description object
741 * This is a helper function which initializes various UBIFS constants after
742 * the master node has been read. It also checks various UBIFS parameters and
743 * makes sure they are all right.
745 static void init_constants_master(struct ubifs_info
*c
)
749 c
->bi
.min_idx_lebs
= ubifs_calc_min_idx_lebs(c
);
750 c
->report_rp_size
= ubifs_reported_space(c
, c
->rp_size
);
753 * Calculate total amount of FS blocks. This number is not used
754 * internally because it does not make much sense for UBIFS, but it is
755 * necessary to report something for the 'statfs()' call.
757 * Subtract the LEB reserved for GC, the LEB which is reserved for
758 * deletions, minimum LEBs for the index, and assume only one journal
761 tmp64
= c
->main_lebs
- 1 - 1 - MIN_INDEX_LEBS
- c
->jhead_cnt
+ 1;
762 tmp64
*= (long long)c
->leb_size
- c
->leb_overhead
;
763 tmp64
= ubifs_reported_space(c
, tmp64
);
764 c
->block_cnt
= tmp64
>> UBIFS_BLOCK_SHIFT
;
768 * take_gc_lnum - reserve GC LEB.
769 * @c: UBIFS file-system description object
771 * This function ensures that the LEB reserved for garbage collection is marked
772 * as "taken" in lprops. We also have to set free space to LEB size and dirty
773 * space to zero, because lprops may contain out-of-date information if the
774 * file-system was un-mounted before it has been committed. This function
775 * returns zero in case of success and a negative error code in case of
778 static int take_gc_lnum(struct ubifs_info
*c
)
782 if (c
->gc_lnum
== -1) {
783 ubifs_err(c
, "no LEB for GC");
787 /* And we have to tell lprops that this LEB is taken */
788 err
= ubifs_change_one_lp(c
, c
->gc_lnum
, c
->leb_size
, 0,
794 * alloc_wbufs - allocate write-buffers.
795 * @c: UBIFS file-system description object
797 * This helper function allocates and initializes UBIFS write-buffers. Returns
798 * zero in case of success and %-ENOMEM in case of failure.
800 static int alloc_wbufs(struct ubifs_info
*c
)
804 c
->jheads
= kcalloc(c
->jhead_cnt
, sizeof(struct ubifs_jhead
),
809 /* Initialize journal heads */
810 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
811 INIT_LIST_HEAD(&c
->jheads
[i
].buds_list
);
812 err
= ubifs_wbuf_init(c
, &c
->jheads
[i
].wbuf
);
816 c
->jheads
[i
].wbuf
.sync_callback
= &bud_wbuf_callback
;
817 c
->jheads
[i
].wbuf
.jhead
= i
;
818 c
->jheads
[i
].grouped
= 1;
822 * Garbage Collector head does not need to be synchronized by timer.
823 * Also GC head nodes are not grouped.
825 c
->jheads
[GCHD
].wbuf
.no_timer
= 1;
826 c
->jheads
[GCHD
].grouped
= 0;
832 * free_wbufs - free write-buffers.
833 * @c: UBIFS file-system description object
835 static void free_wbufs(struct ubifs_info
*c
)
840 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
841 kfree(c
->jheads
[i
].wbuf
.buf
);
842 kfree(c
->jheads
[i
].wbuf
.inodes
);
850 * free_orphans - free orphans.
851 * @c: UBIFS file-system description object
853 static void free_orphans(struct ubifs_info
*c
)
855 struct ubifs_orphan
*orph
;
857 while (c
->orph_dnext
) {
858 orph
= c
->orph_dnext
;
859 c
->orph_dnext
= orph
->dnext
;
860 list_del(&orph
->list
);
864 while (!list_empty(&c
->orph_list
)) {
865 orph
= list_entry(c
->orph_list
.next
, struct ubifs_orphan
, list
);
866 list_del(&orph
->list
);
868 ubifs_err(c
, "orphan list not empty at unmount");
876 * free_buds - free per-bud objects.
877 * @c: UBIFS file-system description object
879 static void free_buds(struct ubifs_info
*c
)
881 struct ubifs_bud
*bud
, *n
;
883 rbtree_postorder_for_each_entry_safe(bud
, n
, &c
->buds
, rb
)
888 * check_volume_empty - check if the UBI volume is empty.
889 * @c: UBIFS file-system description object
891 * This function checks if the UBIFS volume is empty by looking if its LEBs are
892 * mapped or not. The result of checking is stored in the @c->empty variable.
893 * Returns zero in case of success and a negative error code in case of
896 static int check_volume_empty(struct ubifs_info
*c
)
901 for (lnum
= 0; lnum
< c
->leb_cnt
; lnum
++) {
902 err
= ubifs_is_mapped(c
, lnum
);
903 if (unlikely(err
< 0))
917 * UBIFS mount options.
919 * Opt_fast_unmount: do not run a journal commit before un-mounting
920 * Opt_norm_unmount: run a journal commit before un-mounting
921 * Opt_bulk_read: enable bulk-reads
922 * Opt_no_bulk_read: disable bulk-reads
923 * Opt_chk_data_crc: check CRCs when reading data nodes
924 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
925 * Opt_override_compr: override default compressor
926 * Opt_assert: set ubifs_assert() action
927 * Opt_err: just end of array marker
942 static const match_table_t tokens
= {
943 {Opt_fast_unmount
, "fast_unmount"},
944 {Opt_norm_unmount
, "norm_unmount"},
945 {Opt_bulk_read
, "bulk_read"},
946 {Opt_no_bulk_read
, "no_bulk_read"},
947 {Opt_chk_data_crc
, "chk_data_crc"},
948 {Opt_no_chk_data_crc
, "no_chk_data_crc"},
949 {Opt_override_compr
, "compr=%s"},
950 {Opt_ignore
, "ubi=%s"},
951 {Opt_ignore
, "vol=%s"},
952 {Opt_assert
, "assert=%s"},
957 * parse_standard_option - parse a standard mount option.
958 * @option: the option to parse
960 * Normally, standard mount options like "sync" are passed to file-systems as
961 * flags. However, when a "rootflags=" kernel boot parameter is used, they may
962 * be present in the options string. This function tries to deal with this
963 * situation and parse standard options. Returns 0 if the option was not
964 * recognized, and the corresponding integer flag if it was.
966 * UBIFS is only interested in the "sync" option, so do not check for anything
969 static int parse_standard_option(const char *option
)
972 pr_notice("UBIFS: parse %s\n", option
);
973 if (!strcmp(option
, "sync"))
974 return SB_SYNCHRONOUS
;
979 * ubifs_parse_options - parse mount parameters.
980 * @c: UBIFS file-system description object
981 * @options: parameters to parse
982 * @is_remount: non-zero if this is FS re-mount
984 * This function parses UBIFS mount options and returns zero in case success
985 * and a negative error code in case of failure.
987 static int ubifs_parse_options(struct ubifs_info
*c
, char *options
,
991 substring_t args
[MAX_OPT_ARGS
];
996 while ((p
= strsep(&options
, ","))) {
1002 token
= match_token(p
, tokens
, args
);
1005 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1006 * We accept them in order to be backward-compatible. But this
1007 * should be removed at some point.
1009 case Opt_fast_unmount
:
1010 c
->mount_opts
.unmount_mode
= 2;
1012 case Opt_norm_unmount
:
1013 c
->mount_opts
.unmount_mode
= 1;
1016 c
->mount_opts
.bulk_read
= 2;
1019 case Opt_no_bulk_read
:
1020 c
->mount_opts
.bulk_read
= 1;
1023 case Opt_chk_data_crc
:
1024 c
->mount_opts
.chk_data_crc
= 2;
1025 c
->no_chk_data_crc
= 0;
1027 case Opt_no_chk_data_crc
:
1028 c
->mount_opts
.chk_data_crc
= 1;
1029 c
->no_chk_data_crc
= 1;
1031 case Opt_override_compr
:
1033 char *name
= match_strdup(&args
[0]);
1037 if (!strcmp(name
, "none"))
1038 c
->mount_opts
.compr_type
= UBIFS_COMPR_NONE
;
1039 else if (!strcmp(name
, "lzo"))
1040 c
->mount_opts
.compr_type
= UBIFS_COMPR_LZO
;
1041 else if (!strcmp(name
, "zlib"))
1042 c
->mount_opts
.compr_type
= UBIFS_COMPR_ZLIB
;
1044 ubifs_err(c
, "unknown compressor \"%s\"", name
); //FIXME: is c ready?
1049 c
->mount_opts
.override_compr
= 1;
1050 c
->default_compr
= c
->mount_opts
.compr_type
;
1055 char *act
= match_strdup(&args
[0]);
1059 if (!strcmp(act
, "report"))
1060 c
->assert_action
= ASSACT_REPORT
;
1061 else if (!strcmp(act
, "read-only"))
1062 c
->assert_action
= ASSACT_RO
;
1063 else if (!strcmp(act
, "panic"))
1064 c
->assert_action
= ASSACT_PANIC
;
1066 ubifs_err(c
, "unknown assert action \"%s\"", act
);
1078 struct super_block
*sb
= c
->vfs_sb
;
1080 flag
= parse_standard_option(p
);
1082 ubifs_err(c
, "unrecognized mount option \"%s\" or missing value",
1086 sb
->s_flags
|= flag
;
1096 * destroy_journal - destroy journal data structures.
1097 * @c: UBIFS file-system description object
1099 * This function destroys journal data structures including those that may have
1100 * been created by recovery functions.
1102 static void destroy_journal(struct ubifs_info
*c
)
1104 while (!list_empty(&c
->unclean_leb_list
)) {
1105 struct ubifs_unclean_leb
*ucleb
;
1107 ucleb
= list_entry(c
->unclean_leb_list
.next
,
1108 struct ubifs_unclean_leb
, list
);
1109 list_del(&ucleb
->list
);
1112 while (!list_empty(&c
->old_buds
)) {
1113 struct ubifs_bud
*bud
;
1115 bud
= list_entry(c
->old_buds
.next
, struct ubifs_bud
, list
);
1116 list_del(&bud
->list
);
1119 ubifs_destroy_idx_gc(c
);
1120 ubifs_destroy_size_tree(c
);
1126 * bu_init - initialize bulk-read information.
1127 * @c: UBIFS file-system description object
1129 static void bu_init(struct ubifs_info
*c
)
1131 ubifs_assert(c
, c
->bulk_read
== 1);
1134 return; /* Already initialized */
1137 c
->bu
.buf
= kmalloc(c
->max_bu_buf_len
, GFP_KERNEL
| __GFP_NOWARN
);
1139 if (c
->max_bu_buf_len
> UBIFS_KMALLOC_OK
) {
1140 c
->max_bu_buf_len
= UBIFS_KMALLOC_OK
;
1144 /* Just disable bulk-read */
1145 ubifs_warn(c
, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1147 c
->mount_opts
.bulk_read
= 1;
1154 * check_free_space - check if there is enough free space to mount.
1155 * @c: UBIFS file-system description object
1157 * This function makes sure UBIFS has enough free space to be mounted in
1158 * read/write mode. UBIFS must always have some free space to allow deletions.
1160 static int check_free_space(struct ubifs_info
*c
)
1162 ubifs_assert(c
, c
->dark_wm
> 0);
1163 if (c
->lst
.total_free
+ c
->lst
.total_dirty
< c
->dark_wm
) {
1164 ubifs_err(c
, "insufficient free space to mount in R/W mode");
1165 ubifs_dump_budg(c
, &c
->bi
);
1166 ubifs_dump_lprops(c
);
1173 * mount_ubifs - mount UBIFS file-system.
1174 * @c: UBIFS file-system description object
1176 * This function mounts UBIFS file system. Returns zero in case of success and
1177 * a negative error code in case of failure.
1179 static int mount_ubifs(struct ubifs_info
*c
)
1185 c
->ro_mount
= !!sb_rdonly(c
->vfs_sb
);
1186 /* Suppress error messages while probing if SB_SILENT is set */
1187 c
->probing
= !!(c
->vfs_sb
->s_flags
& SB_SILENT
);
1189 err
= init_constants_early(c
);
1193 err
= ubifs_debugging_init(c
);
1197 err
= check_volume_empty(c
);
1201 if (c
->empty
&& (c
->ro_mount
|| c
->ro_media
)) {
1203 * This UBI volume is empty, and read-only, or the file system
1204 * is mounted read-only - we cannot format it.
1206 ubifs_err(c
, "can't format empty UBI volume: read-only %s",
1207 c
->ro_media
? "UBI volume" : "mount");
1212 if (c
->ro_media
&& !c
->ro_mount
) {
1213 ubifs_err(c
, "cannot mount read-write - read-only media");
1219 * The requirement for the buffer is that it should fit indexing B-tree
1220 * height amount of integers. We assume the height if the TNC tree will
1224 c
->bottom_up_buf
= kmalloc_array(BOTTOM_UP_HEIGHT
, sizeof(int),
1226 if (!c
->bottom_up_buf
)
1229 c
->sbuf
= vmalloc(c
->leb_size
);
1234 c
->ileb_buf
= vmalloc(c
->leb_size
);
1239 if (c
->bulk_read
== 1)
1243 c
->write_reserve_buf
= kmalloc(COMPRESSED_DATA_NODE_BUF_SZ
+ \
1244 UBIFS_CIPHER_BLOCK_SIZE
,
1246 if (!c
->write_reserve_buf
)
1252 err
= ubifs_read_superblock(c
);
1259 * Make sure the compressor which is set as default in the superblock
1260 * or overridden by mount options is actually compiled in.
1262 if (!ubifs_compr_present(c
, c
->default_compr
)) {
1263 ubifs_err(c
, "'compressor \"%s\" is not compiled in",
1264 ubifs_compr_name(c
, c
->default_compr
));
1269 err
= init_constants_sb(c
);
1273 sz
= ALIGN(c
->max_idx_node_sz
, c
->min_io_size
);
1274 sz
= ALIGN(sz
+ c
->max_idx_node_sz
, c
->min_io_size
);
1275 c
->cbuf
= kmalloc(sz
, GFP_NOFS
);
1281 err
= alloc_wbufs(c
);
1285 sprintf(c
->bgt_name
, BGT_NAME_PATTERN
, c
->vi
.ubi_num
, c
->vi
.vol_id
);
1287 /* Create background thread */
1288 c
->bgt
= kthread_create(ubifs_bg_thread
, c
, "%s", c
->bgt_name
);
1289 if (IS_ERR(c
->bgt
)) {
1290 err
= PTR_ERR(c
->bgt
);
1292 ubifs_err(c
, "cannot spawn \"%s\", error %d",
1296 wake_up_process(c
->bgt
);
1299 err
= ubifs_read_master(c
);
1303 init_constants_master(c
);
1305 if ((c
->mst_node
->flags
& cpu_to_le32(UBIFS_MST_DIRTY
)) != 0) {
1306 ubifs_msg(c
, "recovery needed");
1307 c
->need_recovery
= 1;
1310 if (c
->need_recovery
&& !c
->ro_mount
) {
1311 err
= ubifs_recover_inl_heads(c
, c
->sbuf
);
1316 err
= ubifs_lpt_init(c
, 1, !c
->ro_mount
);
1320 if (!c
->ro_mount
&& c
->space_fixup
) {
1321 err
= ubifs_fixup_free_space(c
);
1326 if (!c
->ro_mount
&& !c
->need_recovery
) {
1328 * Set the "dirty" flag so that if we reboot uncleanly we
1329 * will notice this immediately on the next mount.
1331 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_DIRTY
);
1332 err
= ubifs_write_master(c
);
1337 err
= dbg_check_idx_size(c
, c
->bi
.old_idx_sz
);
1341 err
= ubifs_replay_journal(c
);
1345 /* Calculate 'min_idx_lebs' after journal replay */
1346 c
->bi
.min_idx_lebs
= ubifs_calc_min_idx_lebs(c
);
1348 err
= ubifs_mount_orphans(c
, c
->need_recovery
, c
->ro_mount
);
1355 err
= check_free_space(c
);
1359 /* Check for enough log space */
1360 lnum
= c
->lhead_lnum
+ 1;
1361 if (lnum
>= UBIFS_LOG_LNUM
+ c
->log_lebs
)
1362 lnum
= UBIFS_LOG_LNUM
;
1363 if (lnum
== c
->ltail_lnum
) {
1364 err
= ubifs_consolidate_log(c
);
1369 if (c
->need_recovery
) {
1370 err
= ubifs_recover_size(c
);
1373 err
= ubifs_rcvry_gc_commit(c
);
1377 err
= take_gc_lnum(c
);
1382 * GC LEB may contain garbage if there was an unclean
1383 * reboot, and it should be un-mapped.
1385 err
= ubifs_leb_unmap(c
, c
->gc_lnum
);
1390 err
= dbg_check_lprops(c
);
1393 } else if (c
->need_recovery
) {
1394 err
= ubifs_recover_size(c
);
1399 * Even if we mount read-only, we have to set space in GC LEB
1400 * to proper value because this affects UBIFS free space
1401 * reporting. We do not want to have a situation when
1402 * re-mounting from R/O to R/W changes amount of free space.
1404 err
= take_gc_lnum(c
);
1409 spin_lock(&ubifs_infos_lock
);
1410 list_add_tail(&c
->infos_list
, &ubifs_infos
);
1411 spin_unlock(&ubifs_infos_lock
);
1413 if (c
->need_recovery
) {
1415 ubifs_msg(c
, "recovery deferred");
1417 c
->need_recovery
= 0;
1418 ubifs_msg(c
, "recovery completed");
1420 * GC LEB has to be empty and taken at this point. But
1421 * the journal head LEBs may also be accounted as
1422 * "empty taken" if they are empty.
1424 ubifs_assert(c
, c
->lst
.taken_empty_lebs
> 0);
1427 ubifs_assert(c
, c
->lst
.taken_empty_lebs
> 0);
1429 err
= dbg_check_filesystem(c
);
1433 err
= dbg_debugfs_init_fs(c
);
1439 ubifs_msg(c
, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1440 c
->vi
.ubi_num
, c
->vi
.vol_id
, c
->vi
.name
,
1441 c
->ro_mount
? ", R/O mode" : "");
1442 x
= (long long)c
->main_lebs
* c
->leb_size
;
1443 y
= (long long)c
->log_lebs
* c
->leb_size
+ c
->max_bud_bytes
;
1444 ubifs_msg(c
, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1445 c
->leb_size
, c
->leb_size
>> 10, c
->min_io_size
,
1447 ubifs_msg(c
, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1448 x
, x
>> 20, c
->main_lebs
,
1449 y
, y
>> 20, c
->log_lebs
+ c
->max_bud_cnt
);
1450 ubifs_msg(c
, "reserved for root: %llu bytes (%llu KiB)",
1451 c
->report_rp_size
, c
->report_rp_size
>> 10);
1452 ubifs_msg(c
, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1453 c
->fmt_version
, c
->ro_compat_version
,
1454 UBIFS_FORMAT_VERSION
, UBIFS_RO_COMPAT_VERSION
, c
->uuid
,
1455 c
->big_lpt
? ", big LPT model" : ", small LPT model");
1457 dbg_gen("default compressor: %s", ubifs_compr_name(c
, c
->default_compr
));
1458 dbg_gen("data journal heads: %d",
1459 c
->jhead_cnt
- NONDATA_JHEADS_CNT
);
1460 dbg_gen("log LEBs: %d (%d - %d)",
1461 c
->log_lebs
, UBIFS_LOG_LNUM
, c
->log_last
);
1462 dbg_gen("LPT area LEBs: %d (%d - %d)",
1463 c
->lpt_lebs
, c
->lpt_first
, c
->lpt_last
);
1464 dbg_gen("orphan area LEBs: %d (%d - %d)",
1465 c
->orph_lebs
, c
->orph_first
, c
->orph_last
);
1466 dbg_gen("main area LEBs: %d (%d - %d)",
1467 c
->main_lebs
, c
->main_first
, c
->leb_cnt
- 1);
1468 dbg_gen("index LEBs: %d", c
->lst
.idx_lebs
);
1469 dbg_gen("total index bytes: %lld (%lld KiB, %lld MiB)",
1470 c
->bi
.old_idx_sz
, c
->bi
.old_idx_sz
>> 10,
1471 c
->bi
.old_idx_sz
>> 20);
1472 dbg_gen("key hash type: %d", c
->key_hash_type
);
1473 dbg_gen("tree fanout: %d", c
->fanout
);
1474 dbg_gen("reserved GC LEB: %d", c
->gc_lnum
);
1475 dbg_gen("max. znode size %d", c
->max_znode_sz
);
1476 dbg_gen("max. index node size %d", c
->max_idx_node_sz
);
1477 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu",
1478 UBIFS_DATA_NODE_SZ
, UBIFS_INO_NODE_SZ
, UBIFS_DENT_NODE_SZ
);
1479 dbg_gen("node sizes: trun %zu, sb %zu, master %zu",
1480 UBIFS_TRUN_NODE_SZ
, UBIFS_SB_NODE_SZ
, UBIFS_MST_NODE_SZ
);
1481 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu",
1482 UBIFS_REF_NODE_SZ
, UBIFS_CS_NODE_SZ
, UBIFS_ORPH_NODE_SZ
);
1483 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d",
1484 UBIFS_MAX_DATA_NODE_SZ
, UBIFS_MAX_INO_NODE_SZ
,
1485 UBIFS_MAX_DENT_NODE_SZ
, ubifs_idx_node_sz(c
, c
->fanout
));
1486 dbg_gen("dead watermark: %d", c
->dead_wm
);
1487 dbg_gen("dark watermark: %d", c
->dark_wm
);
1488 dbg_gen("LEB overhead: %d", c
->leb_overhead
);
1489 x
= (long long)c
->main_lebs
* c
->dark_wm
;
1490 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)",
1491 x
, x
>> 10, x
>> 20);
1492 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1493 c
->max_bud_bytes
, c
->max_bud_bytes
>> 10,
1494 c
->max_bud_bytes
>> 20);
1495 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1496 c
->bg_bud_bytes
, c
->bg_bud_bytes
>> 10,
1497 c
->bg_bud_bytes
>> 20);
1498 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)",
1499 c
->bud_bytes
, c
->bud_bytes
>> 10, c
->bud_bytes
>> 20);
1500 dbg_gen("max. seq. number: %llu", c
->max_sqnum
);
1501 dbg_gen("commit number: %llu", c
->cmt_no
);
1506 spin_lock(&ubifs_infos_lock
);
1507 list_del(&c
->infos_list
);
1508 spin_unlock(&ubifs_infos_lock
);
1514 ubifs_lpt_free(c
, 0);
1517 kfree(c
->rcvrd_mst_node
);
1519 kthread_stop(c
->bgt
);
1525 kfree(c
->write_reserve_buf
);
1529 kfree(c
->bottom_up_buf
);
1530 ubifs_debugging_exit(c
);
1535 * ubifs_umount - un-mount UBIFS file-system.
1536 * @c: UBIFS file-system description object
1538 * Note, this function is called to free allocated resourced when un-mounting,
1539 * as well as free resources when an error occurred while we were half way
1540 * through mounting (error path cleanup function). So it has to make sure the
1541 * resource was actually allocated before freeing it.
1543 static void ubifs_umount(struct ubifs_info
*c
)
1545 dbg_gen("un-mounting UBI device %d, volume %d", c
->vi
.ubi_num
,
1548 dbg_debugfs_exit_fs(c
);
1549 spin_lock(&ubifs_infos_lock
);
1550 list_del(&c
->infos_list
);
1551 spin_unlock(&ubifs_infos_lock
);
1554 kthread_stop(c
->bgt
);
1559 ubifs_lpt_free(c
, 0);
1562 kfree(c
->rcvrd_mst_node
);
1564 kfree(c
->write_reserve_buf
);
1568 kfree(c
->bottom_up_buf
);
1569 ubifs_debugging_exit(c
);
1573 * ubifs_remount_rw - re-mount in read-write mode.
1574 * @c: UBIFS file-system description object
1576 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1577 * mode. This function allocates the needed resources and re-mounts UBIFS in
1580 static int ubifs_remount_rw(struct ubifs_info
*c
)
1584 if (c
->rw_incompat
) {
1585 ubifs_err(c
, "the file-system is not R/W-compatible");
1586 ubifs_msg(c
, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1587 c
->fmt_version
, c
->ro_compat_version
,
1588 UBIFS_FORMAT_VERSION
, UBIFS_RO_COMPAT_VERSION
);
1592 mutex_lock(&c
->umount_mutex
);
1593 dbg_save_space_info(c
);
1594 c
->remounting_rw
= 1;
1597 if (c
->space_fixup
) {
1598 err
= ubifs_fixup_free_space(c
);
1603 err
= check_free_space(c
);
1607 if (c
->old_leb_cnt
!= c
->leb_cnt
) {
1608 struct ubifs_sb_node
*sup
;
1610 sup
= ubifs_read_sb_node(c
);
1615 sup
->leb_cnt
= cpu_to_le32(c
->leb_cnt
);
1616 err
= ubifs_write_sb_node(c
, sup
);
1622 if (c
->need_recovery
) {
1623 ubifs_msg(c
, "completing deferred recovery");
1624 err
= ubifs_write_rcvrd_mst_node(c
);
1627 err
= ubifs_recover_size(c
);
1630 err
= ubifs_clean_lebs(c
, c
->sbuf
);
1633 err
= ubifs_recover_inl_heads(c
, c
->sbuf
);
1637 /* A readonly mount is not allowed to have orphans */
1638 ubifs_assert(c
, c
->tot_orphans
== 0);
1639 err
= ubifs_clear_orphans(c
);
1644 if (!(c
->mst_node
->flags
& cpu_to_le32(UBIFS_MST_DIRTY
))) {
1645 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_DIRTY
);
1646 err
= ubifs_write_master(c
);
1651 c
->ileb_buf
= vmalloc(c
->leb_size
);
1657 c
->write_reserve_buf
= kmalloc(COMPRESSED_DATA_NODE_BUF_SZ
+ \
1658 UBIFS_CIPHER_BLOCK_SIZE
, GFP_KERNEL
);
1659 if (!c
->write_reserve_buf
) {
1664 err
= ubifs_lpt_init(c
, 0, 1);
1668 /* Create background thread */
1669 c
->bgt
= kthread_create(ubifs_bg_thread
, c
, "%s", c
->bgt_name
);
1670 if (IS_ERR(c
->bgt
)) {
1671 err
= PTR_ERR(c
->bgt
);
1673 ubifs_err(c
, "cannot spawn \"%s\", error %d",
1677 wake_up_process(c
->bgt
);
1679 c
->orph_buf
= vmalloc(c
->leb_size
);
1685 /* Check for enough log space */
1686 lnum
= c
->lhead_lnum
+ 1;
1687 if (lnum
>= UBIFS_LOG_LNUM
+ c
->log_lebs
)
1688 lnum
= UBIFS_LOG_LNUM
;
1689 if (lnum
== c
->ltail_lnum
) {
1690 err
= ubifs_consolidate_log(c
);
1695 if (c
->need_recovery
)
1696 err
= ubifs_rcvry_gc_commit(c
);
1698 err
= ubifs_leb_unmap(c
, c
->gc_lnum
);
1702 dbg_gen("re-mounted read-write");
1703 c
->remounting_rw
= 0;
1705 if (c
->need_recovery
) {
1706 c
->need_recovery
= 0;
1707 ubifs_msg(c
, "deferred recovery completed");
1710 * Do not run the debugging space check if the were doing
1711 * recovery, because when we saved the information we had the
1712 * file-system in a state where the TNC and lprops has been
1713 * modified in memory, but all the I/O operations (including a
1714 * commit) were deferred. So the file-system was in
1715 * "non-committed" state. Now the file-system is in committed
1716 * state, and of course the amount of free space will change
1717 * because, for example, the old index size was imprecise.
1719 err
= dbg_check_space_info(c
);
1722 mutex_unlock(&c
->umount_mutex
);
1730 kthread_stop(c
->bgt
);
1734 kfree(c
->write_reserve_buf
);
1735 c
->write_reserve_buf
= NULL
;
1738 ubifs_lpt_free(c
, 1);
1739 c
->remounting_rw
= 0;
1740 mutex_unlock(&c
->umount_mutex
);
1745 * ubifs_remount_ro - re-mount in read-only mode.
1746 * @c: UBIFS file-system description object
1748 * We assume VFS has stopped writing. Possibly the background thread could be
1749 * running a commit, however kthread_stop will wait in that case.
1751 static void ubifs_remount_ro(struct ubifs_info
*c
)
1755 ubifs_assert(c
, !c
->need_recovery
);
1756 ubifs_assert(c
, !c
->ro_mount
);
1758 mutex_lock(&c
->umount_mutex
);
1760 kthread_stop(c
->bgt
);
1764 dbg_save_space_info(c
);
1766 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
1767 err
= ubifs_wbuf_sync(&c
->jheads
[i
].wbuf
);
1769 ubifs_ro_mode(c
, err
);
1772 c
->mst_node
->flags
&= ~cpu_to_le32(UBIFS_MST_DIRTY
);
1773 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_NO_ORPHS
);
1774 c
->mst_node
->gc_lnum
= cpu_to_le32(c
->gc_lnum
);
1775 err
= ubifs_write_master(c
);
1777 ubifs_ro_mode(c
, err
);
1781 kfree(c
->write_reserve_buf
);
1782 c
->write_reserve_buf
= NULL
;
1785 ubifs_lpt_free(c
, 1);
1787 err
= dbg_check_space_info(c
);
1789 ubifs_ro_mode(c
, err
);
1790 mutex_unlock(&c
->umount_mutex
);
1793 static void ubifs_put_super(struct super_block
*sb
)
1796 struct ubifs_info
*c
= sb
->s_fs_info
;
1798 ubifs_msg(c
, "un-mount UBI device %d", c
->vi
.ubi_num
);
1801 * The following asserts are only valid if there has not been a failure
1802 * of the media. For example, there will be dirty inodes if we failed
1803 * to write them back because of I/O errors.
1806 ubifs_assert(c
, c
->bi
.idx_growth
== 0);
1807 ubifs_assert(c
, c
->bi
.dd_growth
== 0);
1808 ubifs_assert(c
, c
->bi
.data_growth
== 0);
1812 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1813 * and file system un-mount. Namely, it prevents the shrinker from
1814 * picking this superblock for shrinking - it will be just skipped if
1815 * the mutex is locked.
1817 mutex_lock(&c
->umount_mutex
);
1820 * First of all kill the background thread to make sure it does
1821 * not interfere with un-mounting and freeing resources.
1824 kthread_stop(c
->bgt
);
1829 * On fatal errors c->ro_error is set to 1, in which case we do
1830 * not write the master node.
1835 /* Synchronize write-buffers */
1836 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
1837 err
= ubifs_wbuf_sync(&c
->jheads
[i
].wbuf
);
1839 ubifs_ro_mode(c
, err
);
1843 * We are being cleanly unmounted which means the
1844 * orphans were killed - indicate this in the master
1845 * node. Also save the reserved GC LEB number.
1847 c
->mst_node
->flags
&= ~cpu_to_le32(UBIFS_MST_DIRTY
);
1848 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_NO_ORPHS
);
1849 c
->mst_node
->gc_lnum
= cpu_to_le32(c
->gc_lnum
);
1850 err
= ubifs_write_master(c
);
1853 * Recovery will attempt to fix the master area
1854 * next mount, so we just print a message and
1855 * continue to unmount normally.
1857 ubifs_err(c
, "failed to write master node, error %d",
1860 for (i
= 0; i
< c
->jhead_cnt
; i
++)
1861 /* Make sure write-buffer timers are canceled */
1862 hrtimer_cancel(&c
->jheads
[i
].wbuf
.timer
);
1867 ubi_close_volume(c
->ubi
);
1868 mutex_unlock(&c
->umount_mutex
);
1871 static int ubifs_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
1874 struct ubifs_info
*c
= sb
->s_fs_info
;
1876 sync_filesystem(sb
);
1877 dbg_gen("old flags %#lx, new flags %#x", sb
->s_flags
, *flags
);
1879 err
= ubifs_parse_options(c
, data
, 1);
1881 ubifs_err(c
, "invalid or unknown remount parameter");
1885 if (c
->ro_mount
&& !(*flags
& SB_RDONLY
)) {
1887 ubifs_msg(c
, "cannot re-mount R/W due to prior errors");
1891 ubifs_msg(c
, "cannot re-mount R/W - UBI volume is R/O");
1894 err
= ubifs_remount_rw(c
);
1897 } else if (!c
->ro_mount
&& (*flags
& SB_RDONLY
)) {
1899 ubifs_msg(c
, "cannot re-mount R/O due to prior errors");
1902 ubifs_remount_ro(c
);
1905 if (c
->bulk_read
== 1)
1908 dbg_gen("disable bulk-read");
1909 mutex_lock(&c
->bu_mutex
);
1912 mutex_unlock(&c
->bu_mutex
);
1915 if (!c
->need_recovery
)
1916 ubifs_assert(c
, c
->lst
.taken_empty_lebs
> 0);
1921 const struct super_operations ubifs_super_operations
= {
1922 .alloc_inode
= ubifs_alloc_inode
,
1923 .destroy_inode
= ubifs_destroy_inode
,
1924 .put_super
= ubifs_put_super
,
1925 .write_inode
= ubifs_write_inode
,
1926 .evict_inode
= ubifs_evict_inode
,
1927 .statfs
= ubifs_statfs
,
1928 .dirty_inode
= ubifs_dirty_inode
,
1929 .remount_fs
= ubifs_remount_fs
,
1930 .show_options
= ubifs_show_options
,
1931 .sync_fs
= ubifs_sync_fs
,
1935 * open_ubi - parse UBI device name string and open the UBI device.
1936 * @name: UBI volume name
1937 * @mode: UBI volume open mode
1939 * The primary method of mounting UBIFS is by specifying the UBI volume
1940 * character device node path. However, UBIFS may also be mounted withoug any
1941 * character device node using one of the following methods:
1943 * o ubiX_Y - mount UBI device number X, volume Y;
1944 * o ubiY - mount UBI device number 0, volume Y;
1945 * o ubiX:NAME - mount UBI device X, volume with name NAME;
1946 * o ubi:NAME - mount UBI device 0, volume with name NAME.
1948 * Alternative '!' separator may be used instead of ':' (because some shells
1949 * like busybox may interpret ':' as an NFS host name separator). This function
1950 * returns UBI volume description object in case of success and a negative
1951 * error code in case of failure.
1953 static struct ubi_volume_desc
*open_ubi(const char *name
, int mode
)
1955 struct ubi_volume_desc
*ubi
;
1959 if (!name
|| !*name
)
1960 return ERR_PTR(-EINVAL
);
1962 /* First, try to open using the device node path method */
1963 ubi
= ubi_open_volume_path(name
, mode
);
1967 /* Try the "nodev" method */
1968 if (name
[0] != 'u' || name
[1] != 'b' || name
[2] != 'i')
1969 return ERR_PTR(-EINVAL
);
1971 /* ubi:NAME method */
1972 if ((name
[3] == ':' || name
[3] == '!') && name
[4] != '\0')
1973 return ubi_open_volume_nm(0, name
+ 4, mode
);
1975 if (!isdigit(name
[3]))
1976 return ERR_PTR(-EINVAL
);
1978 dev
= simple_strtoul(name
+ 3, &endptr
, 0);
1981 if (*endptr
== '\0')
1982 return ubi_open_volume(0, dev
, mode
);
1985 if (*endptr
== '_' && isdigit(endptr
[1])) {
1986 vol
= simple_strtoul(endptr
+ 1, &endptr
, 0);
1987 if (*endptr
!= '\0')
1988 return ERR_PTR(-EINVAL
);
1989 return ubi_open_volume(dev
, vol
, mode
);
1992 /* ubiX:NAME method */
1993 if ((*endptr
== ':' || *endptr
== '!') && endptr
[1] != '\0')
1994 return ubi_open_volume_nm(dev
, ++endptr
, mode
);
1996 return ERR_PTR(-EINVAL
);
1999 static struct ubifs_info
*alloc_ubifs_info(struct ubi_volume_desc
*ubi
)
2001 struct ubifs_info
*c
;
2003 c
= kzalloc(sizeof(struct ubifs_info
), GFP_KERNEL
);
2005 spin_lock_init(&c
->cnt_lock
);
2006 spin_lock_init(&c
->cs_lock
);
2007 spin_lock_init(&c
->buds_lock
);
2008 spin_lock_init(&c
->space_lock
);
2009 spin_lock_init(&c
->orphan_lock
);
2010 init_rwsem(&c
->commit_sem
);
2011 mutex_init(&c
->lp_mutex
);
2012 mutex_init(&c
->tnc_mutex
);
2013 mutex_init(&c
->log_mutex
);
2014 mutex_init(&c
->umount_mutex
);
2015 mutex_init(&c
->bu_mutex
);
2016 mutex_init(&c
->write_reserve_mutex
);
2017 init_waitqueue_head(&c
->cmt_wq
);
2019 c
->old_idx
= RB_ROOT
;
2020 c
->size_tree
= RB_ROOT
;
2021 c
->orph_tree
= RB_ROOT
;
2022 INIT_LIST_HEAD(&c
->infos_list
);
2023 INIT_LIST_HEAD(&c
->idx_gc
);
2024 INIT_LIST_HEAD(&c
->replay_list
);
2025 INIT_LIST_HEAD(&c
->replay_buds
);
2026 INIT_LIST_HEAD(&c
->uncat_list
);
2027 INIT_LIST_HEAD(&c
->empty_list
);
2028 INIT_LIST_HEAD(&c
->freeable_list
);
2029 INIT_LIST_HEAD(&c
->frdi_idx_list
);
2030 INIT_LIST_HEAD(&c
->unclean_leb_list
);
2031 INIT_LIST_HEAD(&c
->old_buds
);
2032 INIT_LIST_HEAD(&c
->orph_list
);
2033 INIT_LIST_HEAD(&c
->orph_new
);
2034 c
->no_chk_data_crc
= 1;
2035 c
->assert_action
= ASSACT_RO
;
2037 c
->highest_inum
= UBIFS_FIRST_INO
;
2038 c
->lhead_lnum
= c
->ltail_lnum
= UBIFS_LOG_LNUM
;
2040 ubi_get_volume_info(ubi
, &c
->vi
);
2041 ubi_get_device_info(c
->vi
.ubi_num
, &c
->di
);
2046 static int ubifs_fill_super(struct super_block
*sb
, void *data
, int silent
)
2048 struct ubifs_info
*c
= sb
->s_fs_info
;
2053 /* Re-open the UBI device in read-write mode */
2054 c
->ubi
= ubi_open_volume(c
->vi
.ubi_num
, c
->vi
.vol_id
, UBI_READWRITE
);
2055 if (IS_ERR(c
->ubi
)) {
2056 err
= PTR_ERR(c
->ubi
);
2060 err
= ubifs_parse_options(c
, data
, 0);
2065 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2066 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2067 * which means the user would have to wait not just for their own I/O
2068 * but the read-ahead I/O as well i.e. completely pointless.
2070 * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also
2071 * @sb->s_bdi->capabilities are initialized to 0 so there won't be any
2072 * writeback happening.
2074 err
= super_setup_bdi_name(sb
, "ubifs_%d_%d", c
->vi
.ubi_num
,
2080 sb
->s_magic
= UBIFS_SUPER_MAGIC
;
2081 sb
->s_blocksize
= UBIFS_BLOCK_SIZE
;
2082 sb
->s_blocksize_bits
= UBIFS_BLOCK_SHIFT
;
2083 sb
->s_maxbytes
= c
->max_inode_sz
= key_max_inode_size(c
);
2084 if (c
->max_inode_sz
> MAX_LFS_FILESIZE
)
2085 sb
->s_maxbytes
= c
->max_inode_sz
= MAX_LFS_FILESIZE
;
2086 sb
->s_op
= &ubifs_super_operations
;
2087 #ifdef CONFIG_UBIFS_FS_XATTR
2088 sb
->s_xattr
= ubifs_xattr_handlers
;
2090 #ifdef CONFIG_UBIFS_FS_ENCRYPTION
2091 sb
->s_cop
= &ubifs_crypt_operations
;
2094 mutex_lock(&c
->umount_mutex
);
2095 err
= mount_ubifs(c
);
2097 ubifs_assert(c
, err
< 0);
2101 /* Read the root inode */
2102 root
= ubifs_iget(sb
, UBIFS_ROOT_INO
);
2104 err
= PTR_ERR(root
);
2108 sb
->s_root
= d_make_root(root
);
2114 mutex_unlock(&c
->umount_mutex
);
2120 mutex_unlock(&c
->umount_mutex
);
2122 ubi_close_volume(c
->ubi
);
2127 static int sb_test(struct super_block
*sb
, void *data
)
2129 struct ubifs_info
*c1
= data
;
2130 struct ubifs_info
*c
= sb
->s_fs_info
;
2132 return c
->vi
.cdev
== c1
->vi
.cdev
;
2135 static int sb_set(struct super_block
*sb
, void *data
)
2137 sb
->s_fs_info
= data
;
2138 return set_anon_super(sb
, NULL
);
2141 static struct dentry
*ubifs_mount(struct file_system_type
*fs_type
, int flags
,
2142 const char *name
, void *data
)
2144 struct ubi_volume_desc
*ubi
;
2145 struct ubifs_info
*c
;
2146 struct super_block
*sb
;
2149 dbg_gen("name %s, flags %#x", name
, flags
);
2152 * Get UBI device number and volume ID. Mount it read-only so far
2153 * because this might be a new mount point, and UBI allows only one
2154 * read-write user at a time.
2156 ubi
= open_ubi(name
, UBI_READONLY
);
2158 if (!(flags
& SB_SILENT
))
2159 pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2160 current
->pid
, name
, (int)PTR_ERR(ubi
));
2161 return ERR_CAST(ubi
);
2164 c
= alloc_ubifs_info(ubi
);
2170 dbg_gen("opened ubi%d_%d", c
->vi
.ubi_num
, c
->vi
.vol_id
);
2172 sb
= sget(fs_type
, sb_test
, sb_set
, flags
, c
);
2180 struct ubifs_info
*c1
= sb
->s_fs_info
;
2182 /* A new mount point for already mounted UBIFS */
2183 dbg_gen("this ubi volume is already mounted");
2184 if (!!(flags
& SB_RDONLY
) != c1
->ro_mount
) {
2189 err
= ubifs_fill_super(sb
, data
, flags
& SB_SILENT
? 1 : 0);
2192 /* We do not support atime */
2193 sb
->s_flags
|= SB_ACTIVE
;
2194 #ifndef CONFIG_UBIFS_ATIME_SUPPORT
2195 sb
->s_flags
|= SB_NOATIME
;
2197 ubifs_msg(c
, "full atime support is enabled.");
2201 /* 'fill_super()' opens ubi again so we must close it here */
2202 ubi_close_volume(ubi
);
2204 return dget(sb
->s_root
);
2207 deactivate_locked_super(sb
);
2209 ubi_close_volume(ubi
);
2210 return ERR_PTR(err
);
2213 static void kill_ubifs_super(struct super_block
*s
)
2215 struct ubifs_info
*c
= s
->s_fs_info
;
2220 static struct file_system_type ubifs_fs_type
= {
2222 .owner
= THIS_MODULE
,
2223 .mount
= ubifs_mount
,
2224 .kill_sb
= kill_ubifs_super
,
2226 MODULE_ALIAS_FS("ubifs");
2229 * Inode slab cache constructor.
2231 static void inode_slab_ctor(void *obj
)
2233 struct ubifs_inode
*ui
= obj
;
2234 inode_init_once(&ui
->vfs_inode
);
2237 static int __init
ubifs_init(void)
2241 BUILD_BUG_ON(sizeof(struct ubifs_ch
) != 24);
2243 /* Make sure node sizes are 8-byte aligned */
2244 BUILD_BUG_ON(UBIFS_CH_SZ
& 7);
2245 BUILD_BUG_ON(UBIFS_INO_NODE_SZ
& 7);
2246 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ
& 7);
2247 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ
& 7);
2248 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ
& 7);
2249 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ
& 7);
2250 BUILD_BUG_ON(UBIFS_SB_NODE_SZ
& 7);
2251 BUILD_BUG_ON(UBIFS_MST_NODE_SZ
& 7);
2252 BUILD_BUG_ON(UBIFS_REF_NODE_SZ
& 7);
2253 BUILD_BUG_ON(UBIFS_CS_NODE_SZ
& 7);
2254 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ
& 7);
2256 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ
& 7);
2257 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ
& 7);
2258 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ
& 7);
2259 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ
& 7);
2260 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ
& 7);
2261 BUILD_BUG_ON(MIN_WRITE_SZ
& 7);
2263 /* Check min. node size */
2264 BUILD_BUG_ON(UBIFS_INO_NODE_SZ
< MIN_WRITE_SZ
);
2265 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ
< MIN_WRITE_SZ
);
2266 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ
< MIN_WRITE_SZ
);
2267 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ
< MIN_WRITE_SZ
);
2269 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
2270 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
2271 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
2272 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
2274 /* Defined node sizes */
2275 BUILD_BUG_ON(UBIFS_SB_NODE_SZ
!= 4096);
2276 BUILD_BUG_ON(UBIFS_MST_NODE_SZ
!= 512);
2277 BUILD_BUG_ON(UBIFS_INO_NODE_SZ
!= 160);
2278 BUILD_BUG_ON(UBIFS_REF_NODE_SZ
!= 64);
2281 * We use 2 bit wide bit-fields to store compression type, which should
2282 * be amended if more compressors are added. The bit-fields are:
2283 * @compr_type in 'struct ubifs_inode', @default_compr in
2284 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2286 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT
> 4);
2289 * We require that PAGE_SIZE is greater-than-or-equal-to
2290 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2292 if (PAGE_SIZE
< UBIFS_BLOCK_SIZE
) {
2293 pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2294 current
->pid
, (unsigned int)PAGE_SIZE
);
2298 ubifs_inode_slab
= kmem_cache_create("ubifs_inode_slab",
2299 sizeof(struct ubifs_inode
), 0,
2300 SLAB_MEM_SPREAD
| SLAB_RECLAIM_ACCOUNT
|
2301 SLAB_ACCOUNT
, &inode_slab_ctor
);
2302 if (!ubifs_inode_slab
)
2305 err
= register_shrinker(&ubifs_shrinker_info
);
2309 err
= ubifs_compressors_init();
2313 err
= dbg_debugfs_init();
2317 err
= register_filesystem(&ubifs_fs_type
);
2319 pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2328 ubifs_compressors_exit();
2330 unregister_shrinker(&ubifs_shrinker_info
);
2332 kmem_cache_destroy(ubifs_inode_slab
);
2335 /* late_initcall to let compressors initialize first */
2336 late_initcall(ubifs_init
);
2338 static void __exit
ubifs_exit(void)
2340 WARN_ON(list_empty(&ubifs_infos
));
2341 WARN_ON(atomic_long_read(&ubifs_clean_zn_cnt
) == 0);
2344 ubifs_compressors_exit();
2345 unregister_shrinker(&ubifs_shrinker_info
);
2348 * Make sure all delayed rcu free inodes are flushed before we
2352 kmem_cache_destroy(ubifs_inode_slab
);
2353 unregister_filesystem(&ubifs_fs_type
);
2355 module_exit(ubifs_exit
);
2357 MODULE_LICENSE("GPL");
2358 MODULE_VERSION(__stringify(UBIFS_VERSION
));
2359 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2360 MODULE_DESCRIPTION("UBIFS - UBI File System");