KVM: arm/arm64: vgic: Prevent access to invalid SPIs
[linux/fpc-iii.git] / virt / kvm / arm / vgic / vgic-mmio.c
blobd1b080ca8dc9155bf27418b038c1364480366269
1 /*
2 * VGIC MMIO handling functions
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
14 #include <linux/bitops.h>
15 #include <linux/bsearch.h>
16 #include <linux/kvm.h>
17 #include <linux/kvm_host.h>
18 #include <kvm/iodev.h>
19 #include <kvm/arm_vgic.h>
21 #include "vgic.h"
22 #include "vgic-mmio.h"
24 unsigned long vgic_mmio_read_raz(struct kvm_vcpu *vcpu,
25 gpa_t addr, unsigned int len)
27 return 0;
30 unsigned long vgic_mmio_read_rao(struct kvm_vcpu *vcpu,
31 gpa_t addr, unsigned int len)
33 return -1UL;
36 void vgic_mmio_write_wi(struct kvm_vcpu *vcpu, gpa_t addr,
37 unsigned int len, unsigned long val)
39 /* Ignore */
43 * Read accesses to both GICD_ICENABLER and GICD_ISENABLER return the value
44 * of the enabled bit, so there is only one function for both here.
46 unsigned long vgic_mmio_read_enable(struct kvm_vcpu *vcpu,
47 gpa_t addr, unsigned int len)
49 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
50 u32 value = 0;
51 int i;
53 /* Loop over all IRQs affected by this read */
54 for (i = 0; i < len * 8; i++) {
55 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
57 if (irq->enabled)
58 value |= (1U << i);
60 vgic_put_irq(vcpu->kvm, irq);
63 return value;
66 void vgic_mmio_write_senable(struct kvm_vcpu *vcpu,
67 gpa_t addr, unsigned int len,
68 unsigned long val)
70 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
71 int i;
73 for_each_set_bit(i, &val, len * 8) {
74 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
76 spin_lock(&irq->irq_lock);
77 irq->enabled = true;
78 vgic_queue_irq_unlock(vcpu->kvm, irq);
80 vgic_put_irq(vcpu->kvm, irq);
84 void vgic_mmio_write_cenable(struct kvm_vcpu *vcpu,
85 gpa_t addr, unsigned int len,
86 unsigned long val)
88 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
89 int i;
91 for_each_set_bit(i, &val, len * 8) {
92 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
94 spin_lock(&irq->irq_lock);
96 irq->enabled = false;
98 spin_unlock(&irq->irq_lock);
99 vgic_put_irq(vcpu->kvm, irq);
103 unsigned long vgic_mmio_read_pending(struct kvm_vcpu *vcpu,
104 gpa_t addr, unsigned int len)
106 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
107 u32 value = 0;
108 int i;
110 /* Loop over all IRQs affected by this read */
111 for (i = 0; i < len * 8; i++) {
112 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
114 if (irq->pending)
115 value |= (1U << i);
117 vgic_put_irq(vcpu->kvm, irq);
120 return value;
123 void vgic_mmio_write_spending(struct kvm_vcpu *vcpu,
124 gpa_t addr, unsigned int len,
125 unsigned long val)
127 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
128 int i;
130 for_each_set_bit(i, &val, len * 8) {
131 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
133 spin_lock(&irq->irq_lock);
134 irq->pending = true;
135 if (irq->config == VGIC_CONFIG_LEVEL)
136 irq->soft_pending = true;
138 vgic_queue_irq_unlock(vcpu->kvm, irq);
139 vgic_put_irq(vcpu->kvm, irq);
143 void vgic_mmio_write_cpending(struct kvm_vcpu *vcpu,
144 gpa_t addr, unsigned int len,
145 unsigned long val)
147 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
148 int i;
150 for_each_set_bit(i, &val, len * 8) {
151 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
153 spin_lock(&irq->irq_lock);
155 if (irq->config == VGIC_CONFIG_LEVEL) {
156 irq->soft_pending = false;
157 irq->pending = irq->line_level;
158 } else {
159 irq->pending = false;
162 spin_unlock(&irq->irq_lock);
163 vgic_put_irq(vcpu->kvm, irq);
167 unsigned long vgic_mmio_read_active(struct kvm_vcpu *vcpu,
168 gpa_t addr, unsigned int len)
170 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
171 u32 value = 0;
172 int i;
174 /* Loop over all IRQs affected by this read */
175 for (i = 0; i < len * 8; i++) {
176 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
178 if (irq->active)
179 value |= (1U << i);
181 vgic_put_irq(vcpu->kvm, irq);
184 return value;
187 static void vgic_mmio_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
188 bool new_active_state)
190 spin_lock(&irq->irq_lock);
192 * If this virtual IRQ was written into a list register, we
193 * have to make sure the CPU that runs the VCPU thread has
194 * synced back LR state to the struct vgic_irq. We can only
195 * know this for sure, when either this irq is not assigned to
196 * anyone's AP list anymore, or the VCPU thread is not
197 * running on any CPUs.
199 * In the opposite case, we know the VCPU thread may be on its
200 * way back from the guest and still has to sync back this
201 * IRQ, so we release and re-acquire the spin_lock to let the
202 * other thread sync back the IRQ.
204 while (irq->vcpu && /* IRQ may have state in an LR somewhere */
205 irq->vcpu->cpu != -1) /* VCPU thread is running */
206 cond_resched_lock(&irq->irq_lock);
208 irq->active = new_active_state;
209 if (new_active_state)
210 vgic_queue_irq_unlock(vcpu->kvm, irq);
211 else
212 spin_unlock(&irq->irq_lock);
216 * If we are fiddling with an IRQ's active state, we have to make sure the IRQ
217 * is not queued on some running VCPU's LRs, because then the change to the
218 * active state can be overwritten when the VCPU's state is synced coming back
219 * from the guest.
221 * For shared interrupts, we have to stop all the VCPUs because interrupts can
222 * be migrated while we don't hold the IRQ locks and we don't want to be
223 * chasing moving targets.
225 * For private interrupts, we only have to make sure the single and only VCPU
226 * that can potentially queue the IRQ is stopped.
228 static void vgic_change_active_prepare(struct kvm_vcpu *vcpu, u32 intid)
230 if (intid < VGIC_NR_PRIVATE_IRQS)
231 kvm_arm_halt_vcpu(vcpu);
232 else
233 kvm_arm_halt_guest(vcpu->kvm);
236 /* See vgic_change_active_prepare */
237 static void vgic_change_active_finish(struct kvm_vcpu *vcpu, u32 intid)
239 if (intid < VGIC_NR_PRIVATE_IRQS)
240 kvm_arm_resume_vcpu(vcpu);
241 else
242 kvm_arm_resume_guest(vcpu->kvm);
245 void vgic_mmio_write_cactive(struct kvm_vcpu *vcpu,
246 gpa_t addr, unsigned int len,
247 unsigned long val)
249 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
250 int i;
252 vgic_change_active_prepare(vcpu, intid);
253 for_each_set_bit(i, &val, len * 8) {
254 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
255 vgic_mmio_change_active(vcpu, irq, false);
256 vgic_put_irq(vcpu->kvm, irq);
258 vgic_change_active_finish(vcpu, intid);
261 void vgic_mmio_write_sactive(struct kvm_vcpu *vcpu,
262 gpa_t addr, unsigned int len,
263 unsigned long val)
265 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
266 int i;
268 vgic_change_active_prepare(vcpu, intid);
269 for_each_set_bit(i, &val, len * 8) {
270 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
271 vgic_mmio_change_active(vcpu, irq, true);
272 vgic_put_irq(vcpu->kvm, irq);
274 vgic_change_active_finish(vcpu, intid);
277 unsigned long vgic_mmio_read_priority(struct kvm_vcpu *vcpu,
278 gpa_t addr, unsigned int len)
280 u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
281 int i;
282 u64 val = 0;
284 for (i = 0; i < len; i++) {
285 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
287 val |= (u64)irq->priority << (i * 8);
289 vgic_put_irq(vcpu->kvm, irq);
292 return val;
296 * We currently don't handle changing the priority of an interrupt that
297 * is already pending on a VCPU. If there is a need for this, we would
298 * need to make this VCPU exit and re-evaluate the priorities, potentially
299 * leading to this interrupt getting presented now to the guest (if it has
300 * been masked by the priority mask before).
302 void vgic_mmio_write_priority(struct kvm_vcpu *vcpu,
303 gpa_t addr, unsigned int len,
304 unsigned long val)
306 u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
307 int i;
309 for (i = 0; i < len; i++) {
310 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
312 spin_lock(&irq->irq_lock);
313 /* Narrow the priority range to what we actually support */
314 irq->priority = (val >> (i * 8)) & GENMASK(7, 8 - VGIC_PRI_BITS);
315 spin_unlock(&irq->irq_lock);
317 vgic_put_irq(vcpu->kvm, irq);
321 unsigned long vgic_mmio_read_config(struct kvm_vcpu *vcpu,
322 gpa_t addr, unsigned int len)
324 u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
325 u32 value = 0;
326 int i;
328 for (i = 0; i < len * 4; i++) {
329 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
331 if (irq->config == VGIC_CONFIG_EDGE)
332 value |= (2U << (i * 2));
334 vgic_put_irq(vcpu->kvm, irq);
337 return value;
340 void vgic_mmio_write_config(struct kvm_vcpu *vcpu,
341 gpa_t addr, unsigned int len,
342 unsigned long val)
344 u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
345 int i;
347 for (i = 0; i < len * 4; i++) {
348 struct vgic_irq *irq;
351 * The configuration cannot be changed for SGIs in general,
352 * for PPIs this is IMPLEMENTATION DEFINED. The arch timer
353 * code relies on PPIs being level triggered, so we also
354 * make them read-only here.
356 if (intid + i < VGIC_NR_PRIVATE_IRQS)
357 continue;
359 irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
360 spin_lock(&irq->irq_lock);
362 if (test_bit(i * 2 + 1, &val)) {
363 irq->config = VGIC_CONFIG_EDGE;
364 } else {
365 irq->config = VGIC_CONFIG_LEVEL;
366 irq->pending = irq->line_level | irq->soft_pending;
369 spin_unlock(&irq->irq_lock);
370 vgic_put_irq(vcpu->kvm, irq);
374 static int match_region(const void *key, const void *elt)
376 const unsigned int offset = (unsigned long)key;
377 const struct vgic_register_region *region = elt;
379 if (offset < region->reg_offset)
380 return -1;
382 if (offset >= region->reg_offset + region->len)
383 return 1;
385 return 0;
388 /* Find the proper register handler entry given a certain address offset. */
389 static const struct vgic_register_region *
390 vgic_find_mmio_region(const struct vgic_register_region *region, int nr_regions,
391 unsigned int offset)
393 return bsearch((void *)(uintptr_t)offset, region, nr_regions,
394 sizeof(region[0]), match_region);
398 * kvm_mmio_read_buf() returns a value in a format where it can be converted
399 * to a byte array and be directly observed as the guest wanted it to appear
400 * in memory if it had done the store itself, which is LE for the GIC, as the
401 * guest knows the GIC is always LE.
403 * We convert this value to the CPUs native format to deal with it as a data
404 * value.
406 unsigned long vgic_data_mmio_bus_to_host(const void *val, unsigned int len)
408 unsigned long data = kvm_mmio_read_buf(val, len);
410 switch (len) {
411 case 1:
412 return data;
413 case 2:
414 return le16_to_cpu(data);
415 case 4:
416 return le32_to_cpu(data);
417 default:
418 return le64_to_cpu(data);
423 * kvm_mmio_write_buf() expects a value in a format such that if converted to
424 * a byte array it is observed as the guest would see it if it could perform
425 * the load directly. Since the GIC is LE, and the guest knows this, the
426 * guest expects a value in little endian format.
428 * We convert the data value from the CPUs native format to LE so that the
429 * value is returned in the proper format.
431 void vgic_data_host_to_mmio_bus(void *buf, unsigned int len,
432 unsigned long data)
434 switch (len) {
435 case 1:
436 break;
437 case 2:
438 data = cpu_to_le16(data);
439 break;
440 case 4:
441 data = cpu_to_le32(data);
442 break;
443 default:
444 data = cpu_to_le64(data);
447 kvm_mmio_write_buf(buf, len, data);
450 static
451 struct vgic_io_device *kvm_to_vgic_iodev(const struct kvm_io_device *dev)
453 return container_of(dev, struct vgic_io_device, dev);
456 static bool check_region(const struct kvm *kvm,
457 const struct vgic_register_region *region,
458 gpa_t addr, int len)
460 int flags, nr_irqs = kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
462 switch (len) {
463 case sizeof(u8):
464 flags = VGIC_ACCESS_8bit;
465 break;
466 case sizeof(u32):
467 flags = VGIC_ACCESS_32bit;
468 break;
469 case sizeof(u64):
470 flags = VGIC_ACCESS_64bit;
471 break;
472 default:
473 return false;
476 if ((region->access_flags & flags) && IS_ALIGNED(addr, len)) {
477 if (!region->bits_per_irq)
478 return true;
480 /* Do we access a non-allocated IRQ? */
481 return VGIC_ADDR_TO_INTID(addr, region->bits_per_irq) < nr_irqs;
484 return false;
487 static int dispatch_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
488 gpa_t addr, int len, void *val)
490 struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
491 const struct vgic_register_region *region;
492 unsigned long data = 0;
494 region = vgic_find_mmio_region(iodev->regions, iodev->nr_regions,
495 addr - iodev->base_addr);
496 if (!region || !check_region(vcpu->kvm, region, addr, len)) {
497 memset(val, 0, len);
498 return 0;
501 switch (iodev->iodev_type) {
502 case IODEV_CPUIF:
503 data = region->read(vcpu, addr, len);
504 break;
505 case IODEV_DIST:
506 data = region->read(vcpu, addr, len);
507 break;
508 case IODEV_REDIST:
509 data = region->read(iodev->redist_vcpu, addr, len);
510 break;
511 case IODEV_ITS:
512 data = region->its_read(vcpu->kvm, iodev->its, addr, len);
513 break;
516 vgic_data_host_to_mmio_bus(val, len, data);
517 return 0;
520 static int dispatch_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
521 gpa_t addr, int len, const void *val)
523 struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
524 const struct vgic_register_region *region;
525 unsigned long data = vgic_data_mmio_bus_to_host(val, len);
527 region = vgic_find_mmio_region(iodev->regions, iodev->nr_regions,
528 addr - iodev->base_addr);
529 if (!region || !check_region(vcpu->kvm, region, addr, len))
530 return 0;
532 switch (iodev->iodev_type) {
533 case IODEV_CPUIF:
534 region->write(vcpu, addr, len, data);
535 break;
536 case IODEV_DIST:
537 region->write(vcpu, addr, len, data);
538 break;
539 case IODEV_REDIST:
540 region->write(iodev->redist_vcpu, addr, len, data);
541 break;
542 case IODEV_ITS:
543 region->its_write(vcpu->kvm, iodev->its, addr, len, data);
544 break;
547 return 0;
550 struct kvm_io_device_ops kvm_io_gic_ops = {
551 .read = dispatch_mmio_read,
552 .write = dispatch_mmio_write,
555 int vgic_register_dist_iodev(struct kvm *kvm, gpa_t dist_base_address,
556 enum vgic_type type)
558 struct vgic_io_device *io_device = &kvm->arch.vgic.dist_iodev;
559 int ret = 0;
560 unsigned int len;
562 switch (type) {
563 case VGIC_V2:
564 len = vgic_v2_init_dist_iodev(io_device);
565 break;
566 #ifdef CONFIG_KVM_ARM_VGIC_V3
567 case VGIC_V3:
568 len = vgic_v3_init_dist_iodev(io_device);
569 break;
570 #endif
571 default:
572 BUG_ON(1);
575 io_device->base_addr = dist_base_address;
576 io_device->iodev_type = IODEV_DIST;
577 io_device->redist_vcpu = NULL;
579 mutex_lock(&kvm->slots_lock);
580 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, dist_base_address,
581 len, &io_device->dev);
582 mutex_unlock(&kvm->slots_lock);
584 return ret;