2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23 #include <linux/crash_dump.h>
25 #include <trace/events/block.h>
27 #include <linux/blk-mq.h>
30 #include "blk-mq-tag.h"
32 static DEFINE_MUTEX(all_q_mutex
);
33 static LIST_HEAD(all_q_list
);
35 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
);
38 * Check if any of the ctx's have pending work in this hardware queue
40 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx
*hctx
)
44 for (i
= 0; i
< hctx
->ctx_map
.map_size
; i
++)
45 if (hctx
->ctx_map
.map
[i
].word
)
51 static inline struct blk_align_bitmap
*get_bm(struct blk_mq_hw_ctx
*hctx
,
52 struct blk_mq_ctx
*ctx
)
54 return &hctx
->ctx_map
.map
[ctx
->index_hw
/ hctx
->ctx_map
.bits_per_word
];
57 #define CTX_TO_BIT(hctx, ctx) \
58 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
61 * Mark this ctx as having pending work in this hardware queue
63 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx
*hctx
,
64 struct blk_mq_ctx
*ctx
)
66 struct blk_align_bitmap
*bm
= get_bm(hctx
, ctx
);
68 if (!test_bit(CTX_TO_BIT(hctx
, ctx
), &bm
->word
))
69 set_bit(CTX_TO_BIT(hctx
, ctx
), &bm
->word
);
72 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx
*hctx
,
73 struct blk_mq_ctx
*ctx
)
75 struct blk_align_bitmap
*bm
= get_bm(hctx
, ctx
);
77 clear_bit(CTX_TO_BIT(hctx
, ctx
), &bm
->word
);
80 static int blk_mq_queue_enter(struct request_queue
*q
)
85 if (percpu_ref_tryget_live(&q
->mq_usage_counter
))
88 ret
= wait_event_interruptible(q
->mq_freeze_wq
,
89 !q
->mq_freeze_depth
|| blk_queue_dying(q
));
90 if (blk_queue_dying(q
))
97 static void blk_mq_queue_exit(struct request_queue
*q
)
99 percpu_ref_put(&q
->mq_usage_counter
);
102 static void blk_mq_usage_counter_release(struct percpu_ref
*ref
)
104 struct request_queue
*q
=
105 container_of(ref
, struct request_queue
, mq_usage_counter
);
107 wake_up_all(&q
->mq_freeze_wq
);
110 static void blk_mq_freeze_queue_start(struct request_queue
*q
)
114 spin_lock_irq(q
->queue_lock
);
115 freeze
= !q
->mq_freeze_depth
++;
116 spin_unlock_irq(q
->queue_lock
);
119 percpu_ref_kill(&q
->mq_usage_counter
);
120 blk_mq_run_queues(q
, false);
124 static void blk_mq_freeze_queue_wait(struct request_queue
*q
)
126 wait_event(q
->mq_freeze_wq
, percpu_ref_is_zero(&q
->mq_usage_counter
));
130 * Guarantee no request is in use, so we can change any data structure of
131 * the queue afterward.
133 void blk_mq_freeze_queue(struct request_queue
*q
)
135 blk_mq_freeze_queue_start(q
);
136 blk_mq_freeze_queue_wait(q
);
139 static void blk_mq_unfreeze_queue(struct request_queue
*q
)
143 spin_lock_irq(q
->queue_lock
);
144 wake
= !--q
->mq_freeze_depth
;
145 WARN_ON_ONCE(q
->mq_freeze_depth
< 0);
146 spin_unlock_irq(q
->queue_lock
);
148 percpu_ref_reinit(&q
->mq_usage_counter
);
149 wake_up_all(&q
->mq_freeze_wq
);
153 bool blk_mq_can_queue(struct blk_mq_hw_ctx
*hctx
)
155 return blk_mq_has_free_tags(hctx
->tags
);
157 EXPORT_SYMBOL(blk_mq_can_queue
);
159 static void blk_mq_rq_ctx_init(struct request_queue
*q
, struct blk_mq_ctx
*ctx
,
160 struct request
*rq
, unsigned int rw_flags
)
162 if (blk_queue_io_stat(q
))
163 rw_flags
|= REQ_IO_STAT
;
165 INIT_LIST_HEAD(&rq
->queuelist
);
166 /* csd/requeue_work/fifo_time is initialized before use */
169 rq
->cmd_flags
|= rw_flags
;
170 /* do not touch atomic flags, it needs atomic ops against the timer */
172 INIT_HLIST_NODE(&rq
->hash
);
173 RB_CLEAR_NODE(&rq
->rb_node
);
176 rq
->start_time
= jiffies
;
177 #ifdef CONFIG_BLK_CGROUP
179 set_start_time_ns(rq
);
180 rq
->io_start_time_ns
= 0;
182 rq
->nr_phys_segments
= 0;
183 #if defined(CONFIG_BLK_DEV_INTEGRITY)
184 rq
->nr_integrity_segments
= 0;
187 /* tag was already set */
197 INIT_LIST_HEAD(&rq
->timeout_list
);
201 rq
->end_io_data
= NULL
;
204 ctx
->rq_dispatched
[rw_is_sync(rw_flags
)]++;
207 static struct request
*
208 __blk_mq_alloc_request(struct blk_mq_alloc_data
*data
, int rw
)
213 tag
= blk_mq_get_tag(data
);
214 if (tag
!= BLK_MQ_TAG_FAIL
) {
215 rq
= data
->hctx
->tags
->rqs
[tag
];
217 if (blk_mq_tag_busy(data
->hctx
)) {
218 rq
->cmd_flags
= REQ_MQ_INFLIGHT
;
219 atomic_inc(&data
->hctx
->nr_active
);
223 blk_mq_rq_ctx_init(data
->q
, data
->ctx
, rq
, rw
);
230 struct request
*blk_mq_alloc_request(struct request_queue
*q
, int rw
, gfp_t gfp
,
233 struct blk_mq_ctx
*ctx
;
234 struct blk_mq_hw_ctx
*hctx
;
236 struct blk_mq_alloc_data alloc_data
;
239 ret
= blk_mq_queue_enter(q
);
243 ctx
= blk_mq_get_ctx(q
);
244 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
245 blk_mq_set_alloc_data(&alloc_data
, q
, gfp
& ~__GFP_WAIT
,
246 reserved
, ctx
, hctx
);
248 rq
= __blk_mq_alloc_request(&alloc_data
, rw
);
249 if (!rq
&& (gfp
& __GFP_WAIT
)) {
250 __blk_mq_run_hw_queue(hctx
);
253 ctx
= blk_mq_get_ctx(q
);
254 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
255 blk_mq_set_alloc_data(&alloc_data
, q
, gfp
, reserved
, ctx
,
257 rq
= __blk_mq_alloc_request(&alloc_data
, rw
);
258 ctx
= alloc_data
.ctx
;
262 return ERR_PTR(-EWOULDBLOCK
);
265 EXPORT_SYMBOL(blk_mq_alloc_request
);
267 static void __blk_mq_free_request(struct blk_mq_hw_ctx
*hctx
,
268 struct blk_mq_ctx
*ctx
, struct request
*rq
)
270 const int tag
= rq
->tag
;
271 struct request_queue
*q
= rq
->q
;
273 if (rq
->cmd_flags
& REQ_MQ_INFLIGHT
)
274 atomic_dec(&hctx
->nr_active
);
277 clear_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
278 blk_mq_put_tag(hctx
, tag
, &ctx
->last_tag
);
279 blk_mq_queue_exit(q
);
282 void blk_mq_free_request(struct request
*rq
)
284 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
285 struct blk_mq_hw_ctx
*hctx
;
286 struct request_queue
*q
= rq
->q
;
288 ctx
->rq_completed
[rq_is_sync(rq
)]++;
290 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
291 __blk_mq_free_request(hctx
, ctx
, rq
);
294 inline void __blk_mq_end_request(struct request
*rq
, int error
)
296 blk_account_io_done(rq
);
299 rq
->end_io(rq
, error
);
301 if (unlikely(blk_bidi_rq(rq
)))
302 blk_mq_free_request(rq
->next_rq
);
303 blk_mq_free_request(rq
);
306 EXPORT_SYMBOL(__blk_mq_end_request
);
308 void blk_mq_end_request(struct request
*rq
, int error
)
310 if (blk_update_request(rq
, error
, blk_rq_bytes(rq
)))
312 __blk_mq_end_request(rq
, error
);
314 EXPORT_SYMBOL(blk_mq_end_request
);
316 static void __blk_mq_complete_request_remote(void *data
)
318 struct request
*rq
= data
;
320 rq
->q
->softirq_done_fn(rq
);
323 static void blk_mq_ipi_complete_request(struct request
*rq
)
325 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
329 if (!test_bit(QUEUE_FLAG_SAME_COMP
, &rq
->q
->queue_flags
)) {
330 rq
->q
->softirq_done_fn(rq
);
335 if (!test_bit(QUEUE_FLAG_SAME_FORCE
, &rq
->q
->queue_flags
))
336 shared
= cpus_share_cache(cpu
, ctx
->cpu
);
338 if (cpu
!= ctx
->cpu
&& !shared
&& cpu_online(ctx
->cpu
)) {
339 rq
->csd
.func
= __blk_mq_complete_request_remote
;
342 smp_call_function_single_async(ctx
->cpu
, &rq
->csd
);
344 rq
->q
->softirq_done_fn(rq
);
349 void __blk_mq_complete_request(struct request
*rq
)
351 struct request_queue
*q
= rq
->q
;
353 if (!q
->softirq_done_fn
)
354 blk_mq_end_request(rq
, rq
->errors
);
356 blk_mq_ipi_complete_request(rq
);
360 * blk_mq_complete_request - end I/O on a request
361 * @rq: the request being processed
364 * Ends all I/O on a request. It does not handle partial completions.
365 * The actual completion happens out-of-order, through a IPI handler.
367 void blk_mq_complete_request(struct request
*rq
)
369 struct request_queue
*q
= rq
->q
;
371 if (unlikely(blk_should_fake_timeout(q
)))
373 if (!blk_mark_rq_complete(rq
))
374 __blk_mq_complete_request(rq
);
376 EXPORT_SYMBOL(blk_mq_complete_request
);
378 void blk_mq_start_request(struct request
*rq
)
380 struct request_queue
*q
= rq
->q
;
382 trace_block_rq_issue(q
, rq
);
384 rq
->resid_len
= blk_rq_bytes(rq
);
385 if (unlikely(blk_bidi_rq(rq
)))
386 rq
->next_rq
->resid_len
= blk_rq_bytes(rq
->next_rq
);
391 * Ensure that ->deadline is visible before set the started
392 * flag and clear the completed flag.
394 smp_mb__before_atomic();
397 * Mark us as started and clear complete. Complete might have been
398 * set if requeue raced with timeout, which then marked it as
399 * complete. So be sure to clear complete again when we start
400 * the request, otherwise we'll ignore the completion event.
402 if (!test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
))
403 set_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
404 if (test_bit(REQ_ATOM_COMPLETE
, &rq
->atomic_flags
))
405 clear_bit(REQ_ATOM_COMPLETE
, &rq
->atomic_flags
);
407 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
409 * Make sure space for the drain appears. We know we can do
410 * this because max_hw_segments has been adjusted to be one
411 * fewer than the device can handle.
413 rq
->nr_phys_segments
++;
416 EXPORT_SYMBOL(blk_mq_start_request
);
418 static void __blk_mq_requeue_request(struct request
*rq
)
420 struct request_queue
*q
= rq
->q
;
422 trace_block_rq_requeue(q
, rq
);
424 if (test_and_clear_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
)) {
425 if (q
->dma_drain_size
&& blk_rq_bytes(rq
))
426 rq
->nr_phys_segments
--;
430 void blk_mq_requeue_request(struct request
*rq
)
432 __blk_mq_requeue_request(rq
);
434 BUG_ON(blk_queued_rq(rq
));
435 blk_mq_add_to_requeue_list(rq
, true);
437 EXPORT_SYMBOL(blk_mq_requeue_request
);
439 static void blk_mq_requeue_work(struct work_struct
*work
)
441 struct request_queue
*q
=
442 container_of(work
, struct request_queue
, requeue_work
);
444 struct request
*rq
, *next
;
447 spin_lock_irqsave(&q
->requeue_lock
, flags
);
448 list_splice_init(&q
->requeue_list
, &rq_list
);
449 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
451 list_for_each_entry_safe(rq
, next
, &rq_list
, queuelist
) {
452 if (!(rq
->cmd_flags
& REQ_SOFTBARRIER
))
455 rq
->cmd_flags
&= ~REQ_SOFTBARRIER
;
456 list_del_init(&rq
->queuelist
);
457 blk_mq_insert_request(rq
, true, false, false);
460 while (!list_empty(&rq_list
)) {
461 rq
= list_entry(rq_list
.next
, struct request
, queuelist
);
462 list_del_init(&rq
->queuelist
);
463 blk_mq_insert_request(rq
, false, false, false);
467 * Use the start variant of queue running here, so that running
468 * the requeue work will kick stopped queues.
470 blk_mq_start_hw_queues(q
);
473 void blk_mq_add_to_requeue_list(struct request
*rq
, bool at_head
)
475 struct request_queue
*q
= rq
->q
;
479 * We abuse this flag that is otherwise used by the I/O scheduler to
480 * request head insertation from the workqueue.
482 BUG_ON(rq
->cmd_flags
& REQ_SOFTBARRIER
);
484 spin_lock_irqsave(&q
->requeue_lock
, flags
);
486 rq
->cmd_flags
|= REQ_SOFTBARRIER
;
487 list_add(&rq
->queuelist
, &q
->requeue_list
);
489 list_add_tail(&rq
->queuelist
, &q
->requeue_list
);
491 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
493 EXPORT_SYMBOL(blk_mq_add_to_requeue_list
);
495 void blk_mq_kick_requeue_list(struct request_queue
*q
)
497 kblockd_schedule_work(&q
->requeue_work
);
499 EXPORT_SYMBOL(blk_mq_kick_requeue_list
);
501 static inline bool is_flush_request(struct request
*rq
,
502 struct blk_flush_queue
*fq
, unsigned int tag
)
504 return ((rq
->cmd_flags
& REQ_FLUSH_SEQ
) &&
505 fq
->flush_rq
->tag
== tag
);
508 struct request
*blk_mq_tag_to_rq(struct blk_mq_tags
*tags
, unsigned int tag
)
510 struct request
*rq
= tags
->rqs
[tag
];
511 /* mq_ctx of flush rq is always cloned from the corresponding req */
512 struct blk_flush_queue
*fq
= blk_get_flush_queue(rq
->q
, rq
->mq_ctx
);
514 if (!is_flush_request(rq
, fq
, tag
))
519 EXPORT_SYMBOL(blk_mq_tag_to_rq
);
521 struct blk_mq_timeout_data
{
523 unsigned int next_set
;
526 void blk_mq_rq_timed_out(struct request
*req
, bool reserved
)
528 struct blk_mq_ops
*ops
= req
->q
->mq_ops
;
529 enum blk_eh_timer_return ret
= BLK_EH_RESET_TIMER
;
532 * We know that complete is set at this point. If STARTED isn't set
533 * anymore, then the request isn't active and the "timeout" should
534 * just be ignored. This can happen due to the bitflag ordering.
535 * Timeout first checks if STARTED is set, and if it is, assumes
536 * the request is active. But if we race with completion, then
537 * we both flags will get cleared. So check here again, and ignore
538 * a timeout event with a request that isn't active.
540 if (!test_bit(REQ_ATOM_STARTED
, &req
->atomic_flags
))
544 ret
= ops
->timeout(req
, reserved
);
548 __blk_mq_complete_request(req
);
550 case BLK_EH_RESET_TIMER
:
552 blk_clear_rq_complete(req
);
554 case BLK_EH_NOT_HANDLED
:
557 printk(KERN_ERR
"block: bad eh return: %d\n", ret
);
562 static void blk_mq_check_expired(struct blk_mq_hw_ctx
*hctx
,
563 struct request
*rq
, void *priv
, bool reserved
)
565 struct blk_mq_timeout_data
*data
= priv
;
567 if (!test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
))
570 if (time_after_eq(jiffies
, rq
->deadline
)) {
571 if (!blk_mark_rq_complete(rq
))
572 blk_mq_rq_timed_out(rq
, reserved
);
573 } else if (!data
->next_set
|| time_after(data
->next
, rq
->deadline
)) {
574 data
->next
= rq
->deadline
;
579 static void blk_mq_rq_timer(unsigned long priv
)
581 struct request_queue
*q
= (struct request_queue
*)priv
;
582 struct blk_mq_timeout_data data
= {
586 struct blk_mq_hw_ctx
*hctx
;
589 queue_for_each_hw_ctx(q
, hctx
, i
) {
591 * If not software queues are currently mapped to this
592 * hardware queue, there's nothing to check
594 if (!hctx
->nr_ctx
|| !hctx
->tags
)
597 blk_mq_tag_busy_iter(hctx
, blk_mq_check_expired
, &data
);
601 data
.next
= blk_rq_timeout(round_jiffies_up(data
.next
));
602 mod_timer(&q
->timeout
, data
.next
);
604 queue_for_each_hw_ctx(q
, hctx
, i
)
605 blk_mq_tag_idle(hctx
);
610 * Reverse check our software queue for entries that we could potentially
611 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
612 * too much time checking for merges.
614 static bool blk_mq_attempt_merge(struct request_queue
*q
,
615 struct blk_mq_ctx
*ctx
, struct bio
*bio
)
620 list_for_each_entry_reverse(rq
, &ctx
->rq_list
, queuelist
) {
626 if (!blk_rq_merge_ok(rq
, bio
))
629 el_ret
= blk_try_merge(rq
, bio
);
630 if (el_ret
== ELEVATOR_BACK_MERGE
) {
631 if (bio_attempt_back_merge(q
, rq
, bio
)) {
636 } else if (el_ret
== ELEVATOR_FRONT_MERGE
) {
637 if (bio_attempt_front_merge(q
, rq
, bio
)) {
649 * Process software queues that have been marked busy, splicing them
650 * to the for-dispatch
652 static void flush_busy_ctxs(struct blk_mq_hw_ctx
*hctx
, struct list_head
*list
)
654 struct blk_mq_ctx
*ctx
;
657 for (i
= 0; i
< hctx
->ctx_map
.map_size
; i
++) {
658 struct blk_align_bitmap
*bm
= &hctx
->ctx_map
.map
[i
];
659 unsigned int off
, bit
;
665 off
= i
* hctx
->ctx_map
.bits_per_word
;
667 bit
= find_next_bit(&bm
->word
, bm
->depth
, bit
);
668 if (bit
>= bm
->depth
)
671 ctx
= hctx
->ctxs
[bit
+ off
];
672 clear_bit(bit
, &bm
->word
);
673 spin_lock(&ctx
->lock
);
674 list_splice_tail_init(&ctx
->rq_list
, list
);
675 spin_unlock(&ctx
->lock
);
683 * Run this hardware queue, pulling any software queues mapped to it in.
684 * Note that this function currently has various problems around ordering
685 * of IO. In particular, we'd like FIFO behaviour on handling existing
686 * items on the hctx->dispatch list. Ignore that for now.
688 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
)
690 struct request_queue
*q
= hctx
->queue
;
695 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx
->cpumask
));
697 if (unlikely(test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
)))
703 * Touch any software queue that has pending entries.
705 flush_busy_ctxs(hctx
, &rq_list
);
708 * If we have previous entries on our dispatch list, grab them
709 * and stuff them at the front for more fair dispatch.
711 if (!list_empty_careful(&hctx
->dispatch
)) {
712 spin_lock(&hctx
->lock
);
713 if (!list_empty(&hctx
->dispatch
))
714 list_splice_init(&hctx
->dispatch
, &rq_list
);
715 spin_unlock(&hctx
->lock
);
719 * Now process all the entries, sending them to the driver.
722 while (!list_empty(&rq_list
)) {
725 rq
= list_first_entry(&rq_list
, struct request
, queuelist
);
726 list_del_init(&rq
->queuelist
);
728 ret
= q
->mq_ops
->queue_rq(hctx
, rq
, list_empty(&rq_list
));
730 case BLK_MQ_RQ_QUEUE_OK
:
733 case BLK_MQ_RQ_QUEUE_BUSY
:
734 list_add(&rq
->queuelist
, &rq_list
);
735 __blk_mq_requeue_request(rq
);
738 pr_err("blk-mq: bad return on queue: %d\n", ret
);
739 case BLK_MQ_RQ_QUEUE_ERROR
:
741 blk_mq_end_request(rq
, rq
->errors
);
745 if (ret
== BLK_MQ_RQ_QUEUE_BUSY
)
750 hctx
->dispatched
[0]++;
751 else if (queued
< (1 << (BLK_MQ_MAX_DISPATCH_ORDER
- 1)))
752 hctx
->dispatched
[ilog2(queued
) + 1]++;
755 * Any items that need requeuing? Stuff them into hctx->dispatch,
756 * that is where we will continue on next queue run.
758 if (!list_empty(&rq_list
)) {
759 spin_lock(&hctx
->lock
);
760 list_splice(&rq_list
, &hctx
->dispatch
);
761 spin_unlock(&hctx
->lock
);
766 * It'd be great if the workqueue API had a way to pass
767 * in a mask and had some smarts for more clever placement.
768 * For now we just round-robin here, switching for every
769 * BLK_MQ_CPU_WORK_BATCH queued items.
771 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx
*hctx
)
773 int cpu
= hctx
->next_cpu
;
775 if (--hctx
->next_cpu_batch
<= 0) {
778 next_cpu
= cpumask_next(hctx
->next_cpu
, hctx
->cpumask
);
779 if (next_cpu
>= nr_cpu_ids
)
780 next_cpu
= cpumask_first(hctx
->cpumask
);
782 hctx
->next_cpu
= next_cpu
;
783 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
789 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
791 if (unlikely(test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
)))
794 if (!async
&& cpumask_test_cpu(smp_processor_id(), hctx
->cpumask
))
795 __blk_mq_run_hw_queue(hctx
);
796 else if (hctx
->queue
->nr_hw_queues
== 1)
797 kblockd_schedule_delayed_work(&hctx
->run_work
, 0);
801 cpu
= blk_mq_hctx_next_cpu(hctx
);
802 kblockd_schedule_delayed_work_on(cpu
, &hctx
->run_work
, 0);
806 void blk_mq_run_queues(struct request_queue
*q
, bool async
)
808 struct blk_mq_hw_ctx
*hctx
;
811 queue_for_each_hw_ctx(q
, hctx
, i
) {
812 if ((!blk_mq_hctx_has_pending(hctx
) &&
813 list_empty_careful(&hctx
->dispatch
)) ||
814 test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
))
818 blk_mq_run_hw_queue(hctx
, async
);
822 EXPORT_SYMBOL(blk_mq_run_queues
);
824 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx
*hctx
)
826 cancel_delayed_work(&hctx
->run_work
);
827 cancel_delayed_work(&hctx
->delay_work
);
828 set_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
830 EXPORT_SYMBOL(blk_mq_stop_hw_queue
);
832 void blk_mq_stop_hw_queues(struct request_queue
*q
)
834 struct blk_mq_hw_ctx
*hctx
;
837 queue_for_each_hw_ctx(q
, hctx
, i
)
838 blk_mq_stop_hw_queue(hctx
);
840 EXPORT_SYMBOL(blk_mq_stop_hw_queues
);
842 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx
*hctx
)
844 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
847 blk_mq_run_hw_queue(hctx
, false);
850 EXPORT_SYMBOL(blk_mq_start_hw_queue
);
852 void blk_mq_start_hw_queues(struct request_queue
*q
)
854 struct blk_mq_hw_ctx
*hctx
;
857 queue_for_each_hw_ctx(q
, hctx
, i
)
858 blk_mq_start_hw_queue(hctx
);
860 EXPORT_SYMBOL(blk_mq_start_hw_queues
);
863 void blk_mq_start_stopped_hw_queues(struct request_queue
*q
, bool async
)
865 struct blk_mq_hw_ctx
*hctx
;
868 queue_for_each_hw_ctx(q
, hctx
, i
) {
869 if (!test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
))
872 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
874 blk_mq_run_hw_queue(hctx
, async
);
878 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues
);
880 static void blk_mq_run_work_fn(struct work_struct
*work
)
882 struct blk_mq_hw_ctx
*hctx
;
884 hctx
= container_of(work
, struct blk_mq_hw_ctx
, run_work
.work
);
886 __blk_mq_run_hw_queue(hctx
);
889 static void blk_mq_delay_work_fn(struct work_struct
*work
)
891 struct blk_mq_hw_ctx
*hctx
;
893 hctx
= container_of(work
, struct blk_mq_hw_ctx
, delay_work
.work
);
895 if (test_and_clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
))
896 __blk_mq_run_hw_queue(hctx
);
899 void blk_mq_delay_queue(struct blk_mq_hw_ctx
*hctx
, unsigned long msecs
)
901 unsigned long tmo
= msecs_to_jiffies(msecs
);
903 if (hctx
->queue
->nr_hw_queues
== 1)
904 kblockd_schedule_delayed_work(&hctx
->delay_work
, tmo
);
908 cpu
= blk_mq_hctx_next_cpu(hctx
);
909 kblockd_schedule_delayed_work_on(cpu
, &hctx
->delay_work
, tmo
);
912 EXPORT_SYMBOL(blk_mq_delay_queue
);
914 static void __blk_mq_insert_request(struct blk_mq_hw_ctx
*hctx
,
915 struct request
*rq
, bool at_head
)
917 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
919 trace_block_rq_insert(hctx
->queue
, rq
);
922 list_add(&rq
->queuelist
, &ctx
->rq_list
);
924 list_add_tail(&rq
->queuelist
, &ctx
->rq_list
);
926 blk_mq_hctx_mark_pending(hctx
, ctx
);
929 void blk_mq_insert_request(struct request
*rq
, bool at_head
, bool run_queue
,
932 struct request_queue
*q
= rq
->q
;
933 struct blk_mq_hw_ctx
*hctx
;
934 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
, *current_ctx
;
936 current_ctx
= blk_mq_get_ctx(q
);
937 if (!cpu_online(ctx
->cpu
))
938 rq
->mq_ctx
= ctx
= current_ctx
;
940 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
942 spin_lock(&ctx
->lock
);
943 __blk_mq_insert_request(hctx
, rq
, at_head
);
944 spin_unlock(&ctx
->lock
);
947 blk_mq_run_hw_queue(hctx
, async
);
949 blk_mq_put_ctx(current_ctx
);
952 static void blk_mq_insert_requests(struct request_queue
*q
,
953 struct blk_mq_ctx
*ctx
,
954 struct list_head
*list
,
959 struct blk_mq_hw_ctx
*hctx
;
960 struct blk_mq_ctx
*current_ctx
;
962 trace_block_unplug(q
, depth
, !from_schedule
);
964 current_ctx
= blk_mq_get_ctx(q
);
966 if (!cpu_online(ctx
->cpu
))
968 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
971 * preemption doesn't flush plug list, so it's possible ctx->cpu is
974 spin_lock(&ctx
->lock
);
975 while (!list_empty(list
)) {
978 rq
= list_first_entry(list
, struct request
, queuelist
);
979 list_del_init(&rq
->queuelist
);
981 __blk_mq_insert_request(hctx
, rq
, false);
983 spin_unlock(&ctx
->lock
);
985 blk_mq_run_hw_queue(hctx
, from_schedule
);
986 blk_mq_put_ctx(current_ctx
);
989 static int plug_ctx_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
991 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
992 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
994 return !(rqa
->mq_ctx
< rqb
->mq_ctx
||
995 (rqa
->mq_ctx
== rqb
->mq_ctx
&&
996 blk_rq_pos(rqa
) < blk_rq_pos(rqb
)));
999 void blk_mq_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
1001 struct blk_mq_ctx
*this_ctx
;
1002 struct request_queue
*this_q
;
1005 LIST_HEAD(ctx_list
);
1008 list_splice_init(&plug
->mq_list
, &list
);
1010 list_sort(NULL
, &list
, plug_ctx_cmp
);
1016 while (!list_empty(&list
)) {
1017 rq
= list_entry_rq(list
.next
);
1018 list_del_init(&rq
->queuelist
);
1020 if (rq
->mq_ctx
!= this_ctx
) {
1022 blk_mq_insert_requests(this_q
, this_ctx
,
1027 this_ctx
= rq
->mq_ctx
;
1033 list_add_tail(&rq
->queuelist
, &ctx_list
);
1037 * If 'this_ctx' is set, we know we have entries to complete
1038 * on 'ctx_list'. Do those.
1041 blk_mq_insert_requests(this_q
, this_ctx
, &ctx_list
, depth
,
1046 static void blk_mq_bio_to_request(struct request
*rq
, struct bio
*bio
)
1048 init_request_from_bio(rq
, bio
);
1050 if (blk_do_io_stat(rq
))
1051 blk_account_io_start(rq
, 1);
1054 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx
*hctx
)
1056 return (hctx
->flags
& BLK_MQ_F_SHOULD_MERGE
) &&
1057 !blk_queue_nomerges(hctx
->queue
);
1060 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx
*hctx
,
1061 struct blk_mq_ctx
*ctx
,
1062 struct request
*rq
, struct bio
*bio
)
1064 if (!hctx_allow_merges(hctx
)) {
1065 blk_mq_bio_to_request(rq
, bio
);
1066 spin_lock(&ctx
->lock
);
1068 __blk_mq_insert_request(hctx
, rq
, false);
1069 spin_unlock(&ctx
->lock
);
1072 struct request_queue
*q
= hctx
->queue
;
1074 spin_lock(&ctx
->lock
);
1075 if (!blk_mq_attempt_merge(q
, ctx
, bio
)) {
1076 blk_mq_bio_to_request(rq
, bio
);
1080 spin_unlock(&ctx
->lock
);
1081 __blk_mq_free_request(hctx
, ctx
, rq
);
1086 struct blk_map_ctx
{
1087 struct blk_mq_hw_ctx
*hctx
;
1088 struct blk_mq_ctx
*ctx
;
1091 static struct request
*blk_mq_map_request(struct request_queue
*q
,
1093 struct blk_map_ctx
*data
)
1095 struct blk_mq_hw_ctx
*hctx
;
1096 struct blk_mq_ctx
*ctx
;
1098 int rw
= bio_data_dir(bio
);
1099 struct blk_mq_alloc_data alloc_data
;
1101 if (unlikely(blk_mq_queue_enter(q
))) {
1102 bio_endio(bio
, -EIO
);
1106 ctx
= blk_mq_get_ctx(q
);
1107 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
1109 if (rw_is_sync(bio
->bi_rw
))
1112 trace_block_getrq(q
, bio
, rw
);
1113 blk_mq_set_alloc_data(&alloc_data
, q
, GFP_ATOMIC
, false, ctx
,
1115 rq
= __blk_mq_alloc_request(&alloc_data
, rw
);
1116 if (unlikely(!rq
)) {
1117 __blk_mq_run_hw_queue(hctx
);
1118 blk_mq_put_ctx(ctx
);
1119 trace_block_sleeprq(q
, bio
, rw
);
1121 ctx
= blk_mq_get_ctx(q
);
1122 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
1123 blk_mq_set_alloc_data(&alloc_data
, q
,
1124 __GFP_WAIT
|GFP_ATOMIC
, false, ctx
, hctx
);
1125 rq
= __blk_mq_alloc_request(&alloc_data
, rw
);
1126 ctx
= alloc_data
.ctx
;
1127 hctx
= alloc_data
.hctx
;
1137 * Multiple hardware queue variant. This will not use per-process plugs,
1138 * but will attempt to bypass the hctx queueing if we can go straight to
1139 * hardware for SYNC IO.
1141 static void blk_mq_make_request(struct request_queue
*q
, struct bio
*bio
)
1143 const int is_sync
= rw_is_sync(bio
->bi_rw
);
1144 const int is_flush_fua
= bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
);
1145 struct blk_map_ctx data
;
1148 blk_queue_bounce(q
, &bio
);
1150 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
)) {
1151 bio_endio(bio
, -EIO
);
1155 rq
= blk_mq_map_request(q
, bio
, &data
);
1159 if (unlikely(is_flush_fua
)) {
1160 blk_mq_bio_to_request(rq
, bio
);
1161 blk_insert_flush(rq
);
1168 blk_mq_bio_to_request(rq
, bio
);
1171 * For OK queue, we are done. For error, kill it. Any other
1172 * error (busy), just add it to our list as we previously
1175 ret
= q
->mq_ops
->queue_rq(data
.hctx
, rq
, true);
1176 if (ret
== BLK_MQ_RQ_QUEUE_OK
)
1179 __blk_mq_requeue_request(rq
);
1181 if (ret
== BLK_MQ_RQ_QUEUE_ERROR
) {
1183 blk_mq_end_request(rq
, rq
->errors
);
1189 if (!blk_mq_merge_queue_io(data
.hctx
, data
.ctx
, rq
, bio
)) {
1191 * For a SYNC request, send it to the hardware immediately. For
1192 * an ASYNC request, just ensure that we run it later on. The
1193 * latter allows for merging opportunities and more efficient
1197 blk_mq_run_hw_queue(data
.hctx
, !is_sync
|| is_flush_fua
);
1200 blk_mq_put_ctx(data
.ctx
);
1204 * Single hardware queue variant. This will attempt to use any per-process
1205 * plug for merging and IO deferral.
1207 static void blk_sq_make_request(struct request_queue
*q
, struct bio
*bio
)
1209 const int is_sync
= rw_is_sync(bio
->bi_rw
);
1210 const int is_flush_fua
= bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
);
1211 unsigned int use_plug
, request_count
= 0;
1212 struct blk_map_ctx data
;
1216 * If we have multiple hardware queues, just go directly to
1217 * one of those for sync IO.
1219 use_plug
= !is_flush_fua
&& !is_sync
;
1221 blk_queue_bounce(q
, &bio
);
1223 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
)) {
1224 bio_endio(bio
, -EIO
);
1228 if (use_plug
&& !blk_queue_nomerges(q
) &&
1229 blk_attempt_plug_merge(q
, bio
, &request_count
))
1232 rq
= blk_mq_map_request(q
, bio
, &data
);
1236 if (unlikely(is_flush_fua
)) {
1237 blk_mq_bio_to_request(rq
, bio
);
1238 blk_insert_flush(rq
);
1243 * A task plug currently exists. Since this is completely lockless,
1244 * utilize that to temporarily store requests until the task is
1245 * either done or scheduled away.
1248 struct blk_plug
*plug
= current
->plug
;
1251 blk_mq_bio_to_request(rq
, bio
);
1252 if (list_empty(&plug
->mq_list
))
1253 trace_block_plug(q
);
1254 else if (request_count
>= BLK_MAX_REQUEST_COUNT
) {
1255 blk_flush_plug_list(plug
, false);
1256 trace_block_plug(q
);
1258 list_add_tail(&rq
->queuelist
, &plug
->mq_list
);
1259 blk_mq_put_ctx(data
.ctx
);
1264 if (!blk_mq_merge_queue_io(data
.hctx
, data
.ctx
, rq
, bio
)) {
1266 * For a SYNC request, send it to the hardware immediately. For
1267 * an ASYNC request, just ensure that we run it later on. The
1268 * latter allows for merging opportunities and more efficient
1272 blk_mq_run_hw_queue(data
.hctx
, !is_sync
|| is_flush_fua
);
1275 blk_mq_put_ctx(data
.ctx
);
1279 * Default mapping to a software queue, since we use one per CPU.
1281 struct blk_mq_hw_ctx
*blk_mq_map_queue(struct request_queue
*q
, const int cpu
)
1283 return q
->queue_hw_ctx
[q
->mq_map
[cpu
]];
1285 EXPORT_SYMBOL(blk_mq_map_queue
);
1287 static void blk_mq_free_rq_map(struct blk_mq_tag_set
*set
,
1288 struct blk_mq_tags
*tags
, unsigned int hctx_idx
)
1292 if (tags
->rqs
&& set
->ops
->exit_request
) {
1295 for (i
= 0; i
< tags
->nr_tags
; i
++) {
1298 set
->ops
->exit_request(set
->driver_data
, tags
->rqs
[i
],
1300 tags
->rqs
[i
] = NULL
;
1304 while (!list_empty(&tags
->page_list
)) {
1305 page
= list_first_entry(&tags
->page_list
, struct page
, lru
);
1306 list_del_init(&page
->lru
);
1307 __free_pages(page
, page
->private);
1312 blk_mq_free_tags(tags
);
1315 static size_t order_to_size(unsigned int order
)
1317 return (size_t)PAGE_SIZE
<< order
;
1320 static struct blk_mq_tags
*blk_mq_init_rq_map(struct blk_mq_tag_set
*set
,
1321 unsigned int hctx_idx
)
1323 struct blk_mq_tags
*tags
;
1324 unsigned int i
, j
, entries_per_page
, max_order
= 4;
1325 size_t rq_size
, left
;
1327 tags
= blk_mq_init_tags(set
->queue_depth
, set
->reserved_tags
,
1332 INIT_LIST_HEAD(&tags
->page_list
);
1334 tags
->rqs
= kzalloc_node(set
->queue_depth
* sizeof(struct request
*),
1335 GFP_KERNEL
| __GFP_NOWARN
| __GFP_NORETRY
,
1338 blk_mq_free_tags(tags
);
1343 * rq_size is the size of the request plus driver payload, rounded
1344 * to the cacheline size
1346 rq_size
= round_up(sizeof(struct request
) + set
->cmd_size
,
1348 left
= rq_size
* set
->queue_depth
;
1350 for (i
= 0; i
< set
->queue_depth
; ) {
1351 int this_order
= max_order
;
1356 while (left
< order_to_size(this_order
- 1) && this_order
)
1360 page
= alloc_pages_node(set
->numa_node
,
1361 GFP_KERNEL
| __GFP_NOWARN
| __GFP_NORETRY
,
1367 if (order_to_size(this_order
) < rq_size
)
1374 page
->private = this_order
;
1375 list_add_tail(&page
->lru
, &tags
->page_list
);
1377 p
= page_address(page
);
1378 entries_per_page
= order_to_size(this_order
) / rq_size
;
1379 to_do
= min(entries_per_page
, set
->queue_depth
- i
);
1380 left
-= to_do
* rq_size
;
1381 for (j
= 0; j
< to_do
; j
++) {
1383 tags
->rqs
[i
]->atomic_flags
= 0;
1384 tags
->rqs
[i
]->cmd_flags
= 0;
1385 if (set
->ops
->init_request
) {
1386 if (set
->ops
->init_request(set
->driver_data
,
1387 tags
->rqs
[i
], hctx_idx
, i
,
1389 tags
->rqs
[i
] = NULL
;
1402 blk_mq_free_rq_map(set
, tags
, hctx_idx
);
1406 static void blk_mq_free_bitmap(struct blk_mq_ctxmap
*bitmap
)
1411 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap
*bitmap
, int node
)
1413 unsigned int bpw
= 8, total
, num_maps
, i
;
1415 bitmap
->bits_per_word
= bpw
;
1417 num_maps
= ALIGN(nr_cpu_ids
, bpw
) / bpw
;
1418 bitmap
->map
= kzalloc_node(num_maps
* sizeof(struct blk_align_bitmap
),
1423 bitmap
->map_size
= num_maps
;
1426 for (i
= 0; i
< num_maps
; i
++) {
1427 bitmap
->map
[i
].depth
= min(total
, bitmap
->bits_per_word
);
1428 total
-= bitmap
->map
[i
].depth
;
1434 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx
*hctx
, int cpu
)
1436 struct request_queue
*q
= hctx
->queue
;
1437 struct blk_mq_ctx
*ctx
;
1441 * Move ctx entries to new CPU, if this one is going away.
1443 ctx
= __blk_mq_get_ctx(q
, cpu
);
1445 spin_lock(&ctx
->lock
);
1446 if (!list_empty(&ctx
->rq_list
)) {
1447 list_splice_init(&ctx
->rq_list
, &tmp
);
1448 blk_mq_hctx_clear_pending(hctx
, ctx
);
1450 spin_unlock(&ctx
->lock
);
1452 if (list_empty(&tmp
))
1455 ctx
= blk_mq_get_ctx(q
);
1456 spin_lock(&ctx
->lock
);
1458 while (!list_empty(&tmp
)) {
1461 rq
= list_first_entry(&tmp
, struct request
, queuelist
);
1463 list_move_tail(&rq
->queuelist
, &ctx
->rq_list
);
1466 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
1467 blk_mq_hctx_mark_pending(hctx
, ctx
);
1469 spin_unlock(&ctx
->lock
);
1471 blk_mq_run_hw_queue(hctx
, true);
1472 blk_mq_put_ctx(ctx
);
1476 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx
*hctx
, int cpu
)
1478 struct request_queue
*q
= hctx
->queue
;
1479 struct blk_mq_tag_set
*set
= q
->tag_set
;
1481 if (set
->tags
[hctx
->queue_num
])
1484 set
->tags
[hctx
->queue_num
] = blk_mq_init_rq_map(set
, hctx
->queue_num
);
1485 if (!set
->tags
[hctx
->queue_num
])
1488 hctx
->tags
= set
->tags
[hctx
->queue_num
];
1492 static int blk_mq_hctx_notify(void *data
, unsigned long action
,
1495 struct blk_mq_hw_ctx
*hctx
= data
;
1497 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
)
1498 return blk_mq_hctx_cpu_offline(hctx
, cpu
);
1499 else if (action
== CPU_ONLINE
|| action
== CPU_ONLINE_FROZEN
)
1500 return blk_mq_hctx_cpu_online(hctx
, cpu
);
1505 static void blk_mq_exit_hctx(struct request_queue
*q
,
1506 struct blk_mq_tag_set
*set
,
1507 struct blk_mq_hw_ctx
*hctx
, unsigned int hctx_idx
)
1509 unsigned flush_start_tag
= set
->queue_depth
;
1511 blk_mq_tag_idle(hctx
);
1513 if (set
->ops
->exit_request
)
1514 set
->ops
->exit_request(set
->driver_data
,
1515 hctx
->fq
->flush_rq
, hctx_idx
,
1516 flush_start_tag
+ hctx_idx
);
1518 if (set
->ops
->exit_hctx
)
1519 set
->ops
->exit_hctx(hctx
, hctx_idx
);
1521 blk_mq_unregister_cpu_notifier(&hctx
->cpu_notifier
);
1522 blk_free_flush_queue(hctx
->fq
);
1524 blk_mq_free_bitmap(&hctx
->ctx_map
);
1527 static void blk_mq_exit_hw_queues(struct request_queue
*q
,
1528 struct blk_mq_tag_set
*set
, int nr_queue
)
1530 struct blk_mq_hw_ctx
*hctx
;
1533 queue_for_each_hw_ctx(q
, hctx
, i
) {
1536 blk_mq_exit_hctx(q
, set
, hctx
, i
);
1540 static void blk_mq_free_hw_queues(struct request_queue
*q
,
1541 struct blk_mq_tag_set
*set
)
1543 struct blk_mq_hw_ctx
*hctx
;
1546 queue_for_each_hw_ctx(q
, hctx
, i
) {
1547 free_cpumask_var(hctx
->cpumask
);
1552 static int blk_mq_init_hctx(struct request_queue
*q
,
1553 struct blk_mq_tag_set
*set
,
1554 struct blk_mq_hw_ctx
*hctx
, unsigned hctx_idx
)
1557 unsigned flush_start_tag
= set
->queue_depth
;
1559 node
= hctx
->numa_node
;
1560 if (node
== NUMA_NO_NODE
)
1561 node
= hctx
->numa_node
= set
->numa_node
;
1563 INIT_DELAYED_WORK(&hctx
->run_work
, blk_mq_run_work_fn
);
1564 INIT_DELAYED_WORK(&hctx
->delay_work
, blk_mq_delay_work_fn
);
1565 spin_lock_init(&hctx
->lock
);
1566 INIT_LIST_HEAD(&hctx
->dispatch
);
1568 hctx
->queue_num
= hctx_idx
;
1569 hctx
->flags
= set
->flags
;
1570 hctx
->cmd_size
= set
->cmd_size
;
1572 blk_mq_init_cpu_notifier(&hctx
->cpu_notifier
,
1573 blk_mq_hctx_notify
, hctx
);
1574 blk_mq_register_cpu_notifier(&hctx
->cpu_notifier
);
1576 hctx
->tags
= set
->tags
[hctx_idx
];
1579 * Allocate space for all possible cpus to avoid allocation at
1582 hctx
->ctxs
= kmalloc_node(nr_cpu_ids
* sizeof(void *),
1585 goto unregister_cpu_notifier
;
1587 if (blk_mq_alloc_bitmap(&hctx
->ctx_map
, node
))
1592 if (set
->ops
->init_hctx
&&
1593 set
->ops
->init_hctx(hctx
, set
->driver_data
, hctx_idx
))
1596 hctx
->fq
= blk_alloc_flush_queue(q
, hctx
->numa_node
, set
->cmd_size
);
1600 if (set
->ops
->init_request
&&
1601 set
->ops
->init_request(set
->driver_data
,
1602 hctx
->fq
->flush_rq
, hctx_idx
,
1603 flush_start_tag
+ hctx_idx
, node
))
1611 if (set
->ops
->exit_hctx
)
1612 set
->ops
->exit_hctx(hctx
, hctx_idx
);
1614 blk_mq_free_bitmap(&hctx
->ctx_map
);
1617 unregister_cpu_notifier
:
1618 blk_mq_unregister_cpu_notifier(&hctx
->cpu_notifier
);
1623 static int blk_mq_init_hw_queues(struct request_queue
*q
,
1624 struct blk_mq_tag_set
*set
)
1626 struct blk_mq_hw_ctx
*hctx
;
1630 * Initialize hardware queues
1632 queue_for_each_hw_ctx(q
, hctx
, i
) {
1633 if (blk_mq_init_hctx(q
, set
, hctx
, i
))
1637 if (i
== q
->nr_hw_queues
)
1643 blk_mq_exit_hw_queues(q
, set
, i
);
1648 static void blk_mq_init_cpu_queues(struct request_queue
*q
,
1649 unsigned int nr_hw_queues
)
1653 for_each_possible_cpu(i
) {
1654 struct blk_mq_ctx
*__ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
1655 struct blk_mq_hw_ctx
*hctx
;
1657 memset(__ctx
, 0, sizeof(*__ctx
));
1659 spin_lock_init(&__ctx
->lock
);
1660 INIT_LIST_HEAD(&__ctx
->rq_list
);
1663 /* If the cpu isn't online, the cpu is mapped to first hctx */
1667 hctx
= q
->mq_ops
->map_queue(q
, i
);
1668 cpumask_set_cpu(i
, hctx
->cpumask
);
1672 * Set local node, IFF we have more than one hw queue. If
1673 * not, we remain on the home node of the device
1675 if (nr_hw_queues
> 1 && hctx
->numa_node
== NUMA_NO_NODE
)
1676 hctx
->numa_node
= cpu_to_node(i
);
1680 static void blk_mq_map_swqueue(struct request_queue
*q
)
1683 struct blk_mq_hw_ctx
*hctx
;
1684 struct blk_mq_ctx
*ctx
;
1686 queue_for_each_hw_ctx(q
, hctx
, i
) {
1687 cpumask_clear(hctx
->cpumask
);
1692 * Map software to hardware queues
1694 queue_for_each_ctx(q
, ctx
, i
) {
1695 /* If the cpu isn't online, the cpu is mapped to first hctx */
1699 hctx
= q
->mq_ops
->map_queue(q
, i
);
1700 cpumask_set_cpu(i
, hctx
->cpumask
);
1701 ctx
->index_hw
= hctx
->nr_ctx
;
1702 hctx
->ctxs
[hctx
->nr_ctx
++] = ctx
;
1705 queue_for_each_hw_ctx(q
, hctx
, i
) {
1707 * If no software queues are mapped to this hardware queue,
1708 * disable it and free the request entries.
1710 if (!hctx
->nr_ctx
) {
1711 struct blk_mq_tag_set
*set
= q
->tag_set
;
1714 blk_mq_free_rq_map(set
, set
->tags
[i
], i
);
1715 set
->tags
[i
] = NULL
;
1722 * Initialize batch roundrobin counts
1724 hctx
->next_cpu
= cpumask_first(hctx
->cpumask
);
1725 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
1729 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set
*set
)
1731 struct blk_mq_hw_ctx
*hctx
;
1732 struct request_queue
*q
;
1736 if (set
->tag_list
.next
== set
->tag_list
.prev
)
1741 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
1742 blk_mq_freeze_queue(q
);
1744 queue_for_each_hw_ctx(q
, hctx
, i
) {
1746 hctx
->flags
|= BLK_MQ_F_TAG_SHARED
;
1748 hctx
->flags
&= ~BLK_MQ_F_TAG_SHARED
;
1750 blk_mq_unfreeze_queue(q
);
1754 static void blk_mq_del_queue_tag_set(struct request_queue
*q
)
1756 struct blk_mq_tag_set
*set
= q
->tag_set
;
1758 mutex_lock(&set
->tag_list_lock
);
1759 list_del_init(&q
->tag_set_list
);
1760 blk_mq_update_tag_set_depth(set
);
1761 mutex_unlock(&set
->tag_list_lock
);
1764 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set
*set
,
1765 struct request_queue
*q
)
1769 mutex_lock(&set
->tag_list_lock
);
1770 list_add_tail(&q
->tag_set_list
, &set
->tag_list
);
1771 blk_mq_update_tag_set_depth(set
);
1772 mutex_unlock(&set
->tag_list_lock
);
1775 struct request_queue
*blk_mq_init_queue(struct blk_mq_tag_set
*set
)
1777 struct blk_mq_hw_ctx
**hctxs
;
1778 struct blk_mq_ctx __percpu
*ctx
;
1779 struct request_queue
*q
;
1783 ctx
= alloc_percpu(struct blk_mq_ctx
);
1785 return ERR_PTR(-ENOMEM
);
1788 * If a crashdump is active, then we are potentially in a very
1789 * memory constrained environment. Limit us to 1 queue and
1790 * 64 tags to prevent using too much memory.
1792 if (is_kdump_kernel()) {
1793 set
->nr_hw_queues
= 1;
1794 set
->queue_depth
= min(64U, set
->queue_depth
);
1797 hctxs
= kmalloc_node(set
->nr_hw_queues
* sizeof(*hctxs
), GFP_KERNEL
,
1803 map
= blk_mq_make_queue_map(set
);
1807 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
1808 int node
= blk_mq_hw_queue_to_node(map
, i
);
1810 hctxs
[i
] = kzalloc_node(sizeof(struct blk_mq_hw_ctx
),
1815 if (!zalloc_cpumask_var_node(&hctxs
[i
]->cpumask
, GFP_KERNEL
,
1819 atomic_set(&hctxs
[i
]->nr_active
, 0);
1820 hctxs
[i
]->numa_node
= node
;
1821 hctxs
[i
]->queue_num
= i
;
1824 q
= blk_alloc_queue_node(GFP_KERNEL
, set
->numa_node
);
1829 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1830 * See blk_register_queue() for details.
1832 if (percpu_ref_init(&q
->mq_usage_counter
, blk_mq_usage_counter_release
,
1833 PERCPU_REF_INIT_ATOMIC
, GFP_KERNEL
))
1836 setup_timer(&q
->timeout
, blk_mq_rq_timer
, (unsigned long) q
);
1837 blk_queue_rq_timeout(q
, 30000);
1839 q
->nr_queues
= nr_cpu_ids
;
1840 q
->nr_hw_queues
= set
->nr_hw_queues
;
1844 q
->queue_hw_ctx
= hctxs
;
1846 q
->mq_ops
= set
->ops
;
1847 q
->queue_flags
|= QUEUE_FLAG_MQ_DEFAULT
;
1849 if (!(set
->flags
& BLK_MQ_F_SG_MERGE
))
1850 q
->queue_flags
|= 1 << QUEUE_FLAG_NO_SG_MERGE
;
1852 q
->sg_reserved_size
= INT_MAX
;
1854 INIT_WORK(&q
->requeue_work
, blk_mq_requeue_work
);
1855 INIT_LIST_HEAD(&q
->requeue_list
);
1856 spin_lock_init(&q
->requeue_lock
);
1858 if (q
->nr_hw_queues
> 1)
1859 blk_queue_make_request(q
, blk_mq_make_request
);
1861 blk_queue_make_request(q
, blk_sq_make_request
);
1864 blk_queue_rq_timeout(q
, set
->timeout
);
1867 * Do this after blk_queue_make_request() overrides it...
1869 q
->nr_requests
= set
->queue_depth
;
1871 if (set
->ops
->complete
)
1872 blk_queue_softirq_done(q
, set
->ops
->complete
);
1874 blk_mq_init_cpu_queues(q
, set
->nr_hw_queues
);
1876 if (blk_mq_init_hw_queues(q
, set
))
1879 mutex_lock(&all_q_mutex
);
1880 list_add_tail(&q
->all_q_node
, &all_q_list
);
1881 mutex_unlock(&all_q_mutex
);
1883 blk_mq_add_queue_tag_set(set
, q
);
1885 blk_mq_map_swqueue(q
);
1890 blk_cleanup_queue(q
);
1893 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
1896 free_cpumask_var(hctxs
[i
]->cpumask
);
1903 return ERR_PTR(-ENOMEM
);
1905 EXPORT_SYMBOL(blk_mq_init_queue
);
1907 void blk_mq_free_queue(struct request_queue
*q
)
1909 struct blk_mq_tag_set
*set
= q
->tag_set
;
1911 blk_mq_del_queue_tag_set(q
);
1913 blk_mq_exit_hw_queues(q
, set
, set
->nr_hw_queues
);
1914 blk_mq_free_hw_queues(q
, set
);
1916 percpu_ref_exit(&q
->mq_usage_counter
);
1918 free_percpu(q
->queue_ctx
);
1919 kfree(q
->queue_hw_ctx
);
1922 q
->queue_ctx
= NULL
;
1923 q
->queue_hw_ctx
= NULL
;
1926 mutex_lock(&all_q_mutex
);
1927 list_del_init(&q
->all_q_node
);
1928 mutex_unlock(&all_q_mutex
);
1931 /* Basically redo blk_mq_init_queue with queue frozen */
1932 static void blk_mq_queue_reinit(struct request_queue
*q
)
1934 WARN_ON_ONCE(!q
->mq_freeze_depth
);
1936 blk_mq_sysfs_unregister(q
);
1938 blk_mq_update_queue_map(q
->mq_map
, q
->nr_hw_queues
);
1941 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1942 * we should change hctx numa_node according to new topology (this
1943 * involves free and re-allocate memory, worthy doing?)
1946 blk_mq_map_swqueue(q
);
1948 blk_mq_sysfs_register(q
);
1951 static int blk_mq_queue_reinit_notify(struct notifier_block
*nb
,
1952 unsigned long action
, void *hcpu
)
1954 struct request_queue
*q
;
1957 * Before new mappings are established, hotadded cpu might already
1958 * start handling requests. This doesn't break anything as we map
1959 * offline CPUs to first hardware queue. We will re-init the queue
1960 * below to get optimal settings.
1962 if (action
!= CPU_DEAD
&& action
!= CPU_DEAD_FROZEN
&&
1963 action
!= CPU_ONLINE
&& action
!= CPU_ONLINE_FROZEN
)
1966 mutex_lock(&all_q_mutex
);
1969 * We need to freeze and reinit all existing queues. Freezing
1970 * involves synchronous wait for an RCU grace period and doing it
1971 * one by one may take a long time. Start freezing all queues in
1972 * one swoop and then wait for the completions so that freezing can
1973 * take place in parallel.
1975 list_for_each_entry(q
, &all_q_list
, all_q_node
)
1976 blk_mq_freeze_queue_start(q
);
1977 list_for_each_entry(q
, &all_q_list
, all_q_node
)
1978 blk_mq_freeze_queue_wait(q
);
1980 list_for_each_entry(q
, &all_q_list
, all_q_node
)
1981 blk_mq_queue_reinit(q
);
1983 list_for_each_entry(q
, &all_q_list
, all_q_node
)
1984 blk_mq_unfreeze_queue(q
);
1986 mutex_unlock(&all_q_mutex
);
1990 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
1994 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
1995 set
->tags
[i
] = blk_mq_init_rq_map(set
, i
);
2004 blk_mq_free_rq_map(set
, set
->tags
[i
], i
);
2010 * Allocate the request maps associated with this tag_set. Note that this
2011 * may reduce the depth asked for, if memory is tight. set->queue_depth
2012 * will be updated to reflect the allocated depth.
2014 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
2019 depth
= set
->queue_depth
;
2021 err
= __blk_mq_alloc_rq_maps(set
);
2025 set
->queue_depth
>>= 1;
2026 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
) {
2030 } while (set
->queue_depth
);
2032 if (!set
->queue_depth
|| err
) {
2033 pr_err("blk-mq: failed to allocate request map\n");
2037 if (depth
!= set
->queue_depth
)
2038 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2039 depth
, set
->queue_depth
);
2045 * Alloc a tag set to be associated with one or more request queues.
2046 * May fail with EINVAL for various error conditions. May adjust the
2047 * requested depth down, if if it too large. In that case, the set
2048 * value will be stored in set->queue_depth.
2050 int blk_mq_alloc_tag_set(struct blk_mq_tag_set
*set
)
2052 if (!set
->nr_hw_queues
)
2054 if (!set
->queue_depth
)
2056 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
)
2059 if (!set
->nr_hw_queues
|| !set
->ops
->queue_rq
|| !set
->ops
->map_queue
)
2062 if (set
->queue_depth
> BLK_MQ_MAX_DEPTH
) {
2063 pr_info("blk-mq: reduced tag depth to %u\n",
2065 set
->queue_depth
= BLK_MQ_MAX_DEPTH
;
2068 set
->tags
= kmalloc_node(set
->nr_hw_queues
*
2069 sizeof(struct blk_mq_tags
*),
2070 GFP_KERNEL
, set
->numa_node
);
2074 if (blk_mq_alloc_rq_maps(set
))
2077 mutex_init(&set
->tag_list_lock
);
2078 INIT_LIST_HEAD(&set
->tag_list
);
2086 EXPORT_SYMBOL(blk_mq_alloc_tag_set
);
2088 void blk_mq_free_tag_set(struct blk_mq_tag_set
*set
)
2092 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
2094 blk_mq_free_rq_map(set
, set
->tags
[i
], i
);
2100 EXPORT_SYMBOL(blk_mq_free_tag_set
);
2102 int blk_mq_update_nr_requests(struct request_queue
*q
, unsigned int nr
)
2104 struct blk_mq_tag_set
*set
= q
->tag_set
;
2105 struct blk_mq_hw_ctx
*hctx
;
2108 if (!set
|| nr
> set
->queue_depth
)
2112 queue_for_each_hw_ctx(q
, hctx
, i
) {
2113 ret
= blk_mq_tag_update_depth(hctx
->tags
, nr
);
2119 q
->nr_requests
= nr
;
2124 void blk_mq_disable_hotplug(void)
2126 mutex_lock(&all_q_mutex
);
2129 void blk_mq_enable_hotplug(void)
2131 mutex_unlock(&all_q_mutex
);
2134 static int __init
blk_mq_init(void)
2138 hotcpu_notifier(blk_mq_queue_reinit_notify
, 0);
2142 subsys_initcall(blk_mq_init
);