perf: Fix ring_buffer_attach() RCU sync, again
[linux/fpc-iii.git] / block / blk-mq.c
blob849479debac3e07f73eb642366ceddb58f5dc610
1 /*
2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23 #include <linux/crash_dump.h>
25 #include <trace/events/block.h>
27 #include <linux/blk-mq.h>
28 #include "blk.h"
29 #include "blk-mq.h"
30 #include "blk-mq-tag.h"
32 static DEFINE_MUTEX(all_q_mutex);
33 static LIST_HEAD(all_q_list);
35 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
38 * Check if any of the ctx's have pending work in this hardware queue
40 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
42 unsigned int i;
44 for (i = 0; i < hctx->ctx_map.map_size; i++)
45 if (hctx->ctx_map.map[i].word)
46 return true;
48 return false;
51 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
52 struct blk_mq_ctx *ctx)
54 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
57 #define CTX_TO_BIT(hctx, ctx) \
58 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
61 * Mark this ctx as having pending work in this hardware queue
63 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
64 struct blk_mq_ctx *ctx)
66 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
68 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
69 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
72 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
73 struct blk_mq_ctx *ctx)
75 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
77 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
80 static int blk_mq_queue_enter(struct request_queue *q)
82 while (true) {
83 int ret;
85 if (percpu_ref_tryget_live(&q->mq_usage_counter))
86 return 0;
88 ret = wait_event_interruptible(q->mq_freeze_wq,
89 !q->mq_freeze_depth || blk_queue_dying(q));
90 if (blk_queue_dying(q))
91 return -ENODEV;
92 if (ret)
93 return ret;
97 static void blk_mq_queue_exit(struct request_queue *q)
99 percpu_ref_put(&q->mq_usage_counter);
102 static void blk_mq_usage_counter_release(struct percpu_ref *ref)
104 struct request_queue *q =
105 container_of(ref, struct request_queue, mq_usage_counter);
107 wake_up_all(&q->mq_freeze_wq);
110 static void blk_mq_freeze_queue_start(struct request_queue *q)
112 bool freeze;
114 spin_lock_irq(q->queue_lock);
115 freeze = !q->mq_freeze_depth++;
116 spin_unlock_irq(q->queue_lock);
118 if (freeze) {
119 percpu_ref_kill(&q->mq_usage_counter);
120 blk_mq_run_queues(q, false);
124 static void blk_mq_freeze_queue_wait(struct request_queue *q)
126 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
130 * Guarantee no request is in use, so we can change any data structure of
131 * the queue afterward.
133 void blk_mq_freeze_queue(struct request_queue *q)
135 blk_mq_freeze_queue_start(q);
136 blk_mq_freeze_queue_wait(q);
139 static void blk_mq_unfreeze_queue(struct request_queue *q)
141 bool wake;
143 spin_lock_irq(q->queue_lock);
144 wake = !--q->mq_freeze_depth;
145 WARN_ON_ONCE(q->mq_freeze_depth < 0);
146 spin_unlock_irq(q->queue_lock);
147 if (wake) {
148 percpu_ref_reinit(&q->mq_usage_counter);
149 wake_up_all(&q->mq_freeze_wq);
153 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
155 return blk_mq_has_free_tags(hctx->tags);
157 EXPORT_SYMBOL(blk_mq_can_queue);
159 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
160 struct request *rq, unsigned int rw_flags)
162 if (blk_queue_io_stat(q))
163 rw_flags |= REQ_IO_STAT;
165 INIT_LIST_HEAD(&rq->queuelist);
166 /* csd/requeue_work/fifo_time is initialized before use */
167 rq->q = q;
168 rq->mq_ctx = ctx;
169 rq->cmd_flags |= rw_flags;
170 /* do not touch atomic flags, it needs atomic ops against the timer */
171 rq->cpu = -1;
172 INIT_HLIST_NODE(&rq->hash);
173 RB_CLEAR_NODE(&rq->rb_node);
174 rq->rq_disk = NULL;
175 rq->part = NULL;
176 rq->start_time = jiffies;
177 #ifdef CONFIG_BLK_CGROUP
178 rq->rl = NULL;
179 set_start_time_ns(rq);
180 rq->io_start_time_ns = 0;
181 #endif
182 rq->nr_phys_segments = 0;
183 #if defined(CONFIG_BLK_DEV_INTEGRITY)
184 rq->nr_integrity_segments = 0;
185 #endif
186 rq->special = NULL;
187 /* tag was already set */
188 rq->errors = 0;
190 rq->cmd = rq->__cmd;
192 rq->extra_len = 0;
193 rq->sense_len = 0;
194 rq->resid_len = 0;
195 rq->sense = NULL;
197 INIT_LIST_HEAD(&rq->timeout_list);
198 rq->timeout = 0;
200 rq->end_io = NULL;
201 rq->end_io_data = NULL;
202 rq->next_rq = NULL;
204 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
207 static struct request *
208 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
210 struct request *rq;
211 unsigned int tag;
213 tag = blk_mq_get_tag(data);
214 if (tag != BLK_MQ_TAG_FAIL) {
215 rq = data->hctx->tags->rqs[tag];
217 if (blk_mq_tag_busy(data->hctx)) {
218 rq->cmd_flags = REQ_MQ_INFLIGHT;
219 atomic_inc(&data->hctx->nr_active);
222 rq->tag = tag;
223 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
224 return rq;
227 return NULL;
230 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
231 bool reserved)
233 struct blk_mq_ctx *ctx;
234 struct blk_mq_hw_ctx *hctx;
235 struct request *rq;
236 struct blk_mq_alloc_data alloc_data;
237 int ret;
239 ret = blk_mq_queue_enter(q);
240 if (ret)
241 return ERR_PTR(ret);
243 ctx = blk_mq_get_ctx(q);
244 hctx = q->mq_ops->map_queue(q, ctx->cpu);
245 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
246 reserved, ctx, hctx);
248 rq = __blk_mq_alloc_request(&alloc_data, rw);
249 if (!rq && (gfp & __GFP_WAIT)) {
250 __blk_mq_run_hw_queue(hctx);
251 blk_mq_put_ctx(ctx);
253 ctx = blk_mq_get_ctx(q);
254 hctx = q->mq_ops->map_queue(q, ctx->cpu);
255 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
256 hctx);
257 rq = __blk_mq_alloc_request(&alloc_data, rw);
258 ctx = alloc_data.ctx;
260 blk_mq_put_ctx(ctx);
261 if (!rq)
262 return ERR_PTR(-EWOULDBLOCK);
263 return rq;
265 EXPORT_SYMBOL(blk_mq_alloc_request);
267 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
268 struct blk_mq_ctx *ctx, struct request *rq)
270 const int tag = rq->tag;
271 struct request_queue *q = rq->q;
273 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
274 atomic_dec(&hctx->nr_active);
275 rq->cmd_flags = 0;
277 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
278 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
279 blk_mq_queue_exit(q);
282 void blk_mq_free_request(struct request *rq)
284 struct blk_mq_ctx *ctx = rq->mq_ctx;
285 struct blk_mq_hw_ctx *hctx;
286 struct request_queue *q = rq->q;
288 ctx->rq_completed[rq_is_sync(rq)]++;
290 hctx = q->mq_ops->map_queue(q, ctx->cpu);
291 __blk_mq_free_request(hctx, ctx, rq);
294 inline void __blk_mq_end_request(struct request *rq, int error)
296 blk_account_io_done(rq);
298 if (rq->end_io) {
299 rq->end_io(rq, error);
300 } else {
301 if (unlikely(blk_bidi_rq(rq)))
302 blk_mq_free_request(rq->next_rq);
303 blk_mq_free_request(rq);
306 EXPORT_SYMBOL(__blk_mq_end_request);
308 void blk_mq_end_request(struct request *rq, int error)
310 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
311 BUG();
312 __blk_mq_end_request(rq, error);
314 EXPORT_SYMBOL(blk_mq_end_request);
316 static void __blk_mq_complete_request_remote(void *data)
318 struct request *rq = data;
320 rq->q->softirq_done_fn(rq);
323 static void blk_mq_ipi_complete_request(struct request *rq)
325 struct blk_mq_ctx *ctx = rq->mq_ctx;
326 bool shared = false;
327 int cpu;
329 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
330 rq->q->softirq_done_fn(rq);
331 return;
334 cpu = get_cpu();
335 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
336 shared = cpus_share_cache(cpu, ctx->cpu);
338 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
339 rq->csd.func = __blk_mq_complete_request_remote;
340 rq->csd.info = rq;
341 rq->csd.flags = 0;
342 smp_call_function_single_async(ctx->cpu, &rq->csd);
343 } else {
344 rq->q->softirq_done_fn(rq);
346 put_cpu();
349 void __blk_mq_complete_request(struct request *rq)
351 struct request_queue *q = rq->q;
353 if (!q->softirq_done_fn)
354 blk_mq_end_request(rq, rq->errors);
355 else
356 blk_mq_ipi_complete_request(rq);
360 * blk_mq_complete_request - end I/O on a request
361 * @rq: the request being processed
363 * Description:
364 * Ends all I/O on a request. It does not handle partial completions.
365 * The actual completion happens out-of-order, through a IPI handler.
367 void blk_mq_complete_request(struct request *rq)
369 struct request_queue *q = rq->q;
371 if (unlikely(blk_should_fake_timeout(q)))
372 return;
373 if (!blk_mark_rq_complete(rq))
374 __blk_mq_complete_request(rq);
376 EXPORT_SYMBOL(blk_mq_complete_request);
378 void blk_mq_start_request(struct request *rq)
380 struct request_queue *q = rq->q;
382 trace_block_rq_issue(q, rq);
384 rq->resid_len = blk_rq_bytes(rq);
385 if (unlikely(blk_bidi_rq(rq)))
386 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
388 blk_add_timer(rq);
391 * Ensure that ->deadline is visible before set the started
392 * flag and clear the completed flag.
394 smp_mb__before_atomic();
397 * Mark us as started and clear complete. Complete might have been
398 * set if requeue raced with timeout, which then marked it as
399 * complete. So be sure to clear complete again when we start
400 * the request, otherwise we'll ignore the completion event.
402 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
403 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
404 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
405 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
407 if (q->dma_drain_size && blk_rq_bytes(rq)) {
409 * Make sure space for the drain appears. We know we can do
410 * this because max_hw_segments has been adjusted to be one
411 * fewer than the device can handle.
413 rq->nr_phys_segments++;
416 EXPORT_SYMBOL(blk_mq_start_request);
418 static void __blk_mq_requeue_request(struct request *rq)
420 struct request_queue *q = rq->q;
422 trace_block_rq_requeue(q, rq);
424 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
425 if (q->dma_drain_size && blk_rq_bytes(rq))
426 rq->nr_phys_segments--;
430 void blk_mq_requeue_request(struct request *rq)
432 __blk_mq_requeue_request(rq);
434 BUG_ON(blk_queued_rq(rq));
435 blk_mq_add_to_requeue_list(rq, true);
437 EXPORT_SYMBOL(blk_mq_requeue_request);
439 static void blk_mq_requeue_work(struct work_struct *work)
441 struct request_queue *q =
442 container_of(work, struct request_queue, requeue_work);
443 LIST_HEAD(rq_list);
444 struct request *rq, *next;
445 unsigned long flags;
447 spin_lock_irqsave(&q->requeue_lock, flags);
448 list_splice_init(&q->requeue_list, &rq_list);
449 spin_unlock_irqrestore(&q->requeue_lock, flags);
451 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
452 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
453 continue;
455 rq->cmd_flags &= ~REQ_SOFTBARRIER;
456 list_del_init(&rq->queuelist);
457 blk_mq_insert_request(rq, true, false, false);
460 while (!list_empty(&rq_list)) {
461 rq = list_entry(rq_list.next, struct request, queuelist);
462 list_del_init(&rq->queuelist);
463 blk_mq_insert_request(rq, false, false, false);
467 * Use the start variant of queue running here, so that running
468 * the requeue work will kick stopped queues.
470 blk_mq_start_hw_queues(q);
473 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
475 struct request_queue *q = rq->q;
476 unsigned long flags;
479 * We abuse this flag that is otherwise used by the I/O scheduler to
480 * request head insertation from the workqueue.
482 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
484 spin_lock_irqsave(&q->requeue_lock, flags);
485 if (at_head) {
486 rq->cmd_flags |= REQ_SOFTBARRIER;
487 list_add(&rq->queuelist, &q->requeue_list);
488 } else {
489 list_add_tail(&rq->queuelist, &q->requeue_list);
491 spin_unlock_irqrestore(&q->requeue_lock, flags);
493 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
495 void blk_mq_kick_requeue_list(struct request_queue *q)
497 kblockd_schedule_work(&q->requeue_work);
499 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
501 static inline bool is_flush_request(struct request *rq,
502 struct blk_flush_queue *fq, unsigned int tag)
504 return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
505 fq->flush_rq->tag == tag);
508 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
510 struct request *rq = tags->rqs[tag];
511 /* mq_ctx of flush rq is always cloned from the corresponding req */
512 struct blk_flush_queue *fq = blk_get_flush_queue(rq->q, rq->mq_ctx);
514 if (!is_flush_request(rq, fq, tag))
515 return rq;
517 return fq->flush_rq;
519 EXPORT_SYMBOL(blk_mq_tag_to_rq);
521 struct blk_mq_timeout_data {
522 unsigned long next;
523 unsigned int next_set;
526 void blk_mq_rq_timed_out(struct request *req, bool reserved)
528 struct blk_mq_ops *ops = req->q->mq_ops;
529 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
532 * We know that complete is set at this point. If STARTED isn't set
533 * anymore, then the request isn't active and the "timeout" should
534 * just be ignored. This can happen due to the bitflag ordering.
535 * Timeout first checks if STARTED is set, and if it is, assumes
536 * the request is active. But if we race with completion, then
537 * we both flags will get cleared. So check here again, and ignore
538 * a timeout event with a request that isn't active.
540 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
541 return;
543 if (ops->timeout)
544 ret = ops->timeout(req, reserved);
546 switch (ret) {
547 case BLK_EH_HANDLED:
548 __blk_mq_complete_request(req);
549 break;
550 case BLK_EH_RESET_TIMER:
551 blk_add_timer(req);
552 blk_clear_rq_complete(req);
553 break;
554 case BLK_EH_NOT_HANDLED:
555 break;
556 default:
557 printk(KERN_ERR "block: bad eh return: %d\n", ret);
558 break;
562 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
563 struct request *rq, void *priv, bool reserved)
565 struct blk_mq_timeout_data *data = priv;
567 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
568 return;
570 if (time_after_eq(jiffies, rq->deadline)) {
571 if (!blk_mark_rq_complete(rq))
572 blk_mq_rq_timed_out(rq, reserved);
573 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
574 data->next = rq->deadline;
575 data->next_set = 1;
579 static void blk_mq_rq_timer(unsigned long priv)
581 struct request_queue *q = (struct request_queue *)priv;
582 struct blk_mq_timeout_data data = {
583 .next = 0,
584 .next_set = 0,
586 struct blk_mq_hw_ctx *hctx;
587 int i;
589 queue_for_each_hw_ctx(q, hctx, i) {
591 * If not software queues are currently mapped to this
592 * hardware queue, there's nothing to check
594 if (!hctx->nr_ctx || !hctx->tags)
595 continue;
597 blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data);
600 if (data.next_set) {
601 data.next = blk_rq_timeout(round_jiffies_up(data.next));
602 mod_timer(&q->timeout, data.next);
603 } else {
604 queue_for_each_hw_ctx(q, hctx, i)
605 blk_mq_tag_idle(hctx);
610 * Reverse check our software queue for entries that we could potentially
611 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
612 * too much time checking for merges.
614 static bool blk_mq_attempt_merge(struct request_queue *q,
615 struct blk_mq_ctx *ctx, struct bio *bio)
617 struct request *rq;
618 int checked = 8;
620 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
621 int el_ret;
623 if (!checked--)
624 break;
626 if (!blk_rq_merge_ok(rq, bio))
627 continue;
629 el_ret = blk_try_merge(rq, bio);
630 if (el_ret == ELEVATOR_BACK_MERGE) {
631 if (bio_attempt_back_merge(q, rq, bio)) {
632 ctx->rq_merged++;
633 return true;
635 break;
636 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
637 if (bio_attempt_front_merge(q, rq, bio)) {
638 ctx->rq_merged++;
639 return true;
641 break;
645 return false;
649 * Process software queues that have been marked busy, splicing them
650 * to the for-dispatch
652 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
654 struct blk_mq_ctx *ctx;
655 int i;
657 for (i = 0; i < hctx->ctx_map.map_size; i++) {
658 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
659 unsigned int off, bit;
661 if (!bm->word)
662 continue;
664 bit = 0;
665 off = i * hctx->ctx_map.bits_per_word;
666 do {
667 bit = find_next_bit(&bm->word, bm->depth, bit);
668 if (bit >= bm->depth)
669 break;
671 ctx = hctx->ctxs[bit + off];
672 clear_bit(bit, &bm->word);
673 spin_lock(&ctx->lock);
674 list_splice_tail_init(&ctx->rq_list, list);
675 spin_unlock(&ctx->lock);
677 bit++;
678 } while (1);
683 * Run this hardware queue, pulling any software queues mapped to it in.
684 * Note that this function currently has various problems around ordering
685 * of IO. In particular, we'd like FIFO behaviour on handling existing
686 * items on the hctx->dispatch list. Ignore that for now.
688 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
690 struct request_queue *q = hctx->queue;
691 struct request *rq;
692 LIST_HEAD(rq_list);
693 int queued;
695 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
697 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
698 return;
700 hctx->run++;
703 * Touch any software queue that has pending entries.
705 flush_busy_ctxs(hctx, &rq_list);
708 * If we have previous entries on our dispatch list, grab them
709 * and stuff them at the front for more fair dispatch.
711 if (!list_empty_careful(&hctx->dispatch)) {
712 spin_lock(&hctx->lock);
713 if (!list_empty(&hctx->dispatch))
714 list_splice_init(&hctx->dispatch, &rq_list);
715 spin_unlock(&hctx->lock);
719 * Now process all the entries, sending them to the driver.
721 queued = 0;
722 while (!list_empty(&rq_list)) {
723 int ret;
725 rq = list_first_entry(&rq_list, struct request, queuelist);
726 list_del_init(&rq->queuelist);
728 ret = q->mq_ops->queue_rq(hctx, rq, list_empty(&rq_list));
729 switch (ret) {
730 case BLK_MQ_RQ_QUEUE_OK:
731 queued++;
732 continue;
733 case BLK_MQ_RQ_QUEUE_BUSY:
734 list_add(&rq->queuelist, &rq_list);
735 __blk_mq_requeue_request(rq);
736 break;
737 default:
738 pr_err("blk-mq: bad return on queue: %d\n", ret);
739 case BLK_MQ_RQ_QUEUE_ERROR:
740 rq->errors = -EIO;
741 blk_mq_end_request(rq, rq->errors);
742 break;
745 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
746 break;
749 if (!queued)
750 hctx->dispatched[0]++;
751 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
752 hctx->dispatched[ilog2(queued) + 1]++;
755 * Any items that need requeuing? Stuff them into hctx->dispatch,
756 * that is where we will continue on next queue run.
758 if (!list_empty(&rq_list)) {
759 spin_lock(&hctx->lock);
760 list_splice(&rq_list, &hctx->dispatch);
761 spin_unlock(&hctx->lock);
766 * It'd be great if the workqueue API had a way to pass
767 * in a mask and had some smarts for more clever placement.
768 * For now we just round-robin here, switching for every
769 * BLK_MQ_CPU_WORK_BATCH queued items.
771 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
773 int cpu = hctx->next_cpu;
775 if (--hctx->next_cpu_batch <= 0) {
776 int next_cpu;
778 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
779 if (next_cpu >= nr_cpu_ids)
780 next_cpu = cpumask_first(hctx->cpumask);
782 hctx->next_cpu = next_cpu;
783 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
786 return cpu;
789 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
791 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
792 return;
794 if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
795 __blk_mq_run_hw_queue(hctx);
796 else if (hctx->queue->nr_hw_queues == 1)
797 kblockd_schedule_delayed_work(&hctx->run_work, 0);
798 else {
799 unsigned int cpu;
801 cpu = blk_mq_hctx_next_cpu(hctx);
802 kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
806 void blk_mq_run_queues(struct request_queue *q, bool async)
808 struct blk_mq_hw_ctx *hctx;
809 int i;
811 queue_for_each_hw_ctx(q, hctx, i) {
812 if ((!blk_mq_hctx_has_pending(hctx) &&
813 list_empty_careful(&hctx->dispatch)) ||
814 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
815 continue;
817 preempt_disable();
818 blk_mq_run_hw_queue(hctx, async);
819 preempt_enable();
822 EXPORT_SYMBOL(blk_mq_run_queues);
824 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
826 cancel_delayed_work(&hctx->run_work);
827 cancel_delayed_work(&hctx->delay_work);
828 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
830 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
832 void blk_mq_stop_hw_queues(struct request_queue *q)
834 struct blk_mq_hw_ctx *hctx;
835 int i;
837 queue_for_each_hw_ctx(q, hctx, i)
838 blk_mq_stop_hw_queue(hctx);
840 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
842 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
844 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
846 preempt_disable();
847 blk_mq_run_hw_queue(hctx, false);
848 preempt_enable();
850 EXPORT_SYMBOL(blk_mq_start_hw_queue);
852 void blk_mq_start_hw_queues(struct request_queue *q)
854 struct blk_mq_hw_ctx *hctx;
855 int i;
857 queue_for_each_hw_ctx(q, hctx, i)
858 blk_mq_start_hw_queue(hctx);
860 EXPORT_SYMBOL(blk_mq_start_hw_queues);
863 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
865 struct blk_mq_hw_ctx *hctx;
866 int i;
868 queue_for_each_hw_ctx(q, hctx, i) {
869 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
870 continue;
872 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
873 preempt_disable();
874 blk_mq_run_hw_queue(hctx, async);
875 preempt_enable();
878 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
880 static void blk_mq_run_work_fn(struct work_struct *work)
882 struct blk_mq_hw_ctx *hctx;
884 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
886 __blk_mq_run_hw_queue(hctx);
889 static void blk_mq_delay_work_fn(struct work_struct *work)
891 struct blk_mq_hw_ctx *hctx;
893 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
895 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
896 __blk_mq_run_hw_queue(hctx);
899 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
901 unsigned long tmo = msecs_to_jiffies(msecs);
903 if (hctx->queue->nr_hw_queues == 1)
904 kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
905 else {
906 unsigned int cpu;
908 cpu = blk_mq_hctx_next_cpu(hctx);
909 kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
912 EXPORT_SYMBOL(blk_mq_delay_queue);
914 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
915 struct request *rq, bool at_head)
917 struct blk_mq_ctx *ctx = rq->mq_ctx;
919 trace_block_rq_insert(hctx->queue, rq);
921 if (at_head)
922 list_add(&rq->queuelist, &ctx->rq_list);
923 else
924 list_add_tail(&rq->queuelist, &ctx->rq_list);
926 blk_mq_hctx_mark_pending(hctx, ctx);
929 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
930 bool async)
932 struct request_queue *q = rq->q;
933 struct blk_mq_hw_ctx *hctx;
934 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
936 current_ctx = blk_mq_get_ctx(q);
937 if (!cpu_online(ctx->cpu))
938 rq->mq_ctx = ctx = current_ctx;
940 hctx = q->mq_ops->map_queue(q, ctx->cpu);
942 spin_lock(&ctx->lock);
943 __blk_mq_insert_request(hctx, rq, at_head);
944 spin_unlock(&ctx->lock);
946 if (run_queue)
947 blk_mq_run_hw_queue(hctx, async);
949 blk_mq_put_ctx(current_ctx);
952 static void blk_mq_insert_requests(struct request_queue *q,
953 struct blk_mq_ctx *ctx,
954 struct list_head *list,
955 int depth,
956 bool from_schedule)
959 struct blk_mq_hw_ctx *hctx;
960 struct blk_mq_ctx *current_ctx;
962 trace_block_unplug(q, depth, !from_schedule);
964 current_ctx = blk_mq_get_ctx(q);
966 if (!cpu_online(ctx->cpu))
967 ctx = current_ctx;
968 hctx = q->mq_ops->map_queue(q, ctx->cpu);
971 * preemption doesn't flush plug list, so it's possible ctx->cpu is
972 * offline now
974 spin_lock(&ctx->lock);
975 while (!list_empty(list)) {
976 struct request *rq;
978 rq = list_first_entry(list, struct request, queuelist);
979 list_del_init(&rq->queuelist);
980 rq->mq_ctx = ctx;
981 __blk_mq_insert_request(hctx, rq, false);
983 spin_unlock(&ctx->lock);
985 blk_mq_run_hw_queue(hctx, from_schedule);
986 blk_mq_put_ctx(current_ctx);
989 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
991 struct request *rqa = container_of(a, struct request, queuelist);
992 struct request *rqb = container_of(b, struct request, queuelist);
994 return !(rqa->mq_ctx < rqb->mq_ctx ||
995 (rqa->mq_ctx == rqb->mq_ctx &&
996 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
999 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1001 struct blk_mq_ctx *this_ctx;
1002 struct request_queue *this_q;
1003 struct request *rq;
1004 LIST_HEAD(list);
1005 LIST_HEAD(ctx_list);
1006 unsigned int depth;
1008 list_splice_init(&plug->mq_list, &list);
1010 list_sort(NULL, &list, plug_ctx_cmp);
1012 this_q = NULL;
1013 this_ctx = NULL;
1014 depth = 0;
1016 while (!list_empty(&list)) {
1017 rq = list_entry_rq(list.next);
1018 list_del_init(&rq->queuelist);
1019 BUG_ON(!rq->q);
1020 if (rq->mq_ctx != this_ctx) {
1021 if (this_ctx) {
1022 blk_mq_insert_requests(this_q, this_ctx,
1023 &ctx_list, depth,
1024 from_schedule);
1027 this_ctx = rq->mq_ctx;
1028 this_q = rq->q;
1029 depth = 0;
1032 depth++;
1033 list_add_tail(&rq->queuelist, &ctx_list);
1037 * If 'this_ctx' is set, we know we have entries to complete
1038 * on 'ctx_list'. Do those.
1040 if (this_ctx) {
1041 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1042 from_schedule);
1046 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1048 init_request_from_bio(rq, bio);
1050 if (blk_do_io_stat(rq))
1051 blk_account_io_start(rq, 1);
1054 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1056 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1057 !blk_queue_nomerges(hctx->queue);
1060 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1061 struct blk_mq_ctx *ctx,
1062 struct request *rq, struct bio *bio)
1064 if (!hctx_allow_merges(hctx)) {
1065 blk_mq_bio_to_request(rq, bio);
1066 spin_lock(&ctx->lock);
1067 insert_rq:
1068 __blk_mq_insert_request(hctx, rq, false);
1069 spin_unlock(&ctx->lock);
1070 return false;
1071 } else {
1072 struct request_queue *q = hctx->queue;
1074 spin_lock(&ctx->lock);
1075 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1076 blk_mq_bio_to_request(rq, bio);
1077 goto insert_rq;
1080 spin_unlock(&ctx->lock);
1081 __blk_mq_free_request(hctx, ctx, rq);
1082 return true;
1086 struct blk_map_ctx {
1087 struct blk_mq_hw_ctx *hctx;
1088 struct blk_mq_ctx *ctx;
1091 static struct request *blk_mq_map_request(struct request_queue *q,
1092 struct bio *bio,
1093 struct blk_map_ctx *data)
1095 struct blk_mq_hw_ctx *hctx;
1096 struct blk_mq_ctx *ctx;
1097 struct request *rq;
1098 int rw = bio_data_dir(bio);
1099 struct blk_mq_alloc_data alloc_data;
1101 if (unlikely(blk_mq_queue_enter(q))) {
1102 bio_endio(bio, -EIO);
1103 return NULL;
1106 ctx = blk_mq_get_ctx(q);
1107 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1109 if (rw_is_sync(bio->bi_rw))
1110 rw |= REQ_SYNC;
1112 trace_block_getrq(q, bio, rw);
1113 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1114 hctx);
1115 rq = __blk_mq_alloc_request(&alloc_data, rw);
1116 if (unlikely(!rq)) {
1117 __blk_mq_run_hw_queue(hctx);
1118 blk_mq_put_ctx(ctx);
1119 trace_block_sleeprq(q, bio, rw);
1121 ctx = blk_mq_get_ctx(q);
1122 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1123 blk_mq_set_alloc_data(&alloc_data, q,
1124 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1125 rq = __blk_mq_alloc_request(&alloc_data, rw);
1126 ctx = alloc_data.ctx;
1127 hctx = alloc_data.hctx;
1130 hctx->queued++;
1131 data->hctx = hctx;
1132 data->ctx = ctx;
1133 return rq;
1137 * Multiple hardware queue variant. This will not use per-process plugs,
1138 * but will attempt to bypass the hctx queueing if we can go straight to
1139 * hardware for SYNC IO.
1141 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1143 const int is_sync = rw_is_sync(bio->bi_rw);
1144 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1145 struct blk_map_ctx data;
1146 struct request *rq;
1148 blk_queue_bounce(q, &bio);
1150 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1151 bio_endio(bio, -EIO);
1152 return;
1155 rq = blk_mq_map_request(q, bio, &data);
1156 if (unlikely(!rq))
1157 return;
1159 if (unlikely(is_flush_fua)) {
1160 blk_mq_bio_to_request(rq, bio);
1161 blk_insert_flush(rq);
1162 goto run_queue;
1165 if (is_sync) {
1166 int ret;
1168 blk_mq_bio_to_request(rq, bio);
1171 * For OK queue, we are done. For error, kill it. Any other
1172 * error (busy), just add it to our list as we previously
1173 * would have done
1175 ret = q->mq_ops->queue_rq(data.hctx, rq, true);
1176 if (ret == BLK_MQ_RQ_QUEUE_OK)
1177 goto done;
1178 else {
1179 __blk_mq_requeue_request(rq);
1181 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1182 rq->errors = -EIO;
1183 blk_mq_end_request(rq, rq->errors);
1184 goto done;
1189 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1191 * For a SYNC request, send it to the hardware immediately. For
1192 * an ASYNC request, just ensure that we run it later on. The
1193 * latter allows for merging opportunities and more efficient
1194 * dispatching.
1196 run_queue:
1197 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1199 done:
1200 blk_mq_put_ctx(data.ctx);
1204 * Single hardware queue variant. This will attempt to use any per-process
1205 * plug for merging and IO deferral.
1207 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1209 const int is_sync = rw_is_sync(bio->bi_rw);
1210 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1211 unsigned int use_plug, request_count = 0;
1212 struct blk_map_ctx data;
1213 struct request *rq;
1216 * If we have multiple hardware queues, just go directly to
1217 * one of those for sync IO.
1219 use_plug = !is_flush_fua && !is_sync;
1221 blk_queue_bounce(q, &bio);
1223 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1224 bio_endio(bio, -EIO);
1225 return;
1228 if (use_plug && !blk_queue_nomerges(q) &&
1229 blk_attempt_plug_merge(q, bio, &request_count))
1230 return;
1232 rq = blk_mq_map_request(q, bio, &data);
1233 if (unlikely(!rq))
1234 return;
1236 if (unlikely(is_flush_fua)) {
1237 blk_mq_bio_to_request(rq, bio);
1238 blk_insert_flush(rq);
1239 goto run_queue;
1243 * A task plug currently exists. Since this is completely lockless,
1244 * utilize that to temporarily store requests until the task is
1245 * either done or scheduled away.
1247 if (use_plug) {
1248 struct blk_plug *plug = current->plug;
1250 if (plug) {
1251 blk_mq_bio_to_request(rq, bio);
1252 if (list_empty(&plug->mq_list))
1253 trace_block_plug(q);
1254 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1255 blk_flush_plug_list(plug, false);
1256 trace_block_plug(q);
1258 list_add_tail(&rq->queuelist, &plug->mq_list);
1259 blk_mq_put_ctx(data.ctx);
1260 return;
1264 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1266 * For a SYNC request, send it to the hardware immediately. For
1267 * an ASYNC request, just ensure that we run it later on. The
1268 * latter allows for merging opportunities and more efficient
1269 * dispatching.
1271 run_queue:
1272 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1275 blk_mq_put_ctx(data.ctx);
1279 * Default mapping to a software queue, since we use one per CPU.
1281 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1283 return q->queue_hw_ctx[q->mq_map[cpu]];
1285 EXPORT_SYMBOL(blk_mq_map_queue);
1287 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1288 struct blk_mq_tags *tags, unsigned int hctx_idx)
1290 struct page *page;
1292 if (tags->rqs && set->ops->exit_request) {
1293 int i;
1295 for (i = 0; i < tags->nr_tags; i++) {
1296 if (!tags->rqs[i])
1297 continue;
1298 set->ops->exit_request(set->driver_data, tags->rqs[i],
1299 hctx_idx, i);
1300 tags->rqs[i] = NULL;
1304 while (!list_empty(&tags->page_list)) {
1305 page = list_first_entry(&tags->page_list, struct page, lru);
1306 list_del_init(&page->lru);
1307 __free_pages(page, page->private);
1310 kfree(tags->rqs);
1312 blk_mq_free_tags(tags);
1315 static size_t order_to_size(unsigned int order)
1317 return (size_t)PAGE_SIZE << order;
1320 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1321 unsigned int hctx_idx)
1323 struct blk_mq_tags *tags;
1324 unsigned int i, j, entries_per_page, max_order = 4;
1325 size_t rq_size, left;
1327 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1328 set->numa_node);
1329 if (!tags)
1330 return NULL;
1332 INIT_LIST_HEAD(&tags->page_list);
1334 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1335 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1336 set->numa_node);
1337 if (!tags->rqs) {
1338 blk_mq_free_tags(tags);
1339 return NULL;
1343 * rq_size is the size of the request plus driver payload, rounded
1344 * to the cacheline size
1346 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1347 cache_line_size());
1348 left = rq_size * set->queue_depth;
1350 for (i = 0; i < set->queue_depth; ) {
1351 int this_order = max_order;
1352 struct page *page;
1353 int to_do;
1354 void *p;
1356 while (left < order_to_size(this_order - 1) && this_order)
1357 this_order--;
1359 do {
1360 page = alloc_pages_node(set->numa_node,
1361 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1362 this_order);
1363 if (page)
1364 break;
1365 if (!this_order--)
1366 break;
1367 if (order_to_size(this_order) < rq_size)
1368 break;
1369 } while (1);
1371 if (!page)
1372 goto fail;
1374 page->private = this_order;
1375 list_add_tail(&page->lru, &tags->page_list);
1377 p = page_address(page);
1378 entries_per_page = order_to_size(this_order) / rq_size;
1379 to_do = min(entries_per_page, set->queue_depth - i);
1380 left -= to_do * rq_size;
1381 for (j = 0; j < to_do; j++) {
1382 tags->rqs[i] = p;
1383 tags->rqs[i]->atomic_flags = 0;
1384 tags->rqs[i]->cmd_flags = 0;
1385 if (set->ops->init_request) {
1386 if (set->ops->init_request(set->driver_data,
1387 tags->rqs[i], hctx_idx, i,
1388 set->numa_node)) {
1389 tags->rqs[i] = NULL;
1390 goto fail;
1394 p += rq_size;
1395 i++;
1399 return tags;
1401 fail:
1402 blk_mq_free_rq_map(set, tags, hctx_idx);
1403 return NULL;
1406 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1408 kfree(bitmap->map);
1411 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1413 unsigned int bpw = 8, total, num_maps, i;
1415 bitmap->bits_per_word = bpw;
1417 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1418 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1419 GFP_KERNEL, node);
1420 if (!bitmap->map)
1421 return -ENOMEM;
1423 bitmap->map_size = num_maps;
1425 total = nr_cpu_ids;
1426 for (i = 0; i < num_maps; i++) {
1427 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1428 total -= bitmap->map[i].depth;
1431 return 0;
1434 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1436 struct request_queue *q = hctx->queue;
1437 struct blk_mq_ctx *ctx;
1438 LIST_HEAD(tmp);
1441 * Move ctx entries to new CPU, if this one is going away.
1443 ctx = __blk_mq_get_ctx(q, cpu);
1445 spin_lock(&ctx->lock);
1446 if (!list_empty(&ctx->rq_list)) {
1447 list_splice_init(&ctx->rq_list, &tmp);
1448 blk_mq_hctx_clear_pending(hctx, ctx);
1450 spin_unlock(&ctx->lock);
1452 if (list_empty(&tmp))
1453 return NOTIFY_OK;
1455 ctx = blk_mq_get_ctx(q);
1456 spin_lock(&ctx->lock);
1458 while (!list_empty(&tmp)) {
1459 struct request *rq;
1461 rq = list_first_entry(&tmp, struct request, queuelist);
1462 rq->mq_ctx = ctx;
1463 list_move_tail(&rq->queuelist, &ctx->rq_list);
1466 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1467 blk_mq_hctx_mark_pending(hctx, ctx);
1469 spin_unlock(&ctx->lock);
1471 blk_mq_run_hw_queue(hctx, true);
1472 blk_mq_put_ctx(ctx);
1473 return NOTIFY_OK;
1476 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1478 struct request_queue *q = hctx->queue;
1479 struct blk_mq_tag_set *set = q->tag_set;
1481 if (set->tags[hctx->queue_num])
1482 return NOTIFY_OK;
1484 set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1485 if (!set->tags[hctx->queue_num])
1486 return NOTIFY_STOP;
1488 hctx->tags = set->tags[hctx->queue_num];
1489 return NOTIFY_OK;
1492 static int blk_mq_hctx_notify(void *data, unsigned long action,
1493 unsigned int cpu)
1495 struct blk_mq_hw_ctx *hctx = data;
1497 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1498 return blk_mq_hctx_cpu_offline(hctx, cpu);
1499 else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1500 return blk_mq_hctx_cpu_online(hctx, cpu);
1502 return NOTIFY_OK;
1505 static void blk_mq_exit_hctx(struct request_queue *q,
1506 struct blk_mq_tag_set *set,
1507 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1509 unsigned flush_start_tag = set->queue_depth;
1511 blk_mq_tag_idle(hctx);
1513 if (set->ops->exit_request)
1514 set->ops->exit_request(set->driver_data,
1515 hctx->fq->flush_rq, hctx_idx,
1516 flush_start_tag + hctx_idx);
1518 if (set->ops->exit_hctx)
1519 set->ops->exit_hctx(hctx, hctx_idx);
1521 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1522 blk_free_flush_queue(hctx->fq);
1523 kfree(hctx->ctxs);
1524 blk_mq_free_bitmap(&hctx->ctx_map);
1527 static void blk_mq_exit_hw_queues(struct request_queue *q,
1528 struct blk_mq_tag_set *set, int nr_queue)
1530 struct blk_mq_hw_ctx *hctx;
1531 unsigned int i;
1533 queue_for_each_hw_ctx(q, hctx, i) {
1534 if (i == nr_queue)
1535 break;
1536 blk_mq_exit_hctx(q, set, hctx, i);
1540 static void blk_mq_free_hw_queues(struct request_queue *q,
1541 struct blk_mq_tag_set *set)
1543 struct blk_mq_hw_ctx *hctx;
1544 unsigned int i;
1546 queue_for_each_hw_ctx(q, hctx, i) {
1547 free_cpumask_var(hctx->cpumask);
1548 kfree(hctx);
1552 static int blk_mq_init_hctx(struct request_queue *q,
1553 struct blk_mq_tag_set *set,
1554 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1556 int node;
1557 unsigned flush_start_tag = set->queue_depth;
1559 node = hctx->numa_node;
1560 if (node == NUMA_NO_NODE)
1561 node = hctx->numa_node = set->numa_node;
1563 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1564 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1565 spin_lock_init(&hctx->lock);
1566 INIT_LIST_HEAD(&hctx->dispatch);
1567 hctx->queue = q;
1568 hctx->queue_num = hctx_idx;
1569 hctx->flags = set->flags;
1570 hctx->cmd_size = set->cmd_size;
1572 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1573 blk_mq_hctx_notify, hctx);
1574 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1576 hctx->tags = set->tags[hctx_idx];
1579 * Allocate space for all possible cpus to avoid allocation at
1580 * runtime
1582 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1583 GFP_KERNEL, node);
1584 if (!hctx->ctxs)
1585 goto unregister_cpu_notifier;
1587 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1588 goto free_ctxs;
1590 hctx->nr_ctx = 0;
1592 if (set->ops->init_hctx &&
1593 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1594 goto free_bitmap;
1596 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1597 if (!hctx->fq)
1598 goto exit_hctx;
1600 if (set->ops->init_request &&
1601 set->ops->init_request(set->driver_data,
1602 hctx->fq->flush_rq, hctx_idx,
1603 flush_start_tag + hctx_idx, node))
1604 goto free_fq;
1606 return 0;
1608 free_fq:
1609 kfree(hctx->fq);
1610 exit_hctx:
1611 if (set->ops->exit_hctx)
1612 set->ops->exit_hctx(hctx, hctx_idx);
1613 free_bitmap:
1614 blk_mq_free_bitmap(&hctx->ctx_map);
1615 free_ctxs:
1616 kfree(hctx->ctxs);
1617 unregister_cpu_notifier:
1618 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1620 return -1;
1623 static int blk_mq_init_hw_queues(struct request_queue *q,
1624 struct blk_mq_tag_set *set)
1626 struct blk_mq_hw_ctx *hctx;
1627 unsigned int i;
1630 * Initialize hardware queues
1632 queue_for_each_hw_ctx(q, hctx, i) {
1633 if (blk_mq_init_hctx(q, set, hctx, i))
1634 break;
1637 if (i == q->nr_hw_queues)
1638 return 0;
1641 * Init failed
1643 blk_mq_exit_hw_queues(q, set, i);
1645 return 1;
1648 static void blk_mq_init_cpu_queues(struct request_queue *q,
1649 unsigned int nr_hw_queues)
1651 unsigned int i;
1653 for_each_possible_cpu(i) {
1654 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1655 struct blk_mq_hw_ctx *hctx;
1657 memset(__ctx, 0, sizeof(*__ctx));
1658 __ctx->cpu = i;
1659 spin_lock_init(&__ctx->lock);
1660 INIT_LIST_HEAD(&__ctx->rq_list);
1661 __ctx->queue = q;
1663 /* If the cpu isn't online, the cpu is mapped to first hctx */
1664 if (!cpu_online(i))
1665 continue;
1667 hctx = q->mq_ops->map_queue(q, i);
1668 cpumask_set_cpu(i, hctx->cpumask);
1669 hctx->nr_ctx++;
1672 * Set local node, IFF we have more than one hw queue. If
1673 * not, we remain on the home node of the device
1675 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1676 hctx->numa_node = cpu_to_node(i);
1680 static void blk_mq_map_swqueue(struct request_queue *q)
1682 unsigned int i;
1683 struct blk_mq_hw_ctx *hctx;
1684 struct blk_mq_ctx *ctx;
1686 queue_for_each_hw_ctx(q, hctx, i) {
1687 cpumask_clear(hctx->cpumask);
1688 hctx->nr_ctx = 0;
1692 * Map software to hardware queues
1694 queue_for_each_ctx(q, ctx, i) {
1695 /* If the cpu isn't online, the cpu is mapped to first hctx */
1696 if (!cpu_online(i))
1697 continue;
1699 hctx = q->mq_ops->map_queue(q, i);
1700 cpumask_set_cpu(i, hctx->cpumask);
1701 ctx->index_hw = hctx->nr_ctx;
1702 hctx->ctxs[hctx->nr_ctx++] = ctx;
1705 queue_for_each_hw_ctx(q, hctx, i) {
1707 * If no software queues are mapped to this hardware queue,
1708 * disable it and free the request entries.
1710 if (!hctx->nr_ctx) {
1711 struct blk_mq_tag_set *set = q->tag_set;
1713 if (set->tags[i]) {
1714 blk_mq_free_rq_map(set, set->tags[i], i);
1715 set->tags[i] = NULL;
1716 hctx->tags = NULL;
1718 continue;
1722 * Initialize batch roundrobin counts
1724 hctx->next_cpu = cpumask_first(hctx->cpumask);
1725 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1729 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1731 struct blk_mq_hw_ctx *hctx;
1732 struct request_queue *q;
1733 bool shared;
1734 int i;
1736 if (set->tag_list.next == set->tag_list.prev)
1737 shared = false;
1738 else
1739 shared = true;
1741 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1742 blk_mq_freeze_queue(q);
1744 queue_for_each_hw_ctx(q, hctx, i) {
1745 if (shared)
1746 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1747 else
1748 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1750 blk_mq_unfreeze_queue(q);
1754 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1756 struct blk_mq_tag_set *set = q->tag_set;
1758 mutex_lock(&set->tag_list_lock);
1759 list_del_init(&q->tag_set_list);
1760 blk_mq_update_tag_set_depth(set);
1761 mutex_unlock(&set->tag_list_lock);
1764 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1765 struct request_queue *q)
1767 q->tag_set = set;
1769 mutex_lock(&set->tag_list_lock);
1770 list_add_tail(&q->tag_set_list, &set->tag_list);
1771 blk_mq_update_tag_set_depth(set);
1772 mutex_unlock(&set->tag_list_lock);
1775 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1777 struct blk_mq_hw_ctx **hctxs;
1778 struct blk_mq_ctx __percpu *ctx;
1779 struct request_queue *q;
1780 unsigned int *map;
1781 int i;
1783 ctx = alloc_percpu(struct blk_mq_ctx);
1784 if (!ctx)
1785 return ERR_PTR(-ENOMEM);
1788 * If a crashdump is active, then we are potentially in a very
1789 * memory constrained environment. Limit us to 1 queue and
1790 * 64 tags to prevent using too much memory.
1792 if (is_kdump_kernel()) {
1793 set->nr_hw_queues = 1;
1794 set->queue_depth = min(64U, set->queue_depth);
1797 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1798 set->numa_node);
1800 if (!hctxs)
1801 goto err_percpu;
1803 map = blk_mq_make_queue_map(set);
1804 if (!map)
1805 goto err_map;
1807 for (i = 0; i < set->nr_hw_queues; i++) {
1808 int node = blk_mq_hw_queue_to_node(map, i);
1810 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1811 GFP_KERNEL, node);
1812 if (!hctxs[i])
1813 goto err_hctxs;
1815 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1816 node))
1817 goto err_hctxs;
1819 atomic_set(&hctxs[i]->nr_active, 0);
1820 hctxs[i]->numa_node = node;
1821 hctxs[i]->queue_num = i;
1824 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1825 if (!q)
1826 goto err_hctxs;
1829 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1830 * See blk_register_queue() for details.
1832 if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release,
1833 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1834 goto err_mq_usage;
1836 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1837 blk_queue_rq_timeout(q, 30000);
1839 q->nr_queues = nr_cpu_ids;
1840 q->nr_hw_queues = set->nr_hw_queues;
1841 q->mq_map = map;
1843 q->queue_ctx = ctx;
1844 q->queue_hw_ctx = hctxs;
1846 q->mq_ops = set->ops;
1847 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1849 if (!(set->flags & BLK_MQ_F_SG_MERGE))
1850 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1852 q->sg_reserved_size = INT_MAX;
1854 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1855 INIT_LIST_HEAD(&q->requeue_list);
1856 spin_lock_init(&q->requeue_lock);
1858 if (q->nr_hw_queues > 1)
1859 blk_queue_make_request(q, blk_mq_make_request);
1860 else
1861 blk_queue_make_request(q, blk_sq_make_request);
1863 if (set->timeout)
1864 blk_queue_rq_timeout(q, set->timeout);
1867 * Do this after blk_queue_make_request() overrides it...
1869 q->nr_requests = set->queue_depth;
1871 if (set->ops->complete)
1872 blk_queue_softirq_done(q, set->ops->complete);
1874 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1876 if (blk_mq_init_hw_queues(q, set))
1877 goto err_mq_usage;
1879 mutex_lock(&all_q_mutex);
1880 list_add_tail(&q->all_q_node, &all_q_list);
1881 mutex_unlock(&all_q_mutex);
1883 blk_mq_add_queue_tag_set(set, q);
1885 blk_mq_map_swqueue(q);
1887 return q;
1889 err_mq_usage:
1890 blk_cleanup_queue(q);
1891 err_hctxs:
1892 kfree(map);
1893 for (i = 0; i < set->nr_hw_queues; i++) {
1894 if (!hctxs[i])
1895 break;
1896 free_cpumask_var(hctxs[i]->cpumask);
1897 kfree(hctxs[i]);
1899 err_map:
1900 kfree(hctxs);
1901 err_percpu:
1902 free_percpu(ctx);
1903 return ERR_PTR(-ENOMEM);
1905 EXPORT_SYMBOL(blk_mq_init_queue);
1907 void blk_mq_free_queue(struct request_queue *q)
1909 struct blk_mq_tag_set *set = q->tag_set;
1911 blk_mq_del_queue_tag_set(q);
1913 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
1914 blk_mq_free_hw_queues(q, set);
1916 percpu_ref_exit(&q->mq_usage_counter);
1918 free_percpu(q->queue_ctx);
1919 kfree(q->queue_hw_ctx);
1920 kfree(q->mq_map);
1922 q->queue_ctx = NULL;
1923 q->queue_hw_ctx = NULL;
1924 q->mq_map = NULL;
1926 mutex_lock(&all_q_mutex);
1927 list_del_init(&q->all_q_node);
1928 mutex_unlock(&all_q_mutex);
1931 /* Basically redo blk_mq_init_queue with queue frozen */
1932 static void blk_mq_queue_reinit(struct request_queue *q)
1934 WARN_ON_ONCE(!q->mq_freeze_depth);
1936 blk_mq_sysfs_unregister(q);
1938 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1941 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1942 * we should change hctx numa_node according to new topology (this
1943 * involves free and re-allocate memory, worthy doing?)
1946 blk_mq_map_swqueue(q);
1948 blk_mq_sysfs_register(q);
1951 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1952 unsigned long action, void *hcpu)
1954 struct request_queue *q;
1957 * Before new mappings are established, hotadded cpu might already
1958 * start handling requests. This doesn't break anything as we map
1959 * offline CPUs to first hardware queue. We will re-init the queue
1960 * below to get optimal settings.
1962 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1963 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1964 return NOTIFY_OK;
1966 mutex_lock(&all_q_mutex);
1969 * We need to freeze and reinit all existing queues. Freezing
1970 * involves synchronous wait for an RCU grace period and doing it
1971 * one by one may take a long time. Start freezing all queues in
1972 * one swoop and then wait for the completions so that freezing can
1973 * take place in parallel.
1975 list_for_each_entry(q, &all_q_list, all_q_node)
1976 blk_mq_freeze_queue_start(q);
1977 list_for_each_entry(q, &all_q_list, all_q_node)
1978 blk_mq_freeze_queue_wait(q);
1980 list_for_each_entry(q, &all_q_list, all_q_node)
1981 blk_mq_queue_reinit(q);
1983 list_for_each_entry(q, &all_q_list, all_q_node)
1984 blk_mq_unfreeze_queue(q);
1986 mutex_unlock(&all_q_mutex);
1987 return NOTIFY_OK;
1990 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
1992 int i;
1994 for (i = 0; i < set->nr_hw_queues; i++) {
1995 set->tags[i] = blk_mq_init_rq_map(set, i);
1996 if (!set->tags[i])
1997 goto out_unwind;
2000 return 0;
2002 out_unwind:
2003 while (--i >= 0)
2004 blk_mq_free_rq_map(set, set->tags[i], i);
2006 return -ENOMEM;
2010 * Allocate the request maps associated with this tag_set. Note that this
2011 * may reduce the depth asked for, if memory is tight. set->queue_depth
2012 * will be updated to reflect the allocated depth.
2014 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2016 unsigned int depth;
2017 int err;
2019 depth = set->queue_depth;
2020 do {
2021 err = __blk_mq_alloc_rq_maps(set);
2022 if (!err)
2023 break;
2025 set->queue_depth >>= 1;
2026 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2027 err = -ENOMEM;
2028 break;
2030 } while (set->queue_depth);
2032 if (!set->queue_depth || err) {
2033 pr_err("blk-mq: failed to allocate request map\n");
2034 return -ENOMEM;
2037 if (depth != set->queue_depth)
2038 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2039 depth, set->queue_depth);
2041 return 0;
2045 * Alloc a tag set to be associated with one or more request queues.
2046 * May fail with EINVAL for various error conditions. May adjust the
2047 * requested depth down, if if it too large. In that case, the set
2048 * value will be stored in set->queue_depth.
2050 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2052 if (!set->nr_hw_queues)
2053 return -EINVAL;
2054 if (!set->queue_depth)
2055 return -EINVAL;
2056 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2057 return -EINVAL;
2059 if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
2060 return -EINVAL;
2062 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2063 pr_info("blk-mq: reduced tag depth to %u\n",
2064 BLK_MQ_MAX_DEPTH);
2065 set->queue_depth = BLK_MQ_MAX_DEPTH;
2068 set->tags = kmalloc_node(set->nr_hw_queues *
2069 sizeof(struct blk_mq_tags *),
2070 GFP_KERNEL, set->numa_node);
2071 if (!set->tags)
2072 return -ENOMEM;
2074 if (blk_mq_alloc_rq_maps(set))
2075 goto enomem;
2077 mutex_init(&set->tag_list_lock);
2078 INIT_LIST_HEAD(&set->tag_list);
2080 return 0;
2081 enomem:
2082 kfree(set->tags);
2083 set->tags = NULL;
2084 return -ENOMEM;
2086 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2088 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2090 int i;
2092 for (i = 0; i < set->nr_hw_queues; i++) {
2093 if (set->tags[i])
2094 blk_mq_free_rq_map(set, set->tags[i], i);
2097 kfree(set->tags);
2098 set->tags = NULL;
2100 EXPORT_SYMBOL(blk_mq_free_tag_set);
2102 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2104 struct blk_mq_tag_set *set = q->tag_set;
2105 struct blk_mq_hw_ctx *hctx;
2106 int i, ret;
2108 if (!set || nr > set->queue_depth)
2109 return -EINVAL;
2111 ret = 0;
2112 queue_for_each_hw_ctx(q, hctx, i) {
2113 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2114 if (ret)
2115 break;
2118 if (!ret)
2119 q->nr_requests = nr;
2121 return ret;
2124 void blk_mq_disable_hotplug(void)
2126 mutex_lock(&all_q_mutex);
2129 void blk_mq_enable_hotplug(void)
2131 mutex_unlock(&all_q_mutex);
2134 static int __init blk_mq_init(void)
2136 blk_mq_cpu_init();
2138 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2140 return 0;
2142 subsys_initcall(blk_mq_init);