2 * Interface for controlling IO bandwidth on a request queue
4 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/blkdev.h>
10 #include <linux/bio.h>
11 #include <linux/blktrace_api.h>
12 #include "blk-cgroup.h"
15 /* Max dispatch from a group in 1 round */
16 static int throtl_grp_quantum
= 8;
18 /* Total max dispatch from all groups in one round */
19 static int throtl_quantum
= 32;
21 /* Throttling is performed over 100ms slice and after that slice is renewed */
22 static unsigned long throtl_slice
= HZ
/10; /* 100 ms */
24 static struct blkcg_policy blkcg_policy_throtl
;
26 /* A workqueue to queue throttle related work */
27 static struct workqueue_struct
*kthrotld_workqueue
;
30 * To implement hierarchical throttling, throtl_grps form a tree and bios
31 * are dispatched upwards level by level until they reach the top and get
32 * issued. When dispatching bios from the children and local group at each
33 * level, if the bios are dispatched into a single bio_list, there's a risk
34 * of a local or child group which can queue many bios at once filling up
35 * the list starving others.
37 * To avoid such starvation, dispatched bios are queued separately
38 * according to where they came from. When they are again dispatched to
39 * the parent, they're popped in round-robin order so that no single source
40 * hogs the dispatch window.
42 * throtl_qnode is used to keep the queued bios separated by their sources.
43 * Bios are queued to throtl_qnode which in turn is queued to
44 * throtl_service_queue and then dispatched in round-robin order.
46 * It's also used to track the reference counts on blkg's. A qnode always
47 * belongs to a throtl_grp and gets queued on itself or the parent, so
48 * incrementing the reference of the associated throtl_grp when a qnode is
49 * queued and decrementing when dequeued is enough to keep the whole blkg
50 * tree pinned while bios are in flight.
53 struct list_head node
; /* service_queue->queued[] */
54 struct bio_list bios
; /* queued bios */
55 struct throtl_grp
*tg
; /* tg this qnode belongs to */
58 struct throtl_service_queue
{
59 struct throtl_service_queue
*parent_sq
; /* the parent service_queue */
62 * Bios queued directly to this service_queue or dispatched from
63 * children throtl_grp's.
65 struct list_head queued
[2]; /* throtl_qnode [READ/WRITE] */
66 unsigned int nr_queued
[2]; /* number of queued bios */
69 * RB tree of active children throtl_grp's, which are sorted by
72 struct rb_root pending_tree
; /* RB tree of active tgs */
73 struct rb_node
*first_pending
; /* first node in the tree */
74 unsigned int nr_pending
; /* # queued in the tree */
75 unsigned long first_pending_disptime
; /* disptime of the first tg */
76 struct timer_list pending_timer
; /* fires on first_pending_disptime */
80 THROTL_TG_PENDING
= 1 << 0, /* on parent's pending tree */
81 THROTL_TG_WAS_EMPTY
= 1 << 1, /* bio_lists[] became non-empty */
84 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
86 /* Per-cpu group stats */
88 /* total bytes transferred */
89 struct blkg_rwstat service_bytes
;
90 /* total IOs serviced, post merge */
91 struct blkg_rwstat serviced
;
95 /* must be the first member */
96 struct blkg_policy_data pd
;
98 /* active throtl group service_queue member */
99 struct rb_node rb_node
;
101 /* throtl_data this group belongs to */
102 struct throtl_data
*td
;
104 /* this group's service queue */
105 struct throtl_service_queue service_queue
;
108 * qnode_on_self is used when bios are directly queued to this
109 * throtl_grp so that local bios compete fairly with bios
110 * dispatched from children. qnode_on_parent is used when bios are
111 * dispatched from this throtl_grp into its parent and will compete
112 * with the sibling qnode_on_parents and the parent's
115 struct throtl_qnode qnode_on_self
[2];
116 struct throtl_qnode qnode_on_parent
[2];
119 * Dispatch time in jiffies. This is the estimated time when group
120 * will unthrottle and is ready to dispatch more bio. It is used as
121 * key to sort active groups in service tree.
123 unsigned long disptime
;
127 /* are there any throtl rules between this group and td? */
130 /* bytes per second rate limits */
134 unsigned int iops
[2];
136 /* Number of bytes disptached in current slice */
137 uint64_t bytes_disp
[2];
138 /* Number of bio's dispatched in current slice */
139 unsigned int io_disp
[2];
141 /* When did we start a new slice */
142 unsigned long slice_start
[2];
143 unsigned long slice_end
[2];
145 /* Per cpu stats pointer */
146 struct tg_stats_cpu __percpu
*stats_cpu
;
148 /* List of tgs waiting for per cpu stats memory to be allocated */
149 struct list_head stats_alloc_node
;
154 /* service tree for active throtl groups */
155 struct throtl_service_queue service_queue
;
157 struct request_queue
*queue
;
159 /* Total Number of queued bios on READ and WRITE lists */
160 unsigned int nr_queued
[2];
163 * number of total undestroyed groups
165 unsigned int nr_undestroyed_grps
;
167 /* Work for dispatching throttled bios */
168 struct work_struct dispatch_work
;
171 /* list and work item to allocate percpu group stats */
172 static DEFINE_SPINLOCK(tg_stats_alloc_lock
);
173 static LIST_HEAD(tg_stats_alloc_list
);
175 static void tg_stats_alloc_fn(struct work_struct
*);
176 static DECLARE_DELAYED_WORK(tg_stats_alloc_work
, tg_stats_alloc_fn
);
178 static void throtl_pending_timer_fn(unsigned long arg
);
180 static inline struct throtl_grp
*pd_to_tg(struct blkg_policy_data
*pd
)
182 return pd
? container_of(pd
, struct throtl_grp
, pd
) : NULL
;
185 static inline struct throtl_grp
*blkg_to_tg(struct blkcg_gq
*blkg
)
187 return pd_to_tg(blkg_to_pd(blkg
, &blkcg_policy_throtl
));
190 static inline struct blkcg_gq
*tg_to_blkg(struct throtl_grp
*tg
)
192 return pd_to_blkg(&tg
->pd
);
195 static inline struct throtl_grp
*td_root_tg(struct throtl_data
*td
)
197 return blkg_to_tg(td
->queue
->root_blkg
);
201 * sq_to_tg - return the throl_grp the specified service queue belongs to
202 * @sq: the throtl_service_queue of interest
204 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
205 * embedded in throtl_data, %NULL is returned.
207 static struct throtl_grp
*sq_to_tg(struct throtl_service_queue
*sq
)
209 if (sq
&& sq
->parent_sq
)
210 return container_of(sq
, struct throtl_grp
, service_queue
);
216 * sq_to_td - return throtl_data the specified service queue belongs to
217 * @sq: the throtl_service_queue of interest
219 * A service_queue can be embeded in either a throtl_grp or throtl_data.
220 * Determine the associated throtl_data accordingly and return it.
222 static struct throtl_data
*sq_to_td(struct throtl_service_queue
*sq
)
224 struct throtl_grp
*tg
= sq_to_tg(sq
);
229 return container_of(sq
, struct throtl_data
, service_queue
);
233 * throtl_log - log debug message via blktrace
234 * @sq: the service_queue being reported
235 * @fmt: printf format string
238 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
239 * throtl_grp; otherwise, just "throtl".
241 * TODO: this should be made a function and name formatting should happen
242 * after testing whether blktrace is enabled.
244 #define throtl_log(sq, fmt, args...) do { \
245 struct throtl_grp *__tg = sq_to_tg((sq)); \
246 struct throtl_data *__td = sq_to_td((sq)); \
252 blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf)); \
253 blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
255 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
259 static void tg_stats_init(struct tg_stats_cpu
*tg_stats
)
261 blkg_rwstat_init(&tg_stats
->service_bytes
);
262 blkg_rwstat_init(&tg_stats
->serviced
);
266 * Worker for allocating per cpu stat for tgs. This is scheduled on the
267 * system_wq once there are some groups on the alloc_list waiting for
270 static void tg_stats_alloc_fn(struct work_struct
*work
)
272 static struct tg_stats_cpu
*stats_cpu
; /* this fn is non-reentrant */
273 struct delayed_work
*dwork
= to_delayed_work(work
);
280 stats_cpu
= alloc_percpu(struct tg_stats_cpu
);
282 /* allocation failed, try again after some time */
283 schedule_delayed_work(dwork
, msecs_to_jiffies(10));
286 for_each_possible_cpu(cpu
)
287 tg_stats_init(per_cpu_ptr(stats_cpu
, cpu
));
290 spin_lock_irq(&tg_stats_alloc_lock
);
292 if (!list_empty(&tg_stats_alloc_list
)) {
293 struct throtl_grp
*tg
= list_first_entry(&tg_stats_alloc_list
,
296 swap(tg
->stats_cpu
, stats_cpu
);
297 list_del_init(&tg
->stats_alloc_node
);
300 empty
= list_empty(&tg_stats_alloc_list
);
301 spin_unlock_irq(&tg_stats_alloc_lock
);
306 static void throtl_qnode_init(struct throtl_qnode
*qn
, struct throtl_grp
*tg
)
308 INIT_LIST_HEAD(&qn
->node
);
309 bio_list_init(&qn
->bios
);
314 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
315 * @bio: bio being added
316 * @qn: qnode to add bio to
317 * @queued: the service_queue->queued[] list @qn belongs to
319 * Add @bio to @qn and put @qn on @queued if it's not already on.
320 * @qn->tg's reference count is bumped when @qn is activated. See the
321 * comment on top of throtl_qnode definition for details.
323 static void throtl_qnode_add_bio(struct bio
*bio
, struct throtl_qnode
*qn
,
324 struct list_head
*queued
)
326 bio_list_add(&qn
->bios
, bio
);
327 if (list_empty(&qn
->node
)) {
328 list_add_tail(&qn
->node
, queued
);
329 blkg_get(tg_to_blkg(qn
->tg
));
334 * throtl_peek_queued - peek the first bio on a qnode list
335 * @queued: the qnode list to peek
337 static struct bio
*throtl_peek_queued(struct list_head
*queued
)
339 struct throtl_qnode
*qn
= list_first_entry(queued
, struct throtl_qnode
, node
);
342 if (list_empty(queued
))
345 bio
= bio_list_peek(&qn
->bios
);
351 * throtl_pop_queued - pop the first bio form a qnode list
352 * @queued: the qnode list to pop a bio from
353 * @tg_to_put: optional out argument for throtl_grp to put
355 * Pop the first bio from the qnode list @queued. After popping, the first
356 * qnode is removed from @queued if empty or moved to the end of @queued so
357 * that the popping order is round-robin.
359 * When the first qnode is removed, its associated throtl_grp should be put
360 * too. If @tg_to_put is NULL, this function automatically puts it;
361 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
362 * responsible for putting it.
364 static struct bio
*throtl_pop_queued(struct list_head
*queued
,
365 struct throtl_grp
**tg_to_put
)
367 struct throtl_qnode
*qn
= list_first_entry(queued
, struct throtl_qnode
, node
);
370 if (list_empty(queued
))
373 bio
= bio_list_pop(&qn
->bios
);
376 if (bio_list_empty(&qn
->bios
)) {
377 list_del_init(&qn
->node
);
381 blkg_put(tg_to_blkg(qn
->tg
));
383 list_move_tail(&qn
->node
, queued
);
389 /* init a service_queue, assumes the caller zeroed it */
390 static void throtl_service_queue_init(struct throtl_service_queue
*sq
,
391 struct throtl_service_queue
*parent_sq
)
393 INIT_LIST_HEAD(&sq
->queued
[0]);
394 INIT_LIST_HEAD(&sq
->queued
[1]);
395 sq
->pending_tree
= RB_ROOT
;
396 sq
->parent_sq
= parent_sq
;
397 setup_timer(&sq
->pending_timer
, throtl_pending_timer_fn
,
401 static void throtl_service_queue_exit(struct throtl_service_queue
*sq
)
403 del_timer_sync(&sq
->pending_timer
);
406 static void throtl_pd_init(struct blkcg_gq
*blkg
)
408 struct throtl_grp
*tg
= blkg_to_tg(blkg
);
409 struct throtl_data
*td
= blkg
->q
->td
;
410 struct throtl_service_queue
*parent_sq
;
415 * If on the default hierarchy, we switch to properly hierarchical
416 * behavior where limits on a given throtl_grp are applied to the
417 * whole subtree rather than just the group itself. e.g. If 16M
418 * read_bps limit is set on the root group, the whole system can't
419 * exceed 16M for the device.
421 * If not on the default hierarchy, the broken flat hierarchy
422 * behavior is retained where all throtl_grps are treated as if
423 * they're all separate root groups right below throtl_data.
424 * Limits of a group don't interact with limits of other groups
425 * regardless of the position of the group in the hierarchy.
427 parent_sq
= &td
->service_queue
;
429 if (cgroup_on_dfl(blkg
->blkcg
->css
.cgroup
) && blkg
->parent
)
430 parent_sq
= &blkg_to_tg(blkg
->parent
)->service_queue
;
432 throtl_service_queue_init(&tg
->service_queue
, parent_sq
);
434 for (rw
= READ
; rw
<= WRITE
; rw
++) {
435 throtl_qnode_init(&tg
->qnode_on_self
[rw
], tg
);
436 throtl_qnode_init(&tg
->qnode_on_parent
[rw
], tg
);
439 RB_CLEAR_NODE(&tg
->rb_node
);
445 tg
->iops
[WRITE
] = -1;
448 * Ugh... We need to perform per-cpu allocation for tg->stats_cpu
449 * but percpu allocator can't be called from IO path. Queue tg on
450 * tg_stats_alloc_list and allocate from work item.
452 spin_lock_irqsave(&tg_stats_alloc_lock
, flags
);
453 list_add(&tg
->stats_alloc_node
, &tg_stats_alloc_list
);
454 schedule_delayed_work(&tg_stats_alloc_work
, 0);
455 spin_unlock_irqrestore(&tg_stats_alloc_lock
, flags
);
459 * Set has_rules[] if @tg or any of its parents have limits configured.
460 * This doesn't require walking up to the top of the hierarchy as the
461 * parent's has_rules[] is guaranteed to be correct.
463 static void tg_update_has_rules(struct throtl_grp
*tg
)
465 struct throtl_grp
*parent_tg
= sq_to_tg(tg
->service_queue
.parent_sq
);
468 for (rw
= READ
; rw
<= WRITE
; rw
++)
469 tg
->has_rules
[rw
] = (parent_tg
&& parent_tg
->has_rules
[rw
]) ||
470 (tg
->bps
[rw
] != -1 || tg
->iops
[rw
] != -1);
473 static void throtl_pd_online(struct blkcg_gq
*blkg
)
476 * We don't want new groups to escape the limits of its ancestors.
477 * Update has_rules[] after a new group is brought online.
479 tg_update_has_rules(blkg_to_tg(blkg
));
482 static void throtl_pd_exit(struct blkcg_gq
*blkg
)
484 struct throtl_grp
*tg
= blkg_to_tg(blkg
);
487 spin_lock_irqsave(&tg_stats_alloc_lock
, flags
);
488 list_del_init(&tg
->stats_alloc_node
);
489 spin_unlock_irqrestore(&tg_stats_alloc_lock
, flags
);
491 free_percpu(tg
->stats_cpu
);
493 throtl_service_queue_exit(&tg
->service_queue
);
496 static void throtl_pd_reset_stats(struct blkcg_gq
*blkg
)
498 struct throtl_grp
*tg
= blkg_to_tg(blkg
);
501 if (tg
->stats_cpu
== NULL
)
504 for_each_possible_cpu(cpu
) {
505 struct tg_stats_cpu
*sc
= per_cpu_ptr(tg
->stats_cpu
, cpu
);
507 blkg_rwstat_reset(&sc
->service_bytes
);
508 blkg_rwstat_reset(&sc
->serviced
);
512 static struct throtl_grp
*throtl_lookup_tg(struct throtl_data
*td
,
516 * This is the common case when there are no blkcgs. Avoid lookup
519 if (blkcg
== &blkcg_root
)
520 return td_root_tg(td
);
522 return blkg_to_tg(blkg_lookup(blkcg
, td
->queue
));
525 static struct throtl_grp
*throtl_lookup_create_tg(struct throtl_data
*td
,
528 struct request_queue
*q
= td
->queue
;
529 struct throtl_grp
*tg
= NULL
;
532 * This is the common case when there are no blkcgs. Avoid lookup
535 if (blkcg
== &blkcg_root
) {
538 struct blkcg_gq
*blkg
;
540 blkg
= blkg_lookup_create(blkcg
, q
);
542 /* if %NULL and @q is alive, fall back to root_tg */
544 tg
= blkg_to_tg(blkg
);
545 else if (!blk_queue_dying(q
))
552 static struct throtl_grp
*
553 throtl_rb_first(struct throtl_service_queue
*parent_sq
)
555 /* Service tree is empty */
556 if (!parent_sq
->nr_pending
)
559 if (!parent_sq
->first_pending
)
560 parent_sq
->first_pending
= rb_first(&parent_sq
->pending_tree
);
562 if (parent_sq
->first_pending
)
563 return rb_entry_tg(parent_sq
->first_pending
);
568 static void rb_erase_init(struct rb_node
*n
, struct rb_root
*root
)
574 static void throtl_rb_erase(struct rb_node
*n
,
575 struct throtl_service_queue
*parent_sq
)
577 if (parent_sq
->first_pending
== n
)
578 parent_sq
->first_pending
= NULL
;
579 rb_erase_init(n
, &parent_sq
->pending_tree
);
580 --parent_sq
->nr_pending
;
583 static void update_min_dispatch_time(struct throtl_service_queue
*parent_sq
)
585 struct throtl_grp
*tg
;
587 tg
= throtl_rb_first(parent_sq
);
591 parent_sq
->first_pending_disptime
= tg
->disptime
;
594 static void tg_service_queue_add(struct throtl_grp
*tg
)
596 struct throtl_service_queue
*parent_sq
= tg
->service_queue
.parent_sq
;
597 struct rb_node
**node
= &parent_sq
->pending_tree
.rb_node
;
598 struct rb_node
*parent
= NULL
;
599 struct throtl_grp
*__tg
;
600 unsigned long key
= tg
->disptime
;
603 while (*node
!= NULL
) {
605 __tg
= rb_entry_tg(parent
);
607 if (time_before(key
, __tg
->disptime
))
608 node
= &parent
->rb_left
;
610 node
= &parent
->rb_right
;
616 parent_sq
->first_pending
= &tg
->rb_node
;
618 rb_link_node(&tg
->rb_node
, parent
, node
);
619 rb_insert_color(&tg
->rb_node
, &parent_sq
->pending_tree
);
622 static void __throtl_enqueue_tg(struct throtl_grp
*tg
)
624 tg_service_queue_add(tg
);
625 tg
->flags
|= THROTL_TG_PENDING
;
626 tg
->service_queue
.parent_sq
->nr_pending
++;
629 static void throtl_enqueue_tg(struct throtl_grp
*tg
)
631 if (!(tg
->flags
& THROTL_TG_PENDING
))
632 __throtl_enqueue_tg(tg
);
635 static void __throtl_dequeue_tg(struct throtl_grp
*tg
)
637 throtl_rb_erase(&tg
->rb_node
, tg
->service_queue
.parent_sq
);
638 tg
->flags
&= ~THROTL_TG_PENDING
;
641 static void throtl_dequeue_tg(struct throtl_grp
*tg
)
643 if (tg
->flags
& THROTL_TG_PENDING
)
644 __throtl_dequeue_tg(tg
);
647 /* Call with queue lock held */
648 static void throtl_schedule_pending_timer(struct throtl_service_queue
*sq
,
649 unsigned long expires
)
651 mod_timer(&sq
->pending_timer
, expires
);
652 throtl_log(sq
, "schedule timer. delay=%lu jiffies=%lu",
653 expires
- jiffies
, jiffies
);
657 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
658 * @sq: the service_queue to schedule dispatch for
659 * @force: force scheduling
661 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
662 * dispatch time of the first pending child. Returns %true if either timer
663 * is armed or there's no pending child left. %false if the current
664 * dispatch window is still open and the caller should continue
667 * If @force is %true, the dispatch timer is always scheduled and this
668 * function is guaranteed to return %true. This is to be used when the
669 * caller can't dispatch itself and needs to invoke pending_timer
670 * unconditionally. Note that forced scheduling is likely to induce short
671 * delay before dispatch starts even if @sq->first_pending_disptime is not
672 * in the future and thus shouldn't be used in hot paths.
674 static bool throtl_schedule_next_dispatch(struct throtl_service_queue
*sq
,
677 /* any pending children left? */
681 update_min_dispatch_time(sq
);
683 /* is the next dispatch time in the future? */
684 if (force
|| time_after(sq
->first_pending_disptime
, jiffies
)) {
685 throtl_schedule_pending_timer(sq
, sq
->first_pending_disptime
);
689 /* tell the caller to continue dispatching */
693 static inline void throtl_start_new_slice_with_credit(struct throtl_grp
*tg
,
694 bool rw
, unsigned long start
)
696 tg
->bytes_disp
[rw
] = 0;
700 * Previous slice has expired. We must have trimmed it after last
701 * bio dispatch. That means since start of last slice, we never used
702 * that bandwidth. Do try to make use of that bandwidth while giving
705 if (time_after_eq(start
, tg
->slice_start
[rw
]))
706 tg
->slice_start
[rw
] = start
;
708 tg
->slice_end
[rw
] = jiffies
+ throtl_slice
;
709 throtl_log(&tg
->service_queue
,
710 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
711 rw
== READ
? 'R' : 'W', tg
->slice_start
[rw
],
712 tg
->slice_end
[rw
], jiffies
);
715 static inline void throtl_start_new_slice(struct throtl_grp
*tg
, bool rw
)
717 tg
->bytes_disp
[rw
] = 0;
719 tg
->slice_start
[rw
] = jiffies
;
720 tg
->slice_end
[rw
] = jiffies
+ throtl_slice
;
721 throtl_log(&tg
->service_queue
,
722 "[%c] new slice start=%lu end=%lu jiffies=%lu",
723 rw
== READ
? 'R' : 'W', tg
->slice_start
[rw
],
724 tg
->slice_end
[rw
], jiffies
);
727 static inline void throtl_set_slice_end(struct throtl_grp
*tg
, bool rw
,
728 unsigned long jiffy_end
)
730 tg
->slice_end
[rw
] = roundup(jiffy_end
, throtl_slice
);
733 static inline void throtl_extend_slice(struct throtl_grp
*tg
, bool rw
,
734 unsigned long jiffy_end
)
736 tg
->slice_end
[rw
] = roundup(jiffy_end
, throtl_slice
);
737 throtl_log(&tg
->service_queue
,
738 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
739 rw
== READ
? 'R' : 'W', tg
->slice_start
[rw
],
740 tg
->slice_end
[rw
], jiffies
);
743 /* Determine if previously allocated or extended slice is complete or not */
744 static bool throtl_slice_used(struct throtl_grp
*tg
, bool rw
)
746 if (time_in_range(jiffies
, tg
->slice_start
[rw
], tg
->slice_end
[rw
]))
752 /* Trim the used slices and adjust slice start accordingly */
753 static inline void throtl_trim_slice(struct throtl_grp
*tg
, bool rw
)
755 unsigned long nr_slices
, time_elapsed
, io_trim
;
758 BUG_ON(time_before(tg
->slice_end
[rw
], tg
->slice_start
[rw
]));
761 * If bps are unlimited (-1), then time slice don't get
762 * renewed. Don't try to trim the slice if slice is used. A new
763 * slice will start when appropriate.
765 if (throtl_slice_used(tg
, rw
))
769 * A bio has been dispatched. Also adjust slice_end. It might happen
770 * that initially cgroup limit was very low resulting in high
771 * slice_end, but later limit was bumped up and bio was dispached
772 * sooner, then we need to reduce slice_end. A high bogus slice_end
773 * is bad because it does not allow new slice to start.
776 throtl_set_slice_end(tg
, rw
, jiffies
+ throtl_slice
);
778 time_elapsed
= jiffies
- tg
->slice_start
[rw
];
780 nr_slices
= time_elapsed
/ throtl_slice
;
784 tmp
= tg
->bps
[rw
] * throtl_slice
* nr_slices
;
788 io_trim
= (tg
->iops
[rw
] * throtl_slice
* nr_slices
)/HZ
;
790 if (!bytes_trim
&& !io_trim
)
793 if (tg
->bytes_disp
[rw
] >= bytes_trim
)
794 tg
->bytes_disp
[rw
] -= bytes_trim
;
796 tg
->bytes_disp
[rw
] = 0;
798 if (tg
->io_disp
[rw
] >= io_trim
)
799 tg
->io_disp
[rw
] -= io_trim
;
803 tg
->slice_start
[rw
] += nr_slices
* throtl_slice
;
805 throtl_log(&tg
->service_queue
,
806 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
807 rw
== READ
? 'R' : 'W', nr_slices
, bytes_trim
, io_trim
,
808 tg
->slice_start
[rw
], tg
->slice_end
[rw
], jiffies
);
811 static bool tg_with_in_iops_limit(struct throtl_grp
*tg
, struct bio
*bio
,
814 bool rw
= bio_data_dir(bio
);
815 unsigned int io_allowed
;
816 unsigned long jiffy_elapsed
, jiffy_wait
, jiffy_elapsed_rnd
;
819 jiffy_elapsed
= jiffy_elapsed_rnd
= jiffies
- tg
->slice_start
[rw
];
821 /* Slice has just started. Consider one slice interval */
823 jiffy_elapsed_rnd
= throtl_slice
;
825 jiffy_elapsed_rnd
= roundup(jiffy_elapsed_rnd
, throtl_slice
);
828 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
829 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
830 * will allow dispatch after 1 second and after that slice should
834 tmp
= (u64
)tg
->iops
[rw
] * jiffy_elapsed_rnd
;
838 io_allowed
= UINT_MAX
;
842 if (tg
->io_disp
[rw
] + 1 <= io_allowed
) {
848 /* Calc approx time to dispatch */
849 jiffy_wait
= ((tg
->io_disp
[rw
] + 1) * HZ
)/tg
->iops
[rw
] + 1;
851 if (jiffy_wait
> jiffy_elapsed
)
852 jiffy_wait
= jiffy_wait
- jiffy_elapsed
;
861 static bool tg_with_in_bps_limit(struct throtl_grp
*tg
, struct bio
*bio
,
864 bool rw
= bio_data_dir(bio
);
865 u64 bytes_allowed
, extra_bytes
, tmp
;
866 unsigned long jiffy_elapsed
, jiffy_wait
, jiffy_elapsed_rnd
;
868 jiffy_elapsed
= jiffy_elapsed_rnd
= jiffies
- tg
->slice_start
[rw
];
870 /* Slice has just started. Consider one slice interval */
872 jiffy_elapsed_rnd
= throtl_slice
;
874 jiffy_elapsed_rnd
= roundup(jiffy_elapsed_rnd
, throtl_slice
);
876 tmp
= tg
->bps
[rw
] * jiffy_elapsed_rnd
;
880 if (tg
->bytes_disp
[rw
] + bio
->bi_iter
.bi_size
<= bytes_allowed
) {
886 /* Calc approx time to dispatch */
887 extra_bytes
= tg
->bytes_disp
[rw
] + bio
->bi_iter
.bi_size
- bytes_allowed
;
888 jiffy_wait
= div64_u64(extra_bytes
* HZ
, tg
->bps
[rw
]);
894 * This wait time is without taking into consideration the rounding
895 * up we did. Add that time also.
897 jiffy_wait
= jiffy_wait
+ (jiffy_elapsed_rnd
- jiffy_elapsed
);
904 * Returns whether one can dispatch a bio or not. Also returns approx number
905 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
907 static bool tg_may_dispatch(struct throtl_grp
*tg
, struct bio
*bio
,
910 bool rw
= bio_data_dir(bio
);
911 unsigned long bps_wait
= 0, iops_wait
= 0, max_wait
= 0;
914 * Currently whole state machine of group depends on first bio
915 * queued in the group bio list. So one should not be calling
916 * this function with a different bio if there are other bios
919 BUG_ON(tg
->service_queue
.nr_queued
[rw
] &&
920 bio
!= throtl_peek_queued(&tg
->service_queue
.queued
[rw
]));
922 /* If tg->bps = -1, then BW is unlimited */
923 if (tg
->bps
[rw
] == -1 && tg
->iops
[rw
] == -1) {
930 * If previous slice expired, start a new one otherwise renew/extend
931 * existing slice to make sure it is at least throtl_slice interval
934 if (throtl_slice_used(tg
, rw
))
935 throtl_start_new_slice(tg
, rw
);
937 if (time_before(tg
->slice_end
[rw
], jiffies
+ throtl_slice
))
938 throtl_extend_slice(tg
, rw
, jiffies
+ throtl_slice
);
941 if (tg_with_in_bps_limit(tg
, bio
, &bps_wait
) &&
942 tg_with_in_iops_limit(tg
, bio
, &iops_wait
)) {
948 max_wait
= max(bps_wait
, iops_wait
);
953 if (time_before(tg
->slice_end
[rw
], jiffies
+ max_wait
))
954 throtl_extend_slice(tg
, rw
, jiffies
+ max_wait
);
959 static void throtl_update_dispatch_stats(struct blkcg_gq
*blkg
, u64 bytes
,
962 struct throtl_grp
*tg
= blkg_to_tg(blkg
);
963 struct tg_stats_cpu
*stats_cpu
;
966 /* If per cpu stats are not allocated yet, don't do any accounting. */
967 if (tg
->stats_cpu
== NULL
)
971 * Disabling interrupts to provide mutual exclusion between two
972 * writes on same cpu. It probably is not needed for 64bit. Not
973 * optimizing that case yet.
975 local_irq_save(flags
);
977 stats_cpu
= this_cpu_ptr(tg
->stats_cpu
);
979 blkg_rwstat_add(&stats_cpu
->serviced
, rw
, 1);
980 blkg_rwstat_add(&stats_cpu
->service_bytes
, rw
, bytes
);
982 local_irq_restore(flags
);
985 static void throtl_charge_bio(struct throtl_grp
*tg
, struct bio
*bio
)
987 bool rw
= bio_data_dir(bio
);
989 /* Charge the bio to the group */
990 tg
->bytes_disp
[rw
] += bio
->bi_iter
.bi_size
;
994 * REQ_THROTTLED is used to prevent the same bio to be throttled
995 * more than once as a throttled bio will go through blk-throtl the
996 * second time when it eventually gets issued. Set it when a bio
997 * is being charged to a tg.
999 * Dispatch stats aren't recursive and each @bio should only be
1000 * accounted by the @tg it was originally associated with. Let's
1001 * update the stats when setting REQ_THROTTLED for the first time
1002 * which is guaranteed to be for the @bio's original tg.
1004 if (!(bio
->bi_rw
& REQ_THROTTLED
)) {
1005 bio
->bi_rw
|= REQ_THROTTLED
;
1006 throtl_update_dispatch_stats(tg_to_blkg(tg
),
1007 bio
->bi_iter
.bi_size
, bio
->bi_rw
);
1012 * throtl_add_bio_tg - add a bio to the specified throtl_grp
1015 * @tg: the target throtl_grp
1017 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
1018 * tg->qnode_on_self[] is used.
1020 static void throtl_add_bio_tg(struct bio
*bio
, struct throtl_qnode
*qn
,
1021 struct throtl_grp
*tg
)
1023 struct throtl_service_queue
*sq
= &tg
->service_queue
;
1024 bool rw
= bio_data_dir(bio
);
1027 qn
= &tg
->qnode_on_self
[rw
];
1030 * If @tg doesn't currently have any bios queued in the same
1031 * direction, queueing @bio can change when @tg should be
1032 * dispatched. Mark that @tg was empty. This is automatically
1033 * cleaered on the next tg_update_disptime().
1035 if (!sq
->nr_queued
[rw
])
1036 tg
->flags
|= THROTL_TG_WAS_EMPTY
;
1038 throtl_qnode_add_bio(bio
, qn
, &sq
->queued
[rw
]);
1040 sq
->nr_queued
[rw
]++;
1041 throtl_enqueue_tg(tg
);
1044 static void tg_update_disptime(struct throtl_grp
*tg
)
1046 struct throtl_service_queue
*sq
= &tg
->service_queue
;
1047 unsigned long read_wait
= -1, write_wait
= -1, min_wait
= -1, disptime
;
1050 if ((bio
= throtl_peek_queued(&sq
->queued
[READ
])))
1051 tg_may_dispatch(tg
, bio
, &read_wait
);
1053 if ((bio
= throtl_peek_queued(&sq
->queued
[WRITE
])))
1054 tg_may_dispatch(tg
, bio
, &write_wait
);
1056 min_wait
= min(read_wait
, write_wait
);
1057 disptime
= jiffies
+ min_wait
;
1059 /* Update dispatch time */
1060 throtl_dequeue_tg(tg
);
1061 tg
->disptime
= disptime
;
1062 throtl_enqueue_tg(tg
);
1064 /* see throtl_add_bio_tg() */
1065 tg
->flags
&= ~THROTL_TG_WAS_EMPTY
;
1068 static void start_parent_slice_with_credit(struct throtl_grp
*child_tg
,
1069 struct throtl_grp
*parent_tg
, bool rw
)
1071 if (throtl_slice_used(parent_tg
, rw
)) {
1072 throtl_start_new_slice_with_credit(parent_tg
, rw
,
1073 child_tg
->slice_start
[rw
]);
1078 static void tg_dispatch_one_bio(struct throtl_grp
*tg
, bool rw
)
1080 struct throtl_service_queue
*sq
= &tg
->service_queue
;
1081 struct throtl_service_queue
*parent_sq
= sq
->parent_sq
;
1082 struct throtl_grp
*parent_tg
= sq_to_tg(parent_sq
);
1083 struct throtl_grp
*tg_to_put
= NULL
;
1087 * @bio is being transferred from @tg to @parent_sq. Popping a bio
1088 * from @tg may put its reference and @parent_sq might end up
1089 * getting released prematurely. Remember the tg to put and put it
1090 * after @bio is transferred to @parent_sq.
1092 bio
= throtl_pop_queued(&sq
->queued
[rw
], &tg_to_put
);
1093 sq
->nr_queued
[rw
]--;
1095 throtl_charge_bio(tg
, bio
);
1098 * If our parent is another tg, we just need to transfer @bio to
1099 * the parent using throtl_add_bio_tg(). If our parent is
1100 * @td->service_queue, @bio is ready to be issued. Put it on its
1101 * bio_lists[] and decrease total number queued. The caller is
1102 * responsible for issuing these bios.
1105 throtl_add_bio_tg(bio
, &tg
->qnode_on_parent
[rw
], parent_tg
);
1106 start_parent_slice_with_credit(tg
, parent_tg
, rw
);
1108 throtl_qnode_add_bio(bio
, &tg
->qnode_on_parent
[rw
],
1109 &parent_sq
->queued
[rw
]);
1110 BUG_ON(tg
->td
->nr_queued
[rw
] <= 0);
1111 tg
->td
->nr_queued
[rw
]--;
1114 throtl_trim_slice(tg
, rw
);
1117 blkg_put(tg_to_blkg(tg_to_put
));
1120 static int throtl_dispatch_tg(struct throtl_grp
*tg
)
1122 struct throtl_service_queue
*sq
= &tg
->service_queue
;
1123 unsigned int nr_reads
= 0, nr_writes
= 0;
1124 unsigned int max_nr_reads
= throtl_grp_quantum
*3/4;
1125 unsigned int max_nr_writes
= throtl_grp_quantum
- max_nr_reads
;
1128 /* Try to dispatch 75% READS and 25% WRITES */
1130 while ((bio
= throtl_peek_queued(&sq
->queued
[READ
])) &&
1131 tg_may_dispatch(tg
, bio
, NULL
)) {
1133 tg_dispatch_one_bio(tg
, bio_data_dir(bio
));
1136 if (nr_reads
>= max_nr_reads
)
1140 while ((bio
= throtl_peek_queued(&sq
->queued
[WRITE
])) &&
1141 tg_may_dispatch(tg
, bio
, NULL
)) {
1143 tg_dispatch_one_bio(tg
, bio_data_dir(bio
));
1146 if (nr_writes
>= max_nr_writes
)
1150 return nr_reads
+ nr_writes
;
1153 static int throtl_select_dispatch(struct throtl_service_queue
*parent_sq
)
1155 unsigned int nr_disp
= 0;
1158 struct throtl_grp
*tg
= throtl_rb_first(parent_sq
);
1159 struct throtl_service_queue
*sq
= &tg
->service_queue
;
1164 if (time_before(jiffies
, tg
->disptime
))
1167 throtl_dequeue_tg(tg
);
1169 nr_disp
+= throtl_dispatch_tg(tg
);
1171 if (sq
->nr_queued
[0] || sq
->nr_queued
[1])
1172 tg_update_disptime(tg
);
1174 if (nr_disp
>= throtl_quantum
)
1182 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1183 * @arg: the throtl_service_queue being serviced
1185 * This timer is armed when a child throtl_grp with active bio's become
1186 * pending and queued on the service_queue's pending_tree and expires when
1187 * the first child throtl_grp should be dispatched. This function
1188 * dispatches bio's from the children throtl_grps to the parent
1191 * If the parent's parent is another throtl_grp, dispatching is propagated
1192 * by either arming its pending_timer or repeating dispatch directly. If
1193 * the top-level service_tree is reached, throtl_data->dispatch_work is
1194 * kicked so that the ready bio's are issued.
1196 static void throtl_pending_timer_fn(unsigned long arg
)
1198 struct throtl_service_queue
*sq
= (void *)arg
;
1199 struct throtl_grp
*tg
= sq_to_tg(sq
);
1200 struct throtl_data
*td
= sq_to_td(sq
);
1201 struct request_queue
*q
= td
->queue
;
1202 struct throtl_service_queue
*parent_sq
;
1206 spin_lock_irq(q
->queue_lock
);
1208 parent_sq
= sq
->parent_sq
;
1212 throtl_log(sq
, "dispatch nr_queued=%u read=%u write=%u",
1213 sq
->nr_queued
[READ
] + sq
->nr_queued
[WRITE
],
1214 sq
->nr_queued
[READ
], sq
->nr_queued
[WRITE
]);
1216 ret
= throtl_select_dispatch(sq
);
1218 throtl_log(sq
, "bios disp=%u", ret
);
1222 if (throtl_schedule_next_dispatch(sq
, false))
1225 /* this dispatch windows is still open, relax and repeat */
1226 spin_unlock_irq(q
->queue_lock
);
1228 spin_lock_irq(q
->queue_lock
);
1235 /* @parent_sq is another throl_grp, propagate dispatch */
1236 if (tg
->flags
& THROTL_TG_WAS_EMPTY
) {
1237 tg_update_disptime(tg
);
1238 if (!throtl_schedule_next_dispatch(parent_sq
, false)) {
1239 /* window is already open, repeat dispatching */
1246 /* reached the top-level, queue issueing */
1247 queue_work(kthrotld_workqueue
, &td
->dispatch_work
);
1250 spin_unlock_irq(q
->queue_lock
);
1254 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1255 * @work: work item being executed
1257 * This function is queued for execution when bio's reach the bio_lists[]
1258 * of throtl_data->service_queue. Those bio's are ready and issued by this
1261 static void blk_throtl_dispatch_work_fn(struct work_struct
*work
)
1263 struct throtl_data
*td
= container_of(work
, struct throtl_data
,
1265 struct throtl_service_queue
*td_sq
= &td
->service_queue
;
1266 struct request_queue
*q
= td
->queue
;
1267 struct bio_list bio_list_on_stack
;
1269 struct blk_plug plug
;
1272 bio_list_init(&bio_list_on_stack
);
1274 spin_lock_irq(q
->queue_lock
);
1275 for (rw
= READ
; rw
<= WRITE
; rw
++)
1276 while ((bio
= throtl_pop_queued(&td_sq
->queued
[rw
], NULL
)))
1277 bio_list_add(&bio_list_on_stack
, bio
);
1278 spin_unlock_irq(q
->queue_lock
);
1280 if (!bio_list_empty(&bio_list_on_stack
)) {
1281 blk_start_plug(&plug
);
1282 while((bio
= bio_list_pop(&bio_list_on_stack
)))
1283 generic_make_request(bio
);
1284 blk_finish_plug(&plug
);
1288 static u64
tg_prfill_cpu_rwstat(struct seq_file
*sf
,
1289 struct blkg_policy_data
*pd
, int off
)
1291 struct throtl_grp
*tg
= pd_to_tg(pd
);
1292 struct blkg_rwstat rwstat
= { }, tmp
;
1295 if (tg
->stats_cpu
== NULL
)
1298 for_each_possible_cpu(cpu
) {
1299 struct tg_stats_cpu
*sc
= per_cpu_ptr(tg
->stats_cpu
, cpu
);
1301 tmp
= blkg_rwstat_read((void *)sc
+ off
);
1302 for (i
= 0; i
< BLKG_RWSTAT_NR
; i
++)
1303 rwstat
.cnt
[i
] += tmp
.cnt
[i
];
1306 return __blkg_prfill_rwstat(sf
, pd
, &rwstat
);
1309 static int tg_print_cpu_rwstat(struct seq_file
*sf
, void *v
)
1311 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)), tg_prfill_cpu_rwstat
,
1312 &blkcg_policy_throtl
, seq_cft(sf
)->private, true);
1316 static u64
tg_prfill_conf_u64(struct seq_file
*sf
, struct blkg_policy_data
*pd
,
1319 struct throtl_grp
*tg
= pd_to_tg(pd
);
1320 u64 v
= *(u64
*)((void *)tg
+ off
);
1324 return __blkg_prfill_u64(sf
, pd
, v
);
1327 static u64
tg_prfill_conf_uint(struct seq_file
*sf
, struct blkg_policy_data
*pd
,
1330 struct throtl_grp
*tg
= pd_to_tg(pd
);
1331 unsigned int v
= *(unsigned int *)((void *)tg
+ off
);
1335 return __blkg_prfill_u64(sf
, pd
, v
);
1338 static int tg_print_conf_u64(struct seq_file
*sf
, void *v
)
1340 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)), tg_prfill_conf_u64
,
1341 &blkcg_policy_throtl
, seq_cft(sf
)->private, false);
1345 static int tg_print_conf_uint(struct seq_file
*sf
, void *v
)
1347 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)), tg_prfill_conf_uint
,
1348 &blkcg_policy_throtl
, seq_cft(sf
)->private, false);
1352 static ssize_t
tg_set_conf(struct kernfs_open_file
*of
,
1353 char *buf
, size_t nbytes
, loff_t off
, bool is_u64
)
1355 struct blkcg
*blkcg
= css_to_blkcg(of_css(of
));
1356 struct blkg_conf_ctx ctx
;
1357 struct throtl_grp
*tg
;
1358 struct throtl_service_queue
*sq
;
1359 struct blkcg_gq
*blkg
;
1360 struct cgroup_subsys_state
*pos_css
;
1363 ret
= blkg_conf_prep(blkcg
, &blkcg_policy_throtl
, buf
, &ctx
);
1367 tg
= blkg_to_tg(ctx
.blkg
);
1368 sq
= &tg
->service_queue
;
1374 *(u64
*)((void *)tg
+ of_cft(of
)->private) = ctx
.v
;
1376 *(unsigned int *)((void *)tg
+ of_cft(of
)->private) = ctx
.v
;
1378 throtl_log(&tg
->service_queue
,
1379 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1380 tg
->bps
[READ
], tg
->bps
[WRITE
],
1381 tg
->iops
[READ
], tg
->iops
[WRITE
]);
1384 * Update has_rules[] flags for the updated tg's subtree. A tg is
1385 * considered to have rules if either the tg itself or any of its
1386 * ancestors has rules. This identifies groups without any
1387 * restrictions in the whole hierarchy and allows them to bypass
1390 blkg_for_each_descendant_pre(blkg
, pos_css
, ctx
.blkg
)
1391 tg_update_has_rules(blkg_to_tg(blkg
));
1394 * We're already holding queue_lock and know @tg is valid. Let's
1395 * apply the new config directly.
1397 * Restart the slices for both READ and WRITES. It might happen
1398 * that a group's limit are dropped suddenly and we don't want to
1399 * account recently dispatched IO with new low rate.
1401 throtl_start_new_slice(tg
, 0);
1402 throtl_start_new_slice(tg
, 1);
1404 if (tg
->flags
& THROTL_TG_PENDING
) {
1405 tg_update_disptime(tg
);
1406 throtl_schedule_next_dispatch(sq
->parent_sq
, true);
1409 blkg_conf_finish(&ctx
);
1413 static ssize_t
tg_set_conf_u64(struct kernfs_open_file
*of
,
1414 char *buf
, size_t nbytes
, loff_t off
)
1416 return tg_set_conf(of
, buf
, nbytes
, off
, true);
1419 static ssize_t
tg_set_conf_uint(struct kernfs_open_file
*of
,
1420 char *buf
, size_t nbytes
, loff_t off
)
1422 return tg_set_conf(of
, buf
, nbytes
, off
, false);
1425 static struct cftype throtl_files
[] = {
1427 .name
= "throttle.read_bps_device",
1428 .private = offsetof(struct throtl_grp
, bps
[READ
]),
1429 .seq_show
= tg_print_conf_u64
,
1430 .write
= tg_set_conf_u64
,
1433 .name
= "throttle.write_bps_device",
1434 .private = offsetof(struct throtl_grp
, bps
[WRITE
]),
1435 .seq_show
= tg_print_conf_u64
,
1436 .write
= tg_set_conf_u64
,
1439 .name
= "throttle.read_iops_device",
1440 .private = offsetof(struct throtl_grp
, iops
[READ
]),
1441 .seq_show
= tg_print_conf_uint
,
1442 .write
= tg_set_conf_uint
,
1445 .name
= "throttle.write_iops_device",
1446 .private = offsetof(struct throtl_grp
, iops
[WRITE
]),
1447 .seq_show
= tg_print_conf_uint
,
1448 .write
= tg_set_conf_uint
,
1451 .name
= "throttle.io_service_bytes",
1452 .private = offsetof(struct tg_stats_cpu
, service_bytes
),
1453 .seq_show
= tg_print_cpu_rwstat
,
1456 .name
= "throttle.io_serviced",
1457 .private = offsetof(struct tg_stats_cpu
, serviced
),
1458 .seq_show
= tg_print_cpu_rwstat
,
1463 static void throtl_shutdown_wq(struct request_queue
*q
)
1465 struct throtl_data
*td
= q
->td
;
1467 cancel_work_sync(&td
->dispatch_work
);
1470 static struct blkcg_policy blkcg_policy_throtl
= {
1471 .pd_size
= sizeof(struct throtl_grp
),
1472 .cftypes
= throtl_files
,
1474 .pd_init_fn
= throtl_pd_init
,
1475 .pd_online_fn
= throtl_pd_online
,
1476 .pd_exit_fn
= throtl_pd_exit
,
1477 .pd_reset_stats_fn
= throtl_pd_reset_stats
,
1480 bool blk_throtl_bio(struct request_queue
*q
, struct bio
*bio
)
1482 struct throtl_data
*td
= q
->td
;
1483 struct throtl_qnode
*qn
= NULL
;
1484 struct throtl_grp
*tg
;
1485 struct throtl_service_queue
*sq
;
1486 bool rw
= bio_data_dir(bio
);
1487 struct blkcg
*blkcg
;
1488 bool throttled
= false;
1490 /* see throtl_charge_bio() */
1491 if (bio
->bi_rw
& REQ_THROTTLED
)
1495 * A throtl_grp pointer retrieved under rcu can be used to access
1496 * basic fields like stats and io rates. If a group has no rules,
1497 * just update the dispatch stats in lockless manner and return.
1500 blkcg
= bio_blkcg(bio
);
1501 tg
= throtl_lookup_tg(td
, blkcg
);
1503 if (!tg
->has_rules
[rw
]) {
1504 throtl_update_dispatch_stats(tg_to_blkg(tg
),
1505 bio
->bi_iter
.bi_size
, bio
->bi_rw
);
1506 goto out_unlock_rcu
;
1511 * Either group has not been allocated yet or it is not an unlimited
1514 spin_lock_irq(q
->queue_lock
);
1515 tg
= throtl_lookup_create_tg(td
, blkcg
);
1519 sq
= &tg
->service_queue
;
1522 /* throtl is FIFO - if bios are already queued, should queue */
1523 if (sq
->nr_queued
[rw
])
1526 /* if above limits, break to queue */
1527 if (!tg_may_dispatch(tg
, bio
, NULL
))
1530 /* within limits, let's charge and dispatch directly */
1531 throtl_charge_bio(tg
, bio
);
1534 * We need to trim slice even when bios are not being queued
1535 * otherwise it might happen that a bio is not queued for
1536 * a long time and slice keeps on extending and trim is not
1537 * called for a long time. Now if limits are reduced suddenly
1538 * we take into account all the IO dispatched so far at new
1539 * low rate and * newly queued IO gets a really long dispatch
1542 * So keep on trimming slice even if bio is not queued.
1544 throtl_trim_slice(tg
, rw
);
1547 * @bio passed through this layer without being throttled.
1548 * Climb up the ladder. If we''re already at the top, it
1549 * can be executed directly.
1551 qn
= &tg
->qnode_on_parent
[rw
];
1558 /* out-of-limit, queue to @tg */
1559 throtl_log(sq
, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
1560 rw
== READ
? 'R' : 'W',
1561 tg
->bytes_disp
[rw
], bio
->bi_iter
.bi_size
, tg
->bps
[rw
],
1562 tg
->io_disp
[rw
], tg
->iops
[rw
],
1563 sq
->nr_queued
[READ
], sq
->nr_queued
[WRITE
]);
1565 bio_associate_current(bio
);
1566 tg
->td
->nr_queued
[rw
]++;
1567 throtl_add_bio_tg(bio
, qn
, tg
);
1571 * Update @tg's dispatch time and force schedule dispatch if @tg
1572 * was empty before @bio. The forced scheduling isn't likely to
1573 * cause undue delay as @bio is likely to be dispatched directly if
1574 * its @tg's disptime is not in the future.
1576 if (tg
->flags
& THROTL_TG_WAS_EMPTY
) {
1577 tg_update_disptime(tg
);
1578 throtl_schedule_next_dispatch(tg
->service_queue
.parent_sq
, true);
1582 spin_unlock_irq(q
->queue_lock
);
1587 * As multiple blk-throtls may stack in the same issue path, we
1588 * don't want bios to leave with the flag set. Clear the flag if
1592 bio
->bi_rw
&= ~REQ_THROTTLED
;
1597 * Dispatch all bios from all children tg's queued on @parent_sq. On
1598 * return, @parent_sq is guaranteed to not have any active children tg's
1599 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
1601 static void tg_drain_bios(struct throtl_service_queue
*parent_sq
)
1603 struct throtl_grp
*tg
;
1605 while ((tg
= throtl_rb_first(parent_sq
))) {
1606 struct throtl_service_queue
*sq
= &tg
->service_queue
;
1609 throtl_dequeue_tg(tg
);
1611 while ((bio
= throtl_peek_queued(&sq
->queued
[READ
])))
1612 tg_dispatch_one_bio(tg
, bio_data_dir(bio
));
1613 while ((bio
= throtl_peek_queued(&sq
->queued
[WRITE
])))
1614 tg_dispatch_one_bio(tg
, bio_data_dir(bio
));
1619 * blk_throtl_drain - drain throttled bios
1620 * @q: request_queue to drain throttled bios for
1622 * Dispatch all currently throttled bios on @q through ->make_request_fn().
1624 void blk_throtl_drain(struct request_queue
*q
)
1625 __releases(q
->queue_lock
) __acquires(q
->queue_lock
)
1627 struct throtl_data
*td
= q
->td
;
1628 struct blkcg_gq
*blkg
;
1629 struct cgroup_subsys_state
*pos_css
;
1633 queue_lockdep_assert_held(q
);
1637 * Drain each tg while doing post-order walk on the blkg tree, so
1638 * that all bios are propagated to td->service_queue. It'd be
1639 * better to walk service_queue tree directly but blkg walk is
1642 blkg_for_each_descendant_post(blkg
, pos_css
, td
->queue
->root_blkg
)
1643 tg_drain_bios(&blkg_to_tg(blkg
)->service_queue
);
1645 /* finally, transfer bios from top-level tg's into the td */
1646 tg_drain_bios(&td
->service_queue
);
1649 spin_unlock_irq(q
->queue_lock
);
1651 /* all bios now should be in td->service_queue, issue them */
1652 for (rw
= READ
; rw
<= WRITE
; rw
++)
1653 while ((bio
= throtl_pop_queued(&td
->service_queue
.queued
[rw
],
1655 generic_make_request(bio
);
1657 spin_lock_irq(q
->queue_lock
);
1660 int blk_throtl_init(struct request_queue
*q
)
1662 struct throtl_data
*td
;
1665 td
= kzalloc_node(sizeof(*td
), GFP_KERNEL
, q
->node
);
1669 INIT_WORK(&td
->dispatch_work
, blk_throtl_dispatch_work_fn
);
1670 throtl_service_queue_init(&td
->service_queue
, NULL
);
1675 /* activate policy */
1676 ret
= blkcg_activate_policy(q
, &blkcg_policy_throtl
);
1682 void blk_throtl_exit(struct request_queue
*q
)
1685 throtl_shutdown_wq(q
);
1686 blkcg_deactivate_policy(q
, &blkcg_policy_throtl
);
1690 static int __init
throtl_init(void)
1692 kthrotld_workqueue
= alloc_workqueue("kthrotld", WQ_MEM_RECLAIM
, 0);
1693 if (!kthrotld_workqueue
)
1694 panic("Failed to create kthrotld\n");
1696 return blkcg_policy_register(&blkcg_policy_throtl
);
1699 module_init(throtl_init
);